
Planetlab Project How-to 
 

 
By Danny Bickson 
Daniel51@cs.huji.ac.il 

DANSS LAB (Distributed Algorithms Networking 
and Secure Systems Group), 

The Hebrew University of Jerusalem 
http://www.cs.huji.ac.il/labs/danss 

 
 
 

7.10.03 Version 1.0 Initial document. 
 

14.10.03 Version 1.1 Incorporated sergs@cs remarks 
regarding ssh. 

9.1.04 Version 1.2 Added ssh help 
13.1.04 Version 1.3 Added rpm support 
12.2.04 Version 1.4 Added ScriptRoute doc by Tal 

Haramaty – tal128@cs 
14.9.04 Version 1.5 Added ssh tips 
17.11.04 Version 1.6 Added “expect”, Java example 
24.7.05 Version 2.0 Revised document, including v. 3 

support, strace 
 
 
 
Introduction......................................................................................................................... 2 
New Users........................................................................................................................... 2 
Logging into Planetlab machines........................................................................................ 3 
Executing a command......................................................................................................... 4 

Using ssh-agent............................................................................................................... 4 
Other SSH Tips ............................................................................................................... 4 

Running in batch mode ............................................................................................... 4 
Installing software on a remote machine using SSH .................................................. 5 
Using expect instead of using the ssh-agent ............................................................... 5 
Avoiding ssh timeouts – using ssh.............................................................................. 6 
Avoiding ssh timeouts – using perl script................................................................... 6 
Other SSH resources (taken from PL mailing list) ..................................................... 6 

Copying files to/from Planetlab machines.......................................................................... 7 
Using SCP to copy files from/to a PlanetLab machine............................................... 7 
Using rsync to copy a directory tree from/to Planetlab machine................................ 8 
Possible rsync error message ...................................................................................... 8 

Installing packages.............................................................................................................. 8 



Installing packages using yum........................................................................................ 8 
Installing packages using apt-get .................................................................................... 9 

Compiling your software on PlanetLab .............................................................................. 9 
Non-recommended (but possible) option using make .................................................... 9 
A better option: install a local PlanetLab node............................................................... 9 
Misc Tips ........................................................................................................................ 9 

Intalling Java............................................................................................................... 9 
Operating your software on Planetlab............................................................................... 10 

Debugging your programs ............................................................................................ 10 
Using strace utility for debugging............................................................................. 10 
Using tcpdump utility for debugging........................................................................ 11 

Working with the slice deploy utility............................................................................ 12 
A short tutorial for using “sd”....................................................................................... 13 

ScriptRoute ....................................................................................................................... 13 
ScriptRoute tools........................................................................................................... 14 

Other tools installed .................................................................................................. 14 

Introduction 
 
Planetlab is a distributed testbed for running distributed software. Planetlab home page is 
found on: http://www.planet-lab.org 
 
Here at the DANSS lab we currently host 5 planetlab nodes. We run several experiments 
using the Planetlab testbed. Our Planetlab research web page is found on: 
http://www.cs.huji.ac.il/labs/danss/research.html#planet 
 
The PI (principle investigator) is Prof. Danny Dolev (dolev@cs). The site administrator is 
Danny Bickson (daniel51@cs). 
 

New Users 
1. In order to be able to login into Planetlab computers, you should first register into 

the Planetlab joining users page: http://www.planet-lab.org/php/join_user.php 
Our site name is: The Hebrew University of Jerusalem. You are NOT a PI. (See 
section 3).  

2. For creating a SSH private/public key pair, use the ssh-keygen program on one of 
the Linux machines (like mangal, sands):  
 
ssh-keygen -t rsa  
 
ssh-keygen asks for a passphrase. A passphrase is similar to a password, 
except it can be up to 30 characters long. The output of the ssh-keygen 
command is two files: a private key named id_rsa and a public key named 
id_rsa.pub. Both files are generate at default in the directory .ssh/ on your 
home directory. 



Note: the optional –f flag is the name of the output file. You can change it in case 
you need to work with more then one ssh configurations.  
 

3. After registration you should email me daniel51@cs.huji.ac.il and cc Prof. Danny 
Dolev (dolev@cs) which is the DANSS site PI asking to activate your account. 
You will get in a response, a slice name (in the format huji_<username>) for your 
usage. 

