
Grid Resource Ranking using Low-level Performance

Measurements ⋆

George Tsouloupas Marios D. Dikaiakos
{georget,mdd}@cs.ucy.ac.cy

Dept. of Computer Science,
University of Cyprus
1678, Nicosia, Cyprus

Abstract. This paper outlines a feasible approach to ranking Grid resources
based on an easily obtainable application-specific performance model utilizing
low-level performance metrics. First, Grid resources are characterized using low-
level performance metrics; Then the performance of a given application is as-
sociated to the low-level performance measurements via a Ranking Function;
Finally, the Ranking Function is used to rank all available resources on the Grid
with respect to the specific application at hand. We show that this approach
yields accurate results.

1 Introduction

Matching between resource requests and resource offerings is one of the key considera-
tions in Grid computing infrastructures. Currently, the implementation of matching is
based on the matchmaking approach introduced by the Condor project [6], adapted to
multi-domain environments and Globus, and extended to cover aspects such as data
access and work-flow computations, interactive Grid computing, and multi-platform in-
teroperability. Matchmaking produces a ranked list of resources that are compatible to
the submitted resource requests. Ranking decisions are based on published information
regarding the number of CPU’s of each resource, their nominal speed, the nominal size
of main memory, the number of free CPU’s, available bandwidth, etc. This informa-
tion is retrieved from Grid information services such as the Monitoring and Discovery
Service of Globus.

This approach works well in cases where the main consideration of end-users is
to allocate sufficient numbers of idle CPU’s in order to achieve a high job-submission
throughput with opportunistic scheduling. In several scenarios, however, reliance to
matchmaking is not sufficient; for instance, when end-users wish to “shop around” for
Grid computing resources before deciding where to deploy a high-performance comput-
ing application, or when Virtual Organization (VO) operators want to audit the real
availability and configuration status of their providers’ computing resources [4]. In such
cases, the information published by resource providers and Grid monitoring systems
does not provide sufficient detail and accuracy. Grid users need instead the capability
to interactively administer benchmarks and tests, retrieve and analyze performance
metrics, and select resources of choice according to their application requirements. To
provide Grid users with such a test-driving functionality, we designed and implemented

⋆ This work was supported in part by the European Commission through projects EGEE
(contract INFSO-RI-031688) and g-Eclipse (contract 034327).



GridBench, a framework for evaluating the performance of Grid resources interactively.
GridBench facilitates the definition of parameterized execution of various probes on the
Grid, while at the same time allowing for archival, retrieval, and analysis of results [9,
10]. GridBench comes with a suite of open-source micro-benchmarks and application
kernels, which were chosen to test key aspects of computer performance, either in iso-
lation or collectively (CPU, memory hierarchy, network, etc.) [11].

In this paper, we present SiteRank, a component that we developed on top of Grid-
Bench to support the user-driven ranking of computational Grid resources. SiteRank
enables Grid users to easily construct and adapt ranking functions that: (i) Take as ar-
guments performance metrics derived with the low-level benchmarks of GridBench [11];
the selection of these metrics can be done manually or semi-automatically by the end-
user, through the user interface of GridBench. (ii) Combine the selected metrics into a
linear model that takes into account the particular requirements of the application that
the user wishes to execute on the Grid (e.g., memory vs. floating-point performance
bound). Using a ranking function, Grid users can derive rankings of Grid resources
that are tailored to their specific application requirements.

In the remainder of this paper, we describe the methodology followed by SiteR-
ank to develop ranking functions. Furthermore, we demonstrate the use of SiteRank in
the ranking of the computational resources of EGEE, which is the largest production-
quality Grid in operation today [1]. To this end, we examine two alternative applica-
tions running on EGEE: povray, a ray-tracing application, and SimpleScalar, a sim-
ulator used for hardware-software co-verification and micro-architectural modelling.
Our results show that SiteRank functions can provide an accurate ranking of EGEE
resources, in accordance to the different requirements that each application has. Fur-
thermore, that the careful selection of the low-level metrics used in the linear model is
very important for the construction of accurate ranking functions.

The remaining of this paper is organized as follows: Section 2 introduces SiteRank
and its ranking methodology. Section 3 describes the use of SiteRank in the ranking
of EGEE resources for the two applications of choice: povray and SimpleScalar. We
conclude in Section 4.

