TRADE-OFFS IN IMPLEMENTING CONSISTENT DISTRIBUTED STORAG

Nicolas C. Nicolaou

M.S., Computer Science and Engineering, University of @atinut, 2006
B.S., Computer Science, University of Cyprus, 2003

A Dissertation
Submitted in Partial Fulfillment of the
Requirements for the Degree of
Doctor of Philosophy
at the
University of Connecticut

2011

Copyright by

Nicolas C. Nicolaou

2011

APPROVAL PAGE

Doctor of Philosophy Dissertation

TRADE-OFFS IN IMPLEMENTING CONSISTENT DISTRIBUTED STORAG E

Presented by

Nicolas C. Nicolaou, M.S., B.S.

Major Advisor

Alexander A. Shvartsman

Associate Advisor

Alexander Russel

Associate Advisor

Aggelos Kiayias

Associate Advisor

Chryssis Georgiou

University of Connecticut

2011

TRADE-OFFS IN IMPLEMENTING CONSISTENT DISTRIBUTED STORAG E

Nicolas C. Nicolaou, Ph.D.

University of Connecticut, 2011

Distributed data services use replication to ensure datiadnility and survivability. With
replication comes the challenge of guaranteeing data stemsly when multiple clients access
the replicas concurrently, and various consistency mokdale been proposed and studied.
Atomicity is the strongest consistency model, providing tltusion that data is accessed se-
guentially. A basic problem in distributed computing is thlementation of atomic objects
(registers) that support read and write operations. Theisishexplores the communication costs
of atomic read/write register implementations in asynobrs message-passing systems with
crash-prone processors. It considers such implemengatioder three assumptions.

First, we consider implementations in the single writerltiple reader (SWMR) setting. It
is known that under certain restrictions on the number alees it is possible to obtain imple-
mentations where each read and write operation terminétesaasingle round-trip message
exchange with a set of replicas. Such operations are calltd This thesis removes any re-
strictions on the number of readers and introduces a neveimmghtation where writes are fast,
and at most one read operation performs two round-trips pigg operation. Subsequently, we
show that such SWMR implementations impose limitationshenrtumber of replica failures
and that multiple writer, multiple reader (MWMR) implemations with such characteristics

are impossible.

Then, we consider implementations in the SWMR setting wiugrerations access the
replicated register by sending messages to a predefinedfsetplicas with non-empty in-
tersections, called quorums. We show that more than onedwad read operation may be
required for each write in this setting and that general goebased implementations are not
fault-tolerant. Then we explore trading operation latefayfault-tolerance and introduce a
new decision tool that enables some read operations to bie fasy general quorum construc-
tion.

Finally, we examine the latency of read and write operatiarthe MWMR setting. First,
we study the connection between fast operations and quanterséections in any quorum-
based implementation. The decision tools introduced irBWMR setting are then adapted to
the MWMR setting to enable fast read operations. Lastlythiesis develops a new technique
leading to a near optimal implementation that allows (budsdonot guarantee) both fast read

and write operations in the MWMR setting.

ACKNOWLEDGEMENTS

Reaching to the end of a long journey | feel the need, withellfiesll keystrokes, to express
my gratitude to the people without whom this journey woulgéhbeen impossible.

First, | gratefully and sincerely thank Dr. Alexander Shsaran that believed in me, sup-
ported me, and allowed my educational growth from the pmsiof my major advisor. Dr.
Shvartsman, thank you for mentoring me and teaching me haol@lteer meaningful, valuable
and important research. You accepted me as a student angowitiguidance, encouragement,
and patience you crafted and delivered a young scholar. Ybaways be my inspiration,
mentor, guide, and eternal advisor to any path my fate vallilme. By giving me the oppor-
tunity to work with autonomy you helped me become an indepenthinker and establish a
strong academic foundation on which | can build a successfatlemic career. | am honored
to be your student.

| am also grateful to my associate advisors, Dr. AlexandessBll, Dr. Aggelos Kiayias,
and Dr. Chryssis Georgiou. | thank you all for the time andrgypeou spend into my study
and for the valuable feedback, ideas, and enthusiasm th#g thes study a better product. |
was honored to have you all in my committee.

A special thank you goes to Dr. Georgiou for being a greatboltator, mentor and most
importantly a great friend. | thank him for the endless déstons we had over problems
presented in this work, for his dedication, his patience,guiidance and continuous feedback

in every step of my studies.

Equally importantly, | thank my parents, extended famibljeagues and friends in Cyprus
and in the US. You all made a foreign country feel like homeurYsupport and faith in me
kept me going forward through this tough process. You willaals have my gratitude and a
place in my heart.

Most of all | would like to thank my wife Andri and my baby girldphaela. Andri, had
the endurance to cope with my “crashes” , “restarts”, and rbjtrary behavior, throughout
my Ph.D. program. Thank you my love for your patience, taleeq for being by my side, for
pushing me, for supporting me, for believing in me, for layime. But most of all | thank you
for bringing to life our beautiful daughter Raphaela. Myi¢itRaphaela, tiny as you are, you
gave me the strength, meaning, and endurance to overcontestrand most difficult part of
this journey.

Finally, | would like to acknowledge the funding support fois work. The study was par-
tially supported by NSF, the Cyprus Research Promotion &ation granfilENEK/0609/31,
and the European Regional Development Fund (ERDF). Spttaks to Drs. Alexander
Shvartsman and Chryssis Georgiou, without whom | would metegeceived funding for this

work.

CREDITS

This dissertation incorporates research results appearitne following publications:

[43, 45] This is a joint work with C. Georgiou and A. Shvartsmthat appears in thdournal
of Parallel and Distributed Computing5]. A preliminary version [43] appears in the
Proceedings o6PAA'06 This work is included in Sections 4.1.1, 4.2.1-4.2.4, /d a

parts of 4.2.5.

[40] This is a joint work with C. Georgiou, S. Kentros and A.v@ahsman that appears in

PDCS’09 Parts of Section 4.2.5 correspond to this work.

[44] This paper is a joint work with C. Georgiou and A. Shvaré that appears DISC'08

This work corresponds to part of Sections 5.2-5.4.

[32, 33] This is a joint work with B. Englert, C. Georgiou, P.uklal, and A. Shvartsman. It

appears iMOPODIS’09and corresponds to parts of Sections 6.2-6.4.

TABLE OF CONTENTS

Chapter 1: Introduction
1.1 Motivation
1.2 Background
1.3 Thesis Contributions
1.3.1 SemiFast Implementations with Unbounded Number aflRes . . .
1.3.2 Examining Robustness of (Semi)Fast Implementations.
1.3.3 Fast Operations in the MWMR environment

1.4 Thesis Organization.

Chapter 2: Related Work

2.1 Consistency Semantics.
2.2 CONSENSUS. v ottt s
2.3 Group Communication Services.
24 Quorum SYSIEMS L
2.5 Consistent Memory Under Crash Failures

2.5.1 FastnessunderCrashFailures
2.6 Consistent Memory Under Byzantine Failures

2.6.1 Fastness Under Byzantine Failures.

2.7 Partitionable Networks

Chapter 3: Model and Definitions

3.1 Modelof Computation

Vi

3.1.1

3.1.2

3.1.3

3.1.4

Input/Output Automata and Executions.
Communication.
Failures

Quorum Systems.

3.2 Consistency and Object Semantics - Atomic Read/WriggdRes.

3.3 Complexity Measures.

Chapter 4:

Trading Speed for Reader Participation

4.1 Fastand Semifast Implementations.

41.1

4.2.2

4.2.3

4.2.4

4.2.5

Semifast Implementations,

Quantifying the Number of SlowReads.

4.3 Limitations of Semifast Read/Write Register Implena¢ons.

4.3.1

4.3.2

Chapter 5:

Constraints on the Virtual Nodes and Second Round Gonoation .

Impossibility of Semifast Implementations in MWMRv@onment . .

Trading Speed for Fault-Tolerance

5.1 Reuvisiting Replica Organization of (Semi)Fast Impletadons.

5.2 On the Fault-Tolerance of (Semi)Fast Implementations

521

Fast Implementations are Not Fault Tolerant.

Vii

104

115

124

5.2.2 SemiFast Implementations are Not Fault Tolerant. 133

5.2.3 Common Intersection in Fast and Semifast Implemientat 138
5.3 Weak Semifast Implementations. 140
5.4 Weak-Semifast Implementation: Algorithrmi& 141
5.4.1 Examining Value Distribution — Quorum Views. 142
5.4.2 High Level DescriptionofiSQ 144
5.4.3 Formal Specificationoft®d 145
544 Correctnessoft® 153
5.4.5 Empirical EvaluationofiSQ 162
Chapter 6: Trade-offs for Multiple Writers 166
6.1 Introducing Fastnessin MWMR model 167
6.2 Inherent Limitations of the MWMR Environment 168
6.3 Enabling Fast Read Operations - AlgorithmEr 177
6.3.1 Incorporating Prior Techniques — Quorum Views. 178
6.3.2 High Level Descriptionof @FR 179
6.3.3 Formal Specificationof\€@Fr 180
6.3.4 CorrectnessofWCFRo 191
6.4 Server Side Ordering - Algorithmé®/ 202
6.4.1 New Way of TaggingtheValues. 204
6.4.2 High Level Descriptionof 8NV 205
6.4.3 Formal Specificationof’ &V L. 208
6.4.4 CorrectnessofF8Vo 219

viii

Chapter 7: Summary and Future Directions 246

7.1 SUMMANY. . . . o o o e e e 246
7.2 Future Directions 248
7.21 Dynamism. e 249

7.2.2 ByzantineFailures L L 256

7.2.3 OtherEnvironments 260
Bibliography 261
Appendix A: SLIQ Simulation: Plots 268

10

11

12

13

14

15

16

17

18

19

20

LIST OF FIGURES

External Signature of a Read/Write Atomic Memory Service. 47
Virtual Nodes. 56
SF,, Automaton: Signature, State and Transitions 60
SF,. Automaton: Signatureand State.o 61
Sk, Automaton: Transitions. 62
SF, Automaton: Signature, State and Transitions. 66

Scenarios (iyInt = 2.3s, wint = 4.3s, and (ii)rInt = 4.3s, wint = 4.3s. . 100
Scenario (iiiyrInt = 6.3s, wInt =4.3s. 100

Left: Physical communication betweerand the servers ifn(wr) andg(wry).

Right: Same communication using block diagrams. 106
Execution fragments(A), ¢(B), ¢(C), ¢(D). 110
Intersections of three quorurg®, Q”. Q"'. 135
Graphical representation of quorufs, Q4 and@s. 139

(@)QV1, (b)QV2, (c) QV3 with incomplete write, (dQV3 with complete write.. 143

.1Q,, Automaton: Signature, State and Transitions 147
9.1Q, Automaton: Signature, State and Transitions 150
9.1Q, Automaton: Signature, State and Transitions 152
Simple runs using CrumblingWalls 164
CwFRr,, Automaton: Signature, State and Transitions 182
CwFR, Automaton: Signatureand State. 185
CWFR, Automaton: Transitions. 186

21

22

23

24

25

26

27

28

29

30

31

32

CwFR,; Automaton: Signature, State and Transitions. 189

Traditional Writer Side Ordering Vs Server Side Ordering. 203
SFW, Automaton: Signature, State and Transitions 210
SFW,, Automaton: Signature, State and Transitions 213
SFW,. Automaton: Signature, State, and Transitians 216
Simpleruns L 269
Crumbling Walls - Quorum Diversity Runs. 270
Matrix - Quorum Diversity Runs 271
Crumbling Walls - Failure Diversity Runslint € [0...50])) 272
Matrix - Failure Diversity Runse(nt € [0...50]) 273
Crumbling Walls - Failure Diversity Runsiint € [10...60]) 274
Matrix - Failure Diversity Runse{nt € [10...60]) 275

Xi

A
Ap
states(A)

actions(A)

LIST OF SYMBOLS

set of process identifiers. L. 38
set of writer identifiersi? 38
set of reader identifiersith 38
set of replica host (server) identifiersin. 38
any reader, writer or Server process. 39
ASEIVEIr ProCeSS . . .« v v o v e e e e e e e 39
areader proCesS i e 39
AWILEer proCesS. v v e 39
areadoperation 39
awriteoperation 39
aread orwriteoperation. 39
automaton of an algorithm. 39
automaton assigned to proces®or algorithmA 39
set of all states of automatoh 40
set of all actions of automatad 41
a state of the automatoh 41
the state of the automatot, in the staterof A 41
value of variablevar in the stater[p| of automator4,, 41

Xii

(0,0, 0")

trans(A)

¢

erecs(A)

§1Ap

m(m, ¢)ppy
m(m, ¢)p prvar

Cnt(ﬂ-> g)P

sent(m, G)p

Qi

a transition (or step) from the stateof A to the stater’ of A as a

result of action in actions(A) 41
set of all transitions (steps) ef 41

an execution fragment which is a finite or infinite sequencstebs

an execution ofd which is an execution fragment that begins with

the initial stateofd 41
set of all executions of automatoh. 41

an execution irzecs(A,) which is extracted from the the execution

¢ of A and contains all the stefds, «, o’) such that{o[p], o, o/ [p])

is contained intrans(Ay,)o oL 41
message sent fromito p’ during roundc of operationr 43
value of variablevar contained in the message(r,c),,, 43

p sends and receives messages (contacts) to every procesetof a

G C I, foroperationm 43

p contacts every process ¢h C 7 and no other process during op-

erationT 43
number of maximum replica host failures. 44
aquorumsystem. 45
aquoruminQ 45
setofi quorumsfromQ, 45

Xiii

inv(m)
res(m)
Tinv(r)

Ores(r)

Vp

set of all allowed to be written on the register. 47
the step in an executiggwhere the unique operationis invoked . 47

the step in an executigfwhere the unique operatiencompletes . 47

state ofA beforeinv(w) stepofro 48
state ofA after theres(w) stepofr 48
setofallvirtualnodes 56
virtual identifier assignedtoprocess 56

XV

Chapter 1

Introduction

This dissertation investigates latency-efficient aldonis for consistent and fault-tolerant
distributed storage. In this chapter, we first present thévattton for this work and the chal-
lenges for implementing atomic data services in distributessage-passing asynchronous and
failure-prone systems. To survey the current results, wiewethe research in this area. Next,
we identify open problems derived from previous works arespnt the research contributions

of this dissertation.

1.1 Motivation

Availability of network storage technologies (e.g., SANABI[46]) and cheap commodity
disks increased the popularity of reliable distributedage systems. To ensure data avail-
ability and survivability, such systems replicate the dateong multiple basic storage units —
disks or servers. A popular method for data replication aathtanance uses redundant arrays
of independent disks (RAID) [21, 80]. Although a RAID systemay sometimes offer both

performance boosting and data availability, it usuallyides in a single physical location, is

Nicolas C. Nicolaou——University of Connecticut, 2011

controlled via a single disk controller, and is connecteth®clients via a single network in-
terface. Thus, this single physical location with its ssgiterface constitutes a single point
of failure and a performance bottleneck. In contrast, aitligied storage system implements
reliable data storage by replicating data in geograplyiatiipersed nodes, ensuring data sur-
vivability even in cases of complete site disasters. Rebesas often focus on implementing
abstract objects that allow primitive operations, liked@ad write registers. Read/write regis-
ters can be used as building blocks for more complex stonggeras or to directly implement
file storage systems, making them interesting in their oghtri

A distributed read/write register implementation invawevo distinct sets of participating
entities: thereplica hostsand theclients Each replica host maintains a copy of the replicated
register. Each client is eeader or a writer and performsead or write operations on the
register, respectively. In the message-passing envirnfjrolients access the replicated register
by exchanging messages with the replica hosts. A readesrpesfa read operation as follows:
(i) accepts a read request from its environment, (ii) exgearmessages with the replica hosts
to obtain the value of the register, and (iii) returns theugadliscovered to the environment.
Similarly, a writer performs a write operation as follows$) dccepts a value to be written on
the register, (ii) exchanges messages with the replica ttostrite this value on the register,
and (iii) reports completion to the environment.

Replication allows several clients to access differenlicap of the register concurrently,
leading to challenges in guaranteeing replica consisteryglefine the exact operation guaran-
tees in situations where the register can be accessed cenityrresearchers introduced differ-

entconsistency modeld he strongest consistency modehtsmicitythat provides the illusion

Nicolas C. Nicolaou——University of Connecticut, 2011

that operations are performed in a sequential order, whezality they are performed concur-
rently. In addition to atomicity, atomic register implent&tions must ensurfault-tolerance
That is, any operation that is invoked by a non-faulty cliemtninates, despite the failures in
the system.

Two obstacles in implementing an atomic read/write regiate asynchronyandfailures
A communication round-trigor simply round) between two participants A and B, involzes
message sent by A to B, then a message sent by B to A. Due toaeygcevery message sent
between two participants experiences an unpredictedaiemunication delayAs a result, a
communication round-trip involves two communication gslaTo obtain the value of the reg-
ister during a read operation, a reader requires at leastoomel and thus two communication
delays for: (a) delivery of a read message from the readerl&ast a single replica host, and
(b) delivery of the reply from the replica host to the rea@milarly, to modify the value of the
register during a write operation, a writer requires attleag round and thus two communica-
tion delays for: (a) delivery of a write message from the evrtb at least a single replica host,
and (b) delivery of an acknowledgment from the replica hoshé writer. Although the writer
may enclose the value to be written in its write message, tiite wperation cannot terminate
before receiving an acknowledgment from the replica hasfadt, this could lead to the ter-
mination of the write operation before the replica host rexethe write message, either due
to delay or due to replica host failure. In any case, atogitiay be violated as a subsequent
operation will be unaware of the existence of the write ofi@na Consequently, both read
and write operations require at leasto communication delays, that is,single roundbefore

terminating. We refer to operations that terminate afteirtfirst round agast

Nicolas C. Nicolaou——University of Connecticut, 2011

Fault-tolerance is not guaranteed if an operation comnatescwith a single replica host.
A crash failure may prevent the delivery of messages to thst, ikeeping clients waiting for
a reply and preventing them from terminating. Additionalfytwo operations communicate
with different replica hosts, they may observe differeqlica values, thus atomicity may be
violated, as the second operation may return an older valkae the one written or read by
the first operation. Therefore, a client needs to send mesdagsubsetof replica hosts. To
tolerate failures, such a subset should contain more eepbsts than the maximum number of
allowed replica host failures. Moreover, to ensure thataiens are aware of each other they
must obtain information from overlapping subsets of rephiosts.

Communicating with overlapping subsets of replicas maybaefficient to guarantee atom-
icity. Suppose a write operation communicates with a sudsetd a succeeding read operation
with a subsetB # A whereA N B # (). The read operation obtains the value written from
the replica hosts in the intersectiohn B. As the read succeeds the write, it returns the value
written. Consider, a different scenario where the writerapen is delayed and communicates
only with the replica hosts ill N B before the read communicates with the replica hosts in
B. The read operation cannot differentiate the two scenamalsthus returns the value being
written. A second read operation may communicate with aetuissuch thatd N C' # 0,
BNC #(,andAn BN C = (. Thus, the read is not aware of the delayed write and hence
returns an older value, violating atomicity. To ensure #rat succeeding operation observes
the written value, the first read operation can either: (§uee that the written value is propa-
gated to enough replica hosts by waiting for hosts not o reply, or (ii) propagate the value
to a subset of replica hosts that overlaps with the subsatr@ut by any subsequent operation.

As hosts not inA may crash, waiting for more replies may prevent the readatioer from

Nicolas C. Nicolaou——University of Connecticut, 2011

terminating. So it remains for the read operation to perfamther round to propagate the
written value. As a result, atomic register implementatiomay contain operations that may
experience four communication delays before terminating.

In general the efficiency of atomic read/write register iempéntations is measured in terms
of the latency of read and write operations. The latency obperation is affected by two
factors: (a)communicationand (b)computation In this thesis we focus on the operation
latency caused by communication delays and study the nuofilbeands needed for each read

and write operation.

1.2 Background

A distributed storage algorithm is characterized by the loemof writer and reader clients
it supports e.g., single writer multiple reader (SWMR) andltiple writer multiple reader
(MWMR), and the type of participant failures it toleratesy(gcrash failures, arbitrary failures,
etc.).

A seminal work by Attiya, Bar-Noy, and Dolev [9] gives an aljlom for a SWMR atomic
register implementation in the asynchronous, crash-pror@ssage-passing environment. In
their solution, the register is replicated among a$%ef replica hosts. Each read or write oper-
ation is guaranteed to terminate as long as less @areplica hosts crash. Each value written
to the register is associated with a natural number, cailledstampthat is used by the read
operations to determine the latest value of the registee Wititer issues the timestamps. At
each write operation the writer increments its local tiraegt and conveys the new timestamp-
value pair to a majority of the replica hosts in a single comitation round. The read protocol

requires two rounds to complete; in the first round it discevhe maximum timestamp-value

Nicolas C. Nicolaou——University of Connecticut, 2011

pair, and in the second round it propagates this pair to anhajf replica hosts. Although
the value of the read is established in the first round, skippiie second round may lead to
violations of atomicity when the read is concurrent with &evrSubsequently, a folklore belief
developed that “reads must write” in multi reader atomidgtesg implementations.

Lynch and Shvartsman in [68] generalized the majority-bas®ution of Attiya et al. [9]
and gave gjuorum-basedatomic register implementation for the MWMR environment |
their context, aquorum systeris a collection of sets of replica hosts, knownga®rums with
pairwise intersection. To support multiple writers, thefreduced @wo round write protocol,
while they preserved the two round read protocol of [9]. Thet fiound of the write protocol
was used to discover the latest value of the register. Yet,whs unnecessary in the single
writer environment, since the sole writer imposed a totaledng on the write operations.
To improve the longevity of the service, this work was thet fics suggest and implement
the reconfigurationof the quorum system. To ensure safety of reconfiguratidres ptotocol
prevented the invocation of read or write operations dur@apnfigurations.

Englert and Shvartsman in [34] overcame the problem of [§8ldastarting any read or
write operations that detect an in-progress reconfiguratiadhe system. Building on this find-
ing Lynch and Shvartsman in [66] provided the first algorittimat implemented a MWMR
atomic register in a fullydynamicsetting. Their solution preserved atomicity while allogyin
participants to join and fail by crashing. The authors altowitiple reconfigurers circumvent-
ing the failure of the single reconfigurer used in [34]. Batld and write operations needed

to perform at least two round protocols before completing.

Nicolas C. Nicolaou——University of Connecticut, 2011

Dolev et al. [28] extended the work presented in [66] ancbiohiiced a MWMR read/write
atomic register in partitionable ad-hoc mobile networkbe Buthors in [28] assume that ad-
hoc mobile nodes usually populate distinct geographictions, they calledocal points Each
focal point is implemented as a virtual node that parti@pah the service. Individual mobile
nodes invoke read and write operations on the atomic regiséethe focal points they resided
in. Interestingly, this work was the first to introduce smgbund reads when it was confirmed
that the latest value was propagated to at least a singlelguor

A work in 2004 by Dutta et al. [30] was the first to introduce lmpentations of atomic
read/write registers in the SWMR environment where all apens required gingleround to
complete. Such operations are calfadt This finding refuted the folklore belief that “reads
must write”. The same paper proved that such an efficientwehi possible only when the
number of readers is inversely proportional to the numbeeplica hosts in the system. So,
while the first part of the work presents the possibility ofgifcal atomic read/write register
implementations, the proved constraint raises major guresbn the scalability of the service.
In addition, the authors show that fast implementationsioaiexist in the MWMR environ-
ment.

The work in [30] demonstrates that it is possible to obtast &#omic register implementa-
tions in systems where processes may fail by crashing. #tiaiyknown if such a performance
may be achieved when participants may suffer arbitraryifed, such a8yzantinefailures
[64]. Martin, Alvisi, and Dahlin in [73] were the first to impinent atomic semantics assuming
byzantine replica hosts and without the use of replica haitestication. Their work applies
diffusion techniques to propagate and discoveaereptablevalue written on the atomic reg-

ister. As a result, the communication cost of their appraadhigh. Guerraoui and Vukoli¢

Nicolas C. Nicolaou——University of Connecticut, 2011

in [53] developed an algorithm that allowed fast operatidespite the existence of byzantine
replica hosts. Their approach relies on eventual-synghrénread or write operation could
terminate in a single round only if “enough” replica hostglied within a predefined time in-
terval. If the specific number of replies could not be cobelctvithin this interval, an operation

had to proceed to a second and potentially third round to tetep

1.3 Thesis Contributions

This thesis aims to answer the following general question:

What is the operation latency of algorithms that implemeotrac read/write register ab-

straction in an unconstrained, fail-prone, message-pagsasynchronous distributed system?

Our work focuses on systems with static participation ttlateparticipants to crash. We
study the operation latency, in terms of the number of comaation rounds required by each
read and write operation. Both SWMR and MWMR settings aresictaned. We establish
that the communication delay of each operation is affecied D) the number of reader and
writer participants, and (2) the subset of replica hostseélaah client communicates with per
read/write operation. We developed four algorithms thai@ment atomic read/write registers.
Two of them are designed for the SWMR setting, and two aregdesi for the MWMR setting.

Each of the algorithms contains operations that need ongmrdunds to terminate.

Nicolas C. Nicolaou——University of Connecticut, 2011

1.3.1 SemiFast Implementations with Unbounded Number of Raders

Motivated by the result of Dutta et al. in [30], the first paftroy thesis investigates the
possibility and cost of efficient implementations of atoméad/write registers that support
arbitrarily many readers.

Our work builds upon the result in [30]. To allow unboundedder participation, we group
the readers into abstract entities, calédual Nodes Each virtual node serves as an enclosure
for multiple reader participants. Adapting the technigpessented in [30], each virtual node
is treated as a separate participating entity, allowed tfope read operations. This allows
unbounded number of readers in each virtual node. Such &nedint raises challenges, es-
pecially in regards to maintaining consistency among neadithe same virtual node. Based
on this idea, we develop our first atomic read/write regigtgslementation, called § that
requiressomeread operations to perform two rounds to terminate. In @algr, at most a
single completeead operation performs two rounds for each write operatiirites and any
read operation that precedes or succeeds a two-round sgfadt.i This discovery leads to the
definition of a new class of implementations, calinifasimplementations.

Next, we ask whether the operation latency of reads andswistaffected by the number
of virtual nodes. We show that semifast implementationspassible only if the number of
virtual nodes is less th&‘r%‘ — 2, wheref out of |S| replica hosts are allowed to crash. Notice
that such a bound does not restrict the number of readersngss a single virtual node exists
in the system. Moreover, semifast implementations ardlfteasnly if each read operation

sends messages to a subset of at IBAseplica hosts during the second round.