4. Now you can login into your Planetlab account in order to verify your details. 
There is a login link on the bottom of left frame in the Planetlab home page. 
After logging in, you can view your account information by clicking the “View 
Account” link. You should see something like: 
 
Danny Bickson 
First Name Danny  
Last Name Bickson  
Title DANSS System Administrator  
Is PI f  
E-mail daniel51@cs.huji.ac.il  
URL http://www.cs.huji.ac.il/labs/danss  
… … 
… … 
Site Name The Hebrew University of Jerusalem 
Enabled t  
Admin Priv f  
SSH PubKey [ Download ]  
 
Check that the account is enabled. 

 
Planetlab machines v. 2 where based on Red Hat Linux 9.3. V. 3 machines are based on 
Fedora Core 2. Each user (user is named slice) has a virtual environment where he can 
see only his own processes files etc. The superuser (root) has limited functionality. Each 
slice can work as a root by using the “su” command (without any password). 

Logging into Planetlab machines 
On any Linux machine which is owned by the system (like mangal, inferno, gx-##, xil-
##, bmos-## etc) run the following command: 
ssh –l <slicename> <machinename> 
 
For example: 
<1|1>daniel51@mangal:~> ssh -l huji6 planet1.cs.huji.ac.il 
Enter passphrase for key '/cs/grad/daniel51/.ssh/id_rsa':  
Last login: Mon Oct  6 14:34:48 2003 from mangal.cs.huji.ac.il 
[huji6@planet1 huji6]$ 
 



Executing a command 
You can use ssh for executing a command (using a non-interactive mode). 
Add the command argument as the last argument for the ssh command.  
ssh –l <slicename> <machinename> <command> 
 
 
For example: 
<204|0>daniel51@mangal:~> ssh -l huji_anothershura 
planet2.cs.huji.ac.il pwd 
And the result: 
/home/huji_anothershura 
 

Using ssh-agent 
 
Each time you will login using ssh, you will be asked for your passphrase. If you want to 
enable a login session without entering the passphrase each time you should write: 
eval `ssh-agent` 
ssh-add 
 
<4|1>daniel51@mangal:~>eval `ssh-agent` 
Agent pid 11693 
<4|1>daniel51@mangal:~> ssh-add 
Enter passphrase for /cs/grad/daniel51/.ssh/id_rsa:  
Identity added: /cs/grad/daniel51/.ssh/id_rsa 
(/cs/grad/daniel51/.ssh/id_rsa) 
 
For the rest of this session you will not be prompted for passphrase. 
 
After you are logged in using ssh, you can work as on any Red Hat Linux machine. (You 
can switch shells, install packages etc.) 

Other SSH Tips 

Running in batch mode 
For the first time you will connect to any remote machine using ssh you will get the 
following warning: 

 
Host key not found from the list of known hosts.  
Are you sure you want to continue connecting (yes/no)? 

 
That is because new host keys are added at the first connection to ~/.ssh/known_hosts 
file. 
 
In case you have an host key which is not updated, you will get the following error: 
 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
@       WARNING: HOST IDENTIFICATION HAS CHANGED!         @ 
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY! 



Someone could be eavesdropping on you right now  
(man-in-the-middle attack)! 
It is also possible that the host key has just been changed. 
Please contact your system administrator. 
Add correct host key to "/home/name/.ssh2/hostkeys/key_22_machine.pub" 
to get rid of this message. 
Received server key's fingerprint: xopif-fycak-pepap-lopuv-dyhov-fedas-liguz-nuvic-gubut-
kigan-nixix 
You can get a public key's fingerprint by running  
% ssh-keygen -F publickey.pub 
on the keyfile. 
Agent forwarding is disabled to avoid attacks by corrupted servers. 
X11 forwarding is disabled to avoid attacks by corrupted servers. 
Are you sure you want to continue connecting (yes/no)?  

 
 

One solution is to delete the offending line of the ~/.ssh/known_hosts file which 
contains the stale key. 
 
In order to bypass the above ssh questions: 
 
Create a file named ~/.ssh/config in your home dir containing the following 
lines: 
 
StrictHostKeyChecking no 
BatchMode yes 
 
All the annoying questions will be answered affirmatively. 
 
The Planetlab known_hosts list can be found at: 
http://lists.planet-lab.org/pipermail/support-sf/2003-August/002734.html 
You can download it and override you own file. 

Installing software on a remote machine using SSH 
When you want to install a program like yum on a planetlab machine you have to be root. 
But how to install it on many machines? try to ssh using the command  
su -c 'command to run as root' 
This command will not work unless you will specify the flags: 
 
ssh -n -t -l <slice name> <machine name> "su -c 'command'" 
 
This command will not work in the background (using shell "&") 
 

Using expect instead of using the ssh-agent 
Another option for login is using the “expect” Linux utility. 
Attached is an example script which is taken from PlanetLab tools.  
 