2 SiteRank

Computational resources on the Grid exhibit considerable variance in terms of different
performance characteristics. This leads to non-uniform application performance that
significantly varies between applications.

One approach for ranking resources in terms of performance is the one taken by the
current (EGEE) infrastructure, which is to publish GlueHostBenchmarkSF00 (SPEC-
Float 2000 floating point performance metric) and GlueHostBenchmarkSI00 (SPEC-Int
2000 integer performance metric) values for each site. Unfortunately, values quoted by
site administrators cannot be relied upon; This is evident in Figure 1 which com-
pares the effectiveness of a quoted metric (Figure 1 left) in contrast to a measured
metric(Figure 1 right). The charts speak for themselves; Clearly, the quoted metric
does a very poor job in justifying application performance1. It is important to note
that this would be inadequate even if the quoted values were correct, since application
performance depends on much more than just two metrics (see Section 3).

1 Similar results are obtained with GlueHostBenchmarkSI00 just as with GlueHostBench-
markSF00.



Fig. 1. The Relationship of application performance to quoted metrics and measured met-
rics.

Another approach for obtaining a more realistic ranking of resources would be to
run the application itself on the resources, collect, analyse and make decisions based
on the results. This, of course, would be a rather costly endeavour for the following
reasons:

– The number of applications that run on the grid is growing rapidly. Taking one
large infrastructure (EGEE) as example, the number of VO’s alone is closing 200,
and each VO potentially has several applications in it’s toolkit.

– VO’s are usually mapped to different resources, so the performance experienced by
one VO can be quite different than that of another.

– Application performance is in some cases dependent on input parameters and data-
sets, thus further increasing the number of experiments that need to be done.

– The number of resources is growing, for example the EGEE infrastructure currently
spans around 230 sites having queues that are are well into the thousands.

– The infrastructure is volatile, new nodes enter and leave the grid, VO resource
allocations change often, Grid resources are upgraded, re-configured and many
times mis-configured. This calls for repeated measurements in order to have up-to-
date information.

In order to overcome these problems, the number of measurements that need to
be taken has to be radically reduced. The methodology that follows tries to address
exactly these issues.

2.1 The Ranking Methodology

The GridBench tool provides a SiteRank module that allows the user to interactively
and semi-automatically build a ranking model. A ranking model consists of filtering,
aggregation and ranking functions (Figure 2).
Filtering refers to a user selection regarding which results will be included or excluded
in the ranking process. Attribute filtering allows the user to limit the selected set of
measurements to the ones that match certain criteria in the benchmark description.
For example, the user can limit the selection to a specific VO or to a specific type of
CPU. The user can also limit results based on the date and time they were obtained,
thus limiting the selection to recent results.



Fig. 2. The ranking process.

Aggregation allows the user to specify grouping of the measurements. The user can
specify whether each measurement will count equally, irrespective of which worker-node
it was executed on. In this case, the reported metric may possibly be less representative
of the resource as a whole because some worker-nodes may be over-represented. On
the other hand, this will tend to be more representative of what the user actually
experiences once the resource’s policy is applied. The Aggregation step produces a set
of statistics for each metric: mean, standard-deviation, min, max, average-deviation

and count. During the aggregation step, the raw metrics are normalized according to
a base value. The base values are configurable and in our experiments we used values
from a typical 3.0GHz Xeon worker-node. For example, we used the value of 1050.0 to
normalize the Mflops4 metric. The aggregation step is also important for the conversion
of vector-type metrics, such as the ones produced by CacheBench into scalars (see later
description on the c512k metric) so that they can be used in ranking functions.
Ranking Function Construction: The end goal of this methodology is a ranked
list of computational resources that reflects the performance that users will experience
running a specific application. It involves establishing a relationship between applica-
tion performance and a set of low-level measurements. The process is illustrated in
Figure 3, and it is outlined by the following steps:

1. Sampling: Obtain low-level performance metrics m for a small sample of re-
sources – typically 10-15% of the full-set of resources. For the same sample of
resources also obtain application performance measurements, i.e. application com-
pletion times. The application performance of this sample is denoted α where each
α = 1/(completion time).

2. Ranking Function Generation: Determine a Ranking Function R based on
the low-level metric data m and application performance α, so that α = R(m).
This involves the selection of the low-level metrics that closely correlate to this
application’s performance, followed by a linear fit of the data, i.e. multivariate
regression.