Nicolas C. Nicolaou——University of Connecticut, 2011

Then, we ask whether semifast implementations are podsilhe MWMR environment.
We obtain a negative answer, and show that semifast implitiems are impossible in the
simplest MWMR environment that contains 2 writers, 2 readard encounters a single replica
host failure.

Lastly, given that semifast implementations do not guamrthat read operations con-
current with a two-round read are fast, we prove that the b slow reads per write is
logarithmic in the number of readefR | and does not grow larger th&R|. Empirical experi-
ments we conduct on single processor simulators and plgrstale environments agree with

our theoretical findings.

1.3.2 Examining Robustness of (Semi)Fast Implementations

Fast implementations studied in [30] and the first part of thesis, rely on the knowledge
of the number of replica failures. That is also the case ferekploration of fast implementa-
tions under byzantine failures as studied in [53]. Theseka/do not describe how the replica
hostaccess strategiesay affect the fastness of the read or write operations. Apsxstrat-
egy specifies the subsets of replica hosts that each operatig communicate with and can be
constructed by either: (a) knowing the maximum number okedd failure$, or (b) explicitly
specifying the subsets of replica hosts. Quorum systenambeabd the latter category of access
strategies, and have been widely used by atomic read/wrfikementations. A quorum system
is a set of subsets with pairwise intersection. Here, we Hezkonditions that are necessary

and sufficient to enable fast read and write operations itesysthat assume arbitrarily many

1In this case the access strategy requires an operation tmenizate with all butf replica hosts, wherg the
maximum number of allowed failures

10

Nicolas C. Nicolaou——University of Connecticut, 2011

participants and general quorum constructions. In othedsyave investigate the fastness of
quorum-based implementations.

First, we examine the fault-tolerance of fast and semifastgm-based implementations.
Interestingly, we discover that fast and semifast imple@gins are only possible if@ommon
intersectionexists amonall quorums of the quorum system they use. This implies that such
constructions are not fault-tolerant since a single failur the common intersection renders
the entire quorum system unusable.

So, we explore trading efficiency for fault-tolerance. Weu® on techniques that allow
more than a single slow read operations per write, and eisabhe fast operations in a general
and unconstrained quorum-based environment. Our inatigled to the introduction and
development of new client side decision tools, callatbrum ViewsSuch tools do not depend
on the underlying quorum construction, and this makes thatalde for use with any general
quorum system. To establish the latest written value, quoriews examine the distribution
of a value in the members of a quorum. Using quorum views, weldp an atomic read/write
register implementation for the SWMR environment, calleddS The new algorithm allows
all writes to be fast, while reads perform one or two roundcdntrast with fast and semifast
implementations, 8Q allows multiple complete two-round reads per write operation. This
characteristic formed a new distinct class of implemeotetiwhich we calWeak-Semifast
Experimental results indicate that the operation laterfdyplementation $1Q is very close

to the operation latency of semifast implementatienirsrealistic scenarios.

11

Nicolas C. Nicolaou——University of Connecticut, 2011

1.3.3 Fast Operations in the MWMR environment

Thus far we considered the impact of unconstrained conging— in terms of reader
participation and replica host access strategy — on thaegftig of atomic read/write regis-
ter implementations. Next we explore whether fast opematiare possible in systems with
multiple writers.

Traditional solutions for the MWMR environment (e.g., [86, 68]) demonstrate that two
rounds (four communication delays) are sufficient for aradrer write operation. More re-
cently, [30] showed that it is impossible to obtain fast atoregister implementations for the
MWMR environment. Yet, it is not known whether algorithmsatlallowsomefast operations
may exist. A partial answer to this question was given by 2} allow single round read
operations in the MWMR environment, whenever a read ngasoncurrentwvith a write oper-
ation. No solution however, enabled single round write afjens. Hence, a belief was shaped
that“writes must read”before writing a new value to the register in a multi writevieonment.

We show that it is unnecessary for writers to read, by degisigorithms that implement
an atomic read/write register in the MWMR environment aovaboth reads and writes to be
fast. This is currently thérst known solution that allows fast write operations. Moregweair
solution overcomes the shortcomings of previous appreadcrel allows fast read operations
when those are concurrent with a write operation. Our resagsume and employ general
guorum constructions.

First, we formally define the notion of thiatersection degredor a quorum system: a
guorum system has intersection degn€also callech-wise quorum system), if everyquorum

members of this system have a hon-empty intersection. Ghisrdefinition we show that if

12

Nicolas C. Nicolaou——University of Connecticut, 2011

a MWMR atomic register implementation deploysrawise quorum system, then it can only
allow up ton — 1 consecutive fast write operations in any execution.

Driven by this finding, we initially adjust and usguorum Views- algorithmic techniques
presented in the SWMR model — to enable fast operations. ®uthyield a new algorithm,
called GVFR, that allows some fast read operations, but does not allstwfate operations.

In order to enable fast write operations we introduce a ndwevardering technique we
call server side orderindSSO). As implied by its name, SSO transfers partial respoimg
of the ordering of write operations to the replica hosts.mitoty requires that write operations
are totally ordered. However, two replica hosts may receiessages sent within two write
operations in reverse order, and may order the writes aitgpitd the order each of them
received the write messages. As a result, operations tmatncmicate with these two hosts
may observe a different ordering for the same write. To distala single ordering for each
write operation we combine the global ordering imposed leystrvers with a local ordering
established by each writer participant. If “sufficient” nioien of servers assign the same order
to a write operation then the desired total ordering is eethudsing this technique we obtain a
MWMR atomic register implementation, calle@¢\®, with fast read and write operations. This

implementation is near optimal in terms of the number of easive fast operations it allows.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2wevielevant literature. Chapter
3 defines the model of computation, the terminology, and ttation that is used throughout
this thesis. Chapter 4 introduces semifast implementstipresents algorithmrS and pro-

vides the theoretical bounds of such implementations. @h&pstudies the robustness of fast

13

Nicolas C. Nicolaou——University of Connecticut, 2011

and semifast implementations, and introduces quorum \aove) with algorithm $i1Q which
does not depend on any reader or construction constraimallyi-we study the operation la-
tency of atomic register implementations under the MWMRiremment in Chapter 6, where

we develop algorithms ®@FrR and SW. We conclude in Chapter 7.

14

Chapter 2

Related Work

This chapter presents the current research in distribydrss regarding implementations
of consistent distributed read/write (R/W) storage olgectVe begin with an overview of
consistency semanti@s Section 2.1. Then, we provide an overview of tamsensuproblem
in Section 2.2 angroup communication servicés Section 2.3 and discuss how they can be
used to implement consistent data services. In Section 2.4alk aboutQuorum Systems
In Sections 2.5, 2.6, and 2.7 we discuss implementatiorisetiablish consistent distributed

storage in message-passing, failure prone, and asynalg@mvironments.

2.1 Consistency Semantics

Lamport in [62], defined three consistency semantics for\& Régister abstraction in the
SWMR environmentsafe regular, andatomic

The safe registersemantic ensures that if a read operation is not concurréghtamwvrite
operation, it returns the last value written on the regisitherwise, if the read is concurrent

with some write, it returns any arbitrary value that is akkalito be written to the register. The

15

Nicolas C. Nicolaou——University of Connecticut, 2011

latter property renders this consistency semantic inseiffidor a distributed storage system: a
read operation that is concurrent with some write may reduwvalue that waseverwritten on
the register.

A stronger consistency semantic is tiegular register As in the safe register, regularity
ensures that a read operation returns the latest writtere vathe read is not concurrent with
a write. In the event of read and write concurrency, the reaatms either the value written by
the last preceding write operation, or the value written iy ¢oncurrent write. In any case,
regularity guarantees that a read returns a value that iewion the register, and is not older
than the value written by the read’s last preceding writeraijen.

Although regularity is sufficient for many applications tleaploit distributed storage sys-
tems, it does not provide the consistency guarantees ofd@idraal sequential storage. In
particular, it does not ensure that two read operationslaweing the same write operation
will return values as if they were performed sequentialfjfthé two reads do not overlap then
regularity allows the succeeding read to return an oldereséian the one returned by the first
read. This is known as new-old read inversigtomic semanticevercome this problem by
ensuring that a read operation does not return an older Warethe one returned by a pre-
ceding read operation. In addition, it preserves all th@eries of the regular register. Thus,
atomicity provides the illusion that operations are ordesequentially.

Herlihy and Wing in [56] introducdinearizability, generalizing the notion of atomicity to
any type of distributed object. That same paper presentedntywortant properties of lineariz-
ability: locality andnon-blocking These properties distinguish linearizability from cotreess

conditions likesequential consistendyy Lamport in [61] andseriazabilityby Papadimitriou

16

Nicolas C. Nicolaou——University of Connecticut, 2011

in [78]. An in-depth comparison between sequential coesist and linearizability was con-
ducted by Attiya and Welch in [10]. As defined in [56], a prdyeP of a concurrent system
is local if the system satisfie® whenever each individual object satisfiBs Thus, locality
allows a system to be linearizable as long as every indiVidbgect of the system is lineariz-
able. Non-blocking allows processes to complete some bpenaithout waiting for any other
operation to completéNait-freedomis stronger than non-blocking, and is defined by Herlihy
in [55]: any process completes an operation in a finite nurobsteps regardless of the opera-
tion conducted by other processes. While wait-freedomressuon-blocking on an operation
level, weakest non-blocking progress conditions guaeaaidy thatsome(and notall) opera-
tion complete in finite number of steps¢k-freedomor require conflicting operations to abort
and retry pbstruction-freedoin Both non-blocking and locality properties enhance concu
rency. Also, locality improves modularity (since every @tijcan be verified independently),
and non-blocking favors the use of linearizability in tinréical applications.

Subsequent works revisited and redefined the definitiongiged in [62, 56] for more
specialized distributed systems. Lynch in [65] providedegnivalent definition of atomic-
ity of [62] to describe atomic R/W objects in the MWMR enviroant. The new definition,
totally orders write operations, and partially orders regdrations with respect to the write
operations. Shao et al. in [86], extended the definition glilarity of [62] to the MWMR
environment and presented three possible definitions, cakbyd MWR1 MWR2and MWR3
The weakest definitionMWRYJ does not impose any ordering on the overlapping write op-
erations. The definitioMWRZ2is stronger, requiring that two reads must perceive the same
ordering for all the writes that do not strictly succeed thérhe last and strongest definition,

MWR3 requires that two reads by the same reader preserve thedbrte overlapping write

17

Nicolas C. Nicolaou——University of Connecticut, 2011

operations. If a single writer is used in the systdvWWR1and MWR2are equivalent to the
regularity definition given in [62] MWR3is stronger than Lamport’s definition for regularity
but is weaker than atomicity. Notice however tMiVR3is equivalent to atomicity in the case

of a single reader.

2.2 Consensus

One obvious way to implement safe, regular or atomic regisieee Section 2.1), is to
allow processes to reach agreement on a global event ogdefihe fundamental problem
in distributed computing that examines how a number of iedéepnt processing entities can
agree on a common valuedensensufs3]. The consensus problem requires that the following

three properties are satisfied:

Agreement: All correct processes decide the same value.

Validity: The value decided was proposed by some process.

Termination: All correct processes reach a decision.

Multiple papers solve consensus for synchronous systethdailures (e.qg., [64, 79, 91)).
A breakthrough work by Fischer, Lynch, and Paterson in [B&)ves that it ismpossibleto
achieve agreement in a totally asynchronous system withgdescrash failure. This impossi-
bility result does not state that consensus can never bhedamerely that under the model’s
assumptions, no algorithm can always reach consensus imdbduime. In order to solve
consensus, many studies tried to circumvent asynchronydaifying the system model. Ex-
amples include Randomization (e.g., [83]), Failure De&tecfe.g., [20, 69]), Partial-Synchrony

(e.q., [7, 31, 26]), and Wormholes (e.qg., [24, 77]).

18

Nicolas C. Nicolaou——University of Connecticut, 2011

We note that achieving consensus is a more difficult probleam implementing atomic
R/W objects. As shown by Herlihy in [55], consensus can nosdiged for two or more

processes by using atomic R/W registers.

2.3 Group Communication Services

Another way to achieve consistency in a distributed storadge globally order the opera-
tion requests before those are delivered to the replicahost

Group communication services (GCS) have been establisheffextive building blocks
for constructing fault-tolerant distributed applicatonThe basis of a group communication
service is ggroup membership servic&ach process maintains a uniguew of the member-
ship of the group. The view includes a list of the processas dhe members of the group.
Views can change and may become different at different psmse These services enable
multiple independent processes to operate collectively @®up, using a service to multicast
messages to all members of the group. Birman and Joseph Jinift®ducedvirtual syn-
chronousmulticast which provides the stronger reliability guasmt a message multicast to
a group view is delivered to every non-faulty process in thewv. If the sender of the mes-
sage fails during the multicast then virtual synchrony eesithat the message will either be
delivered to all remaining processes, or ignored by eachasht Virtual synchrony does not
provide any guarantees on the order in which multicastecdages are delivered.

There is a substantial amount of research dealing with Bp&tdn and implementation of
GCSs (e.g., Ricciardi in [85], Neiger in [76], Chandra etial[19]). Notable GCS implemen-
tations include lIsis by Birman and Joseph in [13] and Birmaoh\#an Renesse in [16], Transis

by Dolev and Malki in [27], Newtop by Ezhilchelvan et al. ing3 Relacs by Babaoglu et al.

19

Nicolas C. Nicolaou——University of Connecticut, 2011

in [11], Horus by Renesse et al. in [84], Ensemble by Haydgb4hand by Dolev and Schiller
in [29]. Birman in [14] also used GCS to provide high levelswéilability and consistency to
an air-sector control application for the French Air Traffiontrol System.

Fekete, Lynch, and Shvartsman in [37], provided one of tisefiirmal specifications for a
partitionable view-oriented GCS, calletew-synchronyTheir specification requires that each
processor knows the membership of the group in its currew,vand messages sent by any
processor in a view must be received (if at all) in the same.viRrocessors, are not required to
know all the views of which they are members. To demonsttae/alue of their specification,
the authors utilize it to construct a totally ordered-brsst application. This application is

then used by algorithms that implement fault-tolerant acamemory.

2.4 Quorum Systems

Intersecting collections of sets can be used to achievehsynization and coordination of
concurrent accesses on distributed data object@uérum Systens a collection of sets known
asquorums such that every pair of such sets intersects.

Gifford [47] and Thomas [88] used quorums to achieve mutdalusion on concurrent
file and database access control respectively. Thomas 488)imed a distributed replicated
database, and allowed multiple nodes to request a traosdmtisending a corresponding mes-
sage to one database copy. Then, the host of that databaséambpo gather the permission
of the majority of the replica hosts before executing theraten. Gifford in [47], proposed a
voting scheme to grant permission for distributed file ascbyg utilizing read and write quo-
rums. To tailor replica reliability and performance, heigissd votes (weights) to each replica

host: the fastest the replica host the more votes were &skighhe client had to contact the

20

Nicolas C. Nicolaou——University of Connecticut, 2011

replica hosts and collect (resp. w) votes during a read (resp. write) operation. By letting
r + w to be greater than the summation of the votes assigned tm#hs, the protocol ensured
that reads and writes would access a common host and hernteggaration would observe
the latest copy of the file.

Garcia-Molina and Babara [39], revisited and compared thmtng (or vote assignment)
strategy presented in [47, 88], with a strategy that explidefines a priori the set of inter-
secting groups (i.e., the quorum system). Their investigatevealed that although the two
strategies appear to be similar, they are not equivalenesine may devise quorum systems
for which there exist no vote assignment. Following this ifiggd quorum systems for dis-

tributed services adhere to one of the following designgipies:

e Voting: Quorums are defined by the number of distributed objectec®d during an

operation.

e Explicit Quorums: Quorum formulation is specified before the deployment aredafis

the quorum system.

The paper also studied the properties of the two strate@ebsequent works by Peleg and
Wool in [81] and Naor and Wool in [75], focused on defining thitecia for measuring the

quality of quorum systems:

e Availability: Determines the fault tolerance of the quorum system by aefitiie prob-

ability that a quorum contains only correct members.

e Load: Determines the replica host load by specifying the frequehat each replica is

accessed.

21

Nicolas C. Nicolaou——University of Connecticut, 2011

e Quorum Size: Smaller quorums may reduce the number of messages invobvea f

quorum access.

Guided by those criteria, later works evaluated the effmjanf existing quorum systems
and devised new, improved constructions of quorum systéogable quorum constructions
are: Majority Quorum Systems introduced by Thomas in [88] Ay Gifford in [47], Ma-
trix Quorum Systems used by Vitanyi and Awerbuch in [90], 8hbling Walls by Peleg and
Wool in [81], Byzantine Quorum Systems by Malkhi and Reite[740], and Refined Quorum
Systems by Guerraoui and Vukoli¢ in [53].

Some works also consider probabilistic quorum constrastioSuch constructions rely
on a probabilistic quorum discovery. Given a quorum accasgegly, each pair of quorums
intersect with a non-zero probability with respect to theess strategy. Probabilistic quorums
were first presented by Malkhi et al. in [72] and were also usedbraham and Malkhi in [5]
and Konwar et al. in [60].

As efficient tools for collaboration and coordination, qumis attracted the attention of
researchers studying implementations of distributedeshaxemory. Upfal and Wigderson in
[89], introduced an atomic emulation of a synchronous R/\&reth memory model, where
a set of processes shared a set of data items. To allow fdstewdry of a single data item
and fault-tolerance, the authors suggested its replicainong several memory locations. Re-
trieval (read) or modification (write) of the value of a dateni involved the access of the
majority of the replicas. The authors exploited coordination memas to allow only a single
read or write operation per data item at a time. This work wasfirst to introduce and use

(value, timestamp) pairs to order the written values, whetenestamp € N.

22

Nicolas C. Nicolaou——University of Connecticut, 2011

Vitanyi and Awerbuch in [90] give an implementation of atenshared memory for the
MWMR environment under asynchrony. Their work organizeslrégister replicas in amx n
matrix construction, where is the number of client processes. A procgsss allowed to
access the distinat” row and distincti* column per write and read operation respectively.
This strategy allows reads to be aware of any preceding duieto the intersection of any row
with any column of the matrix. To accommodate concurrentensperations, the authors use
(value, tag) pairs to order the written values. tAgis a tuple of the form{timestamp, WID),
where thetimestamp € N andWID is a writer identifier. Tags are compared lexicographically
Namely,tag) > tago if either tag;.timestamp > tags.timestamp, Of tag,.timestamp =

tags.timestamp andtag;. WID > tags. WID.

2.5 Consistent Memory Under Crash Failures

The work presented by [89] and [90] was designed for the symdus and failure-free
environments. These approaches are inapplicable in timelsnous, failure-prone, message-
passing model.

As discussed by Chockler et al. in [23], implementationshiese environments must be
wait-free, tolerate various types of failures, and supporicurrent accesses to replicated data.

A seminal paper by Attiya et al. [9] first introduced a solutio the problem, by devising
an algorithm that implements a SWMR atomic R/W register i @isynchronous message-
passing model. Their algorithm overcomes crash failureengfsubset of readers, the writer,
and up tof out of2f + 1 replica hosts. The correctness of the algorithm is basetienge of
majorities, a quorum construction established by votintgjs Work adopts the idea of [89] and

uses(value,timestamppairs to impose a partial order on read and write operatidnarite

23

Nicolas C. Nicolaou——University of Connecticut, 2011

operation, involves a single round: the writer has to in@etits local timestamp, associate
the new timestamp with the value to be written, and send tiwepadr to the majority { + 1)

of the replica hosts. A read operation requires two roundsing the first round the reader
collects the timestamp-value pairs from a majority of thd@ioa hosts, discovers the maximum
timestamp among those, and propagates (in the second rthwndjaximum timestamp-value
pair to the majority of the replica hosts. Although the vadfi¢he read is established after the
first round, skipping the second round can lead to violatafregomicity when read operations
are concurrent with a write operation.

Lynch and Shvartsman in [68] generalized the majority-Oaggproach of [9] to the MWMR
environment using quorum systems. To preserve data aNéylab the presence of failures,
the atomic register is replicated among all the serviceigipaints. To preserve consistency,
they utilize a quorum system (refer to it @ggorum configuration This allows read and write
operations to terminate a round as soon as the value of theatel data object (register) was
collected from all the members of a single quorum (insteadodiecting the majority of the
replicas as in [9]). To order the values written, the aldwnitutilizes the(tag,valué pairs as
those presented by Vitanyi and Awerbuch in [90], and reguérery write operation to perform
tworounds to complete. Read and write operations are impledesyimmetrically. In the first
round a read (resp. write) obtains the latéag,valué pair from a complete quorum. In the
second round, a read propagates the maximum tag-valueopsimte complete quorum. A
write operation increments the timestamp enclosed in thémrman tag, and generates a new
tag including the new timestamp and the writer’s identifidren, the writer associates the new
tag with the value to be written and propagates the tag-vadileto a complete quorum. To

enhance longevity of the service the authors in [68] sugipesteconfiguration (replacement)

24

Nicolas C. Nicolaou——University of Connecticut, 2011

of quorums. Transition from the old to the new configurationld lead to violations of atom-
icity as operations can communicate with quorums of eitheraid or the new configuration
during that period. Thus, the authors suggest a blockinghamésm to suspend the read and
write operations during the transition.

A follow up work by Englert and Shvartsman in [34] made a vhlaaobservation: taking
the union of the new with the old configuration defines a validrgm system. Based on
this observation they allow R/W operations to be active myureconfiguration, by requiring
that any operation communicates with both new and old cor#tguns. Both [34] and [68]
dedicate a single reconfigurer to propose the next repliofigrration. The reconfiguration
involves three rounds. During the first round the reconfigugifies the readers and writers
about the new configuration and collects the latest registermation. During the second
round it propagates the latest register information in treamimers of the new configuration.
Finally, during the third round the reconfigurer acknowleslghe establishment of the new
configuration. Read and write operations involve two rountsn they do not discover that a
reconfiguration is in progress. Otherwise they may involwgtiple rounds to ensure that they
are going to reach the latest proposed configuration.

A new implementation of atomic R/W objects for dynamic natkep called RAMBO, was
developed by Gilbert, Lynch, and Shvartsman in [48]. The RBMapproach improves the
longevity of implementations in [34, 68], by introducing Hiple reconfigurers (and thus cir-
cumventing the failure of the single reconfigurer) and a negtmanism to garbage-collect old
and obsolete configurations. The new service preservesadatypnvhile allowing participants

to join and fail by crashing. The use of multiple reconfigsrigrcreases the complexity of the

25

Nicolas C. Nicolaou——University of Connecticut, 2011

reconfiguration process. To enable the existence of meltigtonfigurers, the service incor-
porates a consensus algorithm (e.g., Paxos by Lamport Jhtf6allow reconfigurers to agree
on a consistent configuration sequence.

A string of refinements followed to improve the efficiency amdcticality of that service.
Gramoli et al. in [50] reduce the communication cost of thevise and locally optimize the
liveness of R/W operations. To improve reconfiguration aperation latency, Chockler et al.
in [22], propose the incorporation of an optimized conssmotocol, based on Paxos. Aiming
to improve the longevity of RAMBO, Georgiou et al. in [41] imepnent graceful participant
departures. They also deploy an incremental gossip priotioabreduce dramatically the mes-
sage complexity of RAMBO, both with respect to the number essages and the message
size. The same authors in [42] combine multiple instancebefervice to compose a com-
plete shared memory emulation. To decrease the commuaricatimplexity of the service,
Konwar et al. in [59] suggest the departure from the allit@assiping in RAMBO, and pro-
pose an indirect communication scheme among the parttsipd&etargetting [66] to ad-hoc
mobile networks, Dolev et al. in [28] formulate the GeoQuuosuapproach where replicas are
maintained by stationarpcal pointsthat in turn were implemented by mobile nodes. A focal
point is active when some mobile nodes exist in it otherwtigefaulty. All the nodes in a focal
point maintain the same information about the registeiicap! This is established by a reliable
atomic broadcast service, calleBcast that reliably delivers any message that is received at a
focal point to every mobile node within the focal point. Thitows each focal point to act as
a single participant in a dynamic atomic register serviaeadhieve atomicity, focal points are
organized in a quorum system. To expedite write operatithesalgorithm relies on a global

positioning system (GPS) [1] clock to order the written esu A write operation terminates

26

Nicolas C. Nicolaou——University of Connecticut, 2011

in asingleround by associating the value to be written with the timeaivted from the GPS
service. Joins and fails of focal points are handled sittyiliar [66].

Most RAMBO refinements preserve the use of consensus tolisktabconfigurations.
Recall from Section 2.2 that consensus is impossible inglgacronous setting with a single
crash failure [38]. GeoQuorum approach [28] avoids the dssonsensus by using a finite
set of all possible focal point configurations. Thus, it iffisient for a mobile node to dis-
cover the latest configuration, and contact and propagatéatbst register information to all
configurations.

To depart from the need for consensus, Gramoli et al. in [46p@se a new approach
for self-adaptiveness of the dynamic system. Despite tmsertsus avoidance, their work
relies on failure detection by deploying a heartbeat pttcdetect departed or failed nodes.
Moreover, their reconfiguration scheme involves multiglenenunications rounds, accounting
the excessive gossiping protocol for failure detectionnagagation of the new configuration.

A recent work by Aguilera et al. [6] showed that atomic regjisinplementations are
possible in the dynamic MWMR environment without the useafsensus or failure detection.
Their algorithm utilizes views of the system to maintain ldtest system participation. When
a new node wants to join or depart the service a new view iedoted and propagated in the
majority of the processes. Process additions and remoralsoatributing into the creation of
an acyclic graph of views. Each process records the viewwkno each participant of the
service (itself included). To determine the sequence oftimfigurations, a process starts from
its local view and follows the directed acyclic graph to detime the latest view introduced in

the system. For this reason, operation termination is edsonly if the number of additions

27

Nicolas C. Nicolaou——University of Connecticut, 2011

and removals (and thus reconfigurations) allowefini¢e. Following this procedure, a read,

write or reconfiguration operations take at least four reuleccomplete.

2.5.1 Fastness under Crash Failures

Following the development in [9], a folklore belief formetht “atomic reads must write”,
i.e., a read operation needs to perform a second round. tisdwnd round is avoided then
atomicity may be violated: a read operation may return aaroldlue than the one returned by
a preceding read operation.

Dolev et al. in [28] introduced single round read operationghe MWMR environment.
According to their approach — later used by Chockler et al2&] — a read operation could
return a value in a single round when it was confirmed that th&whase that propagated
that value completed. To assess the status of each writatapethe algorithm associated a
binary variable, calledonfirmed with each tag. A participant would set this variable forg ta
t in two cases: (i) it completed a write phase and propagatedug \associated withto a full
quorum, or (ii) it discovered thatwas marked as confirmed by some other participant. A read
operation can complete in a single round if the largest disam tag is marked as confirmed.
This can happen iff some write phase that propagated theotagleted.

