
Demo: Emulating Geo-Distributed Fog Services

Moysis Symeonides∗, Zacharias Georgiou∗, Demetris Trihinas†, George Pallis∗, Marios D. Dikaiakos∗

∗ Department of Computer Science
University of Cyprus

{ msymeo03, zgeorg03, gpallis, mdd }@cs.ucy.ac.cy

† Department of Computer Science
University of Nicosia
trihinas.d@unic.ac.cy

I. INTRODUCTION

For more than the better parts of the last decades, we are
witnessing the proliferation of IoT devices, as well as an
exponential growth in the volume of data generated outside
of datacenters. With the generated data at the extremes of
the network and the restricted device-to-cloud bandwidth, data
mitigation is becoming the major barrier of cloud-based IoT
services [1]. To alleviate these challenges, Fog Computing
extends the Cloud’s capabilities closer to IoT devices.

However, Fog application development, testing, and per-
formance evaluation are full of new challenges [2]. First,
the adoption of Fog equipment dictates the examination of
diverse alternatives with time-consuming and complicated
configurations. Furthermore, resource variability found in Fog
computing, caused by physical faults, bandwidth saturation,
network uncertainty, energy consumption, and device mobility,
harms the performance and reliability of IoT services [3].
Finally, even after all these challenges have been dealt with,
compiling complex queries capable of measuring and ex-
tracting analytic insights such as QoS, energy consumption,
and running monetary costs, is crucial even from the design
phase, and requires the installation of external monitoring
systems [4]. Consequently, practitioners utilize artificially
generated workloads [5], synthetic Fog topologies [6], and
Fog emulators [2] to explore application performance under
various operational conditions to somehow ease the challenges
mentioned above. Then, infrastructure and application perfor-
mance metrics, exposed by emulation systems, can become the
input of post-analysis pipelines to reveal hidden correlations
between the Fog deployment and the overall performance.
Though, the interconnection between emulators and analytic
tools requires either exporting and transferring files from one
system to another or ad-hoc integration via coding. Both prior
solutions are time-consuming and error-prone due to many
back-and-forth actions between emulation and analysis.

This demo presents an end-to-end system that combines
Fogify [2], our interactive Fog emulator, with Jupyter, a web-
based interactive tool for data analysis. Fogify helps develop-
ers by enabling the deployment of emulated Fog realms locally
or on Cloud infrastructure while easing the description of
Fog topologies by extending the Docker Compose to support
the “fogified” model specification. With the “fogified” model,
Fogify allocates resources as separated containerized pro-
cesses, and establishes network connections between them. At

running time, Fogify allows developers to inject ad-hoc faults,
entity downtime, perform scaling actions, adjust the workload,
network changes, and restrict data movement. Additionally,
Jupyter along with its libraries provides a wide range of
descriptive and predictive analysis methods. Last but not least,
the demonstration stack is provided as a set of containerized
services [7] that one can utilize with zero installation efforts.

II. FOGIFY FRAMEWORK

We have described in detail the system design decisions of
Fogify in [2]. Figure 1 depicts a high-level, abstract overview
of the Fogify architecture and how it is integrated with Jupyter.

A typical workflow starts with the user editing the docker-
compose file of the IoT application, and extend it to encapsu-
late Fogify’s model. Figure 2 depicts a shortened version of
demonstration’s topology. The Fogify model is composed of:
(i) Fog Templates, allowing the description of Services, Nodes
and Networks; and (ii) the Fog Topology, enabling users to
specify Blueprints. A Blueprint represents an emulated device
and is a combination of a Node, Service, Networks, replicas
and a label. Services are inherited from docker-compose while
the x-fogify section provides all Fogify primitives. Figure 2,
depicts a blueprint of a Fog node, namely mec-node-1, which
runs the mec-csv service on mec-node device and is connected
to mec-net-1, mex-2-cloud-net and mec-2-mec-net networks.
The user should describe in that way every Fog node.

