
ADVISE – a Framework for Evaluating Cloud
Service Elasticity Behavior∗

Georgiana Copil1, Demetris Trihinas2, Hong-Linh Truong1, Daniel Moldovan1,
George Pallis2, Schahram Dustdar1, Marios Dikaiakos2

1 Distributed Systems Group, Vienna University of Technology
{e.copil,d.moldovan,truong,dustdar}@dsg.tuwien.ac.at

2 Computer Science Department, University of Cyprus
{trihinas,gpallis,mdd}@cs.ucy.ac.cy

Abstract. Complex cloud services rely on different elasticity control
processes to deal with dynamic requirement changes and workloads.
However, enforcing an elasticity control process to a cloud service does
not always lead to an optimal gain in terms of quality or cost, due to
the complexity of service structures, deployment strategies, and underly-
ing infrastructure dynamics. Therefore, being able, a priori, to estimate
and evaluate the relation between cloud service elasticity behavior and
elasticity control processes is crucial for runtime choices of appropriate
elasticity control processes. In this paper we present ADVISE, a frame-
work for estimating and evaluating cloud service elasticity behavior.
ADVISE gathers service structure, deployment, service runtime, control
processes, and cloud infrastructure information. Based on this informa-
tion, ADVISE utilizes clustering techniques to identify cloud elastic-
ity behavior produced by elasticity control. Our experiments show that
ADVISE can estimate the expected elasticity behavior, in time, for dif-
ferent cloud services thus being a useful tool to elasticity controllers for
improving the quality of runtime elasticity control decisions.

1 Introduction

One of the key features driving the popularity of cloud computing is elastic-
ity, that is, the ability of cloud services to acquire and release resources on-
demand, in response to runtime fluctuating workloads. From customer perspec-
tive, resource auto-scaling could minimize task execution time, without exceed-
ing a given budget. From cloud provider perspective, elasticity provisioning con-
tributes to maximizing their financial gain while keeping their customers satisfied
and reducing administrative costs. However, automatic elasticity provisioning is
not a trivial task.

A common approach, employed by many elasticity controllers [1, 2] is to
monitor the cloud service and (de-)provision virtual instances when a metric
threshold is violated. This approach may be sufficient for simple service models

∗This work was supported by the European Commission in terms of the CELAR
FP7 project (FP7-ICT-2011-8 #317790).



but, when considering large-scale distributed cloud services with various inter-
dependencies, a much deeper understanding of its elasticity behavior is required.
For this reason, existing work [2, 3] has identified a number of elasticity control
processes to improve the performance and quality of cloud services, while addi-
tionally attempting to minimize cost. However, a crucial question still remains
unanswered: which elasticity control processes are the most appropriate for a
cloud service in a particular situation at runtime? Both cloud customers and
providers can benefit from insightful information such as how the addition of a
new instance to a cloud service will affect the throughput of the overall deploy-
ment and individually on each part of the cloud service. Thus, cloud service elas-
ticity behavior knowledge under various controls and workloads is of paramount
importance to elasticity controllers for improving runtime decision making.

To this end, a wide range of approaches relying on service profiling or learning
from historic information [3–5] have been proposed. However, these approaches
limit their decisions to evaluating only low-level VM metrics (i.e., CPU and
memory usage) and do not support elasticity decisions based on cloud service
behavior at multiple levels (i.e., per node, tier, entire service). Additionally, cur-
rent approaches only evaluate resource utilization, without considering elasticity
as a multi-dimensional property composed of three dimensions (cost, quality
and resource elasticity). In our previous work, we focused on modeling current
and previous behavior with the concepts of elasticity space and pathway [6], or
using different algorithms to determine enforcement times in observed behavior
(e.g., with change-point detection), but without modeling expected behavior of
different service parts, in time. Finally, existing approaches do not consider the
outcome of a control process on the overall service, where often enforcing a
control process to the wrong part of the cloud service, can lead to side effects,
such as increasing the cost or decreasing performance of the overall service.