Despite the improvement achieved in the operation latem§8, 22], this strategy is un-
able to overcome the problem presented in [9]: every reatatipa requires a second round—
and thus a “write” — whenever it is concurrent with a write igimn. Dutta et al. in [30] are
the first to present fast operations that are not affecte@ag and write concurrency. Assum-

ing the SWMR environment the authors establish that if thalmer of readers is appropriately

28

Nicolas C. Nicolaou——University of Connecticut, 2011

constrained with respect to the number of replicas, thehdmentations that contaimnly sin-

gle round reads and writes, callbt are possible. The register is replicated among & st
replica hosts (servers), out of whigh< @ (the minority) is allowed to crash. To implement
fast writes, the algorithm adopts the write protocol in [AHanvolves the use oftimestamp,
value pairs to order the written values. The only difference ig tha write operation propa-
gates the written value {&| — f servers, instead of a strict majority b} + 1 required in [9].
The main departure of the new algorithm involves the seradrraader implementations. In
particular, each server maintains a bookkeeping mechawisectord any reader that inquires
its local timestamp-value pair. This information is eneldsn every message sent by the server
to any requested operation. To provide up-to date infoonat server needs to reset its local
bookkeeping information every time a new timestamp-valag i3 received. The recorded
information is ultimately utilized by the readers to acleidast read operations. The read pro-
tocol requires the reader to send messages to all the seamersvait for|S| — f replies. When
those replies are received, the reader discovers the maxtimestampaxT's) among the
replies, and collects all the messages that contain thastamp. Then, a predicate is applied
over the bookkeeping information contained in those messadf the predicate holds, the
reader returns the value associated witlac7's; otherwise it returns the value associated with
the previous timestampr{az7'S — 1). Note that the safety of the algorithm in the latter case
is preserved because of the single writer and the assuntptib@ process can invoke a single
operation at a time. Thus, the initiation of the write op@ratwith maxzT's implies that the
write operation with timestammaxT's — 1 has already been completed. On the other hand,

if the read operation decides to retunimxT's then the validation of the read predicate ensures

29

Nicolas C. Nicolaou——University of Connecticut, 2011

the safety of the algorithm. The predicate is based on thewoig key observation: the num-
ber of servers that reply witmazT's to any two subsequent read operations may differ by at
most f. The authors show that fast operations are only possibleeiitumber of readers is
R < ‘if‘ — 2. Furthermore, the paper questions the existence of fadeimgntations in the

MWMR environment. Itis shown that fast implementationsas® impossible in the MWMR

environment even assuming two writers, two readers, anaggesserver crash.

2.6 Consistent Memory Under Byzantine Failures

A more severe and difficult to handle failure model is the orfeerg participants may
exhibit arbitrary and malicious behavior. Such failures lanown asByzantine FailuresThe
term Byzantine was first introduced in the context of conger{see Section 2.2) by Lamport,
Shostack, and Pease in their Byzantine Generals problem lig4his problem, the generals
try to agree on a time to carry out an attack, and worry abacaittithacherous behavior of
some generals. In distributed storage implementatiopiceehosts exhibit byzantine behavior
when replying with an outdated or incorrect value of theraloreplica. Some works also
consider byzantine readers and writers. In order to t@drgzantine failures, implementations

of consistent memory adopt two different approaches:

e Verifiable: Authentication primitives are embedded to deiee the validity of a value

propagated by a participant.

e Non-Verifiable: Reliance only on the number of failures ia #ystem and the messages

exchanged between the participants.

30

Nicolas C. Nicolaou——University of Connecticut, 2011

Verifiable approaches employ digital signatures. Malkid Reiter in [71] consider envi-
ronments where both clients and servers fail arbitrariigstFthe authors assume that the writ-
ers are not byzantine. Based on this assumption they deselafgorithm that requires every
write operation to digitally sign every written value. Thig@ithm uses(timestamp,value
pairs to order the written values. Similar to algorithms tlee MWMR environment under
crash failures, the algorithm involves two rounds for eachlienand read operation; the first
round is a query and the second round is a propagation phésedigital signature used by
the writer serves two purposes: (a) it prevents any byzars@nver from forging a non-written
value, and (b) it prevents any byzantine reader from wriifgrged value during its second
round. In the second part of the paper the authors assumweiiterts may also be byzantine.
To prevent the writer from propagating different timestanfigr a single value, they incorpo-
rate anechoprotocol in the server site. According to the protocol, thi@ewv performs an extra
round to request signed messages (“echoes”) from the sdreéore propagating a value to be
written. Those signed messages are then attached to thenwélue.

Similarly, Cachin and Tessaro in [18] use verification taabBsh atomicity. In order to
achieve verifiability the authors exploit a technique pnése by them in [17], callederifiable
dispersal information Their new algorithm uses threshold signatures (e.g., ®ho[87]) and
a disperse protocol to prevent the forging of a value. Thenrtga is that a writer encodes
the value it wants to write (using threshold signatures) anadluces a vector of value blocks,
one for each server. Then, the writer propagates each btatkshash value to the servers. A
reader is able to decode the value written as soon as it esggwect replies from a number

of servers that exceeds the predefine threshold.

31

Nicolas C. Nicolaou——University of Connecticut, 2011

While verifiable solutions are able to limit the power of ncaus participants, they proved
to be computationally esurient. Thus, researchers soeghniques to allow non-verifiable
implementations. Due to the severity of byzantine failuneany developments do not manage
to achieve atomic semantics, but rather provide regularsafelsemantics (e.qg., [3, 4, 52, 57,
70)).

Malkhi and Reiter in [70] introduced quorum systems, caBgdantine Quorum Systems
to enable non-verifiable consistent memory implementatidyzantine quorums specify the
characteristics that a quorum system must possess in aréastire data availability and con-
sistency despite byzantine failures. The authors defineldss ofmasking quorum systems
that ensures: (i) there exist at least one quorum that centaily correct replica hosts, and
(i) every intersection between two quorums contains atleA + 1 replica hosts, wherg is
the total number of byzantine failures. The second proggrarantees that the intersection be-
tween every two quorums contains at lefst1 correct replica hosts. Given this definition, the
authors explore two variations of masking quorum systenist, Ehe Dissemination quorum
systemsre suited for services that use self-verifying informatimom correct participants. In
these systems, replica values are signed and faulty rdpbiss can not undetectably alter the
value of the replica. Thus, it suffices for the intersectiérevery two quorums to contain at
least a single non-faulty replica host. The second and gérovariation is th@paque quorum
systems These systems do not rely on verifiability. They differ fréin@ masking quorum
systems in that they do not need to know the failure scentoioghich the service is designed
for. The participants can detect the correct values only diing and thus, the intersection

of two quorums has to be large enough to suppress the valuesttobyzantine and out-date

32

Nicolas C. Nicolaou——University of Connecticut, 2011

replica hosts. Using the defined quorum systems the autlessile implementations safe
andregular registers.

Pierce and Alvisi in [82] study non-verifiable atomic seniesunder byzantine failures.
Although the paper does not provide any algorithmic coatiims, it shows that the problem
of obtaining atomic semantics can be reduced to that of aegeimantics. Consequently, they
show that every regular protocol for the byzantine model maduce an atomic protocol, if
the first is combined with aritebackmechanism (i.e., two round reads).

Martin, Alvisi, and Dahlin in [73] implement MWMR atomic stage on top of non-
verifiable byzantine servers. Their algorithm, called Smgkzantine Quorums with Listeners
(SBQ-L for short), relies on timestamps to order the writtatues. The authors show that any
protocol that tolerateg byzantine failures and provides safe or stronger semargipsres at
least3f + 1 servers. The proposed algorithm is optimal in this respieciesit uses exactly
3f + 1 servers. To establish optimality the algorithm is basedvemmain ideas: (i) a read
operation returns a value only if it is confirmed by at leas2f + 1 servers, and (ii) it em-
ploys the new idea of “listeners” to acquire a confirmed valhen a read is concurrent with a
write. The write protocol is carried out in two phases: a guartd a propagation phase. As in
traditional MW implementations the writer determines tlesvrtimestamp in the query phase,
associates it with the value to be written, and propagaepdir in the second phase. How-
ever, since a write may skip servers, it would be impossible for a read operation to abtai
2f+ 1 confirmed values if the total number of server8 fst 1. To overcome this problem, the
algorithm requires the writer to wait for at least + 1 (and thus all) servers to receive its write
request. In the case where a read operation is concurrdnawitite, it may not obtaig f + 1

confirmations of a value during its first round. Thus, the sesymaintain a list of the ongoing

33

Nicolas C. Nicolaou——University of Connecticut, 2011

read operations, so called tHasteners” list. Whenever a server updates its local information
it sends the new information to every reader in its list. WHennecessary confirmations are
received by a reader, it sends a completion message to aktkiers. This is to exclude itself
from the server list before returning the confirmed value.

One drawback of the SBQ-L algorithm is that the writer hasnteément the maximum
timestamp it discovers during its query phase. Note thatesofrthe timestamps received
originated potentially from byzantine servers. Consiugiihat a byzantine server may reply
with an arbitrarily large timestamp, the adversary maydrgxhaust the timestamp value space.
Bazzi and Ding in [12] address this problem by introduanag-skippingimestamps. Here the
writer collects thef + 1 largest timestamps, and increments the smaller of thosmrtunately
this work trades the optimality of SBQ-L for non-skippingigstamps, since it requirég + 1

servers.

2.6.1 Fastness Under Byzantine Failures

Both [12, 73] use diffusion technigues to propagate andodimcan acceptable value writ-
ten on the register replicas. As such, they do not providega@yantees on the number of
rounds required by a read operation. Hence, the communiicatist of these approaches is
high.

Abraham et al. in [3] study the communication complexity oftevoperations. The authors
introduce gore-write strategy to develop regular register implementationsyBuggest a two
round write operation: in the first round the writer propagathe value he intended to write,
and in the second round it propagates the value to be writRaders in their system are

allowed to fail arbitrarily. Therefore, readers are préeld from changing the value of the

34

Nicolas C. Nicolaou——University of Connecticut, 2011

register in any of their read operations. For this reasoeryenead can take up tb-+ 1 rounds
to complete, wher¢g the total number of replica host failures. In the same woekahthors
show that2f + b + 1 replica hosts are needed feafe storagemplementations, wherk out
of f replica hosts failures may be byzantine and the rest maydsthes. To complement their
findings, the authors also show that single round write djpera exist if and only if more than
2f + 2b register replicas are used; otherwise two round write dgjpers are necessary. This
bound is shown to be tight for both safe and regular semantics

A follow up paper by Guerraoui and Vukoli¢ in [52] investtga the efficiency of read
operations. This work shows two bounds: (a) two rounds aces®ary for each read operation
to implementsafe storagevhen at mosf + 2b servers are used, and (b) two rounds are
necessary for each read and write operation to implemegodar storagethat usef + b+ 1
servers. The algorithms developed in this paper, store pemposed timestamp in a two-
dimensional matrix with an entry for every reader and registplica. The matrix records the
entire history of the timestamps written on the register.agbieve two round write and read
protocols, the paper adopts a technique similar to the oesepted in [3], where the writer
propagates the value both in its first and second rounds.

Guerraoui, Levy and Vukoli¢ in [51] establish single rourehd operations for SWMR
atomic implementations with byzantine failures. Theirtegs consists of at lea&tf + b + 1
servers, whergf is the total number of failures out of whidhmay be byzantine and the
rest are crashes. The authors introduced the notidtuoky” operations that characterizes
operations that argynchronousaindcontention-free The operations that receive replies from
all the servers within some known time interval are calledckyonous. The operations that

are not concurrent with any write operation are called auiga-free. A “lucky” read or write

35

Nicolas C. Nicolaou——University of Connecticut, 2011

operation may sometimes complete in a single round, andceheméast. The authors show that
a “lucky” write (resp. read) can be fast in any execution vehap tof,, (resp. f,.) servers falil,
provided thatf,, + f,. = f — b. Note that allf,, (resp. f,-) failures can be byzantine given that
fw < b(resp.f. <b).

A recent work by Guerraoui and Vukoli¢ in [53] presents a pdwl notion of Refined
Quorum System®RQS), where quorums are classified in thge@rum classesThe first class
contains quorums of large intersection, the second cantgilorums of smaller intersection,
and the third class corresponds to traditional quorums. alitleors specify the necessary and
sufficient intersection properties that the members of eaciium class must possess. Then,
they use RQSs to develop an efficient Byzantine-resilientviR\atomic object implementa-
tion and a solution to the consensus problem. The SWMR atoijict algorithm relies on
timeouts between each round performed by a read or writextper Initially, multiple rounds
are performed to detectsafeandvalid timestamp-value pair. If an operation communicates
with a first class quorum by the time they detect slagetimestamp (indicating the end of the
first round), it is fast. If such a quorum can not be obtainetthiwithe timeout interval, then the
operation attempts to perform a second communication rauitidthe hope to reach a second
class quorum. If such a quorum can not be obtained either, ttie operation proceeds to a
third round to obtain replies from a third class quorum. 8iaccording to their failure model
a single quorum remains non-faulty throughout the exenutiothe algorithm, the operation
will eventually receive the necessary replies in the thindnd. Thus, an operation may take

three rounds to complete once a safe timestamp-value pigtested.

36

Nicolas C. Nicolaou——University of Connecticut, 2011

2.7 Partitionable Networks

Up to this point we surveyed failures that affect individpalticipants of the service. Net-
work partitions mainly cope witlink failures that may lead to the division of the underlying
network.

Karumanchi, Muralidharan, and Prakash in [58] explore ttablem of information dis-
semination in partitionable ad-hoc networks. The authemicate the information among
dedicated server nodes and use quorums to allow informdismovery. To maintain the lat-
est information, they assume loosely synchronized clotk&se synchronization allows the
write operations to use the writer’s local clock to timegpatine written values. The protocol
provides aregular register implementation.

Amir et al. [8] utilized a group communication service to yide a distributed replicated
shared object in the presence of process failures and rlefventitions. The authors assume
virtual synchrony, and thus a message sent by a process mgartition is delivered to every
process of that partition unless a process fails. Furtherntbey assume the existence of a
primary component. If the network is partitioned, updateragions are applied only when
they become known to the primary component. Read operatiam$e performed in network
partitions other than the primary component. The algorigmsures global ordering of the

operations and achieves atomic consistency for the shéjedto

37

Chapter 3

Model and Definitions

This chapter presents the model and terminology we use irs¢heel. The model of
computation is presented in Section 3.1 and definitionseofitita types and the terminology we
use follows in Section 3.2. Definitions of complexity measufor algorithms that implement

atomic storage objects are presented in Section 3.3.

3.1 Model of Computation

We assume a system that consists of a siibprone, asynchronous processeih unique

identifiers from a sef. Process identifiers are partitioned into three sets:

e asetWC 7 of writer identifiers
e asetRC 7 of reader identifiers

e asetSC 7 of replica host (or server) identifiers

38

Nicolas C. Nicolaou——University of Connecticut, 2011

We say “procesp” to denote the process associated with an identifierZ. Similarly, we
use “server” if s € S, “readerr” if r € R and “writerw” if w € W. Processes communicate
through asynchronous reliable or unreliable communioativannels (see Section 3.1.2).

Our goal is to implement a service that emulates an atomit/weie register. Readers
(resp. writers) perform read (resp. write) operations @natomic register. Each server main-
tains a copy of the replicated register. We pde denote a read operation. A write operation
is denoted byw. If the write operationv writes valueval then we use the notatian(val).
Any read or write operation is denoted by An operationt invoked by a procesg can be
uniquely identified by a tuplépid, pc), wherepid is the id of the invoking process and a
local operation index fronp. In this thesis we assume uniqueness of each operationwitho
explicitly presenting the association of the operatiorhwiite process id and the index.

We consider single writer, multiple reader (SWMR) envirents, wher¢W| = 1 and
|R| > 1, and multiple writer, multiple reader (MWMR) environmentshere|)V| > 1 and

IR| > 1.

3.1.1 Input/Output Automata and Executions

Algorithms presented in this work are specified in termgptit/Output automatgs7, 65].
An algorithm A is a composition of automatd,,, each assigned to some procgss 7.

EachA; is defined in terms of a set of statesites(A,) and actionsuctions(A,). The
setstart(Ap) C states(A,) denotes the set of initial states df,. The setactions(A4,) =
in(Ap) Uout(A,) Uint(A,), where the setsn(A,), out(A,), andint(A,) denote the sets
of input, output andinternal actions that can be performed by, respectively. Thesigna-

ture of A, , sig(Ap), is the triple(in(Ay), out(A4,), int(A,)). The signaturextsig(A,) =

39

Nicolas C. Nicolaou——University of Connecticut, 2011

(in(A,), out(A,),0) represents thexternal signaturer external interfaceof A,,. Finally, we
have a set ofransitionstrans(A,) C states(Ap) x actions(Ap) x states(Ap). For each
actiona € actions(A,), this set contains a triplér, o, o) defining the transition ofl,, from
stateo € states(A,) to states’ € states(A,) as the result of action € actions(A,). Such
atriple is also called atepof A,,.

Two component automatd,, and A/, for p,p’ € Z, can becomposedf there exists an

actiona € actions(Ap) Nactions(A,s), and the automata asempatible
o out(A,) Nout(Ay) =0
o int(Ap) Nint(Ay) =0

Composition ensures that #, performs a step that involves, so doesA,, that hasa in
its signature. Compatibility ensures that only one automat a composition controls the
performance of a given output action and if an automatoropsg an internal action does not
force the other automaton to take a step.

So thecompositionof countable, compatible collection of automata= []

peT Ay is

defined ast
o out(A) = U ey out(A,)
o int(A) = U,cqint(A,)
o in(4) = Uyey in(Ay) — Upeg out(4,)
o sig(A) = (out(A),in(A), int(A))

o states(A) =[],z states(4p)

The[] in the definition ofstates(A) andstart(A) refers to the ordinary Cartesian Product.

40

Nicolas C. Nicolaou——University of Connecticut, 2011

o start(A) =[],z start(4p)
e actions(A) = in(A) Uout(A) Uint(A)

Every state of automatoA is a vector of the states of the component automgtaand
is denoted bys. For a stater of A, let o[p| denote the state of the automatdp in o. Also,
let o[p].var to denote the value of variable:r of the process automatas, in stateo|p).
The transition setrans(A) is the set of triplesio, o, ¢’) such that, for alp € Z, if o €
actions(Ap) then(o[p], o, o’ [p]) € trans(A,); otherwises[p] = o’[p]. Such atriple is called
a step ofA.

An execution fragment of A is a finite or an infinite sequeneg, a1, 01, a9, ..., a,,0,,. ..
of alternating states and actions, such that everyy;. 1, 011 iS a step ofA. If an execution
fragment begins with an initial state df then it is called arexecution The set of all execu-
tions of A is denoted byzecs(A). We say that an execution fragmefitof A, extendsa finite
execution fragmenp of A if the first state ofy’ is the last state af. Theconcatenationgo ¢/,
of ¢ and¢’ is the result of the extension afby ¢’ where the duplicate occurrence of the last
state of¢ is eliminated, yielding an execution fragmentAf

Finally, we denote by|A, € execs(A,) the execution of4,, extracted from an execution
¢ € execs(A), when: (i) each paity,, o, such thaiy, ¢ actions(A,) is deleted fromg, and

(i) every remaining, (i.e.,z # k) is replaced with . [i] in &.

3.1.2 Communication

We consider th@synchronousmessage-passingnvironment where processes communi-

cate by exchanging messages. Each channel is modeled byrzethatomatoi hannel,, ,,

41

Nicolas C. Nicolaou——University of Connecticut, 2011

for p,p’ € Z. Thus, we consider a system automatérihat is the composition of process
automatad,, for p € Z, and channel automatéhannel, s, for p,p’ € Z. Each stater of
A is a vector of the state[p] for each procesp € Z, and the state[p, p'] for each channel
Channely, , forp,p' € 7.

A channel Channel, ,; automaton models the communication between two processes
p,p’ € Z. The external signature of @hannel, ,; automaton is defined by an input action
send(m), ,» and an output actiorcv(m), ,» for some message in an alphabefl/.

In this thesis we develop algorithms that consigiable communication channels.

Definition 3.1.1 (Reliable Channel) A channel betweep, p’ € T is reliable in an execution

¢ € execs(A) if for any execution fragment’ of A that extends) all of the following hold:
e Vsend(m), ,» event ing, 3 succeedingev(m), s in ¢ o ¢’ (Message delivery, and

e Vrev(m), ,, events ing, 3 precedingsend(m), .y in ¢ (Message integrity.

We say that procegssendsa message: to proces®’ in an executionp of A, if the event
send(m),,, appears inp. Similarly, we say that a procegs receivesm that was sent from
procesg in an executiony of A, if the eventrcv(m),, ,» occurs ing. A messagen is delivered
to proces®’ from proces in ¢, if m was sent by and received by’ in ¢. Finally, a message
m is said to ban-transitin ¢, if m was sent by but not received by’ in ¢.

Each message can be uniquely identified by a tybte, dest, «, ¢), wheresrc anddest
are the process identifiers of the sender and receiver tisggcr is the operation during

which this message is sent, and message index far incremented by the sender. We denote

42

Nicolas C. Nicolaou——University of Connecticut, 2011

by m(m,c),, the " message exchanged between processesprocessy’ during opera-
tion 7. We usem(r, c), ,s.var to denote the value of variable:r contained in the message
m(,¢)pp-

We say that procesg contactsa subset of process&€s C 7, for an operationr in an

executiong, if for every procesg’ € G:
(a) p sends the message(r, c),, ,» to p',
(b) p' receives the message(r, ¢),,» sent byp,
(c) p’ sends areply message(w,),/ , to p, and
(d) p receives the replyn(r, c),r , fromp’.

We denote bynt(w,G), the occurrence of such contact.cHt(r,G), occurs, and addi-
tionally no other processg € Z — G receives any message frgnwithin operationr, then we

say thatp strictly contactsy; this is denoted bygcnt(w, G),,.

3.1.3 Failures

Failures are considered to arrive from an unspecified extemtity, theadversary The
adversary determines which components of the system fait faults they suffer, and at what
step on the computation those faults occur. In this work veeiae aromnicientandon-line
adversary that has complete knowledge of the computatind itanakes instant and dynamic
decisions during the course of computation.

We assume that the automatdp of each processcontains an actiofail, € actions(A,),

which defines the type of failure that processnay undergo. The adversary decides if and

43

Nicolas C. Nicolaou——University of Connecticut, 2011

when a stefioy, fail,, 011+1) appears in an executigne execs(A). A fail, event may change

only the state of process That is, if a stefoy, fail,, o,11) appears irg, then:
e for every process automatofy, such thap # p', o [p'] = ox+1[p],
e for every channeChannel,, ,», forp’,p"” € Z, oi[p’, p"] = o1 [p', p"], and

o (ok[pl, faily, op41[p]) € trans(A,).

The algorithms presented in this thesis are designed tmatelerash failures

Definition 3.1.2 (Crash Failures) For an algorithmA we define the set of executiotig-(A)
to be a subset ofzecs(A) such thatve € Fo(A), € contains zero or onecfash) step
(o, faily, oi41) for somep € Z, and for any stefo,, a.41,0.41) € £ wherez > k + 1,

or11[p] = 02[p] = o.11[p).

A processp crashesin an executiort € F¢(A), if £ contains a fail step fop. We say
that a processg is faulty in an executiort if p crashes irg; otherwisep is correct We allow
the adversary to fail any subset of writer and reader presessith identifiers inY U R, in
any executiort € F¢o(A). We limit the power of the adversary to fail only a proper sifusf
server processes, with identifiersShin any executiorf € Fo(A). Let f denote the number
of maximum replica host failures allowed. For an implem#daiaA we can define good

executions in terms of the maximum number of host failure®kswvs:

Definition 3.1.3 (f-Good Executions)An executioné € F-(A) of an algorithmA is an f-
good executionif there existsF* C 7, 0 < |F| < f, such thatyp € F, there is a step

(o, failp, ox41) in €. The set of allf-good executions ofl is denoted byjoodexecs(A, f).

44

Nicolas C. Nicolaou——University of Connecticut, 2011

3.1.4 Quorum Systems

We focus on quorum systems over the set of server identifier&\ quorum system is

defined as follows:

Definition 3.1.4 (Quorum System)A quorum systemQc 25 is a set of subsets o, called

guorums, such that:
e VQeQ:Q C S,and
e VQ, Q' €Q:QNQ #0

We generalize the definition of quorum systems based on th&awuof quorums that

together have a non-empty intersection. Qétdenote any set afquorums fromQ.

Definition 3.1.5 (n-Wise Quorum Systems)A quorum systemQ ¢ 2°, is calledn-wise, for

2<n<|QLifYQ"CQ, (] Q#D.
QeQn

A regular quorum system (Definition 3.1.4) is ai2se quorum system. We now define

the intersection degree of a quorum system:

Definition 3.1.6 (Intersection Degree)A quorum systen) C 25 hasintersection degrees,

if Q is ad-wise quorum system, but not(& + 1)-wise quorum system.

From Definition 3.1.6 if a quorum systef@ has intersection degree= |Q|, then there
exists a common intersection among all the quorum set9.ofA quorum systeni) with
intersection degreé, for 2 < ¢ < |Q), is also an-wise quorum system for every < 4.

We now define quorum system failures with respect to the cfaiflires of the server

processes.

45

Nicolas C. Nicolaou——University of Connecticut, 2011

Definition 3.1.7 (Faulty Quorum) A quorum@ C S is faulty in a states, of an execution

¢ € Fo(A), if £ contains a crash stép._1, fail, o) such thats € Q andz > c.

If a quorum@ is not faulty in a stater, of £ € Fo(A), then@ is correctin that state.

Definition 3.1.8 (Faulty Quorum System) A quorum systen®) c 25 is faulty in a stateo,

of an executiort € F(A), if VQ € Q,Q is faulty ino, of £.

We assume that the adversary may &ilbut onequorum@ € Q in any executiort €
Fc(A). The correct quorund) is not known to any procegs € Z. Our failure assumption
implies that no R/W operation can wait for more than a singlergm of replicas to reply.

If any proces € 7 initiating a read or a write operation waits for additiona¢saages after
receiving responses from a complete quorum of replicasy an@peration may not terminate.
Implementations that use quorum systems to specify theetaibEservers that each reader and
writer may access, are calledorum-basedmplementations. Good executions for a quorum

based implementatioA are defined as follows:

Definition 3.1.9 (Q-Good Executions) An executions € F¢(A) of an algorithmA that uses
a quorum systen®), is aQ-good executionif there exists) € Q, such thatvs € @ there
does not exist stefry, fails, ox11) in £&. The set of allQ-good executions ofl is denoted by

goodexecs(A, Q).