#!/usr/bin/expect -f 
 
#This Expect script can ssh to a remote host without typing  
#a password or passphrase. 
# 
# Author:  Jianping Wang, 2003 



#      Multimedia Networks Group, University of Virginia 
# 
#      SOURCE CODE RELEASED TO THE PUBLIC DOMAIN 
# 
#      version 1.0 - 04/01/2003 
# Modifications to script by Danny Bickson, 2004 
# you should fill in the fields UserId, Passphrase and remotehost 
 
set UserID "" 
set Passphrase "" 
set remotehost "" 
 
spawn ssh -l $UserID $remotehost 
expect -re "Enter passphrase for key '.*':" 
send "$Passphrase\r" 
interact 

Avoiding ssh timeouts – using ssh 
When trying to connect a machine which is down, ssh might get stuck for a certain time. 
For avoiding this, you can change the "ConnectionTimeout" parameter in the .ssh/config 
file to a desired timeout in seconds.  
 

Avoiding ssh timeouts – using perl script 
This script will interrupt a stuck ssh session after X seconds (currently 10 seconds in the 
example). Create the following perl script in a file named timeout.pl 
#!/usr/local/bin/perl -w 
my $res = -1; 
eval { 
        my $command = $ARGV[0]; 
        local $SIG{ALRM} = sub { exit 1; }; 
        alarm(10); 
        $res=system($command); 
        alarm(0); 
}; 
 
if (($res != 0 )) 
        { exit 1; } 
else { exit 0; }; 
 
Then you can run ssh using "timeout.pl <ssh command>" 
 

Other SSH resources (taken from PL mailing list) 
This document has a good overview of the most common uses of ssh: 
http://kimmo.suominen.com/ssh/ 
 
Also, if you haven't seen this document, it outlines some basic points on  using 
ssh keys on PlanetLab:  
https://www.planet-lab.org/db/web_accounts/ssh_public_key.php 
 
Most linux systems will have ssh (OpenSSH) already installed for you, but if  this 
is not the case, visit http://openssh.com/ for official releases for numerous linux-
based platforms. 



 
If you are using Windows based machines, several options exist. There are 
commercial ssh clients like SecureCRT: 
http://www.vandyke.com/products/securecrt/ 
or freeware clients like putty: 
http://www.chiark.greenend.org.uk/~sgtatham/putty/ 
 
Another option worth mentioning is cygwin. For windows, its a complete linux  
like environment. For more information, see: http://cygwin.com/ 
If you install it, make sure to add OpenSSH to the list of packages to  install, as I 
last checked, it was not enabled by default. Once installed, this will give you a 
command prompt running the common bash shell, and you can use ssh as if you 
were on a linux box. 
 
For information on how to setup ssh-agent:  
http://kimmo.suominen.com/ssh/#ssh-agent  
http://www.caip.rutgers.edu/~vincentm/LINKS/sshagent.html 
 
For windows, there is a similar program available from the same authors who 
wrote putty, called Pageant. This works in the same way, where you add your  
keys to the Pageant application after its running, and putty contacts Pageant for 
the authorization while logging in. See the putty website above for more  
specific documentation. 

 

Copying files to/from Planetlab machines 
Using SCP to copy files from/to a PlanetLab machine 
This section was taken from: 
http://sc.tamu.edu/help/general/accessMethods/openssh_unix.html 
 
Use SCP to copy files from one machine to another. SCP replaces rcp and should be used 
instead of ftp. It also has more flexibility than ftp and can be used to copy directories 
instead of just files. The general form of SCP is:  

scp [[user@]host1:]filename1 [[user@]host2:]filename2  

Where filename1 and filename2 can be file or directory names. If your user name is the 
same on both the local and remote machines, then you do not have to provide the user@. 
If you are copying from your local machine, you do not have to provide the name of 
host1. For example, to copy a file called temp.ps from a local machine to agave.tamu.edu, 
use the following command:  

scp temp.ps agave.tamu.edu:temp.ps  



The file temp.ps will be copied to your home directory on agave. If you have a different 
user name on agave, then specify it as shown below.  