In this paper, we focus on addressing the above limitations by introducing the
ADVISE (evAluating clouD serVIce elaSticity bEhavior) framework, which esti-
mates cloud service elasticity behavior by utilizing different types of information,
such as service structure, deployment strategies, and underlying infrastructure
dynamics, when applying different external stimuli (e.g., elasticity control pro-
cesses). At the core of ADVISE is a clustering-based evaluation process which
uses these types of information for computing expected elasticity behavior, in
time, for various service parts. To evaluate ADVISE effectiveness, experiments
were conducted on a public cloud platform with a testbed comprised of two dif-
ferent cloud services. Results show that ADVISE outputs the expected elasticity
behavior, in time, for different services with a low estimation error rate. ADVISE
can be integrated by cloud providers alongside their elasticity controllers to im-
prove their decision quality, or used by cloud service providers to evaluate and
understand how different elasticity control processes impact their service.

The rest of this paper is structured as follows: in section 2 we model rele-
vant information regarding cloud services. In section 3, we present the elasticity
behavior evaluation process. In section 4, we evaluate ADVISE framework effec-
tiveness. In section 5 we discuss related work. Section 6 concludes this paper.



Fig. 1: Elasticity capabilities exposed by different elastic objects

2 Cloud Service Structural and Runtime Information

2.1 Cloud Service Information

To follow existing common service descriptions [7], we refer to a cloud application
in our study as a cloud service. A cloud service can be decomposed into service
topologies (e.g., a business tier, or a part of a workflow) which represent a group
of semantically connected service units. A service unit (e.g., a web service) rep-
resents a module offering computation or data capabilities. In order to refer to
these cloud service structures globally, we use the term Service Parts (SP ).

We extend the conceptual cloud service representation model proposed in [8]
with a rich set of information types for determining cloud elasticity behavior.
Fig. 1 depicts the extensions we made (white background) to include elasticity
control processes, service part behaviors and service parts. Overall, this represen-
tation contains: (i) Structural Information, describing the architectural struc-
ture of the application to be deployed on the cloud, (ii) Infrastructure System
Information, describing runtime information regarding resources allocated by
the cloud service from the underlying cloud platform, and (iii) Elasticity In-
formation, which is associated with both structural and infrastructure system
information for describing elasticity metrics, requirements, and capabilities.

Elasticity information is composed of elasticity metrics, elasticity require-
ments, and elasticity capabilities, each of them being associated to different SPs
or infrastructure resources. Elasticity Capabilities are grouped together as Elas-
ticity Control Processes (ECPs), as detailed described in the next subsection,
and inflict specific elasticity behaviors upon enforcement to different SPs, which
we model as Service Part Behaviors. We model SP behaviors, since controllers
must determine the effect of enforcing an ECP at different levels (e.g., before
allocating a new database node, the effect at the database service topology and
at the entire cloud service level should also be determined). Conceptually, a



Fig. 2: Elasticity capabilities exposed by different elastic objects

Service Part Behavior, denoted as BehaviorSPi
, for a specific SPi in a defined

period of time [start, end], contains all the metrics, MSPi
a , being monitored for

SPi. Therefore, the behavior of a cloud service, denoted as BehaviorCloudService,
over a period of time is defined as the set of all cloud service SP behaviors:

MSPi
a [start, end] = {Ma(tj)|SPi ∈ ServiceParts, j = start, end} (1)

BehaviorSPi
[start, end] = {MSPi

a [start, end]|Ma ∈Metrics(SPi)} (2)

BehaviorCloudService[start, end] = {BehaviorSPi
[start, end]|SPi ∈

ServiceParts(CloudService)} (3)

The above information is captured and managed at runtime through an Elas-
ticity Dependency Graph, which has as nodes instances of concepts from the
model presented in Fig. 1 (e.g., Virtual Machine), and relationships (e.g.,
Elasticity Relationship) as edges. The elasticity dependency graph is
populated and continuously updated with (i) pre-deployment information, such
as service topology descriptions (e.g., TOSCA [7]) or profiling information; and
(ii) runtime information such as metric values from monitoring tools or allocated
resources information from cloud provider APIs.