For an implementatio, goodexecs(A) denotes the sefoodexecs(A, f) if A assumes
knowledge of the maximum number of replica host failureghersetgoodezecs(A, Q) if A

uses a quorum syste.

46

Nicolas C. Nicolaou——University of Connecticut, 2011

3.2 Consistency and Object Semantics - Atomic Read/Write Rgsters

Input: Output:
readyp, z € X,pER read-ack(v)pe, p E R,z € X, v €V,
write(v)z,p, v € Vo, z € X, peW write-acky ., p € W,z € X

Figure 1: External Signature of a Read/Write Atomic Memogyvi&e.

Our goal is to devise algorithms that implement an atomic Riémory abstraction. Let
X be a set of register identifiers. Each registee X may be assigned a valuefrom a
set of valuesV,,, where L € V, the initial value ofz. A read/writeregisterz € X, is
modeled by an I/O automatoA, with input actionsin(A,) = {read, ,,write(v),}, and
output actionsout(A,) = {read-ack(v') z, write-ack, .}, wherev,v’ € V, andp € Z. A
read/write memoryM is the compositionof a countablecompatibleread/write register 1/0
automatad,, forz € X.

Let automatonM implement a R/W memory abstraction. We say that a processr
identifierr € R, invokes a read operation on registee X in an executiorf € execs(M)
if a step (o, read, ., o41) appears irg. Similarly, we say that a process, for identifier
w € W, invokes a write operation om € X in an executior € execs(M) if a step
(0, write(v)z ., 0.+1) appears irg.

The step(oy,read, ,,ox41) OF (0., write(v); 4, 0.41) IS called invocation stepof a
read or write operationt respectively, and is denoted by.w(w). The corresponding
(ok—1/, read-ack(v), , o) OF (0,17, write-acky, 5, 0,/), for K > k +1andz > z + 1,

is theresponse stepnd is denoted byes(7). The states, ando, are callednvocation states

a7

Nicolas C. Nicolaou——University of Connecticut, 2011

and the states; ando,, are calledresponse statesf read or write operatiomr. An invoca-
tion state ofr is denoted byr;,,, (). Similarly, the response state ofis denoted by, ..().

Following is the definition for operation completeness:

Definition 3.2.1 (Operation Completeness)An operation is incomplete in an execution
€ € execs(M), if £ containsinv(m) but does not containes(); otherwise we say that is

complete

We assume that the executions/af are well-formed. Namely, a process does not invoke a
new operation until it receives the response for a prevjomsbked operation in any execution

of M. This notion is captured by the following definition.

Definition 3.2.2 (Well-Formedness)An execution¢ € execs(M) is well-formed if for any
read or write operatiom invoked by a process, £ contains a stepnv(7) and does not contain

any stepnu(r’) for any operationt’ invoked byp before the stepes(w) appears irg.

In an execution, we say that an operation (read or writg)recedesnother operatiotrs,
or mo succeeds, if the response step fan, precedes the invocation stepsf, this is denoted
by 7y — mo [62]. Two operations areoncurrentif neither precedes the other. This can be

expressed more formally by the following definition:

Definition 3.2.3 (Precedence RelationsYwo operationsr; andw, may have one of the fol-

lowing precedence relations in an executfoa execs(M):
e 71 precedesns (1 — m): res(wy) appears beforéwv(ms) in £

e 71 succeedsry (mo — m1): inv(my) appears afteres(ms) in &

48

Nicolas C. Nicolaou——University of Connecticut, 2011

e 71 is concurrent to my (1 < m2): neitherr; — my, NOrmg — 1 iN &.

Correctness of an implementation of an atomic read/wrgester is defined in terms of the

atomicity (safety) andermination(liveness) properties.

Definition 3.2.4 (Termination) Consider an operation that is invoked by process, and
inv(m) appears in a finite executiop € execs(M). Then there exists a finite execution
fragmenty’ € execs(M) that extendsp, such that ifp is correct ing o ¢' € execs(M) and

¢ o ¢ € goodexecs(M), thenres(r) appears i o ¢/'.

In other words, termination ensures that an operation iddkom a process is going to
terminate as long gsis correct and the system obeys the failure model. Atomisigyefined

as follows [65]:

Definition 3.2.5 (Atomicity) Consider the sdil of all complete operations in any well-formed
execution. Then for operations Ihthere exists an irreflexive partial orderingsatisfying the

following:

Al. If for operationsr; andns in 11, m; — w9, then it cannot be the case that < .

A2. If w € Il is a write operation and’ € II is any operation, then either< =’ or 7/ < .

A3. The value returned by a read operation is the value writtethbyast preceding write

operation according te (or L if there is no such write).

A read/write registerz € X is atomig if it has the external signatureig(A,) =
(in(Ay), out(A,),0), and in addition it satisfiesvell-formednesgDefinition 3.2.2),termi-

nation (Definition 3.2.4), andatomicity (Definition 3.2.5) conditions. Finally, aatomic

49

Nicolas C. Nicolaou——University of Connecticut, 2011

read/write memoryM is the compositionof a countablecompatibleatomic read/write reg-
ister 1/0 automatad,,, for z € X. The external signature of an atomic memory abstraction is

given in Figure 1.

In the sequel, we focus on the implementation of a single Et&V register abstraction

and thus, from this point onward we omit the names of the regs

3.3 Complexity Measures

We measure theperation latencyof an atomic register implementation in termsooin-

munication roundgor simply rounds). A round is defined as follows [30]:

Definition 3.3.1 (Communication Round) Proces® performs a&communication round dur-

ing an operationr in an executiorg € execs(A) of an algorithmA, if all of the following hold:
CRL1. p sends messages forto a set of processés C 7,

CR2. when a message far is delivered tog € Z, ¢ sends a reply fofr to p without waiting

for messages from any other process, and

CR3. whenp receives “sufficient” replies it terminates the round (eithompletingr or start-

ing a new round).

Using Definition 3.3.1, we can define fast operations andifiagkementations ([30]):

Definition 3.3.2 (Fast Operations) Consider an operation that is invoked by a procegsin
an executiort¢ € execs(A), of some implementatiod. We say thatr is afast operation
if it completes when procegs performs asingle communication round betweenv(r) and

res(m); otherwiser is slow.

50

Nicolas C. Nicolaou——University of Connecticut, 2011

Definition 3.3.3 (Fast Implementation) An implementatiorA is calledfast implementation

if every executiort € goodexecs(A) contains only fast operations.

For quorum-based implementations that use a quorum sy8tecommunication rounds

can be defined over quorums of servers.

Definition 3.3.4 (Quorum-Based Communication Round)A process p performs a
quorum-based communication round in an executior¢ € execs(A) of a quorum-based

implementationA during operationr if:

QBR1. p sends messages forto a set of processgs C 7,

QBR2. when a message far is delivered to; € Z, ¢ sends a reply forr to p without waiting

for messages from any other process, and

QBR3 Whenp receives replies fromt least a single quorumit terminates the round (either

completingr or starting a new round).

By Definition 3.3.4, a quorum-based communication rouneidefrom Definition 3.3.1 in
the last property, where the servers of at least a singleuguare expected to reply. Now, we

can define fastness for quorum-based implementations.

Definition 3.3.5 (Fast Quorum-Based Operations)Consider an operation that is invoked
by a procesg in an executior € execs(A), of some quorum-based implementatidn We
say thatr is afast quorum-based operationif it completes when procegsperforms asingle

quorum-based communication round betwéew(r) andres(w); otherwiser is slow.

51

Nicolas C. Nicolaou——University of Connecticut, 2011

Definition 3.3.6 (Fast Quorum-Based Implementation)An implementatiorA is calledfast
quorum-based implementationif every executiort € goodexecs(A, Q) contains only fast

quorum-based operations.

To obtain or modify the value of the atomic register, a read/dte operation requires at
least a single communication round. To ensure terminatiog, proces® € R U W needs
to send messages to alle S and wait for replies from a sef C S. By Definitions 3.3.2
and 3.3.5 a (quorum-based) operation invoked by a prgeés$ast if it completes after two
communication delays: (i) a message frpro all s € S, and (ii) a reply from everyg € Z to
p. The setZ may: (a) have cardinalityS| — f, if the maximum number of server failurgs
is known, or (b) contain a quorui® in case of a quorum-based implementation. For the rest
of the thesis we assume that the messages from the readersitard to the servers, and the
replies from the servers to the readers and writers areadtetiv All other messages remain in

transit.

52

Chapter 4

Trading Speed for Reader Participation

As discussed in Chapter gstimplementations of atomic R/W registers require that the
number of reader participants in the service must be réstriwith respect to the number of
replica hosts [30]. In this chapter we present a new familgitofmic R/W register implemen-
tations that trade the fastnesssaimeoperations to allownrestrictednumber of readers in
the service. We call such implementatiosemifast In the sections that follow, we explain
the restrictions that fast implementations impose in theiee and formally define semifast
implementations. Next, we present a semifast implememtatf an atomic R/W register and
we analyze its operation latency. Finally, we specify theditions that need to be satisfied for

semifast implementations to be feasible.

4.1 Fast and Semifast Implementations

Dutta et al. [30] were the first to introduce fast implemebots of atomic R/W registers.
Their algorithm implements an atomic R/W register in the SR/&hvironment, wherall read

and write operations requirestngleround to complete. Such an efficient behavior however,

53

Nicolas C. Nicolaou——University of Connecticut, 2011

comes with a price: (1) the number of readers must be bounge® b < EJJ — 2 and (2)
single round (fast) implementations are not possible ferNWMR environment even with
two writers, two readers and a single server failure. Whitgls round implementations seem
to be restrictive, works like [68] demonstrated that if adeoations perforntiwo rounds(slow),
then we can obtain atomic R/W register implementations dlatv multiple writers and un-
restricted number of readers. Naturally, the following sfien arises: How many operations

need to beslowin order to overcome the limitations imposed by fast implatatons?

4.1.1 Semifast Implementations

We partly answer the above question by introdug@egifasimplementations.

A semifast implementation of an atomic R/W register allowast fwrites and reads; yet,
under certain conditions it allows reads to perform two dsinBelow we formally define
semifast implementations. The notatidiip) [90], used in the definition, denotes the unique

write operation that wrote the value returned by a read tioerg.

Definition 4.1.1 (Semifast Implementation) An implementationA of an atomic object is
semifast if the following are satisfied:

S1.In any executiorg of A, everywrite operation is fast.

S2.In any executiorg of A, any completeeadoperation performs one or two communication
rounds.

S3. In any executiort of A, if p; is a two-round read operation, then any read operaiion
with 2R(p1) = R(p2), such thap; — ps or p2 — p1, Must be fast.

S4.There exists an executigof A that contains at least one write operatioand at least one

54

Nicolas C. Nicolaou——University of Connecticut, 2011

read operatiom; with R(p1) = w, such thap; is concurrent withv and all read operations

with 2R(p) = w (including p,) are fast.

PropertiesS1 and S2 of Definition 4.1.1, explicitly specify the fastness of reaud write
operations: writes have to terminate after a single rourtdleweads are allowed to perform
at most two rounds. By proper§3only asingle completeslow read operation is allowed per
write operation. Therefore, if a slow read operation retlaivalueval then any read operation
that returns valueal andprecedesor succeedshe slow read must be fast. Finally, property
S4rules out trivial solutions that allow fast operations omythe absence of read and write
concurrency. HenceS4 requires that semifast implementations allow read opmratio be
fast even if those are executed concurrently with a writeatfsn. Such a characteristic will
enable executions where all read and write operations ate fa

In the next section, we show that a semifast implementatiay aflow unrestricted number
of readers. Here, a single complete slow read operationdsgimto remove the constraint
on the number of readers imposed by fast implementationger,L&ve show that semifast
implementations also have some limitations: (1) impleratons that arrange the readers into
groups, can be semifast iff the number of groupd/is< ? — 2, (2) semifast implementations
are possible ifS| > 3f, and (3) semifast implementations are not possible inmhar

environment.

4.2 Semifast Implementation: Algorithm SF

In this section we present algorithnF.S This algorithm trades the speed of some read

operations for allowing unbounded number of reader paditis in the service.FSmplements

55

Nicolas C. Nicolaou——University of Connecticut, 2011

a SWMR semifast atomic R/W register since it satisfies the progeiti Definitions 3.2.5 and
4.1.1 for theswMR setting.

In brief, the algorithm adopts the timestamp-value paintégue to order the values written
on the atomic register. To allow unbounded reader participaSF introduces the notion of
virtual nodes abstract entities that enclose a set of reader partiGgpdinie constructed entities
take the place of individual readers in an adapted form ofakeimplementation of [30]. As a
result, the new algorithm achieves the same performancglqsvhen read requests originate
from a single reader per virtual node. Things become chgilhgnwhen requests originate from

multiple readers residing in both the same and differenti@imodes.

4.2.1 Grouping Reader Participants — Virtual Nodes

The notion ofvirtual nodesallows S to accom-
modate arbitrarily many readers. Figure 2 illustrates

the deployment of virtual nodes on top of the set of

Servers

reader processes. A virtual node is a set of reader iden-

tifiers and has a unique identifier from a 3&t Each

Readers

reader process with identifiere R maintains a local Siblings

variable that specifies the virtual node that the readgf,.; nodes

belongs to. Let us denote hy. the virtual node as-

signed to reader.
If two readers-, r’ belong to the same virtual node, Figure 2: Virtual Nodes.
such thaty, = v,~, then we say that andr’ aresib-

lings. Note that it is not necessary for a reader to be aware ofilings or the members of the

56

Nicolas C. Nicolaou——University of Connecticut, 2011

other virtual nodes. This allows local assignment of eaclividual reader to a virtual node.
For instance, the virtual node of a readet R can be equal to,, = (r mod max(|V|))+1,
assuming that reader identifiers are natural numbers.

In a later section we show that it is not possible to obtain raifsst implementation if
the number of virtual nodes is more th@ﬂ — 2. In contrast with [30], the restriction on the
number of virtual nodes does not affect the number of reaaicpants: a single virtual node

can support unbounded number of readers.

4.2.2 High Level Description ofSF

Before we proceed to the formal specification of our algamitiwe provide a high level
description. The algorithm uses timestamp-value pairsderahe values written on the regis-
ter and each writer associates a timestamp with two values). The variablev is the new
value to be written, while the variabte is the last value written by the writer. The algorithm
consists of three protocols, one for the writer, one for taler, and one for the server.

Writer. The write protocol involves the increment of the timestamgd és propagation,
along with the writer's new and previous value, to all thevees. The operation completes
once the writer receivels| — f replies from the servers.

Reader. The read protocol is more complicated. A reader sends readages to all the
servers and once it receivis — f replies, determines the value to be returned by consulieg t
validity of a predicate. The predicate depends on (i) theimasn timestamp witnessed within
the replies, (ii) the number of servers that replied with tirmestamp, and (iii) the number of
virtual nodes (members of which) witnessed that timestampugh those servers. The idea

behind the predicate is presented in the next section. Ipthdicate holds then the reader

57

Nicolas C. Nicolaou——University of Connecticut, 2011

returns the value associated with the maximum timestamp it withessed#£7'S); otherwise
it returns the previous valuep (associated with the previous timestampz7'S — 1). If the
predicate holds with certain conditions, then a reader nafopm a second communication
round before returning value

Server. Each server process maintains an object replica and uptiatdgect’s value when
it receives a message that contains a timestamp greateit¢iaoal timestamp. Additionally,
the server records the virtual nodes that requested itsi@toject and replies with the infor-
mation of the atomic object (timestamp,value) along with itacorded set of virtual nodes. If
a server receives a message from a the second communicatiod of a read operation, it
stores the timestamp-value pair enclosed in the messageiablepostit The postit variable

indicates that the server witnessed the intention of a readation to return the stored pair.

4.2.3 Formal Specification ofSF

Here we present the formal specification of algorithm SVe assume that the number
of unique virtual ids is such thaV| < ‘if‘ — 2. (We show in Section 4.3.1 that semifast
implementations are impossible wheén| > ‘if‘ — 2). The algorithm is composed of four
automata: (i) 8,, for w € W, (ii) Sk, for r € R, (iii) SF, for s € S, and (iv) Channel,, ,y for
p,p € I. The $§,, SF. and $, automata are given in Figures 3, 4 and 5, and 6 respectively.
TheChannel,, ,,» automaton follows the specification of a reliable channet Section 3.1.2).
Moreover, as discussed in Section 3.3, we assume that ordyages from the readers and the
writer to the servers, and the replies from the servers togheers and the writer are delivered.

The system automaton of algorithnf 8 the composition of automate S, SF,- and S, with

channel automat@hannel,, ; or Channel, , forp € R UW ands € S.

58

Nicolas C. Nicolaou——University of Connecticut, 2011

Automaton SF,,.
The state variables, the signature and the transitionsed®th are given in Figure 3. The

state of the §,, automaton consists of the following variables:

e (ts,v,vp) € NxV x V: writer’s local timestamp along with the latest and the res

values written by the writer.

e wCounter € N: counts the write requests performed by the writer. Thiseduoy the

servers to distinguish fresh from stale messages.

e status € {idle, active,done}: specifies whether the automaton is in the middle of an
operation §tatus = active) or it is done with any requeststatus = idle). When
status = done, it indicates that the writer received all the necessarlieepo complete

its write operation and is ready to respond to the client.

e srvAck C S: asetthat contains the servers that reply to the write ngessas a result of

a write request. The set is reinitialized(t@t the response step of every write operation.

e failed € {true, false}: indicates whether the process associated with the aubomat

has failed.

The automaton completes a write operation in a single phaden awrite(v),, request
is received from the environment, thentus variable becomeasctive, the previous valuep
gets the current value and the new valuis updated with the value requested to be written.
The timestamps is incremented and is associated with the two values. Asdernestatus
remains active the automaton sends one message to evegy gaggess and collects the iden-

tifiers of the servers that reply to those messages isthdck set. WhensrvAck| > |S|— f,

59

Nicolas C.

Nicolaou——University of Connecticut, 2011

Signature:

Input:

write(v)w, v € V

rev(msg)s,w, msg € M, s€ S
faily

State:
ts € N, initially O
v € V, initially L
vp € V, initially L
wCounter € NT, initially O

Transitions:
Input write(v)w
Effect:
if —failed then
if status = udle then
status < active

Output: Internal:
send(msg)w,s, msg € M, s €S write-fixq
write-ackqy,

srvAck C S, initially ()
status € {idle, active, done}, initially idle
failed, aBoolean initiallyfalse

Output send((msgT, t, C, vid))w,s
Precondition:

status = active

—failed

seS

srvAck «— () (msgT,t,C,vid) =
up — v (WRITE, (ts, v, vp), wCounter, 0)
(vyts) « (v, ts + 1) Effect:
wCounter <« wCounter + 1 none

Input rev((msgT, t, seen, C, postit))s v Output write-ack,,

Effect: Precondition:

if —failed then status = done
if status = active andwCounter = C' then —failed

srvAck «— srvAck U {s}

Internal write-fixy,
Precondition:
—failed
status = active
|srvAck| > |S| — f
Effect:
status < done

Effect:
status < idle

Input fail
Effect:
failed < true

Figure 3: $,, Automaton: Signature, State and Transitions

the precondition of thevrite-fix action is met and thetatus of the operation become&mne.

This, enables thearite-ack action and once it occurs the writer responds to the enviesim

and reinitializesstatus = idle waiting for the next write request.

Automaton SF,..

The state variables, the signature and the transitionseo®th are given in Figures 4 and

5. The state of the§ automaton consists of the following variables:

60

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:
Input: Output: Internal:
read,, 7 € R send(m)rs, me M, T€R, s€S read-phasel-fix,.
recvim)s,,, me M, r€R, s€S read-ack(val),, val € V, r € R read-phase2-fix,.
fail,, r e R
State:
vid € V, initially (r mod (131 —2)) +1 phase € {1,2}, initially 1
ts € N, initially O status € {idle, active, done}, initially idle
maxTS € N, initially 0 srvAck C M x 8, initially
maxPS € N, initially O mazTsAck C M x S, initially ()
v €V, initially L maxPsAck C M x S, initially @
vp € V, initially L mazTsSrv C 8, initially
retvalue € V, initially L failed, aBoolean initiallyfalse

rCounter € N1, initially O

Figure 4: $, Automaton: Signature and State

e vid € V: the virtual node to which the readebelongs.

e (v,vp) € V x V: the value and previous value associated with the maximon@stiamp

discovered during’s last read operation.

e mazrTS € N, maxPS € N: the maximum timestamp and postit discovered.

e (ts, retvalue) € N x V' the timestamp and value returned during the last read tipera

e rCounter € N: read request counter. Used by the servers to distinguesh from stale

messages.

e phase € {1,2}: indicates the active communication round of the read djoera

e status € {idle,active,done}: specifies whether the automaton is in the middle of an
operation §tatus = active) or it is done with any requeststatus = idle). When
status = done, it indicates that the reader decided on the value to benetuand is

ready to respond to the client.

61

Nicolas C.

Nicolaou——University of Connecticut, 2011

Transitions:

Input read,.
Effect:
if =failed then
if status = idle then
status «— active
rCounter «— rCounter + 1

Input rev((msgT, t, seen, C, postit)) s r
Effect:
if =failed then
if status = active andrCounter = C'then
srvAck — srvAck U {(s, (msgT,t, seen, C, postit))}

Output send((msgT, t, C,vid))r,s
Precondition:
status = active
—failed
[(phase = 1A (msgT,t,C,vid) =
(READ, (mazT'S, v, vp), rCounter,vid))V
(phase = 2 A\ (msgT, t,C,vid) =
(INFORM, (mazT'S, v, vp), rCounter, vid))}
Effect:
none

Internal read-phase2-fix,.
Precondition:

—failed

status = active

phase = 2

|[srvAck| > 2f +1
Effect:

status <« done

phase — 1

Output read-ack(val)
Precondition:

—failed

status = done

val = retvalue
Effect:

status «— idle

Input fail,.
Effect:
failed «— true

Internal read-phasel-fix,.
Precondition:
—failed
status = active
phase =1
|srvAck| > |S| — f
Effect:
maxTS «—
{maxz(m.t.ts) : (s,m) € srvAck}
maxPS «—
{maz(m.postit) : (s,m) € srvAck}
mazTsAck — {(s,m) : (s,m) € srvAck and
m.t.ts = maxTS}
maxzPsAck «— {(s,m) : (s,m) € srvAck and
m.postit = maxPS}
(v, vp) «— {(m.t.v,m.t.op) : (s,m) € maxAck}
maxTsSrv < {s:s € Q, (s, msg) € marAck}
if 36 € [1,...,|V]],andM S C maxTsAck s.t.
IMS| > 18] = BF and| (s mye ars m-seen] > 8
then
ts «— maxTS
retvalue «— v
it 1M (s,m)errs m-seen| = B then
phase «— 2
srvAck «— 0
rCounter «— rCounter + 1
else
status < done
else
if maxPS = maxTS then
ts «— maxTS
retvalue «— v
if |maxPsAck| < t+ 1then
phase «— 2
srvAck «— 0
rCounter «— rCounter + 1
else
status < done
else
ts «— maxTS — 1
retvalue < vp
status < done

Figure 5: &, Automaton: Transitions

62

Nicolas C. Nicolaou——University of Connecticut, 2011

e srvAck C M x S: a set that contains the servers and their replies to theaga@tion.

The set is reinitialized t@ at the response step of every read operation.

e maxTsAck C M x S andmaxPsAck C M x S: these sets contain the servers that
replied with the maximum timestamp and maximum postit retpaly to the last read

request. The sets also contain the messages sent by thesesser

e maxTsSrv C S: The servers that replied with theazT'S.

failed € {true, false}: indicates whether the process associated with the automat

has failed.

The reader automaton may involve one or two rounds beforeesmonse step of a read
operation occurs. When the reader automaton receiwesl§), request from its environment,
it sets thestatus variable toactive and increments the read counter. This enables the ac-
tionsrcv andsend. The reader sends a read message to every server gatoccurs) and
collects (via thercv action) the identifiers of the servers and their replies esthv Ack set.
As phase is initialized to1, thesend action transmitREAD messages to the servers. Once,
|srvAck| > |S| — f the actionread-phasel-fix is enabled. When this action occurs, the reader
discovers the maximum triplenaxT'S, v, vp) and the maximum postit valueax P.S among
the received messages. Then, it collects the server ackdgwmlents that contaimazT'S and
mazxPS in the setsnaxTsAck andmaxzPsAck respectively. To determine the value to be
returned the reader consults the validity of a predicate fdredicate depends on: (i) the max-
imum timestamp witnessed within the repliesdz1'S), (i) the number of servers that replied

with that timestamp|{naxT's Ack|), and (iii) the number of virtual nodes (members of which)

witnessed that timestamp through those servers. The tatteber is derived from theecen set

63

Nicolas C. Nicolaou——University of Connecticut, 2011

which is attached in the reply of each server. The predicatedSF-RP, is formally written

as follows:

Reader predicate (SF-RP)33 € [1,V + 1] and3IM S C maaTsAck, s.t.

(|IMS| > |S| = Bf) A(| Nmenrrs m.seen| > 3)

By theread-phasel-fix action, the reader returns the new valuassociated with the max-

imum timestamp if one of the following conditions is satidfie

(i) SF-RPholds, or

(i) the maxPS = maxTS5.

In such case, the read operation may perform one or two roUiphase variable becomes

2 and the reader proceeds in a second round in the followirgscas

(1) SF-RPholds with| Ny,enrs m.seen| = 3, or

(2) SF-RPdoes not hold anthazPS = mazT'S, but|mazPsAck| < f + 1.

When none of the conditions (i) or (ii) hold the read operatieturns the previously written
valuewvp in a single round. If one round is enough then thetus variable becomegone by
the end ofread-phasel-fix and the response actieead-ack(v) is enabled. lfphase = 2, the
srvAck = () and the reader sendsFORM messages to all servers. OnpgwAck| > |S| — f
the actionread-phase2-fix is enabled. When that action occw®:itus becomesione and
phase is reinitialized to 1. Now, the second round is completed Hrdreader is ready to
respond to the client.

Clearly, initem (2) above, the second round is necessarywar@ read operation may not

observemax PSS in any of the servers whelmaz PsAck| < f + 1. Let us now examine why

64

Nicolas C. Nicolaou——University of Connecticut, 2011

a second round is needed in case of (1). The predBkt®Pis derived from the following

observation:

Observation 4.2.1 For any two read operationg andp, that witness the sameaxT'S from
mazxTsAck, andmazT s Acky Servers respectively (one message per server), the sites of

sets|maxzT'sAck:| and|maxzT s Acko| differ by at mostf. That is:

||maxTsAcki| — |maxTsAcks|| < f

Consider the following example to visualize the idea behtimel predicate. Let) be
an execution fragment that contains a complete write ojp@rat that propagates the triple
(mazxTS,v,vp) to|S|— f servers. Let extend by a read operatiop, that discoversnazT'S
in |S| — 2f server replies (missing of the servers that replied to). Sincew — p; thenp;
has to returrv (the value associated withazT'S) to preserve atomicity.