scp temp.ps remote-user-name@agave.tamu.edu:temp.ps  

You can use the “-r” flag to recursively copy subdirectories: 

scp –r temp.ps remote-user-name@agave.tamu.edu:temp.ps  

Don’t forget to  

Using rsync to copy a directory tree from/to Planetlab machine 
rsync is a utility to synchronize two directories to the same content. It can be used 
instead of scp for copying files into Planetlab machines. In order to operate, you should 
use “rsync –e ssh” for working over ssh in Planetlab. 
Rsync example:  (copies the full content of the directory ~daniel51/Planetlab/cog1/ 
including subdirectories into the remote directory PL/Cogs/cog1 on the remote machine 
planet1.cs.huji.ac.il): 
 
rsync -rvaz -e ssh --progress --delete ~daniel51/Planetlab/cog1/ 
PL/Cogs/cog1 planet1.cs.huji.ac.il 
 
Instead of using the above “rsync –e” flag you can use: 
setenv RSYNC_RSH ssh 
Make sure RSYNC_SSH is defined on every XSession. Use this option on cases the “-e” 
flag is not working. 

Possible rsync error message 
If you are getting a similar error: 
> unexpected tag 88 
> rsync error: error in rsync protocol data stream (code 12) at 
io.c(298) 
 
Try to use rsync with the "--blocking-io" option. 
 

Installing packages 
Since the Planetlab installation is minimal, applications like man, make, gzip , tar etc. are 
not installed. For installing additional RPMs you can use one of the following: 

Installing packages using yum 
curl http://boot.planet-lab.org/alpina/other-scripts/setup_yum.sh | bash 
 
yum groupinstall "Development Tools" 
 
You may also want: 
yum -y install man gzip less gcc flex bison bc rpm-build 



 

Installing packages using apt-get 
You can install any rpms you want. Use apt-get (freshrpms.net) or yum may help the 
installation process. E.g., if you want "make", do: 
 
su - 
rpm -Uvh http://boot.planet-lab.org/install-rpms/stock-rh9/apt-get-xxx.rpm 
 
apt-get update 
 
apt-get update 
apt-get install make 
 

Compiling your software on PlanetLab 
It is not recommended to compile your software on a PlanetLab machine, since the 
machines are already heavily loaded. You can compile your software on a local Fedora 
core 2 machine, and get binaries which are 99% compatible to PlanetLab. 
 

Non-recommended (but possible) option using make 
Technically, you can compile on a Planetlab machine using "make". You first need to 
install make, gcc or other packages you need to compile: 
yum –y install make gcc  
And then compile your software as usual. 
 

A better option: install a local PlanetLab node 
You will first need to install a fedora core 2 machine. Then you will need to upgrade it to 
the Planetlab software using the instructions on  
https://wiki.planet-lab.org/twiki/bin/view/Planetlab/DevBox 
 

Misc Tips 

Intalling Java 

Example script from "Nelson A. da Nףbrega Jr." [nelson@dsc.ufcg.edu.br] 

Filename: installconfig_java.txt 
file=$1 
j2re=$2 
installjava=$3 
echo Starting instalation... 
echo ======================== 
for node in `cat $file`  
do  
  echo ======================== 
  echo $node  



  echo Copying J2RE to $node 
  scp $j2re ufmg_09@$node:.  
  echo Copying script installjava 
  scp $installjava ufmg_09@$node:.  
  echo Entering at $node 
  ssh -x ufmg_09@$node "echo Installing J2RE at $node; ./$installjava $j2re" 
  echo ======================== 
done 
 

Filename: installjava.txt 
j2re=$1 
echo Installing java.bin 
echo "yes" > yes 
./$j2re < yes 
rm yes 
echo Rename dir j2re1.4.2_05/ to java/ 
mv j2re1.4.2_05/ java/ 
 
echo Setting Environments variables 
echo "CLASSPATH=.:\$HOME/java/lib 
export CLASSPATH 
 
JAVA_HOME=\$HOME/java 
export JAVA_HOME 
 
JDK_HOME=\$JAVA_HOME 
export JDK_HOME 
 
PATH=.:\$PATH:\$JAVA_HOME/bin 
export PATH" >> .bashrc 
 
source .bashrc 

Operating your software on Planetlab 
Most (if not all..) of the experiments on Planetlab are communications related. The 
Planetlab v. 3 is using virtualized network access. http://www.planet-lab.org/PDN/PDN-
05-029/ 
Some of your applications, or 3rd party applications you are using might not work 
correctly since Planetlab allows only a subset of network protocols: TCP, UDP, ICMP , 
GRE and PPTP.  
 
Most of the errors are because in Planetlab the applications needs to bind() the socket 
before usage in order to relate it to a certain slice. 