3. Estimation: For the set of the remaining resources, obtain only low-level perfor-
mance metrics M , and apply the ranking function in order to obtain an estimate of
the application performance Aest such that Aest = R(M ). Sorting Aest produces
the Rank Estimation.



Fig. 3. Rank Estimate generation process outline.

Section 3 provides a complete experiment that illustrates this process in greater
detail.

2.2 Metrics

Selecting the right metrics to characterise the resources is of utmost importance in
order to adequately characterize the major computational characteristics that affect
application performance. In fact, we consider a good set of metrics one that can ad-
equately explain the performance of several distinct applications. In the process of
picking the right metrics and the right benchmarks to deliver these metrics, we lim-
ited ourselves to freely available tools that we could widely deploy and run. We also
aimed at keeping the number of metrics low and we favored well-known metrics. A
more detailed discussion on the benchmarks can be found in [11].

Table 1 shows a list of low-level metrics and the associated benchmarks.

Table 1. Metrics and Benchmarks.

Factor Metric Delivered By

CPU Floating-Point operations per second Flops

CPU Integer operations per second Dhrystone

Main memory sustainable memory bandwidth in MB/s
(copy,add,multiply,triad)

Stream

Main memory Available physical memory in MB Memsize

Cache memory bandwidth using different memory
sizes in MB/s

CacheBench

Disk (local) Disk bandwidth for read/write/rewrite bonnie++

Interconnect
(MPI)

latency, bandwidth and bisection bandwidth MPPTest

The Flops benchmark yields 4 metrics, Mflops1, Mflops2, Mflops3 and Mflops4, each
consisting of different mixes of floating-point additions, subtractions multiplications
and divisions. Dhrystone yields the dhry integer performance metric. The STREAM
memory benchmark yields the copy, add, multiply and triad metrics which measure
memory bandwidth using different operations. For cache performance we needed a



metric in the form of a scalar number, that would characterise both the size and
the bandwidth of the cache. CacheBench provides a vector of bandwidths at different
memory size allocations. Out of this we computed “cumulative bandwidth” for sizes
up to 512kb, 1Mb, 2Mb, 4Mb, 8Mb yielding the metrics c512k, c1M, c2M, c4M and
c8M respectively.

3 Experimentation

In this section we demonstrate the proposed methodology by automatically determining
a Ranking Function, obtaining a Ranking Estimate and validating that the Ranking
Estimate is accurate by directly measuring the performance of the application. This
is done for two applications, on a set of about 230 sites that belong to the EGEE
infrastructure. We user two serial applications:

– povray: The Povray v3.6 ray-tracing application using the benchmark.pov scene
at a 40x40 resolution.

– sisc: The SimpleScalar, computer architecture simulation using a sample data-set.2

For this experiment, we aimed at having between 2 and 3 measurements from each
computational resource. One noteworthy fact is that we could only obtain results for
about 160 out of the 230 sites. This was partly due to errors and site unavailability,
but also due to exhausted quotas at some resources. We used the GridBench frame-
work to obtain our measurements. The process of integrating the two applications into
GridBench including the compilation took less than one hour and only needs to be
performed once. The process of actually running all the experiments took less than
10 minutes, although we did have to wait for a few hours until the results from all
the queued jobs were in. We then exported these results into an open-source statistics
software package3 (“R”).

The data-set obtained by running the benchmarks on all the available computational
resources will be referred to from now on as the full-set. Out of the full-set, we obtained a
random sample, henceforth referred to as the sample-set, with results from 24 resources
(15% of the full-set). A correlation matrix indicates which metrics are most correlated
to application performance; this is shown in Figure 4. The problem of collinearity must
be taken into consideration when narrowing down the selection of metrics. As shown
in Figure 4 some metric groups are highly collinear, in such cases we eliminate the
collinear metrics by selecting one metric out of the group, i.e. the one with the highest
correlation to the application. In this example we kept Mflops4 and discarded Mflops2,
Mflops3 and dhry. Selecting the Mflops4 and c512k metrics for building the Ranking
Function, leads to the next step, i.e. calculating the a and b coefficients in order to best
satisfy:

αpovray = a × Mflops4 + b × c512k

2 Limited execution privileges for the Virtual Organization through which we performed our
experiments, dictated that we use parameters resulting in short application completion
times. This applied both to povray and to sisc.