Assume now an execution fragmetfitthat contains an incomplete writethat propagates
the new value withnazT'S to |S| — 2f servers. Let us extent by a readp; from reader-. If
p1 discoversnazT S'in |S|—2f servers — by receiving replies from all the servers thativede
messages fromy — then it cannot distinguish from ¢’ and thus has to returmin ¢’ as well.
Let p2 be aread operation fromi s.t. p; — p2. The readp may discovernaxzT'S in |S| —3f
replies by missing’ of the servers that replied te. Let us examine theeenset of the servers
that reply to bothp; andp,. We know thatr belongs to the virtual node. ands’ belongs to
the virtual node,.. There are two cases to consider ferandv,.: (a) eitherv, # v,. (b) or
v, = v,» (r andr’ are siblings). Notice that every server adds the virtuaknafch reader to its
seenset before replying to a read operation. Thus|&|l— 2f servers that containedax7'S

replied with aseen = {0, v, } to r because they added the virtual node of the writgrapd

65

Nicolas C. Nicolaou——University of Connecticut, 2011

the virtual node of- before replying forp;. With similar reasoning allS| — 3f servers that

replied forp, send aseen = {0, v, v» } tor’. So, ifv,. # v+ then the predicate will hold with

3 = 2 for r and with3 = 3 for 7’. Thus,r” will also returnv preserving atomicity. If, however,

v, = v,» then the predicate will hold for but will not hold forr’ and, thus”” will return an

older value (possiblyp) violating atomicity. As a result, a second round is necgsgden a

read observebn,,c s m.seen| = 3, and this explains item (1) presented above.

Automaton SFq.

Signature:

Input:
rev(im)p,s, me M, se€ S, pe RU{w}
fails

State:
ts € N, initially O
v €V, initially L
vp € V, initially L
seen C VU W, initially (
Counter(p) € NT, p € RU{w}, initially 0

Transitions:
Input rev({msgT, t,C,vp))p,s
Effect:
if —failed then
if status = idle andC' > Counter(p) then

status < active

Counter(p) «— C

if t.ts > ts then
(tS, v, Up) -

(t.ts,t.v, t.up)

seen «— {vp}

else
seen «— seen U vp

if msgT = WRITE then
msgType «—— WRITEACK

if msgT = READ then
msgType «— READACK

if msgT = INFORMthen
if t.ts > postit then

postit < t.ts

msgType < INFOACK

Output:
send(m)s,p, me M, s€ S, pe RU{w}

postit € N, initially O

msgType € {WRITEACK,READACK,INFOACK }
status € {idle, active}, initially idle

failed, aBoolean initiallyfalse

Output send((msgT, t, seen, C, postit))s p
Precondition:

—failed

status = active

p € RU{w}

(msgT,t, seen, C, postit) =

(msgType, (ts, v, vp), Counter(p), postit)

Effect:

status «— idle

Input fail
Effect:
failed «— true

Figure 6: $,; Automaton: Signature, State and Transitions

66

Nicolas C. Nicolaou——University of Connecticut, 2011

The servers maintain a passive role. The signature, statdramnsitions of the & are

given in Figure 6. The state of the=Scontains the following variables:

e (ts,v,vp) € NxV xV:the maximum timestamp received bjn a read/write message
along with its associated value and previous value. Thisiesvialue of the register

replica.

e seen € YV UW: a set that contains the virtual identifiers of the proces#isasinquired
the register replica value from serverlf that process is the writer then it records the id

of the writer as it does not belong to any virtual node.

e postit € N: the largest timestamp received byn a message sent during the second
round of a read operation. The value of this variable inésdhat some read operation

decided to return the value associated with the timestamal ¢g postit.

e Counter(p) € N: this array maintains the latest request index of eachtdreader or

writer). It is used bys to distinguish fresh from stale messages.

e status € {idle,active}: specifies whether the automaton is processing a request re-

ceived Gtatus = active) Or it can accept new requestgqtus = idle).

e msgType € {WRITEACK,READACK,INFOACK }: Type of the acknowledgment depend-

ing on the type of the received message.

Upon receiving a read or write message (i.e., the event occurs) of the form
(msgType, (ts',v',vp'), vid), the server proceeds as follows. First, it compares itd tonas-
tampts with the timestamp enclosed in the messagelf ¢ts’ > ts then it updates the value

of its local register copy by assignings, v, vp) = (ts’,v’,vp’). Then, it changes itseen set

67

Nicolas C. Nicolaou——University of Connecticut, 2011

accordingly: if the server updates its local register vahem it resets itseen set and includes
only thevid enclosed in the message; otherwise it appendseits set withvid. Finally, it
sets its local variableostit = ts’ if the message received is aiFORM message angostit is
smaller tharts’. Once the server updates its local variables it sends a feplnsend occurs)

to the requesting process. Each reply is of the fotta, v, vp), seen, postit).

4.2.4 Correctness ofSF

In this section we show the correctness of our algorithm. Y8egrove that 8 satisfies the
termination and atomicity conditions (Definitions 3.2.4&12.5). Then we verify thatrSis
indeed a semifast implementation by showing that it presseall properties of Definition 4.1.1.

The main result of this section is:

Theorem 4.2.2 Algorithm Sk implements a semifast atomic SWMR read/write register.

4.2.4.1 SF Implements a Fault-Tolerant Atomic Read/Write Register

In this section we prove that algorithnF Satisfies all properties of Definitions 3.2t
mination) and 3.2.5&tomicity) and thus correctly implements a fault tolerant atomic hedte

register.

Termination

According to our failure model, any subset of readers, theewrand up tof servers may
crash. Any read or write operation in algorithn &aches its fixpoint whenever it receives

|S| — f replies from the server processes. Thus, since no openatds for replies from any

68

Nicolas C. Nicolaou——University of Connecticut, 2011

reader or the writer, and as long as less or equélgerver processes crash, then any operation

invoked by a correct process eventually terminates. Thissfies the termination condition.

Atomicity

Now we prove atomicity of the IS implementation. We proceed by showing that atomic
consistency is preserved between operations, no mattetherhthe invoking processes are
siblings or not. Operations inFSare ordered with respect to the values they write or return.
In particular, an operation is ordered before an operatiati if the value written or returned
by 7 is “older” than the value written or returned hy. To establish the order of the values,
SF associates each value with a timestamp. Timestamps wattdnreturned can be used
to establish the partial order of operations and whetheh suder satisfies atomicity. In
particular, we say that a value:l; associated with timestamip; is “older” than a valueval,
associated with timestanip; if ts; < tso.

Before proceeding to the proofs we introduce the notatioruseethroughout the rest of
the chapter. We adopt the notation presented in Chapteth3aihe additions. We user, to
refer to the variablear of the automatom,,. To access the value of a variabier of A, in a
states of an executiorg, we uses[p|.var (see Section 3.1.1). We use the notatigf,), to
capture the state right after the occurrence @hd-phasel-fix event ifr is a read operation or
write-fix event ifr is a write operation. Finally, for an operatian o, r) ando,..,, denote
the system state before the invocation and after the respmingperationr respectively (as
presented in Section 3.2). Therefose,) [p].ts denotes the value of the variable of the
automatonA,, at the response step of operatiorand is the timestamp returnedfis a read

operation.

69

Nicolas C. Nicolaou——University of Connecticut, 2011

We usesrvAck(m) to denote the set of servers that reply to the first round ofatjos
7w and srvlnf(m) to denote the set of servers that reply to the second round of hus,
srvAck(p) contains the servers that receive tteab messages, andvInf(p) contains the
servers that receive thetFORM messages fromp. The value of the maximum timestamp
observed during a read operatiprirom a reader is o, [r].maxTS. As a shorthand we
usemazT'S, = 0 iz(p)[r]-maxTS to denote the maximum timestamp witnessedobyBy
maxTsSrv(p) we denote the set of servers that reply withzT'S,. Let, mazTsMsg(p)
be the set of messages sent by those servers. Alsay(tetc),,, to denote the message sent
from p to p’ during thect” round of operationr. A variable var enclosed in a message is
denoted bym(w,c),,.var (see Section 3.1.2). Thus, for a read operaganvoked by,
m(p, c)s,r € maxTsMsg(p) it m(p,c)s,.ts = maxT'S,.

We can express the atomic order of operations on the badmestamps:
TS1. For each processthets,, variable is non-negative and monotonically nondecreasing

TS2. If a write operationu(k) precedes a read operatiprirom reader-, such thatv(k) — p

then,ares(p) [7“] ts > k.

TS3. if areadp returnsk (k > 1), thenw(k) either precedep (w(k) — p) or is concurrent

with p (w(k) < p),

TS4. If p andp’ are two read operations from the readerand r’ respectively, such that

p — 0 theno,.cy) [r'.ts > Opegpy[r]-ts.

It is not difficult to see that the order of operations impobgdhe conditions on the times-

tampts provides the partial order required by Defintion3.2.

70

Nicolas C. Nicolaou——University of Connecticut, 2011

We show that implementationFSpreserves the above conditions in any given execution.
We begin with a lemma that plays a significant role in the ainess proof. The lemma follows
from the fact that no more thafi servers may fail and that the communication channels are

reliable.

Lemma 4.2.3 Let two readers with idér,) and(r’, v) be siblings and invoke reagsand o’
respectively, s.tp — p’. Then, for any executiofl € goodexecs(SF, f), | [maxTsSrv(p)| —

|maxTsSrv(p)|| < f.

We now proceed to show the first and third atomicity condgi¢as given above) as their

proof arguments are simpler to present.

Lemma 4.2.4 For any executiof € goodexecs(SF, f), if a read operatiom in £ returns, it

returns a non negative integer.

Proof. From algorithm & the value of the timestamp is incremented by the automatgn S
Since the timestamp variable at any automaton is initidlieed, then any automaton witnesses
a timestamp> 0. As any read operatiop may returnmaz1'S, or maxTS, — 1, when
maxTS, > 1 (and thus some write operation is invoked), themx7'S, > 0. So it remains to
examine the case whereazT'S, = 0.

Consider an executiog of SF. The timestamgs, variable of the &, automaton, for
every servers € S, is initialized to0 in £. Consider now a read operatignin £ that is
performed by the readér, v,) and witnesseswaxT'S, = 0. It follows thatp receives more
than|S| — f replies withmaxT'S, = 0. Before replying tg, each serves € srvAck(p) adds

the virtual id,v,., of the reader in itseen set. So, every serverc srvAck(p) will reply with

71

Nicolas C. Nicolaou——University of Connecticut, 2011

a timestampn(p,1);,.ts = 0 and am(p, 1), .seen set that contains at least the element
Thus,|mazTsSrv(p)| > |S| — f and the predicate will be true fgt = 1. Therefore,p will

returnmax1'S, = 0 which is not negative. This completes the proof.

We now show that the timestamp of any server is monotonicatiseasing.

Lemma 4.2.5 In any executiorf € goodexecs(SF, f), if o[s].ts = k for a server € S, then,

given any state’ such thatr appears before’ in £ ando’[s].ts = y, we have thay > k.

Proof. This is ensured by actiorcv(m),, s of the S in Figure 6. The timestamp variable
tss of the server automaton changes only if the received timgstaom proces for some
read/write operatiom, is m(m, %), s.ts > tss when thercv(m(m, *), s)p.s €vent occurs; oth-
erwise it remains unchanged. Thusg{k].ts = k at states, then for any state’ that comes
aftero in &, o'[s].ts > o[s].ts, and hencey > k. O

We now show the monotonicity of the postits for any server.

Lemma 4.2.6 In any executiorf € goodexecs(SF, f), if o[s].postit = k for a servers € S
then, given any sate’ such thatr appears before’ in £ ando’[s].postit = y, we have that

y > k.

Proof. This is ensured by actiorv(m), , of Figure 6.]

Given the above lemmas we can prove condifi@® by the following lemma:

Lemma 4.2.7 For any executiol§ € goodexecs(SF, f), if a readp is complete and succeeds

some writew (k) (w(k) — p), thenp returns? such that’ > k.

72

Nicolas C. Nicolaou——University of Connecticut, 2011

Proof. Suppose that the writev performs aw(k) operation and precedes the reaap-
eration by reade(r, v,.) in execution{. Let srvAck(w(k)) be the|S| — f servers that re-
ply to w(k) in the same execution. The read operatijpmay witness timestamp from
mazxTsSrv(p) = srvAck(w(k)) N srvAck(p), with cardinality|maxTsSrv(p)| > |S|—2f,
asp may missf servers that replied to the(k). Sincew(k) — p the timestampn(p, 1) ,.ts
from each serves € maxT'sSrv(p), per Lemma 4.2.5, is greater or equaktdSo, p receives
a maximum timestampax1'S, > k. From the implementation we know that the reader re-
turns eithemaxT'S, or maxT'S, — 1. We consider two cases:
Case 1maxTS, > k. Sincep returns eithemaxT'S, or maxT'S, — 1, it follows that either
case it returns a timestamp greater or equal.to
Case 2 maxT'S, = k. As we mentioned above each serveninxzT'sSrv(p) replies with a
m(p,1)sr.ts > k. SincemaxT'S, = k, every serves € maxTsSrv(p) replies with a times-
tampm(p, 1)s,.ts = kto p. So, for everys € maxTsSrv(p), m(p,1)s, € mazxTsMsg(p).
Thus, |maxT'sMsg(p)| > |S| — 2f. But since every server € mazT'sSrv(p) receives a
message withn(w(k), 1), s.ts = k from the writer before receiving any message frpm
thenw is included in theseen set ofs. Also, before any € maxzTsSrv(p) responds te,
it includesvy, in its seen set. So,SF-RPwill hold for 3 = 2 andp returnsmaxT'S, = k.
Observe that any read operation retumszT'S,, since the writero has no sibling, and thus
the predicate holds fgf = 2 no matter which reader performs the read operation. O
We say that aostit = k is introducedin the system by a read operatipnif p is com-
plete, performs two rounds, and sends messag®RM, k, _, _) during its second round. The
following lemma shows that if @ostit = k is introduced to the system, then there exists a

maximum timestampnaxT'S in the system such thataxTS > k.

73

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 4.2.8 For any executiorf € goodexecs(SF, f), if 3s € S s.t. o[s].postit = k
when it receives a message from a read operatiansome state, then any succeeding read

operationy’ will observe a maximum timestampaxT'S,, > k.

Proof. Consider an executiofof SF where the read operatignintroduces a postit equal fo
to the system. It follows that observes as the maximum timestamp in the system7'S, =

k. Assume thatmaxTsMsg(p)| > |S| — Bf and| Ny, emaatsirsg(p) M-seen| = B, and thus
p performs an informative operation. Singe= [1, |V| + 1] and|S| > (|V| + 2) f, we get that
|maxTsMsg(p)| > f. So, ifsrvAck(p’) is the set of servers that repliesdd|srvAck(p')| =
|S| — f), then per Lemma 4.2.5 there is a serverc maxT'sSrv(p) N srvAck(p’) that
replies top’ with a timestampn(p’, 1) ,..ts > k. Since,p’ detects a maximum timestamp

maxT Sy > m(p', 1), .ts, hencemaxTS, > k. O

Lemma 4.2.9 For any executiort € goodexecs(SF, f) if a read operatiorp receives a

postit = k thenp will return a valuey > k.

Proof. Consider an executiofiof SF which contains a read operatiprby a readekr, v,.). It
follows from Lemma 4.2.8 that if readreceives aostit = k, then it will detect a maximum
timestampnazT'S, > k. LetmaxTS, = k. So, either the predicate will hold or the condition
whetherpostit, = maxT'S, will be true andp will return y = maxT'S, in both cases. Thys
will return y = k. If now maxT'S, > k thenp will return y = maxT'S, if the predicate holds
ory = maxTS, — 1 otherwise. Note that singestit = k, itis less thanmaxT'S, and so the
postit condition does not hold. Either caswiill return a valuey > k. O

We proceed to the proof of conditiorS3.

74

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 4.2.10 In any executiort € goodexecs(SF, f), if a read operatiow returnsk > 1,

then the write operatiow (k) either precedeg (w(k) — p) or is concurrent withp.

Proof. Consider an executiofi of SF. Note that in order for a timestamipto be introduced
in the system during a write operationv(k) must be invoked (since only the writer incre-
ments the timestamp). We now investigate what happens wiead&r returns a timestamp
ts = k in £&. We know thatp returns, according to the implementation, either maxT'S, or
k = maxTS, — 1. The first case is possible if the predic&e-RP holds for the reader or if
the reader observes somestit = maxT'S,. If the predicate holds, detectsmaxT'S, = k
in |maxTsMsg(p)| > |S| — Bf messages. Sind®| < % —2andg < |V|+ 1, then
|maxTsMsg(p)| > f. So, there is at least one servee srvAck(p) that receives messages
from w(k) before replying tg. If p returnsk because of a postit, then per Lemma 4.2.8, times-
tampk was already introduced in the system. Thus, for both caéesis either concurrent or
precedes the read operatipn

In the case where the reader retukns- maxT'S, — 1 it follows that the reader detects a
maximum timestampnax1'S, = k + 1 in the system. Thus, the,, operation has already
been initiated by the writer. Hence(k) operation has already been completed and preceded
p or was concurrent and completed befpreompletes. O

We next prove that conditioi S4, is satisfied for read operations invoked from sibling
(Lemma 4.2.11) or non-sibling (Lemma 4.2.12) readers. \Wegxd by investigating all cases
of the predicateSF-RP used in algorithm £ in either of the above cases. Note, that the
relation between the readers may affect the cardinalith@§ten set at the server side. Thus,

we analyze each case separately.

75

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 4.2.11 For any executiorf € goodexecs(SF, f) that contains two read operatign
andy’, s.t. p andy’ are invoked by the sibling readefis z) and(r/, z) respectively ang — p/,

then if p returnsk andp’ returnsy, y > k.

Proof. We consider an executiofof SF. We first investigate the case where= r’. In
this casep denotes the first read operationsofindp’ a succeeding read operation from the
same reader. Let,.,,)[r].ts = k be the value returned from During the read’, r sends
aREAD message to every servere S with m(p’, 1), s.ts = mazTS, > k. This message
is received by every servef € srvAck(r’) which according to Lemma 4.2.5 replies with
a timestampmn(p’, 1) .ts > mazTS, > k. So,maxTS, > k. If maxTS, = k then
|maxTsMsg(p')| = |S| — f and the predicate holds fot = 1. Thus,y = mazTS, = k.
Otherwise, ifmaxTS, > k, they will be equal tomaxT'S, or maxT'S,, — 1 and thus, in
either casg > k. By a simple induction we can show that this is true for evegdroperation
of r(including p’) after p. For the rest of the proof we assume that r’. We investigate the
following two possible cases: (preturnsk = maxT'S, — 1 and (2)p returnsk = maxT'S,,.

In all cases we show that< y or that the case is impossible.

Case 1:In this caseék = maxzT'S, — 1. Therefore, some servers replyavith mazT'S, =
k + 1, and hence a write operatian(k + 1) has started beforp is completed. Sav(k)
completes before completes and therefote(k) — p’ sincep — p’. Thus by Lemma 4.2.7

p returns a valug > k.

Case 2:In this casek = maxT'S,. Hence either there is somie € [1,|V| + 1] such that
ImaxTsMsg(p)| = |S| — Bf and| Ny emazrsirsg(p) M-Seen| > [or p received apostit

equal tomaxT'S, from some server. We examine those two possibilities.

76

Nicolas C. Nicolaou——University of Connecticut, 2011

Case 2(a): It follows that & = maxzTS,, and there is somef < [1,|V| + 1] such
that maxzTsMsg(p) consist at leastS| — 3f messages received hy with timsetampk
and | Ny emarTshsg(p) M-seen| > [. Since|V| < lifl —2andg € [1,|V| + 1],
then |mazTsMsg(p)| = |S| — Bf > f. Following we investigate the cases where
| NmemazTsMsg(p) M-seen| = B and| Ny, cmazrsirsg(p) M-seen| > [. (1) First lets ex-
amine the case where returnsk = maxT'S, because Ny, cmaarsirsg(p) M-s€€N| = f.
According to the implementatiomy has to inform|srvinf(p)| > 2t + 1 servers about its
return value,k. Sincep precedes/, at least|srvlnf(p) N srvAck(p’)| > f + 1 servers,
that informed byp, will reply to p'. Any servers € srvlnf(p) N srvAck(p'), by Lemma
4.2.8 will reply with am(p’, 1), ,+.postit > k to p’ and with a timestampa(p’, 1)5,.ts > k.
So ' will observe a maximum timestampazTS,, > k. According now to Lemma 4.2.9
p" will return a valuey > k. (2) The second case arise whemeturnsk = maxT'S, be-
cause| Ny emantsMsg(p) M-seen| > B. We can split this case in two subcases regarding
the value returned by’. The two possible values that might return isy = maxT'S, or

y =maxTSy — 1:

() Consider the case wherg = maxT'S,. Sincep returnedk = maxTS,, as we
showed in Lemma 4.2.10 , there is a write operatigit) that precedes or is concurrent
with p. As stated abovémaxzTsMsg(p)| > f and hence there is a serversuch that
s € maxTsSrv(p) N srvAck(p’). By Lemma 4.2.5s sends a timestamp(p, 1), ,/.ts > k

to o/, and hencenazT'S, > k. Soy > k.

(ii) Now, consider the case whegéreturnsy = maazTS, — 1. SincelmaxT'sSrv(p)| > f,
there must be a server € maxT'sSrv(p) N srvAck(p’) and s replies with a timestamp

m(p',1)s,..ts > k to p'. So the highest timestamp krvAck(p’)(i.e. maxTS, =y + 1)

e

Nicolas C. Nicolaou——University of Connecticut, 2011

will be greater or equal t&. If the inequality is true, namely + 1 > k, then clearly
the value returned by’ is y > k. If the equality holds andy + 1 = z then the
highest timestamp received ky, mazTS, = y + 1 = k. Hence, any serves <
mazTsSrv(p) N srvAck(p') replies with a timestampn(p’, 1)5,/.ts = ¢ = y + 1 to p'.
Recall that in this case we assumed that,, c e rsrsq(p) M-seen| > B. Also, according
to Lemma 4.2.3||maxTsMsg(p')| — |maxTsMsg(p)|| < f and sincdmazTsSrv(p)| =
|maxTsMsg(p)| > |S|—Bf, itfollows thaty receives the maximum timestampaT'S,, =

k from |maxTsSrv(p')| = |maxTsMsg(p')| > |S| — (8 + 1) f servers. Notice, that for any
s € maxTsSrv(p) N S2, m(p,1)s,r.ts = m(p/,1)s,7.ts = k. Since the timestamp is the
same ands sentm(p, 1), , beforem(p’,1);,» thenm(p,1)s,.seen C m(p’, 1) ,.seen. As

a result| Ny, emarrsirsg(p) M-5€€n| < | Niemaarsirsg(p) M-seen|. Notice that, since the
two readers are siblings, if noon-siblingreader receives replies from those servers in be-
tweenp andp’, thenm(p, 1) ,.seen = m(p', 1), r.seen and| Ny, cimaarsirsg(p) M-seen| =

| MmemazTsMsg(p) M-seen|. Either case,| Ny cmarrsisg(p) Mm-seen| > 3 and hence

| NimemazTsMsg(p) M-Seen| > 3 + 1. Observe that the predica&--RP holds for 5 + 1
since|maxTsMsg(p')| > |S| — (8 + 1)f, and thusp’ must returnmnazTS,y =k =y + 1,
contradicting the initial assumption thaltreturnsy = k£ — 1. The same result applies in both

cases wherg < V| andg = |V| + 1 since theseen set remains unchanged.

Case 2(b):Herep returnsk = max1'S, because some postits equabtax7'S, received by
p. We have to consider two cases here. Eithemp(fgceives more thayi + 1 postits, or (2)p
receives less thafi + 1 postits. Both cases imply that, a readef, v,.») performed a read”,
and is about to return or already returned the maximum tiamest(which is equal tovaxT'S)

in the system. Furthermore implies thétinitiates an informative phase which is concurrent

78

Nicolas C. Nicolaou——University of Connecticut, 2011

or precedes the read operatienBy analyzing the cases we obtain the following results:
(1) If p receives more than or equal tb + 1 messages containing a postit with value
postit = maxTS, = k, then the writerw initiated aw(k) operation during or beforg is
completed. Every serverc srvlnf(p”) N srvAck(p) replies top with m(p, 1) .postit =
maxTS,. The reader’ receives replies fromsrvAck(p’)| = |S| — f servers. Since
|srolnf(p”)NsrvAck(p)| > f+1, then|srvAck(p’) N (srolnf(p”) NsrvAck(p))| > 1. So
the read operatiop’ receives a reply from at least one servet srvlnf(p”) N srvAck(p).
Hence, from Lemma 4.2.6) receives aostits > k from s and according to Lemma 4.2.9
will return a valuey > postits and thusy > k.
(2) Let us now examine the case whereeceives less thafi + 1 messages containing postits
with value equal tonazT'S,. Let us assume again thatvinf(p”) N srvAck(p)] < f+1
is the set of servers that reply withpstit = mazTS, to p. Since |srvAck(p)| =
|S| — f, it is possible that|(srvInf(p”) N srvAck(p)) N srvAck(p’)] = 0, Sop in-
forms [srvlnf(p)| > 2f + 1 servers with apostit = maxTS, before completing. So
there exists a servef € srvAck(p’) N srvlnf(p) that replies top’. By Lemma 4.2.6,¢
replies with am(p’, 1)y ,».postit > maxzTS,, and by Lemma 4.2.97 returns a timestamp
y > m(p', 1)y v .postit. Hencep' returns a valug > k. O
We now examine if the timestamps returned by non siblinggsees satisfy conditionS4

presented above.

Lemma 4.2.12 For any executiorf € goodexecs(SF, f) that contains two read operatign
andp’, s.t. p andp’ are invoked by non-sibling readefs v,.) and (', v,/) respectively and

p — p', then if p returnsk andp’ returnsy, y > k.