When the description is ready, the user deploys the ap-
plication using the FogifySDK through a Jupyter Notebook,
with the description received by the Fogify Controller. If no
error is detected by the Controller, it spawns the emulated
devices and creates the overlay mesh networks between them,
instantiates the services, and broadcasts (any) network con-
straints to Fogify Agents. Specifically, the Controller translates
the model specification to underlying orchestration primitives
and deploys them via the Cluster Orchestrator, ensuring the
instantiation of the containerized services on the emulated
environment. Located on every cluster node, Fogify Agents
expose an API to accept requests from the Controller, apply
network QoS primitives, and monitor the emulated devices.

On a running emulated deployment, Fogify enables devel-
opers to apply Actions and “what-if” Scenarios (sequences
of timestamped actions) on their IoT services, such as ad-hoc
faults and topology changes. Actions and Scenarios are written
by following the Fogify Runtime Evaluation Model. When
an action or a scenario is submitted, the Fogify Controller

1

Resource
Management
Layer
Execution
Layer

Control
Layer Fogify Controller

Fogify SDK

Coordination
Orchestrator
Connector

ParserAPI

Config
Files

Cluster Node Cluster Node

Cluster Orchestrator

Emulation

Workload
Generators

Services

Emulation

Workload
Generators

Services

Overlay Networks

Fogify Agent

Fogify Agent

Containers
Listener

Low-level
Actions Module

Monitoring
Agent

Pandas numpy scipy
Graphical User Interface

Fogify Agent

Fig. 1: Fogify Overview

	services:
	x-fogify:
					nodes:
					networks:
					topology:
									-	label:	mec-node-1
											service:	mec-svc
											node:	mec-node
											networks:
											-	name:	mec-net-1
														links:
															car-node-at-mec-1:	
																					downlink:	{
																								latency:	50ms}
												-	name:	mec-2-cloud-net
												-	name:	mec-2-mec-net
												replicas:	1
										-	label:	mec-node-2
												service:

Fig. 2: Fogify Model

coordinates its execution with the Cluster Orchestrator and the
respective Fogify Agents. Furthermore, Fogify captures perfor-
mance and app-level metrics via the Fogify Agent monitoring
module. All metrics are stored at the Agent’s local storage and
can be retrieved from the FogifySDK. In the next section, we
illustrate how we exploit the FogifySDK capabilities in Jupyter
to create an interactive analysis tool for emulated deployments.

III. JUPYTER INTERFACE AND INTEGRATION

A computational Jupyter Notebook, is a web-based
workspace that enables interactive data analysis. Specifically,
users can add cells with code, which will be executed in an
execution environment, namely kernel, outside of the system.
When the code of a cell is processed, its results (e.g., plots),
are instantly displayed. The popularity of Jupyter Notebooks
contributes to a wide range of alternative web interfaces. We
selected JupyterLab because it has many features found in
popular IDEs, such as text highlighting and editing, while it
remains focused on interactive exploratory computing. Fig-
ure 3 depicts a typical arrangement of the Fogify workspace.
A users can manage Fogify’s description files side-by-side
with an interactive Notebook where they easily manipulate the
emulation process. The left sidebar contains a file browser 1©,
namely a list of files created or uploaded by the user including
Fog topology model and scenario files. When the user opens a
file, a new tab appears with the relevant document highlighting
2©, e.g. modeling files are presented with YAML highlighting.

Users may use the editor to change the document’s content
and save it. In parallel, they interact with Fogify through a
running Jupiter Notebook that is opened in a different tab 3©.
We pre-installed the FogifySDK library on Jupyter thus the
user can (un-) deploy a Fog Topology, apply ad-hoc changes
and scenarios, and, especially, retrieve runtime performance
metrics. For the latter, FogifySDK stores metrics to an in-
memory data structure, namely panda’s dataframe, providing
exploratory analysis methods that produce plots and summary
statistics 4©. Except of out-of-the-box plots, provided by
Pandas, we extended FogifySDK with tailored functions that
provide a set of plots illustrating and explaining the effects
of actions and scenarios in application performance. With
the wide range of analytic methods provided by FogifySDK,
users extract useful insights about QoS, cost, and predictive

1

3

2

4

Fig. 3: Graphical User Interface

analytics. Finally, users may integrate other libraries, like
scikit-learn, to endrose their analysis with ML and AI models.