Debugging your programs 

Using strace utility  
In case your program works on a regular Linux but not on Planetlab, you can use 
"strace" in order to debug your application. Only add “strace” before your full 
command. 
 
For example: Nettimer utility did not run with error of  
nettimer: transport.c:530: transport_send_packet: Assertion  
>`(*__errno_location ()) == 90' failed. 
 
Using strace produces the following log file: 
… 



fstat64(4, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 
mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x123000 
read(4, "Iface\tDestination\tGateway \tFlags"..., 1024) = 512 
read(4, "", 1024)                       = 0 
close(4)                                = 0 
munmap(0x123000, 4096)                  = 0 
socket(PF_INET, SOCK_RAW, IPPROTO_RAW)  = -1 EPERM (Operation not permitted) 
write(2, "KLException caught in program: \""..., 310KLException caught in program: 
"/usr/sbin/nettimer"  at file: "active_probing.c" function: "active_probing_new" line: 
211   Thrown at file: "transport.c" function: "session->socket = socket(AF_INET, 
SOCK_RAW, IPPROTO_RAW)" line: 396 
meaning: "System error: 'Operation not permitted' Could not open socket" 
) = 310 
exit_group(1)                           = ? 
 

It is clear the opening socket using the SOCK_RAW protocol failed. That is because it 
was not run using in superuser mode. After running as root, Nettimer produced the 
following error: transport.c:530: transport_send_packet: Assertion `(*__errno_location 
()) == 90' failed. 

 
Running again with strace produced the following log: 
 
rt_sigprocmask(SIG_BLOCK, ~[RTMIN], [], 8) = 0 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 
0 
close(6)                                = 0 
rt_sigprocmask(SIG_BLOCK, ~[RTMIN], [], 8) = 0 rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 
0 
close(5)                                = 0 
sendmsg(4, {msg_name(16)={sa_family=AF_INET, sin_port=htons(10100), 
sin_addr=inet_addr("128.112.139.102")}, 
msg_iov(1)=[{"E\0\1\364\0\0\0\0\377\6\337!\204\343J(\200p\213f\327\271"..., 
500}], msg_controllen=0, msg_flags=0}, 0) = -1 EPERM (Operation not 
permitted) 
write(2, "nettimer: transport.c:530: trans"..., 99nettimer: transport.c:530:  
transport_send_packet: Assertion `(*__errno_location ()) == 90' failed. ) = 99 
rt_sigprocmask(SIG_UNBLOCK, [ABRT], NULL, 8) = 0 
tgkill(17232, 17232, SIGABRT)           = 0 
--- SIGABRT (Aborted) @ 0 (0) --- 
+++ killed by SIGABRT +++ 

 
Here the sendmsg() function call failed, probably because the socket was not bound 
before sending. 

Using tcpdump utility  
You can use tcpdump utility for viewing your slice network traffic. The command line is: 
sudo /usr/sbin/tcpdump –i vnet 

Using tethereal utility  
Command syntax:  
tethereal -i vnet 
Example of a capture done while running "curl http://www.yahoo.com/": 
 
   2.845346 128.112.136.10 -> 128.112.139.71 DNS Standard query response  
PTR p25.www.re2.yahoo.com 
   2.846096 128.112.139.71 -> 68.142.226.37 TCP 51850 > http [SYN] Seq=0  
Ack=0 Win=5840 Len=0 MSS=1460 TSV=1773606008 TSER=0 
   2.863092 128.112.139.71 -> 68.142.226.37 TCP 51850 > http [ACK] Seq=1  
Ack=0 Win=5840 Len=0 TSV=1773606025 TSER=135373488 
   2.863029 68.142.226.37 -> 128.112.139.71 TCP http > 51850 [SYN, ACK]  
Seq=0 Ack=1 Win=1460 Len=0 MSS=1460 TSV=135373488 TSER=1773606008 
   2.863739 128.112.139.71 -> 68.142.226.37 HTTP GET / HTTP/1.1 



We can see in the trace the DNS response and the TCP connection handshake. Thanks to 
Mark Huang (PLC Princeton). 

Creating a core file 
In case your application crashes on a Planetlab node and you want to debug it. 
Before running the application, on a bash shell: 
ulimit –c unlimited 
On a csh/tcsh: 
limit coredumpsize unlimited 
 
Example of running using ssh: 
ssh –l huji_daniel51 planetlab01.ethz.ch ulimit –c unlimited; \ 

cd PL/Cogs/daniel51/; \ 
./client 

If the program crashes, a core file should be created. You can debug it using  
gdb client core 
You might need to install gdb using yum, or copy the core file to a devbox machine and 
debug it there. 