79

Nicolas C. Nicolaou——University of Connecticut, 2011

Proof. Consider an executiof of SF. We study the case where# r’ andv, # v, in
&, and hence the two readers are not siblings. We proceed &s @asl show thay > &
or the case is impossible. We know thamay return eithermaxT'S, or mazTS, — 1. It
can be shown similarly to case (1) of Lemma 4.2.11 that whesturnsk = maz7'S, — 1
thenp’ returnsy > k. It remains to investigate the cases where: fIpturnsmazT'S,
because the predica&--RP does not hold but it receives somestit = maxT'S,, and (2)
p returnsmaxT'S, because it receivgsnax1's M sg(p)| messages that contain the maximum

timestampmax1'S, such that there ig € [1...|V| + 1] and|maxTsMsg(p)| > |S| — Bf

and‘ ﬁmEma:cTsMsg(p) m-seen’ > p.

Case 1: In this casep returnsk = maxT'S, because some serverc srvAck(p) replies
with m(p, 1), ,.postit = maxT'S,. According to $ some process (sibling or not oj,
say r”, performs a read operationf’ and is about, or already returned a timestamp equal
to mazTS,. There are two cases to consider based on the cardinality«dfnf(p”) N
srvAck(p): (1) [srvlnf(p”) N srvAck(p)| > f+ 1 and (2)[srvlnf(p”) N sroAck(p)] <
f+ 1. If (1) is true andr receives|srvlnf(p”) N srvAck(p)] > f + 1, thenp re-
turns £ = maxT'S, without performing a second communication round. Since gbe
of servers that respond td is |srvAck(p’)| = |S| — f, it follows that there is at least
one servers € srvAck(p’) N (srvlnf(p”) N srvAck(p)). According to Lemma 4.2.65
replies top” with am(p’, 1), ,+.postit > k. Furthermore by Lemma 4.2.9, returns a value
y > m(p', 1), .postit. So obviouslyp’ returns a valug > k. On the other hand if (2) is true
andp receivessrulnf(p”) N srvAck(p)| < f + 1 postits, then, before returning,informs

every serves € srvlnf(p) (|srvinf(p)| > 2f + 1) with am(p, 2),. s.postit = maxT'S,.

80

Nicolas C. Nicolaou——University of Connecticut, 2011

So there exists a serverc srvAck(p’) N srvlnf(p) that replies tq’. By Lemma 4.2.6s,
replies with am(p’, 1) ,».postit > mazTS, and by Lemma 4.2.9 it follows that returns a

timestampy > m(p’, 1), .postit. Hence it follows again thaf > k.

Case 2: This is the case wherp returnsmazT'S, because the predicaeF-RP holds,
namely, there isg € [1...|V] + 1] and |maxTsMsg(p)] > |S| — Bf such that

| MinemaaTsMsg(p) M-seen| > (3. Recall again that singg € [1...[V|+1] and|V| < ‘if‘ -2,
|maxTsMsg(p)| > |S| — Bf > f. So, if maxTsSrv(p) are the servers that reply with
messages imaxTsMsg(p), there is at least one servere maxTsSrv(p) N srvAck(p').
Therefore,s replies top’, by Lemma 4.2.5, with a timestamp(p’, 1)5,».ts > k. Hence,p/
observes a maximum timestammaT'S,, > k. If p' observesnaxTS, > k then clearly,
sincey’ returns eithey = maaT'S,y ory = maxTS, —1, itreturns a valug > k. It remains
to investigate the case where the maximum timestamp olabége’ is max1'S,, = k. Since
maxTS, = mazTS, = k it follows that any server is € maxzT'sSrv(p) N srvAck(p)
replies top’ with a timestampn(p’,1)s,..ts = k. Furthermore, since’ might miss up to
f servers frommazTsSrv(p) and |mazTsSrv(p)| = |maxTsMsg(p)| > |S| — Bf, it
follows that o’ receives the maximum timestampaxzT'S,, = k from |maxT'sSrv(p')| =
|maxTsMsg(p')| > |S| — (8 + 1)f servers. There are two possible return valuespfor
Eithery = maxT'S, = kory = maxTS, —1 = y+ 1 = k. So the only case that needs
further investigation is whep + 1 = k. We consider two possible scenarigssatisfies the
SF-RPwith an (1) < |[V|+ 1 and (2)5 = |V| + 1.

Case 2(a): Here p satisfies the predicate using < |V| + 1. This implies that

NmemazTsMsg(p)M-seen Might contain less thajV| + 1 elements and thus not every virtual

81

Nicolas C. Nicolaou——University of Connecticut, 2011

identifier is included. So we have to consider two subcas$,{ ¢ Ny, cmaatsirsg(p)M-S€€N
and (v, € NyyemaaTsMsg(p)T-S€EN.

(1) Let us first assume that: & My, cmaarsirsg(p)m-seen. Consider the set of servers
maxTsSrv(p) N srvAck(p’). Since|lmaxTsSrv(p)| = |maxTsMsg(p)| > |S| — 3f and
|srvAck(p’)| = |S| — f then|maxTsSrv(p) N srvAck(p’)| > |S| — (8+1)f > 1. Also,
since the reag precedes’, and any serves € maxzT'sSrv(p) replies withm(p,1)s ,.ts =
maxT'S, = k1o p, then any serves’ € maxzTsSrv(p)NsrvAck(p') replies with a timestamp
m(p',1)s .ts > kto p'. So, all the servers in the setazT'sSrv(p) N srvAck(p') reply to
o' with m(p', 1)y r.ts = k = y + 1. For any serves’ € maxT'sSrv(p) N srvAck(p),
we know thatm(p, 1)y ,.ts = m(p/,1)y +.ts = k. Sincem(p,1)y, is sent before
m(p', 1) g, then m(p, 1)y r.seen € m(p', 1)y pr.s€en. TAUSO, cmaarsirsg(p)m-s€€n
NmemazTsMsg(p')M-S€en. Moreover, every serves € mazTsSrv(p’) addsy, into its
seen set before replying tg/. Therefore,v,, € Mpemazrsirsg(p)ym-seen. By assump-
tion, v & NiyemaaTsisg(p)M-seen, and so it follows that M, cpnaarsrrsg(pr) m-seen| >

| NinemaaTsMsg(p) M-seen| +1 > B+ 1. SincelmaxTsSrv(p’)| = [maxTsMsg(p')| and
|maxTsSrv(p")| > |maxTsSrv(p) N srvAck(p’)| > |S| — (8 + 1)f, then the predicate
SF-RP holds forp’ with 3 + 1. Thusy' returnsmaxzTS, = k = y + 1, contradicting the
assumption that it returng < k.

(2) Let us now consider the case where € My,cmaarsirsg(p)m-seen. So either (i)r’
itself or (i) a sibling of v’ performs a read operation befopé. Assume that (i)’ it-
self performs a read, say’, beforep’. So sincev,, € Ny cmaarsisg(p)yMm-seen, ' re-
ceives a maximum timestampaxzT'S,» = maxTS, during read operatiop”. Due to

well-formedness (Definition 3.2.2)" — p’ and so, duringy’, v’ sends aREAD message

82

Nicolas C. Nicolaou——University of Connecticut, 2011

with m(p’, 1), s.ts = maxTS, > k to every servers € S. This message is received
by any servers € srvAck(p’) which according to Lemma 4.2.5 replies with a timestamp
m(p',1)s,r.ts > mazTS, > k. If m(p',1)s,..ts = k then the set of servers that reply
with the maximum timestampuazT'S,, to p’ is |mazTsSrv(p')| = |srvAck(p’)| > |S| — f.
Since every serves € srvAck(p') before replies t@/ addsv,- to its seen set, then predi-
cateSF-RPholds with3 = 1. If now m(p’, 1), ,/.ts > k, theny’ returns a valug such that
y=m(p',1)s,.tsory =m(p', 1)s,.ts—1andthusinany cage> k. Both cases contradict
the assumption that+ 1 = k.

In case (i), € NyyemazTsirsg(p)M-seen because a sibling of initiates a read operation
beforep’. As we discussed abovenazT'sSrv(p’)| > |maxTsSrv(p) N srvAck(p')| >
IS| — (B + 1)f and furthermore any server € maxzTsSrv(p) N srvAck(p’) replies
to p/ with a timestampm(p’,1)s,v.ts = k = y + 1. Let m(p,1)s, and m(p/, 1)
be the messages of a serverc maxTsSrv(p) N srvAck(p’), in maxTsMsg(p) and
maxTsMsg(p') respectively. We know thain(p,1)s,.ts = m(p’,1)s,.ts. Since
m(p,1)s, is sent beforem(p’,1)s,/, thenm(p,1)s,.seen C m(p/,1)s,7.seen. Thus,
NimemazTsMsg(p)M-5¢€N S NinemaaTsMsg(p)M-seen. Every server that replies ta, first
adds v, into its seen set and thusy,r € Ny, emaaTsirsg(pym-seen. Since though,v,.
was already iNN,,cmarrsisg(p)m-seen, it follows that | Ny, cpmaarsirsg(p) m-seen| >
| NmemazTsMsg(p) M-s€en| > B. I | NinemazTsisg(p) m-seen| > B, then| Ny emazrsisg ()
m.seen| > [+ 1. Since|maxTsSrv(p')| = |maxTsMsg(p)| > |S| — (8 + 1)f,
SF-RP holds with 8 + 1 and p’ returnsmazTS, = k = y + 1. If on the other hand
| NimemaxTsMsg(p) M-seen| = [then p performs an informative operation before return-

ing, sending then(p, 2), s.postit = k to every serves in the set|srvlnf(p)| > 2f + 1.

83

Nicolas C. Nicolaou——University of Connecticut, 2011

So, there is a serves € srvAck(p’) N srvlnf(p) that replies, by Lemma 4.2.6, with
am(p',1)s,.postit > k to p'. So according to Lemma 4.2.9/ returns a valugy >
m(p',1)s,.postit > k. Hence we derive contradiction based on the initial assiomhat
k=y+1.

Case 2(b): p satisfies the predicate with = |V| + 1. Since|]W U V| = |V| + 1 and

| NinemazTsirsg(p) M-seen| > B = V| + 1, it follows thatv,: € Ny emaatsirsg(p)™-seen.
Observe that the set of servers that reply gowith messages inmaxTsMsg(p),
|maxTsSrv(p)| > |S| — Bf > f. So as shown in the previous case (Case 2(ajgturns a

valuey > k deriving a contradiction. O

Theorem 4.2.13 Algorithm SFimplements an atomic read/write register in the SWMR model.

Proof. Since the writer, any subset of readers and ug ®ervers might fail by crashing,
we ensure termination in any execution of the implementalip letting any reader or writer
to wait for messages only fron&| — f servers during any communication round. All the
conditionsTS1- TS4 are preserved in any executiomy Lemmas 4.2.4, 4.2.10, 4.2.7, 4.2.12.
Thus, the order of operations satisfy all the atomicity pertips (Definition 3.2.5). Since both

termination and atomicity properties are preserved thdtréslows. O

4.2.4.2 SF is a SemiFast implementation

In this section we show that implementatior 8 a semifast implementation, that is, it
satisfies all the properties of Definition 4.1.1. We use theesaotation as in the previous

section. We first show thatrSatisfies propert$3of Definition 4.1.1.

84

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 4.2.14 For any executiof € goodexecs(SF, f), if p is a two-round read operation,

then any read operatign with R(p) = R(p’), such thap — p’ or p’ — p, must be fast.

Proof. Sincep’ may precede or succeedwe examine the two cases. We proceed by con-
sidering an executioi of SF that contains botly and p’, and we show that in each cage

is fast or the case is not possible. For the rest of the proo$tudy the timestamps returned
by the read operations since every value is associated withicue timestamp. Let us as-

sume that timestamfs = k is associated withval;, written by the unique write operation

Case 1: Starting with the case where — o’ there are two subcases to investigate: /(a)
observes a maximum timestamp equakt@nd (b)p’ observes a maximum timestarhpt 1.
Obviously in the second subcas#,is concurrent withw(k + 1) but w(k + 1) is not yet
completed.

The fast behavior of/ in the first subcase follows from the fact thatinforms every
servers in the set|srolnf(p)] > 2f + 1 with the timestampn(p, 2), s.ts = k. Sop’
witnessesgsrvAck(p') Nsrvlnf(p)| > f+ 1 postits equal td during its first communication
round. Since the maximum timestammzTS,, observed by’ is also equal td:, theny/,
according to Lemma 4.2.9, returnsax1'S,, no matter the validity o6F-RP. Moreover since
|srvAck(p)Nsrulnf(p)| > f+1any subsequent read operation witnesses at least one server
in srvlnf(p) and thusy’ completes without proceeding to a second communicationdou

Consider now the second subcase whérebserves a maximum timestamp equakte
1. From the implementation we know that a read operation maymesither the observed

maximum timestampazT'S,y or maxT'S,y — 1. Sincep’ returnsk, it implies that a decision

85

Nicolas C. Nicolaou——University of Connecticut, 2011

for returningmaxT'S,, — 1 is taken byp’. According to the implementation, a reader may
perform a second communication round only when it decidesetiorn mazT'S,. In any
other case the reader is not required to perform two comratiait rounds. S@’ returns

maxTS, —1in one communication round as desired.

Case 2:Consider now the case whese— p. Sincep performs two communication rounds, it
returns the maximum timestanip that p observed during its first communication round. On
the other hang'’ also returnsk, by either returningnaxzT'S, or maxTS, — 1. Sop' may
observe a maximum timestampaxT'S,y = k or mazT' S,y =k + 1.

Let us firstinvestigate the case whewnax7'S,, = k+1. Recall thap receives replies from
|srvAck(p)| = |S| — f servers. Since observes anaxT'S, = k, then ifmaxTS, =k + 1,
it means thatc + 1 is introduced to less thaifi servers in the system. In order fpf to
satisfy SF-RP there must exist amaxT'sM sg(p’) that contains messages of the servers in

maxzTsSrv(p'), such thatmaxzTsMsg(p')| > |S| — Bf for g € {1,...,|V|+ 1} and|V| <

181

7 — 2. Therefore we require thatwaxzT'sM sg(p')| = f. However sincémaxT'sSrv(p')| =

|maxTsMsg(p')| and|mazTsSrv(p')| < f, we have thatmazTsMsg(p')| < f and thus
the predicate does not hold fpt. Notice that for each read operatipfi — p (including p’)
observing a maximum timestampaz1'S,» = k + 1, SF-RPdoes not hold and hence no read
operation performs a second communication round inforrttiegervers with ostit = k+1.

So it follows that the second condition whether thererargit = k + 1 is false forp’ as well
and thusy’ returnsmaxT'S,, — 1 = k. As previously stated, if @' returnsmaxT'S, — 1, it

does so in one communication round.

86

Nicolas C. Nicolaou——University of Connecticut, 2011

It is left to examine the case whey€ observes anaxzTS, = k. Remember that
p performs a second communication round in two cases: (a) thdigate holds with
| NinemaaTsMsg(p) M-seen| = 3 and (b) it observes “insufficient” postits sent by a concutrre
read operation. For simplicity of our analysis we assumertbaead operation is concurrent
with p and thatp performes a second communication round because case (agisSince
¢’ returnsmaxT'S, = k then either (i) the predicate holds fpt or (ii) o' observed some
postit = k. Let us examine those subcases and show that in each/dadast or the case is
impossible.

Suppose that the predicate holds for So there is ams € {1,...,|V| + 1} and there is
ImaxTsMsg(p')| > |S|—Bf suchthat,,cimaarsnrsg(p)ym-seen| > B. 1 [V cmawrsnisg ()
m.seen| = (3 thenp’ proceeds to a second communication round informimgIn f(p’)| >
2f + 1 servers about the maximum timestamp is about to return;7'S,, = k. Sincep’ — p,
then |srvAck(p) N srolnf(p')] > f + 1, and thus,p observes “enough” postists equal to
k = maxTS, and does not perform a second communication round. Thisvewveentradicts
our initial assumption, rendering this case impossiblesforTherefore the predicate validity
is possible forp’, only if | My, ecmazrsirsg(py M-seen| > 3. This is the case though whepé
returns in one communication round as desired.

It remains to study the case wherereturnsmaxzT'S,, = k because of some postits equal
to k. There are two subcases to consider: (1Joes not observe more thgnt 1 postits so it
performs a second communication round anch(2pserves more thaf+1 postits and returns
in one communication round. The first subcase resulgsperforming only one communica-
tion round as described above contradicting our initiaagstion. In the second subcase

there is a read operatigif that is concurrent or precedgsand performs two communication

87

Nicolas C. Nicolaou——University of Connecticut, 2011

rounds. Since’ receives more thafi + 1 postits equal tenaxT'S,,, it returns in one commu-
nication round. Moreover, since we assumed that no reactiperis concurrent with, then
p" completes before the invocation pf Sop” will inform at least|srvInf(p”)| = 2f + 1
servers with a postit equal o Hence|srvAck(p) Nsrvlnf(p”)| > f + 1 and thusp returns
in one communication round leading to contradiction. O
We now show that Ssatisfies the fourth property of Definition 4.1.1. The follog proof

assumes that all the read operations are concurrent withiriteeoperation and yet are fast.

Lemma 4.2.15 There exists an executioh € goodexecs(SF, f) that contains at least one
write operationw(k) and the set of read operatiohs = {p : R(p) = w(k)}, such that

IIT| > 1, 3p € 11, p is concurrent withv(k) andVp € 11, p is fast.

Proof. Consider that each read operatjog II returns the timestamp written By(p) = w(k).
Recall that a read operatigireturns either the maximum timestam@.z7'S,, or maxT'S,—1.
So the timestamp is returned by either wherp witnessesnaxT'S, = k or when it witnesses
maxTS, = k + 1. Aread operation is fast in the following cases: (1) the jwaeé SF-RP
holds and Ny,,emaxtsirsg(p) M-seen| > B, or (2) more thary + 1 postits equal tonaxT'S,
witnessed, or (3) the operation returngi.z7’S, — 1. A read operation need performs two
communication rounds Whelm,, cynaa7sarsg(p) M-Seen| = (3 or whenp observes less than
f + 1 postits equal tenaxT'S, in the replies from the servers.

Let us assume, to derive a contradiction, that for any ei@t\t of Srthat contains a
write operationw(k), 3p € II that returnsi(p) = w(k) after performing two communication
rounds. Consider the following finite execution fragmertttis a prefix of¢, ¢,,. We assume

that ¢, contains the write operatian(k) performed by the writetw that writes timestamp.

88

Nicolas C. Nicolaou——University of Connecticut, 2011

Moreover, assume th&trvAck(w(k))| = |S|—~ f servers received th&#rITE messages from
w(k) in ¢, , wherel < v < |V| — 1. Thus the write operation is incomplete.

We extent nowp,, by the finite execution fragment; which containsy — 2 read oper-
ationspy, ..., py—2 performed byy — 2 readers each of them from different virtual nodes.
Let (r1,vp),. .., (ry—2,v,_,) b€ the identifiers of the readers that invoke the read opera-
tions. Furthermore every readgr;, v,,) receives replies from all the servers that reply to the
write operation. Hence each reader, v,,) witnesses amazT'sMsg(p;)| = |S| —~f and
an | NiemanTsMsg(py) M-seen| < v — 1 .and thus| Ny, emazrsirsg(p) M-seen| < 7. So the
predicateSF-RPis false for any reag; from (r;,), returning timestampnax7'S,, — 1 in
one communication round.

We further extend the execution fragment by execution fragmen, that contains
two read operations performed by two sibling processes,_;) and (r’,v,_1). Observe
that those processes are not siblings with any of the previeaders. Let the read oper-
ations p and p’ that are performed by the two sibling readers respectiveligs exactly f

servers that receive/RITE messages fromv(k). However, let them miss different servers.

For example, if the serversy, ..., sy receivedwRITE messages, thep skips the servers
Sf+1,...,s2p andp’ skips the servers,,...,sy. Notice now that both readers observe an
| NimemazTsMsg(p) M-5€€n] = | NpemaaTsisg(p) M-S€EN| = 7, since they receive mes-

sages from servers that also reply to the read operations. , p,—». However, both reads
p and p/, since they missf of the servers that receiveRITE messages, they witness an
|maxTsMsg(p)| = |maxTsMsg(p')| = |S| — (v + 1)f. SoSF-RPis false for them as

well and they returmmaxT'S,.q — 1 (resp.mazxTS,y — 1) in one communication round.

89

Nicolas C. Nicolaou——University of Connecticut, 2011

Finally we extendp, by ¢3 that contains two read operatiop$ by the readerr*, v,)
andp™ by the reader**, v,,1). Both readers are not siblings of any of the previous read-
ers. We do not make any assumption about the relation of therdads, that is, they may
be concurrent. Let both reads receive messages from alktivers that reply to the writer
and thusimazT'sMsg(p*)| = |maxTsMsg(p**)| = |S| — ~f. Recall that any server €
maxTsSrv(p*) and any serves’ € maxTsSrv(p*™) contain aseen = {w,v1,...,vy_1},
and before replying tp* andp**, they add~., andv,,; respectively in theiseen sets. Suppose
that the intersection 80, cmazTsisg(p+) M-seen| = v + 1 for p* and| Ny, emarrsirsg(p+)
m.seen| = v + 2 for p**, that is, the servers reply g before replying tg**. HenceSF-RP
holds by| NyemazTsirsg(or) M-5€en| > v | Mpemaatsmsg(pe) m-seen| > « for both reads
and thus they returmaxT'S,- = maxT'S,~~ = k in one communication round. Notice that
P, p** e Il sinceR(p*) = R(p™) = w(k).

Any subsequent read operatipnby a readefr, v,,) witnesses afvnazT'sMsg(ps)| >
IS| = (v + 1) f and| Nyuemaatsirsg(pr) M-s€en| > v + 2. So if py witnessesnaxT'S,, = k
thenSF-RPholds forp, and moreovep, returnsmazT'S,, = k in one communication round.
If p, returnsk even though it witnesses a maximum timestamy7'S,, = k + 1 it is also
fast since any read operation that returngz7'S,, — 1 is fast. So by this construction we
showed that there exists an executof SF containing a write operatiow(k) and all the
read operationg € II such thatk(p) = w(k) are fast, contradicting our initial assumption.
That completes our proof. |

We now state the main result of this section.

Theorem 4.2.16 Algorithm SF implements a semifast atomic read/write register.

90

Nicolas C. Nicolaou——University of Connecticut, 2011

Proof. We need to show that adye goodexecs(SF, f) satisfies all the properties of Definition
4.1.1. The properties (1) and (2) of Definition 4.1.1 areiatly satisfied since all the write
operations as implemented by @re fast and every read operation does not require more
than two communication rounds to complete. Propertiesr{@)(4) of the same definition are
ensured by Lemmas 4.2.14 and 4.2.15. Thus&ai/ SF satisfies all properties of Definition

4.1.1 and & is a semifast implementation. O

4.2.5 Quantifying the Number of Slow Reads

Algorithm Sr provides guarantees on the fastness of the read operatiangrecede and
succeed a slow read operation. However, guarantees ardveot fgr the read operations
concurrent with a slow read. Thus, multiple readers may & pler write operation. In this
section we evaluate the performance of our algorithm in $eofrhow many reads need to be

slow per write operation. We present both theoretical angigcal results:

(i) A probabilistic analysis of algorithm s and

(i) Implementation and simulation of algorithnFS

4.2.5.1 Probabilistic Analysis

For our probabilistic analysis we assume that for any readratjpn p we have

Pr[p invoked by some' € v,| = ﬁ That is, the read invocations may happen uniformly from

the readers of any virtual node. We also assume that readetsigormly distributed within
the virtual nodes. We say that everitappens with high probability (whp)Hr[e] = 1—|R|~¢,
for |R| the number of readers and> 1 a constant; we say that everttappens with negligible

probability if Pr[e] = |R|~¢.

91

Nicolas C. Nicolaou——University of Connecticut, 2011

In summary, we first investigate how the cardinality of setn of a specific server is
affected by the read operations. We show that if a serveceives:|V|log |R| read messages
without an interleaving write message, the=n set of s contains all the virtual nodes with
high probability. Given this result, we then present twadread write contention conditions:
(a) Low contentionf 4 f servers receive messages from a write operation beforirggany
read message, and (Hjgh contentionotherwise. We analyze the two conditions separately.
We show thaO(log |R|) andO(|R|) slow read operations may occur per write operation, with
high probability, under low and high contention respedgive

We use the notation presented in Chapter 3 and Section 4.2.4.

The setseen and fast read operations

We seek the number of read operations required, for a simgleisto record all virtual
nodes in itsseen set. We first present some definitions that characterizertteriog relation

of messages in an execution of the algorithm.

Definition 4.2.17 (Message Ordering)A messagen(r, k), s € M from process to server
s for an operationr, is ordered beforea messagen (7', z),y s € M from procesg’ to server
s for an operationt’ in an executiorf € goodexecs(SF, f), if action rev(m(m, k), s)p.s @p-
pears before the actiatav(m(n’, z),/ s)p s IN §|SFs. Otherwisem(m, k), s is ordered after

m(m’, 2)p s

Next, we define the notion afonsecutivaread messages. In brief, two read messages
received at serves are called consecutive ¥ did not receive any write messages between

them.

92

Nicolas C. Nicolaou——University of Connecticut, 2011

Definition 4.2.18 (Consecutive Read Message3wo read messages (p, k),s, m(p, 2), s
are consecutivein an execution{ € goodexecs(SF, f), if m(p, k), s is ordered before
m(p', 2)p s, andPrev(m),, s between actiomev(m(p, k), s)r.s and actionev(m(p’, 2),) s

in &|SFs.

In general, we say that a s€tM of read messages received by a servix consecutive,
if s does not receive any write message between the first andstheeéal message of the set
CM. Note that, by algorithm S the absence of a write message implies thaktae set ofs

is not reset. More formally:

Definition 4.2.19 (Consecutive Read Message SeA) set of ordered read messagéd/ C
M received at a serveg is consecutive in an executiof € goodexecs(SF, f), if
Vm(p, k)rs,m(p',2)r s € CM, m(p,k),s,m(p, z), s are consecutive read messages in

&| SFs.

Now we can compute the number of consecutive reads that@ueed to contact server

so that every virtual nodg; is included in theseen set ofs.

Lemma 4.2.20 For any executio§ € goodexzecs(SF, f), there exists constants.t. if server
s receivesu|V|log |R| consecutive read messages aritle state of the system whemeceives

the last of those messages, thei o[s].seen whp.

Proof. Recall that we assume thBt[p invoked by some € ;] = - Letk be the number

of reads. From Chernoff Bounds [74] we have

—s2.
Pr | # of reads from readers of group < (1 — 5)’—; <e 2ol (1)

93

Nicolas C. Nicolaou——University of Connecticut, 2011

where0 < § < 1. We computek, s.t. the probability in Equation (1) is negligible.