2.2 Elasticity Control Processes

Elasticity capabilities (ECs) are the set of actions associated with a cloud service,
which a cloud service stakeholder (e.g., an elasticity controller) may invoke, and
which affect the behavior of a cloud service. Such capabilities can be exposed
by: (i) different SPs, (ii) cloud providers, or (iii) resources which are supplied
by cloud providers. An EC can be considered as the abstract representation of
API calls, which differ amongst providers and cloud services. Fig. 2 depicts the
different subsets of ECs provided for an exemplary web application when de-
ployed on two different cloud platforms (e.g., Flexiant, and Openstack private
cloud), as well as the ECs exposed by the cloud service and the installed soft-
ware. In each of the two aforementioned cloud platforms, the cloud service needs
to run on a specific environment (e.g., Apache Tomcat web server), and all these
capabilities, when enforced by an elasticity controller, will have an effect on dif-
ferent parts of the cloud service. For instance, even if not evident at first sight,
elasticity capabilities of the web server topology of the cloud service could also
affect the performance of its database backend.

Elasticity Control Processes (ECP ) are sequences of elasticity capabilities
ECPi = [ECi1 → ECi2 → ... → ECin ], which can be abstracted into higher



Fig. 3: Elastic cloud service evolution

level capabilities having predictable effects on the cloud service. An ECP causes
a change to the elasticity dependency graph and to the virtual infrastructure
related information (e.g., change in ECP properties or in the properties of the
VM). For example, in the case of a distributed database backend which is com-
posed of multiple nodes, a scale out ECP , with certain parameters, can apply
for both a Cassandra and an HBase database, with the following ECs: (i) add a
new node, (ii) configure node properties and (iii) subscribe node to the cluster.

2.3 Cloud Service Elasticity During Runtime

To be able to estimate the effects of ECPs upon SPs, we rely on the elastic-
ity dependency graph which captures all the variables that contribute to cloud
service elasticity behavior evolution. Fig. 3 depicts in the left-hand side the
cloud service at a pre-deployment time, where automatic elasticity controllers
know about it only from structural information provided by different sources
(e.g., TOSCA service description). After enforcing a Deployment Process (e.g.,
create machine x, and configure software z), the elasticity dependency graph will
additionally contain infrastructure-related information obtained from the cloud
provider, and elasticity information, obtained from monitoring services showing
the metrics evolution for different SPs. This information is continually updated
during runtime (step 3 in Fig. 3), while for estimating the behavior we make the
assumption that we have complete information (i.e., no information missing).

Infrastructure resources, as mentioned previously, have associated elasticity
capabilities (EC in Fig. 3), that describe the change(s) to be enforced and the
mechanisms for triggering them (e.g., API call assigned to the EC). In addition,
a cloud platform exposes ECs in order to create new resources or instantiate
new services (e.g., increase memory is an EC exposed by a VM, while create
new VM is an EC exposed by the cloud platform). In this context, for being able
to discover the effects that an ECP produces in time, for each SP , taking into
account correlations between metrics, we use the elasticity dependency graph.
We analyze this information to determine the effect of an ECP for all SPs,
regardless on whether the ECP is application specific, or it does not have any
apparent link to other SPs. In fact, as we show in Section 4, the impact of various
ECPs over different SPs and over the entire cloud service is quite interesting.



Fig. 4: Modeling cloud service behavior process

Fig. 5: Relevant timeseries sections to points

3 Evaluating Cloud Service Elasticity Behavior

Existing behavior learning solutions [4, 5] learn discrete metric models, without
correlating them with the multiple variables which affect cloud service behavior.
As opposed to them, we are learning the behavior of different cloud service
parts, and their relation to different ECPs, not only with directly linked ones,
and estimating the effect of an ECP , in time, considering the correlations among
several metrics and among several service parts. The Learning Process used to
determine cloud service part behavior is depicted in Fig. 4, and is executed
continuously, refining the previously gathered knowledge base.