Working with the slice deploy utility 
SliceDeploy utility is a set of Perl scripts which enable working from a centralized Linux 
machine, sending and receiving files to selected Planetlab machines and running 
commands on those machines, and getting the program output (logs) back. 
 
On the Planetlab homepage, click the software link and search for the ”SliceDeploy” 
project.  http://www.planet-lab.org/php/contrib/contrib.php From there, there is a link to 
download the scripts. Download the tar file and save it on your Linux home drive. Extract 
the tar file. 
 
Inside the package there are two short documents: HOWTO and README. You are 
advised to print and read both. Start from HOWTO since it is more basic.  
 
The main script is “sd” (SliceDeploy).  
 
There are two small modifications to the sd script: 
 
1. In order to setup the working directories, change the constants DISTDIR 
,LIBDIR and BINDIR inside the “sd” script to your working directories where you 
opened the SliceDeply tar. 
For example: 
my $DISTDIR="."; 
my $BINDIR="$DISTDIR/bin/"; 
my $LIBDIR="$DISTDIR/lib/"; 
 
Those changes are instead of running the “INSTALL.sh” file. 
 
More on dynamic slices architecture: 



www.cs.princeton.edu/~llp/slices.pdf 
 
 
A short tutorial for using “sd”:  
(The HOWTO and README files have more details) 
 

1. Create directory structure by using: 
./sd createslice --slice <slicename> 
A directory called “Sliver” is created. Anything you put into it will be copied into 
the Planetlab machines when you deploy.  

      2. Create subprojects by using 
./sd createcog --cog <cogname> 
(This is useful if you want to divide the project into several subprojects. If not, 
you can just create 1 default cog). 
A directory named Cogs/<cogname> will be created. Inside you will find a script 
called “PLCogCntl”. You can add code in the sections START, STOP, DEPLOY, 
etc. If you want to run a script named “mysciprt.sh” remotely you add something 
like: 
# ---------------------------------------------------- 
# START 
# Start this service running 
# ---------------------------------------------------- 
sub cSTART { 
    # Your service code here  
  &DoSystem(“myscript.sh”); 
  print "-----Cog command START on .$ENV{"HOSTNAME"}."\n"; 
} 

3. Add PlanetLab nodes into your project. Your program will be deployed on the 
nodes list. 
./sd addnode --cog <cogname> --node <nodename> 

4. You can view your added nodes list by: 
./sd list 

5. Deploy your project using:  
./sd deploy --verbose 

      You can also use ./sd start|stop etc. for starting your service. 
 
 
 

ScriptRoute 
 
A facility for distributed Internet debugging and measurement 
 
Scriptroute is a flexible network measurement and debugging system. The tool was 
developed by University of Washington. It's written in Ruby - a general purpose Object 
Oriented scripting language. 



 
Scriptroute's home address: 
http://www.cs.washington.edu/research/networking/scriptroute/ 
 
Installing ScriptRoute on PlanetLab slice:  
wget -nc http://www.scriptroute.org/planetlab/planetlab-
install &&\ sh ./planetlab-install 
 
The installation includes scriptRoute's tools and additional useful tools. 
List of tools: 
 
ScriptRoute tools  
(sr-* : type sr- + tab to get the list) 
1) sr-ally : compare 2 hostnames/addresses to find if they are the same server 
2) sr-ping : simple ping 
3) sr-sprobe: an estimate for bandwidth to a host 
4) sr-traceroute: a simple traceroute utility 
5) sr-listservers.rb: list ScriptRoute serverlist 
6) sr-pingp : poisson ping 
7) sr-rockettrace: traceRoute like tool for network mapping 
8) sr-tcptraceroute: a traceRoute utility - tcp level 

Other tools installed 
ELFutils: (eu-*) A collection of utilities to handle compiled objects. 
xmlsoft: (xml*) Library providing XML and HTML support. Reading, Writing, 
parsing etc. 
    Includes: xmlcatalog, xmllint, xmlwf. 
Python: An interpreted, interactive, object-oriented programming language. 
    It comes with many libraries, including bindings for curl, xmllib... 
gmp: A GNU arbitrary precision arithmetic library 
yum: (yum*) RPM packages installer/updater 
libpcap: packet capture library 
undns: (undns_decode) DNS router name decoder 
 
 