T AL B
2.~ 1
N Y Wg‘z og |R| (2)

Leté = 0.5. From Equation (2) we havie= 8 -~ - |V| - log |R|. We setu = 8 - v and we have
thatk = 1 - |V| - log |R|. If n|V|log |R| consecutive reads contact a serveat Ieast’“%‘m
reads will be performed by readers in graypwvhp, for any group/; and thus; € o|s].seen,
since theseen set of s has not been reset. O
Notice that the larger the constamtin the above lemma, the smaller the probability of

having a server that did not receive a read message from arrgacth every virtual node.

Lemma 4.2.21If in a states of some executiofi € goodexecs(SF, f), there exists se¥’ C S
s.t|S8'| > 4f andVs € S’ o[s].ts = y (from write w(y)) ando|s].seen = {w} UV, then any

read operatiom with R(p)=w(y) invoked aftero is fast.

Proof. From predicat&F-RPof algorithm S- (see Section 4.2.3) and the fact that < %—2

(thus|V| < ‘if‘ — 3), it follows that if a read operatiop observes
imaxTsMsg(p)| > |S| = [VIf = (V| +3)f = [VIf > 3f

thens < |V|. Suppose observesmazTsMsg(p)| > 3f and every serves with message in

maxTsMsg(p) replied tor with m(p, 1), ,.seen = {w} U V. Then,SF-RPholds forp for:

ﬂ m.seen| = |V|+1> .

memaxTsMsg(p)

So, for the read operationwith 2R(p) = w(y) invoked aftero , there are two cases for

the maximum timestampuaxT'S, observed byp: (a) maxT'S, = y, and (b)mazTS, >

94

Nicolas C. Nicolaou——University of Connecticut, 2011

y + 1. For case (a), since up foservers may failp observed afmaxzTsMsg(p)| > 3f with
NmemasTsMsg(p) M-s€€n| = [V| + 1. Thus the predicate holds for< [V| andp is fast. For
case (b) sinc&(p) = w(y) from algorithm &, p is fast. O
Note that if less thad f servers containeen = {w} UV, then a read operation may
observemaxTsMsg(p)| = 3f or |[maxTsMsg(p)| = 2f. If p observesmazTsMsg(p)| =

2f messages witkeen = {w} UV, SF-RP for p holds for |

memazTsMsg(p) T-5€€n| =
V| + 1= g andpis slow.

From Lemma 4.2.21 it follows that predica®&--RP naturally yields two separate cases:
(a) 4f servers or more contain the maximum timestamp, and (b) hessitf servers contain
the maximum timestamp. In both cases we can use Lemma 4&@mnd the number of read
operations needed untiten = {w} UV for all the servers with the maximum timestamp. To
obtain the worst case scenario we assume that thei@(ér&) reads concurrent with the first
slow read operation.

We now define formally the execution conditions that captheeidea behind the afore-

mentioned cases.

Definition 4.2.22 (Succesive Operations)Ve say that two operations, 7’ aresuccessiven
an executiort, if 7 and«’ are invoked by the same procgssandp does not invoke any

operationt” between-es(r) andinv(r’).

Next, we define the set of events that occur between two ssigeagperations invoked by

a proces9p.

95

Nicolas C. Nicolaou——University of Connecticut, 2011

Definition 4.2.23 (Idle Set) For any executiog and for any pair of successive operatians’
invoked by a procesg, we defineidle(r,) to be the set of all events that appeariand

succeed-es(r) and precedeénuv(n’).

Given the above definition we now define the contention camditthat affect our analysis.

These conditions characterize cases (a) and (b).

Definition 4.2.24 (Contention) Let p, o’ be any pair of successive read operations invoked by
areader. We say that an execution fragmehnhaslow contentionif for every setidle(p, p'),
Jdinv(w) € idle(p, p’) for some write operation, and3S’ C S, s.t. [S'| > 4f andVs €

S’ rev(m(w, 1)y s)w,s € tdle(p, p'). Otherwise we say that hashigh contention.

Slow reads under low contention

We consider the case of low contention where a set of at dglaservers receive messages
from a write operationv, before the first slow read operatign with %3(p)=w. For an im-
plementation to be semifast, any read operagibthat precedes or succeegswith i(p')=

R(p)=w, is fast. We now bound the number of slow read operations.

Theorem 4.2.251f in an execution¢ € goodexecs(SF, f), 3 statec and a set of servers

S’ C S, such that
o S| >4f,

o Vs e &, o[s]l.ts = m(w, 1)y s.ts andw € o[s].seen as a result of a write operatian,

and
e 7inv(p) beforeo in ¢ for any readp such thati(p) = w,

96

Nicolas C. Nicolaou——University of Connecticut, 2011

then there exists constants.t. whp at most: - [S| - |V| - log |R| readsy’, such thatR(p') = w,

can be slow.

Proof. For eachs € &', we examine two cases:

Casel: After s receives a write message fram s receives a se€M = {p1,...,ps} Of
consecutive read messages, $A.M| = p|V|log |R| andm(ps, k)s r.ts = m(w, 1)y s.ts,
wherem(py, k)5 is ordered after every other messag€in/. From Lemma 4.2.20 any read
p" with messagen(p', z),,» received aftemn(py, k), ., observesseen = {w} UV from s if
m(p', 2)s . ts = m(w, 1)y s.ts.
Case2: After s receives a write message fram s receives message(r, 1), s from p for
an operationr with m(m, 1), s.ts = y > m(w, 1), s.ts, before it receiveg|V|log |R| read
messages. It follows that a write operatiohthat propagates timestamphas been invoked.
Any ready’ that receiveg;, will either returny — 1 or y. From the construction of §if p’
returnsy — 1, p’ will be fast. Thus if a reag@’ contacts server afterm(r,1), s andR(p’) = w,
theny' is fast andn(w, 1), s.ts =y — 1.

From the above cases, we have a totgl ofS’| - |V| - log |R| < p-|S| - |V| - log |R| read
messages for the servers$h LetII be the set of the read operations that correspond to these
read messages. Cleaflf| < u - [S| - |V| - log|R| and any read operation Ii can be slow.

For any rea@’ invoked afterp, s.t.p’ ¢ 11 we have the following cases:

Case (): Ready’ receives at leasif replies withmazT'S, = m(w, 1), s.ts and observes
from Case 1N, cinawrsirsg(p)ym-seen = {w} UV. As discussed in Lemma 4.2.21< |V|

and thus bySF-RP, ' is fast andR(p’) = w.

97

Nicolas C. Nicolaou——University of Connecticut, 2011

Case (i): Ready’ receivesnazTS, > m(w, 1)y s.ts. From algorithm $ and the discussion
in case2, if R(p') = w, theny' is fast. O
Theorem 4.2.25 proves that under low contention, a write marfollowed by at most

O(log |R|) slow reads whp.

Slow reads under high contention

Here we deal with the high contention case, where a set ofthessl f servers receive
messages from a write operationbefore the first slow read operation operatiois invoked,
with R (p)=w. We examine the case whejig| = 'ijc' — 3, which is the maximum number of
virtual nodes allowed by algorithmrSRecall that if a reag receives replies froRf servers
with mazT'S, andseen = {w}UV, thenpis slow sincenazTsMsg(p) = |S|—(|V]|+1)f =
|S| — (‘if‘ — 2) f = 2f. In contrast with the low contention case, we show that inhiigé
contention case, the system reaches a state where all hreddsdeive thenazT'S from less
than3f servers are slow.

Note that according tof$ any read operation that succeeds a slow read and returns the
same value is fast. Thus, any reader can perform at most owasad that returns the value
and timestamp of the same write This gives a bound of at mogR| slow reads per write
operation. We next prove that under high contentjpnd f - |V| - log |R| reads may lead the
system to a state where all reads concurrent with the fingstidad can be slow if they receive

replies from less thaBf updated servers.

Theorem 4.2.26If in an executioné € goodexecs(SF, f), 3 statec and a set of servers

S’ C 8, such that

98

Nicolas C. Nicolaou——University of Connecticut, 2011

|S’| < 4f,

o Vs e S ofs]l.ts =m(w, 1)y s.ts andw € o[s].seen as a result of a write operation,

Vs € S’ receives asdUM| < u-4f - |V| - log |R| of consecutive read messages, and

Vs'e § =8, ols].ts <m(w, 1)y s-ts,

then any reag’ invoked afters will be slow if R(p') = w and|mazTsMsg(p')| < 3f.

Proof. For any serves € S’ if 1 - |V| - log |R| consecutive read messages are receivesl by
after o, wherey is taken from Lemma 4.2.20, then whp theen set ofs becomes{w} UV
after the last message is received.

If we consider such reads for all servers3f we have a total of - |S’| - |V| - log |R| <
w-4f - V| -log|R| read messages. After these read messages, the systensraeathe’
whereVs € §'. o'[s].ts = m(w, 1)y s.ts ando’[s].seen = {w} U V. As discussed in Section
4.2.5.1, any read operation that contacts less Bfaservers with the maximum timestamp, is
slow. This is possible, since up foservers may fail. O

From Theorem 4.2.26, observe that under high contentiorxecuéion relatively fast can

reach a state (afté2(log |R|) reads) that could lead 1O(|R|) slow reads.

4.2.5.2 Empirical Evaluation of SF

To evaluate our implementation in practice, we simulategrthm S using the NS2
network simulator ([2]). Our test environment consistedé¢ writer, a variable set of reader
and server processes. We used bidirectional links betweeiecdmmunicating nodes, 1Mb

bandwidth, a latency ofOms, and a DropTail queue. To model asynchrony, the processes

99

Nicolas C. Nicolaou——University of Connecticut, 2011

Percentage of 2comm
©w & o o N »

~

-

100

50

#R

a(i)

- ~ w IS
o oN o ow o s o

Percentage of 2comm

-

05

b(4)
Setting a: Stochastic simulations

o o N

~
w
8

N
3

Percentage of 2comm

w

~

alii)

Setting b: Fixed intesiraulations

b(ii)

Figure 7: Scenarios (Int = 2.3s, wint = 4.3s, and (ii) rInt = 4.3s, wint = 4.3s.

send messages after a random delay between 0 anet®.3According to our setting, only

the messages from the invoking processes to the servershamdplies from the servers to

the processes are delivered (no messages are exchanged traaervers or the invoking

processes).

Percentage of 2comm
© A @ o N @

~

a(iii)

Setting a: Stochastic simulations

Percentage of 2comm

05

-05

0 1 #1

b(iii)
Setting b: Fixed intesiraulations

Figure 8: Scenario (iiiy Int = 6.3s, wint = 4.3s.

100

Nicolas C. Nicolaou——University of Connecticut, 2011

We measured the percentage of two round read operationsuastoh of the number of
readers and the number of faulty servers. To measure thetieffieess of our approach we

manipulated three different environmental parameters:

(1) Number of Readers: Varying the number of readers allowed the evaluation of tag¢-s

ability of SF.

(2) Read and Write Frequency: This parameter controls the frequency in which reads and
writes are invoked. It comprise one of the most critical comgnts since it defines the

traffic load and the concurrency scenarios between R/Wbtpesa

(3) Number of Replica Host Failures: This component examines the robustness of the
algorithms and the performance degradation during malfgalure scenarios. Although
any participant may fail in the system, more interestinghaces are generated if we
allow the readers and writers to stay alive, and only perariter failures throughout the
execution of the simulation. Such rule will demonstrategbgormance of the algorithm
in the maximum traffic generation (by read and write operefipat the same time we

will examine the algorithm robustness on replica (senaitlifes.

Our simulations include 20 serverss{ = 20). To guarantee liveness we need to constrain the

maximum number of server failurgsso that|V| < % —2o0r|V| < ‘if‘ —3. Thus,f < %
In order to maintain at least one group’(= 1), f must not exceeé‘i—‘, or 5 failures. Thus,
in our simulations we allow up to 5 servers to fail at arbigrimes. We vary the number of
reader processes between 10 and 80. We use the positivediaragters Int andwInt (both

greater than 1 sec) to model the time intervals between amgtwcessive read operations and

101

Nicolas C. Nicolaou——University of Connecticut, 2011

any two successive write operations respectively. For apirements, we considered three

frequency simulation scenarios:

e (i) rInt < wInt: Frequent reads and infrequent writes,

e (ii) rInt = wint: Evenly spaced reads and writes,

e (iii) rInt > wiInt: Infrequent reads and frequent writes.

Each of the simulation scenarios (i), (ii), and (iii) was silered in two settings:

a. Stochastic simulations where the invocation of the next read or write operatiorhis-c

sen randomly within certain bounds determined by the fraguef each operation.

b. Fixed simulations where each read and write operation is invoked in a fixed tuitie

respect to its frequency.

Stochastic scenarios better resemble realistic conditianile fixed scenarios represent fre-
guent and bursty conditions.

We now describe the simulation results for each of the twinggst
Setting a: Stochastic simulations.Here we consider a class of executions where each read
(resp. write) operation from an invoking process is schedlat random time between 1 sec
andrInt (resp.wint) after the last read (resp. write) operation. Introducemgdomness in the
operation invocation intervals renders a more realiséimado where processes are interacting
with the atomic object independently. Note that under tbisirgy, for the three scenarios (i),
(i), and (iii), the comparisons betweeltint andwInt are satisfied stochastically. We present
the results for a single value afInt = 4.3 sec for write operations. For scenario (i) we

userInt = 2.3 sec, for scenario (ii) we uselnt = 2.3 sec, and for scenario (iii) we use

102

Nicolas C. Nicolaou——University of Connecticut, 2011

rInt = 6.3 sec. The results are given in Figures 7 and 8, setting a. Wanabthat the results
in this setting are similar, with the percentage of two-murads is mainly affected by the
number of faulty servers. In all cases the percentage ofrtwad reads is under 7.5%.
Setting b: Fixed interval simulations. In this setting the intervals between two read (or two
write) operations are fixed at the beginning of the simutatidll readers use the same interval
rint, and the writer the interval wint. This family of simtilens represent conditions where
operations can be frequent and bursty. Figure 7b(i), ihiss the case efint < wint, where
rint = 2.3sec. Here a read (write) operation is invoked by every readep(revriter) in the
system every-Int = 2.3sec (resp. wInt = 4.3sec). Because of asynchrony not every read
operation completes before the invocation of the write appen and thus we observe that only
4.5% of the reads perform two communication rounds. Figi@)7illustrates the scenario
whererInt = wint. This is the most bursty scenario since all operations, ceanrite, are
invoked at the same time, specifically the operations akied every-Int = wint = 4.3sec.
Although the conditions in this case are highly bursty (antikely to occur in practice), we
observe that only up to 60%o0f the read operations perfornctvmemunication rounds. Figure
8b(iii), illustrates the scenario whetelInt < rInt. In particular a read operation is invoked
everyrint = 6.3sec by each reader and a write operation evetint = 4.3sec. Given the
modeled channel latency and delays, notice that there i®moucrency between the read and
write operations in this scenario. So all the servers replgry read operation with the latest
timestamp and thus no read operation needs to perform adgeoammunication round.

Both scenarios shared a common trend: by increasing the enofibeaders and the num-
ber of faulty servers, the performance of the algorithm dégd. These findings agree with the

theoretical results presented in Section 4.2.5.1.

103

Nicolas C. Nicolaou——University of Connecticut, 2011

4.3 Limitations of Semifast Read/Write Register Implemenations

In this Section we present some restrictions that a semiifggementation imposes on
our system. First, we show that in algorithms that assumaping mechanisms like s a
bound on the number of groups (or in our case virtual nodesgégssary. Next, we specify
the number of servers that the second round of a read openmatist communicate with to
ensure atomicity. Then, we investigate whether semifaptadmentations can be developed
for environments that support multiple writers and muétiptaders. We show that such imple-

mentations are impossible.

4.3.1 Constraints on the Virtual Nodes and Second Round Comumication

As it is shown in [30], no fast implementations exist if thenmher of readersR in the
system is such thaik| > % — 2. Our approach to semifast solutions is to trade fast imple-
mentation for increased number of readers, while enabbnges(many) reads to be fast. Here
we show that semifast implementations are possible if ahdibtne number of virtual identi-
fiers (virtual nodes) in the system is less tH%h— 2. We show that the bound on the virtual
identifiers is tight for algorithms that: (1) consider eadue acting individually in the system
(as in [30]), and (2) consider weak grouping of the readeck $hiat no reader is required to
maintain knowledge of the membership of its own or any otlmeug. Throughout the section
we assume that the messages from the clients to the sereefianthe servers to the clients

are delivered (see Section 3.3).

104

Nicolas C. Nicolaou——University of Connecticut, 2011

Definitions and notation.

We consider a system wity| node groups (virtual nodes), such thfat % (to derive
contradiction). We partition the set of servététo |V|+2 subsets, calledlocks each denoted
by B; for 1 <i < |V| + 2, where each block contains no more thaservers.

We say that aincomplete operatiom skipsa set of blocksB.S in a finite execution frag-
ment, whereBS C {By, ..., Bjy42}, if : (1) no server inBS receives anREAD Or WRITE
message fromr, (2) all other servers receive messages and repty, @nd (3) those replies
are in transit. Acomplete operatiomr that is fast is said tekip a block B; in a finite execu-
tion fragment, wherd3; € {By,..., Bjy|42} if: (1) no server inB; receives &EAD Or WRITE
messages from, (2) all other servers receive the messages frand reply, and (3) all replies
are received by the process performing/Ve say that an incomplete operatiothat performs
a second communication routforms a set of blocksB S in a finite execution fragment,
whereBST C { By, ..., B4} if: (1) all servers inBST receive theNFORM message from
m and reply, (2) those replies are in transit, and (3) no seriveany blockB; ¢ BSI receive
anyINFORM messages from. A complete operatiorr that performs a second communication
roundinformsa set of blocks3 ST in an finite execution fragmenzS1 C {By, ..., By|42}
if: (1) all servers inBSI receive theNFORM messages from and reply, (2) no servers in
any blockB; ¢ BSI receive anyNFORM messages from, and (3) those replies are received
by the process performing. A complete operationr is said to beskip-freein an execution

fragment if for every blockB; in the set{ By, ..., Bjy|4+2}, all the servers in3; receive the

messages from and reply to them.

105

Nicolas C. Nicolaou——University of Connecticut, 2011

Bl D B1
B2 B2
-
m B3 [| B3
o [o []
o [] =[]
(vw) @ w(vw)
Complete write Incomplete write Complete write Incomplete write
operation wr operation wr, operation wr operation wr,

Figure 9: Left: Physical communication betweenand the servers ig(wr) and ¢(wry).
Right: Same communication using block diagrams.

Block Diagrams.

To facilitate the understanding of the proofs that follove provide schematic representa-
tions using block diagrams (e.g., Figure 9). We divide tlaim into columns each of them
representing an operation (possibly incompleteand at the bottom of each column we place
an identifier of the invoking process in the fofm v,.), wherer the actual id and, the virtual
id of the invoking process. Each column contains a set oingtes. For an operation if
the i*” row of the column contains a rectangle it means that the semeélock B; received a
READ, INFORM or WRITE messages from and replied to those messages. In other words we
draw a rectangle in thé" row of an operationr if = does not skip or informs the blodk;. If
a rectangle is colored white, it means that bldgkreceived only &READ or WRITE messages
from 7. A two-color rectangle (black and white) in th& row of an operationr declares
that the servers in block; receivedNFORM messages from. If the operation identifier in a

column is in a circle it means the operation is complete. @ifse the operation has not yet

106

Nicolas C. Nicolaou——University of Connecticut, 2011

completed. If the operation identifier is in a rectangle nsehat the operation is invoking the
informative phase and has not yet received the requireteszpl

We now show that)| cannot be greater or equal th@ — 2. The idea behind the proof
is to derive contradiction by assuming that semifast imgletations exist fof)y| > ‘if‘ —
2. We construct executions that violate atomicity and prigerof the semifast definition.
In particular we first assume an executi@nvhich contains a skip-free write operation. We
construct executions that can be extended,tthat contain fast read operations. We show
that in execution extensions where the value of the writeaim is propagated to less than
f servers, some fast read operations return the value wrlitégrothers return an older value
(since they may skip the servers with the maximum timestariiyg emphasize that the first
part of the proof can use the proof of Proposition 1 in [30] &tagk box with the assumption
of the skip-free write operation and the association of &rdisgroup id to each reader used.
However we choose to present the proof here in its entiratgdmpleteness. In the second

part of the proof we present executions that violate atdgniven in the presence of a slow

read operation.

Lemma 4.3.1 No semifast implementation exists if the number of node psoli| in the sys-

tem is> % — 2.

Proof. We proceed along the lines of Proposition 1 of [30]. We cam$tan execution of

a semifast implementatiod that violates atomicity. Namely we show that there exists an
execution forA where some read returigthe defined new value) and some subsequent read
returns an older value, and in particular the initial valueWe consider two cases: (Dy| >

2l —2and (2)|v| = 2! — 2. In the first case we show impossibility of the fast behavior |

107

Nicolas C. Nicolaou——University of Connecticut, 2011

V| > ‘if‘ —2, thus violating property 4 of Definition 4.1.1. In case (2) stw that there exists
an execution where atomicity is violated even in the preseria two-round read operation.
This violates property 3 of Definition 4.1.1.

Case 1:Since|V| > ‘TS — 2, it suffices to show that we derive contradiction in the caberne

V| > ‘TS — 1. So we can partition the set of servers i} + 1 blocks { By, ..., Bjy4+1}
where each block contains f servers. We provide the constructions we use for the needs of
this proof in the write and read operation paragraphs amlegpresent an execution scenario
based on those constructions that violates atomicity.

Write Operations. Let ¢(wr) be an execution fragment in which operatiofi) is completed

by w. Let the operation bskip-free this is the best case for a write operation and thus our
lower bound applies to all other possible cases. We definsessH finite execution fragments
which can be extended t(wr). We say that in the finite execution fragmefitory, ,») the
writer w invokesw(1), but all thewRITE messages are in transit. Then, foK i < |V| + 1,

we say that(wr;) is the finite execution fragment that contains an incompléte operation
that skips the set of block§B;|1 < j < ¢ — 1}. Observe that: (1) the finite execution
fragmentsp(wr;) and¢(wr; 1) differ only on blockB;, (2) since ing(wry) we do not skip
any block but all the replies are in transit, thefwr) is an extension of(wr;) where all
those replies are received by and (3) onlyw can distinguishp(wr) from ¢(wry). Figure

9 illustrates the communication between the wriieand the groups of servers in the finite
execution fragments(wr) and¢(wrs). The figure shows both physical communication and
the corresponding block diagram representation.

Read Operations. We now construct finite execution fragments for read opemati We

assume that every reader processbelongs in a different virtual identifier,,, denoted by

108

Nicolas C. Nicolaou——University of Connecticut, 2011

the pair(r;, v,,). Let ¢(1) be a finite execution fragment that extenglgur) by containing a
complete read operation by a reader with(igl, v,) that skipsB;. Consider nowy/(1) that
extendsp(wrz) by a complete read operation by the rea@gr v,) that skipsB;. Notice that
reader(ry, v,) cannot distinguisk(1) from ¢'(1) becauses(wr) and¢(wrs) differ atw and
block B, and read fromry, v,,) skips blockB;.

We continue in similar manner, starting frofi(1), and create execution fragments for
the rest of the readers in the system. In particular we definexacution fragmend(i),
for2 < i < |V| to extend¢/(i — 1) by a complete read operation frofn;, v,..) that skips
B;. We then construct finite execution fragment:) by deleting fromeg(i) all the rectangles
(steps) from the servers in bloék. In particular, as previously mentioned, execution fragine
¢'(i) extends¢(wr;+1) by appending that withi reads such that for < k& < i, (rg, v,)
skips the blockg B;| k < j < i}. Observe that since,v,,) cannot distinguish(1) and
¢'(1), it returns1 in both executions. Furthermore, sing€2) extends¢’(1), by atomicity
(ro,vyp,) returnsl. So(rq, vy,) returnsl in ¢'(2) since it cannot distinguisk(2) and¢’'(2).
By following inductive arguments we conclude that (), reader(r;, v,.,) returnsl. Thus,
for the execution fragment'(|V]), (ry|,vr,,) retumsl. An illustration of the following
execution fragments can be seen in Figure 10.

Finite Execution fragmenp(A). Here we consider the execution fragment|V|). As de-
fined abovegy'(|V|) extendsp(wry|41) by appendindV| reads such that for < k < [V,
(rk,vr,)'s read skips the block$B;| £ < j < |V|}. Observe here that all the read oper-
ations are incomplete except for the read operation of readg, V,»M>. Moreover only the
servers in blockB)y|;.; receivewRITE messages from the, operation ofw. Also, only By,

replies to the read operation of the readier, v,), and those messages are in transit. All other

109

Nicolas C. Nicolaou——University of Connecticut, 2011

o1 OO O E o1 HRERE
02 RN 02 0 O el
B] 83 R
. . B
= [N O OO o5 0o
W) V) (V) W) (V) (av)
o(A) @(B)
o1 I O I £ o1 I O i £
. nngER: . 000 ®
& L] e o3 L] ez
o i B4 M=
= O0NDOOO = 0o
W (V) (V) (V) @@@ W) vy (s vg)@ o) v)
»(C) o(D)
Q Block received the first 1111 | Block replied to the first Block replied to the second
§ (eplos e on vans. 11| recehed icss ropes. received thooe roplies.

Figure 10: Execution fragmentg A), ¢(B), ¢(C), ¢(D).

READ messages ofri, v,) are in transit and are not yet received by any other servet. Le
execution fragmenp(A) extend¢’(]V|) as follows: (1) all the messages send(by, v,,) and
were in transit, are received by the servers in blaBks. . ., B)y, (2) readerry, v,) receives
the replies from servers, ..., B}y, and returns from the read operation. Notice that since
Byy|4+1 contains no more thaifi servers, it means that readef;, v,) received no less than
|S| — f replies and should not wait for any more replies to return.

Finite Execution fragmenp(B). We consider as execution fragme#(tB) with the same
communication pattern ag(A) but with the difference that the; operation is not invoked

at all. Hence servers in block,y,,; do not receive anywRITE messages. Clearly only the

110

Nicolas C. Nicolaou——University of Connecticut, 2011

servers in blockBy|,, the writer and the readerss, v,) to (ry,vy,,,) are in position to
distinguish¢(A) from ¢(B). The readefry, v,), Since it does not receive any messages from
Byy|4+1 cannot distinguiskp(A) from ¢(B). So, since there is no writex() operation(ry, v,)
returns_L in ¢(B) and therefore returns in ¢(A) as well.