3.1 Learning Process

Processing input data Our learning process takes as input each metric’s
evolution, in time, MSPi

a [start, current] (see Equation 3) from the beginning of
the service execution on the current cloud platform. To evaluate the expected
evolution of metrics in response to enforcing a specific ECP , we select for each
monitored metric, of each service part, a Relevant Timeseries Section (RTS),
in order to compare it with previously encountered MSPi

a [start, current]. The
RTS size strongly depends on the average time needed to enforce an ECP (see
Section 4.3). Consequently, a metric RTS is a sub-sequence of the MSPi

a , from
before enforcing an ECP until after the enforcement is over:

RTSSPi

Ma
= MSPi

a [x− δ + ECPtime
2

, x+
δ + ECPtime

2
], (4)

[ECPstartT ime, ECPendTime] ⊂ [x− δ + ECPtime
2

, x+
δ + ECPtime

2
]



, where x is the ECP index and δ is the length of the period we aim to evaluate.
As part of the input pre-processing phase, we represent δ+ECPtime as multi-

dimensional points, BP in Equation 5, in the n-dimensional Euclidian space (see
Fig. 5), where the value for dimension t(j) is the timestamp j of current RTS.

BPSPi
a [j] = RTSSPi

Ma
[t(j)], j = 0, ..., n,BP : MSP 7→ Rn, n = δ + ECPtime (5)

Clustering process To detect the expected behavior, as a possible result of
enforcing an ECP , we construct clusters of behavioral points ClusterSPi for all
SPs and each ECP based on the distance between behavior points as defined in
Equation 6. We do not limit our approach to only considering ECPs available
for the current SPi since, as previously mentioned, enforcing an ECP to a
specific SP may affect the behavior of another SP or the overall cloud service.
The objective function of this process is finding the multi-dimensional behavior
point C(Θ∗), which minimizes the distance among points belonging to the same
cluster Clusterk (see Equation 7). Since the focus of this paper is not to evaluate
the quality of different clustering algorithms, we choose to use the K-means
algorithm, following the practice where the number of clusters is K =

√
N/2, N

being the number of objects. However, as shown in Section 4, even with a simple
K-means algorithm, our approach outputs the expected elasticity behavior with
a low estimation error rate.

dist(BP xa , BP
y
a ) =

√∑
i

(BP xa [i]−BP ya [i])2(6)

Θ∗ = arg min

K∑
k=0

N∑
i=0

θi,kdist(Clusterk, BPi), θi,k =

{
1 BPi ∈ Clusterk
0 BPi /∈ Clusterk

(7)

After obtaining δ + ECPtime-dimensional point clusters, we construct for each
SPi a correlation matrix, CMSPi

[Cx, Cy], where Cx is the centroid of Clusterx,
giving the probability, for all metrics, of clusters from different metrics to ap-
pear together (e.g., increase in data reliability is usually correlated with increase
in cost). An item in the CM represents a ratio between the number of times
the behavior points Cx and Cy were encountered together towards the total
number of behavior points. This matrix is continuously updated when behavior
points move from one cluster to another, or when new ECPs are enforced, thus,
increasing the knowledge base.

3.2 Determining the Expected Elasticity Behavior

In the Expected Behavior Generation based on Learning Process step in Fig. 4,
we select latest metrics values for each SPi, M

SPi
a [current− δ, current], and the

ECPξ which the controller is considering for enforcement, or for which the user
would like to know the effects. We find the ExpectedBehavior (see Equation
8) which consists of a tuple of cluster centroids from the clusters constructed
during the Learning Process that are the closest to the current metrics behavior



for the part of the cloud service we are focusing on, and which have appeared
together throughout the execution of the cloud service. The result of this step is,
for each metric of SPi, a list of expected values from the enforcement of ECPξ
(e.g., expected values for each metrics for the case the user would like to deploy
one new web service of type x in the same web application container).

ExpectedBehavior[SPi, BehaviorSPi
[current− δ, current], ECPξ] =

{CMa1

ia1
, ..., CMam

iam
|Mam ∈Metrics(SPi)} (8)

The above process is executed continuously, as shown in Fig. 4, by refining
clusters, re-computing cluster centroids with the time and with the enforcement
of new ECPs. This process is highly flexible and configurable, as we can use
different manners of detecting ECPs (e.g., sent by the elasticity controller), or
other clustering algorithms which lead to different solutions.