3 Use of the R software was limited to establishing the relationship between the low-level
metrics and application performance, and the validation of the results. All charts included
in the paper we created using GridBench



Fig. 4. Correlation Matrix for the povray application.

Outlier removal is achieved by performing a linear regression, and data-points that
fall more than two standard deviations away from the rest are filtered out. In our
specific example, 2 out of the 18 points were dropped. Linear regression is performed
once again using the filtered sample-set, which yields the coefficients a = 0.94 (for
Mflops4 ) and b = 0.46 (for c512k). Finally, we apply this model on the full-set in order
estimate the performance of the application:

Apovray = 0.94MMflops4 + 0.46Mc512k

Fig. 5. Rank Estimate for the povray application

Ordering the list of resources by Apovray gives the Rank Estimate. The Rank Esti-
mate is shown in Figure 5.

In order to test that the Ranking Estimate is accurate the performance of the ap-
plication was directly measured for the whole infrastructure. This is only necessary in
order to validate the model and not part of the methodology. The measured perfor-
mance is shown in Figure 6.



Fig. 6. Measured povray performance on 159 resources of the EGEE infrastructure.

The agreement between the Rank Estimate and the measured ranking can be statis-
tically tested by calculating the rank correlation. There are several ways of doing this,
such as Kendall’s τ , which ranges from -1 to 1 and is also known as the “bubble-sort
distance”. Kendall’s τ yielded τ = 0.90. Spearman’s ρ, which again ranges from -1 to
1, yielded ρ = 0.977. Finally, Pearson’s correlation coefficient yielded 0.98. All three
of the statistics show that the two rankings are quite similar. The τ statistic appears
considerably lower that the other two, due to the fact that our data-set contains a lot
of resources that are of almost identical performance. Extremely small fluctuations in
measurement are enough to change the ordering. Yet,the performance of the resources
is nearly identical, so the reordering is not very significant. For this reason the authors
are inclined to take ρ = 0.977 as the more representative measure.

For the second application sisc we used the same methodology and the same sample-
set that was used in the previous case. The metrics dictated by the correlation matrix
are dhry and c512k. Performing the regression, outlier removal and then estimating the
metric coefficients yields:

Asisc = 0.27Mdhry + 0.18Mc512k

The Ranking estimate is given in Figure 7. The correlation of estimated and actual
is again quire high with a value of ρ = 0.959. Thus, for both applications the ranking
of resources based on low-level measurements provides results that are very close to
the ranking produced by running the application itself.

4 Conclusions

The work presented here, i.e. Ranking based on derived models of low-level metrics,
describes an alternative way of choosing and ranking resources. We propose a semi-
automated user-driven approach to ranking Grid resources that employs user-specified
metrics and ranking functions.

The process of running benchmarks collecting and analysing results and generating
ranked lists, would simply not be feasible if it had to be done manually, especially if
it had to be done by the end user. Furthermore, users could verify the “advertised”



Fig. 7. Rank Estimate for the sisc application on the EGEE infrastructure.

performance of a resource by running these light-weight benchmarks, or even detect
problems at certain sites. Eventually, resource performance information will be coupled
with resource pricing information. Users will then be able to “shop around” and pick the
right resources (e.g. black-listing or white-listing) in order to influence the matchmaking
process is a way that benefits them. The SiteRank module of the GridBench tool allows
the user to interactively construct and modify ranking functions based on the collected
measurements. The Ranking Estimate has proven to be quite accurate with a very high
correlation to measured application performance for at least two applications, povray

and SimpleScalar.

We have illustrated that current approaches to expressing the performance of re-
sources, such as publishing the quoted, not measured, GlueHostBenchmarkSF00 and
GlueHostBenchmarkSI00 metrics into the information system are not satisfactory, since
they do not correlate well with at least the two applications that we have investigated.

Other tools in the general are area of Grid testing and benchmarking include the
Grid Assessment Probes [3], DiPerF [5] and the Inca test harness and reporting frame-
work [7]. These are testing/benchmarking frameworks that provide functionality rang-
ing from testing of Grid services to the monitoring of service agreements. In contrast,
we focus on user-driven performance exploration and ranking. Benchmarking as a data-
source for resource-brokering is explored in [2]. This work suggests the application of
weights to different resource attributes and the use of application benchmarks to obtain
a ranking that can eventually be used for resource brokering; we have also suggested
this in our previous work [8].