IV. DEMONSTRATION

We will demonstrate the use of Fogify in the emulation
of an IoT service that is driven by real-world data [8] to
showcase a scenario of a taxi-cab company that collects and
analyzes location-based data from its fleet. Specifically, we
will: (i) describe, via Fogify’s model, a Fog application’s
topology, Fog devices, and networks; (ii) define a scenario
where the topology will alternate dynamically; (iii) deploy
the files to Fogify that will instantiate the emulation and
execute the scenario; (iv) monitor every emulated node, and
(v) perform examples of complex analytic tasks on the metrics
mentioned before. It must be noted that both Fogify and all
deployed services are open source and can run on a laptop.
Thus, attendees can deploy the experiment on their laptops and
perform small refinements to Fogify’s configuration to see in
real-time the impact on the running deployment. The target
audience of this demonstration consists of three interweaving
user groups:
IoT Service Developers: who wish to ease the testing of their
services in geo-distributed Fog settings. With the proposed
stack, developers design fog-enabled services by using de-
scription extensions to docker-compose, a familiar to them
specification, and with Fogify, rapidly perform multiple tests
and compare both well-functionality and performance of their
services under extreme and uncertain conditions.
Academic Researchers: who wish to quickly -but thoroughly-
assess novel algorithms for Fog realms. Such users want to
quickly perform their analysis over various system prototypes,
testing scenarios and Fog settings, to discover hidden insights
without facing significant time and cost overheads of having to
deploy prototypes over geo-distributed infrastructure. Ideally,
they work in an environment, such as Jupyter Notebooks, with
libraries, such as pandas, numpy, scipy, scikit-learn, etc.
Fog Computing Operators: who wish to assess the impact
of IoT devices to their infrastructure before purchasing and
deploying to production.
Acknowledgement. This work is partially supported by the EU Com-
mission through RAINBOW 871403 (ICT-15-2019-2020) project
and by the Cyprus Research and Innovation Foundation through
COMPLEMENTARY/0916/0916/0171 project.

2

REFERENCES

[1] D. Trihinas, G. Pallis, and M. Dikaiakos, “ADMin: adaptive monitoring
dissemination for the internet of things,” in IEEE INFOCOM 2017,
Atlanta, USA, May 2017.

[2] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, and M. Dikaiakos,
“Fogify: A fog computing emulation framework,” in Proceedings of the
5th ACM/IEEE Symposium on Edge Computing, ser. SEC ’20. New
York, NY, USA: ACM, 2020.

[3] C. Powell, C. Desiniotis, and B. Dezfouli, “The fog development kit: A
platform for the development and management of fog systems,” IEEE
Internet of Things Journal, vol. 7, no. 4, pp. 3198–3213, 2020.

[4] Z. Georgiou, M. Symeonides, D. Trihinas, G. Pallis, and M. Dikaiakos,
“StreamSight: A Query-Driven Framework for Streaming Analytics in
Edge Computing,” in Proceedings of the 11th International Conference
on Utility and Cloud Computing (UCC 2018), 2018.

[5] O. Kolosov, G. Yadgar, S. Maheshwari, and E. Soljanin, “Benchmarking
in the dark: On the absence of comprehensive edge datasets,”
in 3rd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 20). USENIX Association, Jun. 2020. [Online]. Available:
https://www.usenix.org/conference/hotedge20/presentation/kolosov

[6] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, and
S. Dustdar, “Synthesizing plausible infrastructure configurations
for evaluating edge computing systems,” in 3rd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge
20). USENIX Association, Jun. 2020. [Online]. Available:
https://www.usenix.org/conference/hotedge20/presentation/rausch

[7] “Demo repository,” https://github.com/UCY-LINC-LAB/fogify-demo.
[8] “New york yellow cab dataset,” https://on.nyc.gov/2OssELg.

3