4 Experiments

To evaluate the effectiveness of the proposed approach, we have developed the
ADVISE framework3 which incorporates the previously described concepts. The
current version of ADVISE gathers various types of information to populate the
EDG graph, such as: (i) Structural information, from TOSCA service descrip-
tions; (ii) Infrastructure and application performance information from JCatas-
copia [9] and MELA [6] monitoring systems; (iii) Elasticity information regard-
ing ECPs from the rSYBL [8] elasticity controller where we developed an en-
forcement plugin to randomly enforce ECPs on cloud services. To evaluate the
functionality of the ADVISE framework, we established a testbed comprised of
two services deployed on the Flexiant public cloud. On both cloud services, we
enforce random ECPs exposed by different SPs. We do not use a rational con-
troller, since we are interested in estimating the elasticity behavior for all SPs
as a result of enforcing both good and bad elasticity control decisions.

ADVISE currently receives monitoring information in two formats: (i) as sim-
ple .csv files, or (ii) automatically pulling monitoring information from MELA.
ADVISE can be used both in service profiling/pre-deployment or at runtime, for
various service types, whenever monitoring information and enforced ECPs are
available for generating estimations for various metrics of service parts.

4.1 Experimental Services

The first cloud service is a three-tier web application providing video streaming
services to online users, comprised of: (i) an HAProxy Load Balancer which dis-
tributes client requests (i.e., download, upload video) across application servers;
(ii) An Application Server Tier, where each application server is an Apache Tom-
cat server containing the video streaming web service; (iii) A Cassandra NoSQL
Distributed Data Storage Backend from where the necessary video content is re-
trieved. We have evaluated the ADVISE framework by generating client requests
under a stable rate, where the load depends on the type of the requests and the
size of the requested video, as shown in the workload pattern in Fig.6.

3Code & documents: http://tuwiendsg.github.io/ADVISE



Cloud
Service

ECP
Id

Action Sequence

Video
Service

ECP1 Scale In Application Server Tier: (i) stop the video streaming service, (ii)
remove instance from HAProxy, (iii) restart HAProxy, (iv) stop JCatas-
copia Monitoring Agent, (v) delete instance

ECP2 Scale Out Application Server Tier: (i) create new network interface, (ii)
instantiate new virtual machine, (ii) deploy and configure video streaming
service, (iv) deploy and start JCatascopia Monitoring Agent, (v) add
instance IP to HAProxy, (vi) restart HAProxy

ECP3 Scale In Distributed Video Storage Backend: (i) select instance to remove,
(ii) decommission instance data to other nodes (using Cassandra nodetool
API), (iii) stop JCatascopia Monitoring Agent, (iv) delete instance

ECP4 Scale Out Distributed Video Storage Backend: (i) create new network in-
terface, (ii) instantiate new instance, (iii) deploy and configure Cassandra
(e.g., assign token to node), (iv) deploy and start JCatascopia Monitoring
Agent, (v) start Cassandra

M2M
DaaS

ECP5 Scale In Event Processing Service Unit: (i) remove service from HAProxy,
(ii) restart HAProxy, (iii) remove recursively virtual machine

ECP6 Scale Out Event Processing Service Unit: (i) create new network inter-
face, (ii) create new virtual machine, (iii) add service IP to HAProxy
configuration file

ECP7 Scale In Data Node Service Unit: (i) decommision node (copy data from
virtual machine to be removed), (ii) remove recursively virtual machine

ECP8 Scale Out Data Node Service Unit: (i) create new network interface, (ii)
create virtual machine, (iii) set ports, (iv) assign token to node, (v) set
cluster controller, (vi) start Cassandra

Table 1: Elasticity control processes available for the two cloud services

The second service in our evaluation is a Machine-to-Machine (M2M) DaaS
which processes information originating from several different types of data sen-
sors (i.e., temperature, atmospheric pressure, or pollution). Specifically, the M2M
DaaS is comprised of an Event Processing Service Topology and a Data End
Service Topology. Each service topology consists of two service units, one with
a processing goal, and the other acting as the balancer/controller. To stress this
cloud service we generate random sensor event information (see Fig.6) which is
processed by the Event Processing Service Topology, and stored/retrieved from
the Data End Service Topology. Tables 1 and 2 list the ECPs associated to each
SP and the monitoring metrics analyzed for the two cloud services respectively.