Choosing the right metrics to collect is of vital importance, as an incomplete set of
metrics will yield poor characterization. For example, our initial experiments did not
include metrics that characterize the memory cache. While we had been collecting mea-
surements about the cache, the data was in a form that was rather difficult to integrate
into a regular function. Also, we had falsely assumed that the cache effects would be
largely accounted for in other metrics. The initial results were not at all encouraging;
but including the cache metrics, i.e. c512k, completely changed the situation. Indicative
was the improvement of the ρ rank correlation statistic from approximately ρ = 0.8
to ρ = 0.96 for the SimpleScalar application. This also confirms the importance of a
well-sized, fast cache to computational applications.



During our experimentation we have observed that many Grid resources (i.e. clus-
ters) exhibit varying degrees of “internal uniformity”. This usually arises from upgrades
of just a fraction of the machines that make up the cluster, or simply by mixing ma-
chines of different capabilities into one cluster. It is our conjecture that this hetero-
geneity of cluster nodes will considerably affect observed application performance. We
are currently investigating the inclusion of higher-level metrics (possibly derived from
the existing metrics) in order to characterize cluster uniformity/heterogeneity.

Further plans include the investigation of more applications, especially applications
that are not CPU/memory bound, in order to evaluate the extent to which the metrics
that we collect provide sufficient characterization. Building on the work presented in
this article, we plan to investigate the use of ranking functions in scheduling and re-
source allocation on the Grid in greater detail. We are also working in the direction of
automated parameter selection for benchmark tuning. In addition, we plan to investi-
gate the use of micro-benchmarks for automated evaluation of Grid “resource health”
and automated detection of degraded performance.

References

1. Enabling Grids for E-SciencE project. http://www.eu-egee.org/.
2. Enis Afgan, Vijay Velusamy, and Purushotham V. Bangalore. Grid resource broker using

application benchmarking. In EGC, pages 691–701, 2005.
3. Greg Chun, Holly Dail, Henri Casanova, and Allan Snavely. Benchmark probes for grid

assessment. In 18th International Parallel and Distributed Processing Symposium (IPDPS
2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004, Santa Fe, New Mexico, USA.
IEEE Computer Society, 2004.

4. J. Coles. Grid Deployment and Operations: EGEE, LCG and GridPP.
In Proceedings of the UK e-Science All Hands Meeting 2005, 2005.
http://www.allhands.org.uk/proceedings/2005 (accessed Oct. 2005).

5. Catalin Dumitrescu, Ioan Raicu, Matei Ripeanu, and Ian Foster. Diperf: an automated
distributed performance testing framework. In Proceedings of the 5th International Work-
shop on Grid Computing (GRID2004). IEEE, November 2004.

6. Rajesh Raman, Miron Livny, and Marvin H. Solomon. Matchmaking: An extensible
framework for distributed resource management. Cluster Computing, 2(2):129–138, 1999.

7. Shava Smallen, Catherine Olschanowsky, Kate Ericson, Pete Beckman, and Jennifer M.
Schopf. The inca test harness and reporting framework. In SC ’04: Proceedings of the
2004 ACM/IEEE conference on Supercomputing, page 55, Washington, DC, USA, 2004.
IEEE Computer Society.

8. A. Tiramo-Ramos, G. Tsouloupas, M. D. Dikaiakos, and P. Sloot. Grid Resource Selec-
tion by Application Benchmarking: a Computational Haemodynamics Case Study. In
Computational Science - ICCS 2005, 5th International Conference, Atlanta, GA, USA,
May 22-25, 2005, Proceedings, Part I., volume 3514, pages 534–543. Springer, May 2005.

9. G. Tsouloupas and M. D. Dikaiakos. GridBench: A Tool for Benchmarking Grids. In
Proceedings of the 4th International Workshop on Grid Computing (Grid2003), pages
60–67. IEEE Computer Society, November 2003.

10. G. Tsouloupas and M. D. Dikaiakos. GridBench: A Workbench for Grid Benchmarking.
In In Advances in Grid Computing - EGC 2005. European Grid Conference. Amsterdam,
The Netherlands. February 14-16, 2005, Revised Selected Papers, number 3470 in Lecture
Notes in Computer Science, pages 211–225. Springer, June 2005.

11. George Tsouloupas and Marios D. Dikaiakos. Characterization of computational grid
resources using low-level benchmarks. e-science, 0:70, 2006.