4.2 Elasticity Behavior Estimation

Online Video Streaming Service Fig. 7 depicts both the observed and the
estimated behavior for the Application Server Tier of the cloud service when a
remove application server from tier ECP occurs (ECP1). At first, we observe
that the average request throughput per application server is decreasing. This is
due to two possible cases: (i) the video storage backend is under-provisioned and
cannot satisfy the current number of requests which, in turn, results in requests



Cloud
Service

SP Name Metrics

Video
Service

Application Server Tier cost, busy thread number, memory uti-
lization, request throughput

Distributed Video Storage Backend cost, CPU usage, memory usage, query
latency

M2M
DaaS

Cloud Service cost per client per hour (Cost/Client/h)

Event Processing Service Topology cost, response time, throughput, number
of clients

Data End Service Topology cost, latency, CPU usage

Table 2: Elasticity metrics for different service parts

Fig. 6: Workload applied on the two services

being queued; (ii) there is a sudden drop in client requests which indicates that
the application servers are not utilized efficiently. We observe that after the scale
in action occurs, the average request throughput and busy thread number rises
which denotes that this behavior corresponds to the second case where resources
are now efficiently utilized. ADVISE revealed an insightful correlation between
two metrics to consider when deciding which ECP to enforce for this behavior.

Similarly, in Fig. 8 we depict both the observed and the estimated behavior
for the Distributed Video Storage Backend when a scale out action occurs (add
Cassandra node to ring) due to high CPU utilization. We observe that after the
scale out action occurs, the actual CPU utilization decreases to a normal value
as also indicated by the estimation. Finally, from Fig. 7 and 8, we conclude that
the ADVISE estimation successfully follows the actual behavior pattern and that
in both cases, as time passes, the curves tend to converge.

M2M DaaS Fig. 9 shows how an ECP targeting a service unit affects the
entire cloud service. The Cost/Client/h is a complex metric (see Table 2) which
depicts how profitable is the service deployment in comparison to the current
number of users. Although Cost/Client/h is not accurately estimated, due to the
high fluctuation in number of clients, our approach approximates how the cloud
service would behave in terms of expected time and expected metric fluctuations.
This information is important for elasticity controllers to improve their decisions
when enforcing this ECP by knowing how the Cost/Client/h for the entire cloud
service would be affected. Although the CPU usage is not estimated perfectly,
since it is a highly oscillating metric, and it depends on the CPU usage at each
service unit level, knowing the baseline of this metric can also help in deciding



Fig. 7: Effect of ECP1 on the application server tier

Fig. 8: Effect of ECP4 on the entire video streaming service

whether this ECP is appropriate (e.g., for some applications CPU usage above
90% for a period of time might be inadmissible).

ADVISE can estimate the effect of an ECP of a SP , on a different SP ,
even if apparently unrelated. Fig. 10 depicts an estimation on how the Data
Controller Service Unit is impacted by the data transferred at the en-
forcement of ECP8. In this case, the controller CPU usage drops, since the new
node is added to the ring, and a lot of effort goes for transferring data to the
new node, then it raises due to the fact that reconfigurations are also necessary
on the controller, following a slight decrease and stabilization. Therefore, even
in circumstances of random workload, ADVISE can give useful insights on how
different SPs behave when enforcing ECPs exposed by other SPs.

4.3 ECP Temporal Effect

Table 3 presents the average time required for an ECP to be completed. This
application-specific information is of high importance and affects the decision-



Fig. 9: Effect of ECP7 on M2M DaaS

Fig. 10: Effect of ECP8 on the data controller service unit

making process of the elasticity controller since it is an indicator of the grace
period which it should await until effects of the resizing actions are noticeable.
Thus, it defines the time granularity of which resizing actions should be taken
into consideration. For example, we observe that the process of adding and con-
figuring a new instance to the video service’s storage backend requires an average
time interval of 150 seconds which is mainly the time required to receive and
store data from other nodes of the ring. If decisions are taken in smaller intervals,
the effects of the previous action will not be part of the current decision process.

4.4 Quality of Results

ADVISE is able to estimate, in time, the elasticity behavior of different SPs by
considering the correlations amongst metrics and the ECPs which are enforced.
To evaluate the quality of our results, we have considered the fact that existing
tools do not produce continuous-time estimations. Thus, we choose to evalu-
ate ADVISE by computing the variance V ar and standard deviation StdDev



ECP Standard Deviation Average ECP Time (s)

Video
Service

ECP1 0 65
ECP2 0 15
ECP3 0 25
ECP4 1.414 150

M2M
Service

ECP1 4.5 45
ECP2 1.4 20
ECP3 0 20
ECP4 1 75

Table 3: Elasticity control processes time statistics

Cloud
Service

Observed Cloud
Service Part

Elasticity Control
Process

Average Standard
Deviation

Maximum
Variance

Minimum
Variance

Video
Service

Video Service
ECP3 0.23 0.09 0.03

ECP4 0.61 0.99 0.23

Distributed Video
Storage Backend

ECP3 0.28 0.14 0.034

ECP4 0.2 0.042 0.04

Application Server
ECP1 0.43 0.4 0.06

ECP2 0.31 0.47 0.01

M2M
Service

Cloud Service ECP5 0.9 6.65 0.24

Data End Service
Topology

ECP5 0.23 0.35 7.44E-05

Event Processing
Service Topology

ECP7 1.1 4.9 0.046

ECP8 0.76 2.46 0.027

Data Controller
Service Unit

ECP6 0.12 0.25 0

ECP8 0.22 0.41 0

Data Node
Service Unit

ECP5 0.572 0.68 0.32

ECP6 0.573 1.4 0.07

Event Processing
Service Unit

ECP7 1.08 3.59 0.11

ECP8 0.77 1.9 0.14

Table 4: ECPs effect estimation quality statistics

(Equation 9), over 100 estimations as the result differs little afterwise.

V armetrici =

∑
(estMetrici − obsMetrici)

2

nbEstimations− 1
, StdDevmetrici =

√
V armetrici(9)

Table 4 presents the accuracy of our results. When comparing the two services,
the Video Service achieves a higher accuracy (smaller standard deviation), since
the imposed workload is considerably stable. Focusing on the M2M DaaS esti-
mation accuracy, we observe that it depends on the granularity at which the
estimation is calculated, and on the ECP . Moreover, the standard deviation
depends on the metrics monitored for the different parts of the cloud service.
For instance, in the case of the M2M Service, the number of clients metric
can be hardly predicted, since we have sensors sending error or alarm-related in-
formation. This is evident for the Event Processing Service Topology,
where the maximum variance for the number of clients is 4.9.

Overall, even in random cloud service load situations, the ADVISE frame-
work analyses and provides accurate information for elasticity controllers, allow-



ing them to improve the quality of control decisions, with regard to the evolution
of monitored metrics at the different cloud service levels. Without this kind of
estimation, elasticity controllers would need to use VM-level profiling informa-
tion, while they have to control complex cloud services. This information, for
each SP , is valuable for controlling elasticity of complex cloud services, which
expose complex control mechanisms.

5 Related Work

Verma et al. [3] study the impact of reconfiguration actions on system perfor-
mance. They observe infrastructure level reconfiguration actions, with actions on
live migration, and observe that the VM live migration is affected by the CPU
usage of the source virtual machine, both in terms of the migration duration
and application performance. The authors conclude with a list of recommen-
dations on dynamic resource allocation. Kaviani et al. [10] propose profiling as
a service, to be offered to other cloud customers, trying to find tradeoffs be-
tween profiling accuracy, performance overhead, and costs incurred. Zhang et
al. [4] propose algorithms for performance tracking of dynamic cloud applica-
tions, predicting metrics values like throughput or response time. Shen et al. [5]
propose the CloudScale framework which uses resource prediction for automat-
ing resource allocation according to service level objectives (SLOs) with mini-
mum cost. Based on resource allocation prediction, CloudScale uses predictive
migration for solving scaling conflicts (i.e. there are not enough resources for
accommodating scale-up requirements) and CPU voltage and frequency for sav-
ing energy with minimum SLOs impact. Compared with this research work, we
construct our model considering multiple levels of metrics, depending on the
application structure for which the behavior is learned. Moreover, the stress
factors considered are also adapted to the application structure and the elas-
ticity capabilities (i.e. action types) enabled for that application type. Juve et
al. [11] propose a system which helps at automating the provisioning process
for cloud-based applications. They consider two application models, one work-
flow application and one data storage case, and show how for these cases the
applications can be deployed and configured automatically. Li et al. [12] propose
CloudProphet framework, which uses resource events and dependencies among
them for predicting web application performance on the cloud.

Compared with presented research work, we focus not only on estimating the
effect of an elasticity control process on the service part with which it is associ-
ated, but on different other parts of the cloud service. Moreover, we estimate and
evaluate the elasticity behavior of different cloud service parts, in time, because
we are not only interested in the effect after a predetermined period, but also
with the pattern of the effect that the respective ECP introduces.

6 Conclusions and Future Work

We have presented ADVISE framework, which is able to estimate the behavior
of cloud service parts, in time, when enforcing various ECPs, by taking into
consideration different types of information represented through the elasticity



dependency graph. Based on results from two different cloud services, we show
that ADVISE framework is indeed able to advise elasticity controllers about
cloud service behavior, contributing towards improving cloud service elasticity.

As future work, we intend to integrate ADVISE with the rSYBL elasticity
controller [8] and develop new decision mechanisms that take continuous ECP
effects as inputs, taking decisions based on the expected behavior of each SP .

References

1. Al-Shishtawy, A., Vlassov, V.: Elastman: Autonomic elasticity manager for cloud-
based key-value stores. In: Proceedings of the 22Nd International Symposium on
High-performance Parallel and Distributed Computing. HPDC ’13, New York, NY,
USA, ACM (2013) 115–116

2. Wang, W., Li, B., Liang, B.: To reserve or not to reserve: Optimal online multi-
instance acquisition in iaas clouds. In: Presented as part of the 10th International
Conference on Autonomic Computing, Berkeley, CA, USENIX (2013) 13–22

3. Verma, A., Kumar, G., Koller, R.: The cost of reconfiguration in a cloud. In:
Proceedings of the 11th International Middleware Conference Industrial Track.
Middleware Industrial Track ’10, New York, NY, USA, ACM (2010) 11–16

4. Zhang, L., Meng, X., Meng, S., Tan, J.: K-scope: Online performance tracking
for dynamic cloud applications. In: Presented as part of the 10th International
Conference on Autonomic Computing, Berkeley, CA, USENIX (2013) 29–32

5. Shen, Z., Subbiah, S., Gu, X., Wilkes, J.: Cloudscale: elastic resource scaling for
multi-tenant cloud systems. In: Proceedings of the 2nd ACM Symposium on Cloud
Computing. SOCC ’11, New York, NY, USA, ACM (2011) 5:1–5:14

6. Moldovan, D., Copil, G., Truong, H.L., Dustdar, S.: Mela: Monitoring and analyz-
ing elasticity of cloud services. In: 2013 IEEE Fifth International Conference on
Cloud Computing Technology and Science (CloudCom). (2013)

7. OASIS Committee Specification Draft 01: Topology and Orchestration Specifica-
tion for Cloud Applications Version 1.0. (2012)

8. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: Multi-level Elasticity Control
of Cloud Services. In Basu, S., Pautasso, C., Zhang, L., Fu, X., eds.: Service-
Oriented Computing. Lecture Notes in Computer Science. Springer Heidelberg

9. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: Monitoring Elastically
Adaptive Applications in the Cloud. In: 14th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing. (2014)

10. Kaviani, N., Wohlstadter, E., Lea, R.: Profiling-as-a-service: Adaptive scalable
resource profiling for the cloud in the cloud. In Kappel, G., Maamar, Z., Motahari-
Nezhad, H., eds.: Service-Oriented Computing. Volume 7084 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg (2011) 157–171

11. Juve, G., Deelman, E.: Automating application deployment in infrastructure
clouds. In: Proceedings of the 2011 IEEE Third International Conference on
Cloud Computing Technology and Science. CLOUDCOM ’11, Washington, DC,
USA, IEEE Computer Society (2011) 658–665

12. Li, A., Zong, X., Kandula, S., Yang, X., Zhang, M.: Cloudprophet: towards
application performance prediction in cloud. In: Proceedings of the ACM SIG-
COMM 2011 conference. SIGCOMM ’11, New York, NY, USA, ACM (2011)