Finite Execution fragmentg(C') and ¢(D). Observe that iRp(A), reader(r;, v,) does not
violate atomicity even though it returnsand(r)y,,, V,»M> returnsl because the two operations
are concurrent. We construct now two more executions: éxecfragmenty(C') and¢(D)
which extend the execution fragmeitsA) and¢(B) respectively with a second complete read
operation from(ry, v,) that skipsBy ;1. Since the servers i)y, are the only ones who
can distinguishp(A) and¢(B) and since(r1, v;,)’s second read skipB)y;; then(ry,v;,)
cannot distinguistp(C) from ¢(D) either. Sinces(C') is an extension of(A) it follows that
the reader(r)y, v,) returnsl in ¢(C). Moreover(ry,v;,) returns_L since no write §.)
operation is invoked i (D). So since(ry, vy,) cannot distinguisky(C') from ¢(D), it returns

1 in ¢(C) as well. However, the read operation by, v,) succeeds the read operation by
(rv)s I/TW‘> that returnsl in ¢(C') and thusviolates atomicity This completes the proof of
Case (1).

Case 2:The next case that needs investigation is the equadity- Iifl —2. Since we are using
groups of nodes, it is possible that all the readers will begaoed in a single group. Consider
this situation for the following proof. As before, sinpe| = ‘TS — 2 we can divide the servers
into |V| + 2 blocks where each block contairfsservers. Since we only assume one virtual
node (V| = 1) then the total number of blocks is 3. We also consider theesaonstruction for
the write operation with the difference that thél) is not skip-free but skips the blodgy| .

In particularg(wr;) is the execution fragment that contains an incompléte) operation and

111

Nicolas C. Nicolaou——University of Connecticut, 2011

skips the set of block§ By, o} U {Bj[1 < j <i— 1}. As before,¢(wr;) is the execution
where all the server§B;| 1 < j < V| + 1} replied tow(1) and all those replies are in transit.
So ¢(wr) is the extension of(wr1) where all those replies are being received by the writer
w.

Let now describe a series of finite execution fragments tkinel ¢(wr). We say that
execution fragmen(el) extendss(wr) by a complete read operation from the rea@erv;,.,)
that skips blockB; . To preserve atomicity;, v,) returnsl. Consider now another execution,
¢'(el), that extendsy(wry) by the same read operation frofn, v,) that again skips3;.
Recall that only the writew and the servers in blocB; can distinguishs(wr) from ¢(wrs).
So since(ry, v,) skips the servers in the blodk,, it cannot distinguishp(el) from ¢/(el)
and thus returng in ¢/(el) as well. We now extend/’(e1) by execution fragmenp(e2) as
follows: (1) a complete inform(1) operation frofn,, .,) that skips the servers in the block
Byy|+2, and (2) a complete read operation from reagerv,,) that skips blockB;. The read
from (rq, v,) returnsl to preserve atomicity. Further consider the executionnfrexf ¢(e3)
which is the same witk(e2), but with the difference that the inform operation frgm, v,) is
incomplete and also skips blodk;. Notice thatp(e2) and¢(e3) differ at the readefry, v,)
and the servers in block; only. Since the readdr, v,.,) does not receive any messages from
By, it cannot distinguish the two executions. Thereforg v,) returnsl in ¢(e3) as well.

It now remains to investigate two more execution fragmepts;) and ¢(F). Let ¢(F)
extende(e3) with a complete read operation ks, v,). This read operation skips blodBs.
The read from(r, v,) cannot distinguisky(E) from ¢(e3) and so it returng in ¢(E) as well.
Executiong(F) has the same configuration @a&E) with the difference that no writeus) or

inform(*) operation is invoked by any process. §9, v,), (r2, vy,) and(rs, v,) return_L in

112

Nicolas C. Nicolaou——University of Connecticut, 2011

¢(F'). However, sinces(E) and¢(F) only differ at block By, and since(rs, v,,) skips Ba,

it cannot differentiate the two executions fragments. Heie;,v,,) returns_L in ¢(E) as

well. Therefore,p(E) violates atomicitysince(ry, v,) that succeedérs, v,,) returnsl and

(rs, vy,) returns an older value, namely. This completes the proof. O
Per Lemma 4.3.1 semifast implementation are possible &y i< % — 2. In addition,

the following lemma shows that the existence of a semifapiementation also depends on

the number of messages sent by a process during its secomducooation round.

Lemma 4.3.2 There is no semifast implementation of an atomic registerrnéad operation

informs 3 f or fewer servers during its second communication round.

Proof. Since|V| < ‘if‘ — 2, we get thaiS| > f(|V| + 2), and hence in order to maintain
at least one reader in the systeifi| > 3f. Suppose by contradiction that there exist a semi-
fast implementatiom which requires a complete read operation to send equif I6FORM
messages during its second communication round. Recalhaeader that performs the in-
formative phase, in order to preserve the termination ptgpghould expec?f replies (since
up to f servers might fail). We proceed by showing that there existexecution ofd where
a read operation returrisand performs a second communication round and a subseeaeht r
operation returng and again needs to perform a second communication roundnplete,
violating the third property of the semifast implementation.

Consider a finite execution fragmep(l) where writerw invokes aw(k) write operation
and writes the valueal;, on the atomic register. We extegd1) by a read operatiop which
performs two communication rounds and retutrag,. During the second communication

round, p sent messages 8 servers. Onlyisrvlnf(p)| = 2f servers getNFORM messages

113

Nicolas C. Nicolaou——University of Connecticut, 2011

from p and replied to those messages. Sirfcef the servers might be faulty, in order to
preserve the termination properpyeturns after the receipt of those replies. We further ekten
¢(1) by a second read operatigf, which receives messages framrvAck(p’)| = |S| — f
servers and missesof the servers inrvinf(p) such thatsrvAck(p’') N srolnf(p)| = f.

We now describe a second finite execution fragnggy which is similar top(1) but with
the difference thap is incomplete and onlysrvinf(p)| = f servers received thelFORM
messages from. In this execution,y’ receives replies from all the servers that have been
informed byp, namely|srvAck(p’) N srvlnf(p)| = f. Note thatp’ cannot distinguishp(1)
andg(2) in terms of the number of servers informedySincep’ observed that only servers
were informed byp in ¢(2) and sincep might crash before completing/ must perform a
second communication round to ensure that any read operatio o’ — p” that receives
replies from|srvAck(i)| = |S| — f servers will not observesrvAck(p”) N srvlnf(p)| =0
and thus return an older value violating atomicity. Obvlguke fact thatp’ proceeds to a
second communication round does not violate the third ptgpe Definition 4.1.1 sincep
andp’ in ¢(2) are concurrent. Sincg cannot distinguish(1) and ¢(2), o’ must perform a
second communication round if(1) as well. However, inp(1), p — p’ and thus they are
not concurrent. Sg(1) violates the third propertycontradicting the assumption that there is
a semifast implementatioA, where any read operation needs to inforn3 f servers. O

We now state the main result of this section.

Theorem 4.3.3 No semifast implementationl exists if the number of virtual nodes in the
system is> ‘if‘ — 2 and if 3f or fewer servers are informed during a second communication

round.

114

Nicolas C. Nicolaou——University of Connecticut, 2011

Proof. It follows directly from Lemmas 4.3.1 and 4.3.2. O

4.3.2 Impossibility of Semifast Implementations in MWMR ervironment

In this section we show that is not possible to obtain a seifaplementation of atomic

registers in the MWMR setting in the presence of server fiadu

4.3.2.1 Preliminaries.

For the MWMR setting we relax the definition of a semifast ieméntation as presented
for the SWMR setting, by allowing read operations to perfonore than two communication
rounds (i.e., instead of two rounds we allow multiple roumdBefinition 4.1.1).

As presented in Section 4.2.4 operations can be partiadlgred with respect to the values
they write or return. A MWMR semifast implementation sa@sfatomicity (Definition 3.2.5)

if any execution satisfies the following conditions:

MW?1: if there is a write operation (k) that writes valueval;, and a read operatiop

such thatw(k) — p, and all other writes precede k) thenp returnsval,.

MW?2: if the response steps of all write operations precede tmcation steps of the

read operationg andy’, thenp andp’ must return the same value.

MWS3: If the response steps of all the write operations preceeéntiocation step of a

read operatiom thenp returns a value written by some complete write.

For the reasons discussed in Section 3.3, we assume the cocatnn scheme where a server
replies to aREAD (Or WRITE Or INFORM) message without waiting to receive any otR&nD

(or wRITE or INFORM) messages. In this proof we say that an operation perfomesdaphase

115

Nicolas C. Nicolaou——University of Connecticut, 2011

during a communication round if it gathers information nmetjag the value of the object at
that round. We say that an operation performsride phaseduring a communication round if
it propagates information regarding the value of the objeetny subset of the servers at that
round. A read phase of an operation (read or write) does ndifynthe value of the atomic
object. On the other hand a write phase of an operatibehaves as follows according to its
type: (1) a new, currently unknown value is written to theisesy, if 7 is a write operation (2)
only previously known values are written to the register i a read operation. Note that by
“value of the atomic objectwe mean the set of parameters that together describe tleeoftat
the atomic register. Any operation phase that modifies thasameters (and thus the state of
the atomic register) is considered to be a write phase.

We say that a complete operatianskipsa servers if s does not receive any messages
from the procesg that invokesr and the procesg does not receive any replies fram All
other servers that receive tREAD, WRITE Or INFORM messages from reply to these, and
receives those replies. All other messages remain in treBisice we assume thgt= 1, any
complete operation may skip at most one server. We say ttatenation iskip-freeif it does
not skip any server.

Since we consider read operations that might perform meltpmmunication rounds to
complete, we denote byg the j** communication round (phase) of a read operagignin
order to distinguish between the read and write phases, éét w{ denote that thg'”* phase
of the readp; is a write phase. An arbitrary delay may occur between twcsqadnp{ and
p{“ where other read (write) operations or read (write) phasghtnbe executed. So we

define assr;(j — 1) a set of operation phases (read or write) with the propedyahy phase

116

Nicolas C. Nicolaou——University of Connecticut, 2011

pr e sri(j— 1), pt — p{ A setsr;(7 — 1) might be equal to the empty set containing no

operations.

Claim 4.3.4 A read operatiorp that succeeds any write operatiatix) and write phasev;
from an operationr # p, returns the value decided by the read phase that precediestit

write phase.

Proof. The claim follows from the fact that the read operation sedseall the write operations
and from atomicity propertieMW1 andMW?2. Let assume that readerperforms the read
operationp which in turn requires» communication rounds to complete. Furthermore let
assume that’ is the lastwrite phaseof p and for simplicity of analysis we also assume
that this is the only write phase of The result is still valid when multiple write phases are
performed byp.

Sincep succeeds all write operations then any read phéséor 1 < g < n wheren the
total number of phases from will gather the same information about the value of the aom
register. So according tds local policy and atomicity propertiW3 every read phase that
precedes.’ will decide the same value, sayl to be the latest value written on the register.
Let p’~! be the last read phase operation that precedesAccording to the assumption, a
write phase of a read operation propagates the value gditierthe system. So’ propagates
valuewval which was observed by the read phases. Siricperforms a write operation on the
register then any read phase j + 1 < ¢ < n, such that,’ — p’ must decideal to preserve
atomicity propertyMW1. So the last read phag& of the read operation returnsl as well

and henceal is the value returned by operatipn That completes the proof. O

117

Nicolas C. Nicolaou——University of Connecticut, 2011

4.3.2.2 Construction and Main Result.

We now present the construction we use to prove the maintregut show execution
constructions assuming that two writets &ndw’), and two readers-(andr’) participate in
the system. We assume skip-free operations since they @m®ripe best case scenario and
thus a lower bound for these is sufficient. Note here that ¢mstcuctions of executions with
fast read operations are similar to constructions predent&0]. We use this approach and we
present a generalization that contains read operatiofssivile or multiple communication
rounds suitable for our exposition. The main idea of the peaploits executions with certain
ordering assumptions which may violate atomicity. In atar we assume executions where
the two writers perform concurrent and interleaved writeragions. Those write operations
are succeeded by a read operatigrinvoked byr, and in turnp; is succeeded by a read
invoked byr’. We analyze all the different cases in terms of communinatiinds forp; and
p2. We show that in each case, a single server failure may caols¢ions of atomicity.

Let us first consider the finite execution fragmentonstructed from the following skip-
free, complete operations: (a) operatiof®) by «’, (b) operationv(1) by w, and (c) operation
p1 by r. These operations are not concurrent and they are exeautte iorderw(2) —
w(1) — p1. By propertyMW2, operationp; returnsl.

We now invert the write operations of the above execution wadbbtain executior’,
consisting of the following skip-free, complete operation the following order: (a) operation
w(1) by w, (b) operationu(2) by w’, and (c) operatiop; by r. As before, these operations are

not concurrent. So in this case, by propawtyW?2, operationp; returns2.

118

Nicolas C. Nicolaou——University of Connecticut, 2011

The generalization, of ¢ when the reader performsn communication rounds is the

following, for1 < i < n:
(a) operationv(2) by w’,
(b) operationu(1) by w,
(c) aset of read operations(: — 1) from reads different thap,, and
(d) aread or a write phasgi(orw! resp.) of thep; operation from reader.

Notice that forn = 1 and forsr(0) = () no process can distinguish, from ¢. Clearly at the
end of phase?, by propertyMW2, the operatiorp; from r returnsl.
Similarly we define thep;, to be the generalization ef , where the write operations are

inversed:
(a) operationu(1) by w,
(b) operationu(2) by w’,
(c) aset of read operations(: — 1) from reads different thap,, and
(d) aread or a write phasgi(or w! resp.) of thep; operation from reader.

In this case by the end of phagg, and by propertyMW2, the p; operation returng.
If we assume now, without loss of generality, that the lasticwnication roungh of r in
¢4 is a write phase, thus?, thenr should not be able to differentiatg, from the following

execution, forl <7 <n —1;

(a) operationw(2) by w’,

119

Nicolas C. Nicolaou——University of Connecticut, 2011

(b) operationu(1) by w,

(c) aset of read operations(: — 1) from reads different thap,,

(d) aread phasg, of the p; operation from reader,

(e) a set of read operations(n — 1) from reads different thap;, and,
(f) operationw(1) by wf.

By operationwv(1), the reader tries to disseminate the information gathered from theiptess
rounds regarding the value of the atomic object. Similartycan defin@; with the difference
that reader- will perform aw(2) operations during its last communication round.
Obviously we have the same setting as in Claim 4.3.4 and dodosame claim the decision
for the return value must be made/fi—'. Notice that the decision of taken inp? ! is not
affected from the operations #r(n — 1). So we can assume thas and¢;, contain only read
phases by.. According now to propertydW2, r will decide 1 by the end ofp’f‘1 in ¢, and
2 by the end oto’f‘l in ¢’g. Since we assume that we only haesaders in the systemand
7', and assuming that does not perform any read operation in eitgror ¢}, then the sets

sr(i —1) =@ for 1 < i < nin both executions, andgb;.

Theorem 4.3.5If the number of writers in the system & > 2, the number of readers is

R > 2,andf > 1 servers may falil, then there is no semifast atomic registptémentation.

Proof. It suffices to show that the theorem holds for the basic casgeW = 2, R = 2, and
f = 1. We assume that there exists a semifast implementation ardkvive a contradiction.
Let w andw’ be the writers;- and’ the readers, andl, ..., s|s| the servers participating

in the system. We show a series of executions and analyzeiffagedt cases of a semifast

120

Nicolas C. Nicolaou——University of Connecticut, 2011

implementation where writers are fast and readers perfocommunication rounds. We show
that in all of these cases atomicity can be violated.

We now define a series of finite execution fragmefts), wherel < i < |S| + 1. We
assume that the two write operations framandw’ are concurrent. After the completion of
both write operations a; read operation, which may involve multiple communicationrrds
(phases), is invoked by. For every¢(i) the set of read operations (0) = () and so they;
from r is the first read after the completion of the write operatidbsfine¢(1) to be similar
to ¢,. Then we iteratively define(: + 1) to be similar tog(i) except that servey; receives
the message fromy before the message fromf. In other words the arrival order of the write
messages are interchangedsjn Since the operations frome, w’ and each communication
round byr are skip-free, they can differentiate betwegn) and¢(i + 1). Also, s; is the only
server that can distinguish the two executions since wanassiw communication between the
servers. Obviously, by our construction, no server canngjsish ¢(|S| + 1) from ¢;, since
every server received theRrRITE messages in the opposite order tharpin Thus,r cannot
distinguish the two executions either, and so it ret@rs ¢(|S| + 1) after the completion of
its last communication round. Therefore, executigsS| + 1) and ¢, differ only atw and

w'. Sincep; returnsl in ¢(1), 2in ¢(|S| + 1) and1 or 2 in ¢(i) (2 < i < |S]), there are two

executionsp(m) andg(m + 1), for 1 < m < |S|, such that the reag returnsl in ¢(m) and
21in ¢(m + 1) at the end of the same communication round.

Consider now an execution fragmef{tn)’ and an execution fragmentm + 1)” that ex-
tend¢(m) andg(m + 1) respectively by a read operatipn from r/ that skipss,,, during all its
required communication rounds. On the constructed exatsitive analyze the cases of semi-

fast implementation. Recall that we investigate the casheofemifast implementation where

121

Nicolas C. Nicolaou——University of Connecticut, 2011

we allow the readers to performcommunication rounds and write operations are fast (only
one communication round). We examine the different possdicsknarios during executions

¢(m)’ andg(m + 1)":
(1) bothp; andp- are fast in both executions,
(2) p2 performsk communication rounds if(m) and¢(m + 1)” andp; is fast,
(3) p1 performsn communication rounds in both executions ands fast, and
(4) bothp; andps performn andk communication rounds respectively.

We assume that the processes decide to perform a second odratian round according to
their local policy.

Case 1:In this case both reads are fast and thus requiring only omemzmication round to
complete. The read operati@a cannot distinguish the two executiongm)’ and¢(m + 1)”
since it skips the only serves,f,) that can differentiate them. So the readeturns, according
to propertyMW?2, 1 in ¢(m)" and so it returnd in ¢(m + 1)” as well. Howeverp; cannot
distinguish the executiong(m + 1) and¢(m + 1)”, and so, since it returrsin ¢(m + 1), it
returns2 in ¢(m + 1)” as well. Henceg(m + 1)” violates propertyMW?2.

Case 2:In this casep, performsk phases in executiongm) and¢(m + 1)”. Since all read
phases by- skip the serves,,, then none of them is able to distinguish executidm)’ from
¢(m + 1)” sinces,, is the only server who can differentiate them. Thuisretuns the same
value in both executions. Since, according agaik¥w?2, p- returnsl in ¢(m)’ then it returns
1in ¢(m + 1)” as well. Again,p; cannot distinguisk(m + 1) from ¢(m + 1)” so it returns

21in ¢(m + 1)” as well. Thus, propertMW?2 is violated in this case too.

122

Nicolas C. Nicolaou——University of Connecticut, 2011

Case 3:This is the case wherg performsn phases to complete and is fast. Since all the
phases by, are read phases, skip-free and precegdehenp,; cannot distinguish execution
¢(m) from ¢(m) andp(m + 1)” from ¢(m + 1). Therefore,p; returnsl in ¢(m)’ and2 in
¢(m+1)". On the other hangh, returns (according to propertyW2) 1 during¢(m)’. Since
all n phases of are read phases in both executigiis:)’ and¢(m-+1)" , then no server, writer
orr’ can distinguish each phase and they only differ. 8o, onlys,, differentiatesp(m)’ from
¢(m + 1)”. Since thoughps skipss,,, it cannot distinguisk(m)’ from ¢(m + 1)”. Thus, it
returnsl in ¢(m + 1)” as well violating propertMW2.

Case 4:Similarly to case 3p; returnsl during¢(m)’ and2 during ¢(m + 1)”. With the same
reasoning as in case 3 and since all phasgs skip the servek,,, no communication round
of po can distinguishp(m)’ from ¢(m + 1)”. So, p2 returns1 in both executions violating

propertyMW2. This completes the proof. O

123

Chapter 5

Trading Speed for Fault-Tolerance

In Chapter 4 we showed that by not restricting the numberadee participants does not
preclude fast operations in an atomic R/W register implgatem. It is interesting to know
how the replica host access strategies affects the fastfiese operations in the system. In
the sections that follow we provide an answer to this quastieirst, we revisit the assump-
tions made on replica organization by (semi)fast implemtgonis. Then, we examine whether
(semi)fast implementations are feasible assuming rephbea organized in generalquorum
construction. We show that a common intersection amongubeums of the quorum system
is necessary. Such intersection implies that a singleagfdilure may collapse the underlying
quorum system. To increase fault-tolerance, we introdusevafamily of implementations,
we callweak-semifastWe present a new weak-semifast algorithm that implemengt@mic,
SWMR register and trades the speed of some operations fitttdéerance of the service. We
prove the correctness of the proposed algorithm and werobtapirical measurements of its

operation latency.

124

Nicolas C. Nicolaou——University of Connecticut, 2011

5.1 Revisiting Replica Organization of (Semi)Fast Implemetations

Operations in (semi)fast implementations of atomic R/\Wstegs, as introduced in [30]
and Chapter 4, relied on voting techniques for accessingapiag subsets of replica hosts.
For this reason, the participants of both algorithms needegliantify and know in advance
the maximum number of failures they could tolerate. The @ngtlin [30] claimed that their
algorithm tolerated up tg < '%' server failures. By the constraint on the number of readers
however, we observe that:

S|

]R]<7—2:>f<

S
|R|+ 2

Thus, in order for their algorithm to accommodate at leasti®ader participants, the number
of server failures had to be bounded by '%'. In general, the fault-tolerance of the algorithm
in [30] was degrading proportionally to the number of reguhaticipants in the system. A bet-
ter fault-tolerance was achieved in the semifast impleatemts of Chapter 4 since unbounded
number of readers were supported in jusirgglevirtual node. Therefore, even if the number
of virtual nodes was bounded by| < ‘if‘ — 2, the algorithm could tolerat¢ < @ server
failures regardless of the number of readers in the system.

Despite this improvement, none of the two approaches aethidve optimal resilience
obtained by Attiya et al. [9] that toleratefl < '%' failures. This fact demonstrates a possible
relation between the failure pattern and thus, replica tiggtnization, with operation fastness.
Given that the approach of [9] was readily generalized frating and majorities to quorum
systems (e.g., [66, 68]), and given that every voting schgiglds a quorum system [25], one

may ask: What is the fault-tolerance of fast implementations deppya general quorum-

based framework?

125

Nicolas C. Nicolaou——University of Connecticut, 2011

The work in [53] introduced the properties that a quorum trole§ion must possess to
enable fast R/W operations in SWMR atomic register impletat@ns. However, the tech-
nigues they presented relied on synchronization assungpéind operation timeouts. So [53],
as well as [30] and Chapter 4 of this thesis, neglected to eeathe specific properties of a
general quorum constructiothat may enable fast operations in atomic R/W register imple
mentations. Answering this question may lead to more coxmpl®rum system constructions
that may allow fast read and write operations in completsiynahronous and unconstrained

environments.

5.2 On the Fault-Tolerance of (Semi)Fast Implementations

In this section we investigate whether it is possible to iobfast or semifast quorum-
based implementations of atomic read/write register. Waddan examining the fault-tolerance
of such implementations when we assume a general quoruntrgctisn and we allow un-
bounded reader participants.

Below we discuss our results regarding quorum-based fassamifast implementations
that respect our failure model and the observations we nra@&ection 3.1.4. We assume,
w.l.0.g., that every quorum-based atomic register implaaten utilizes a mechanism to es-

tablish when a value was written “later” than a value’ (or v’ is “older” thanwv).

5.2.1 Fast Implementations are Not Fault Tolerant

We now state the quorum property that is both necessary difidiesut to obtain fast

quorum-based implementations.

126

Nicolas C. Nicolaou——University of Connecticut, 2011

The first lemma shows that if there is a common intersectidwéeen the quorums of the

underlying quorum system then we can obtain quorum-bastdnfiplementations.

Lemma 5.2.1 If for a quorum systen) it holds thatﬂQEQ Q # (), then any quorum-based

implementation of an atomic registdrthat deploysQ can be fast.

Proof. The fact that the common intersection is sufficient for fagplementations follows
from a trivial implementation: each read/write operatiamtacts (only) the servers in the
common intersection and returns the latest value observéitkifirst communication round.
Notice here that according to our failure model, at leashglsiquorum is correct and thus all
the servers of the common intersection must remain aliviedtine execution. Atomicity is not
violated since every read/write operation will gather la#l servers in the common intersection
and furthermore all operations complete in a single comoatign round. O
Next we show that we cannot obtain fast quorum-based impittiens if the underlying

guorum system does not have a common intersection.

Lemma 5.2.2 A quorum-based implementation of an atomic registéhat deploys a quorum

system/@Q| = n and support$R| > n cannot be fast if) satisfies: ﬂ Q = 0.
QeQ

Proof. Let |Q| = n and letQ;, for 1 < i < n, be the identifiers of the quorums @ We are
going to proof by induction on the size of the quorum sysf@rthat we cannot obtain a fast
quorum-based implementation if the underlying quorumesypsp) does not have a common

intersection.

Induction Basis By the definition of a quorum system, for any two quoru@s@; € Q :
Qi NQ; # 0. Thus, our inductive step examines whether all operatidres quorum-based

implementation whetiR| = |Q| = 3 andQ; N Q2 N Q3 = 0 can be fast.

127

Nicolas C. Nicolaou——University of Connecticut, 2011

Consider the following executions. Lé&g be a finite execution of a fast quorum-based
implementationA. Let (o, write(v),,,o’) be the last step that appearséin for some value
v. Thus, the last step ofy is an invocation of a write operation(v). Let &, be a fi-
nite execution fragment that starts with the last stdtef ¢, and ends with a state where
sent(w(v), Q1 N Q2)yw. That is, all the servers i@, N @, receive messages from(v). Let
us assume w.l.0.g. that only the send and receive eventstfrenvriter to the servers appear
in &. The concatenation @ and¢], yields the executio;. Since@; N Q2 then¢ is not
empty and hence, is not the same a§;. Similarly we assume tha] is a finite execution
fragment that starts with the last statecpfand ends with a state whesent(w(v), Q1) Let
&, be equal to the concatenation&fand¢]. Furthermore leto”, write-ack,,,, ™) be the last
step ofé, whereo” the last step of;. In other words the write operation completes by the end
of &.

Consider now the extension of executigagndé, by a set of read operations. In particular
let executiont, be extended by an execution fragment that contains theafisitpoperations:
(1) a complete read operatign from r; thatscnt(p1, @Q1)r,, and
(2) a complete read operatiga from ry thatscnt(p2, Q2)r,-

We call the new executioi\(§3). Let p; — po. Sincew(v) is completed irg, thenw(v) —
p1 — p2in A(&). Clearly by the definition of atomicity(v) < po andw(v) < p; and thus,
both p; andp, have to return the valuewritten byw(v). Notice thatp; observes this value in
all the servers of);, whereas, observes this value in the servers of the interseaiom Q.

We now obtain executior (¢;) by extendings; with an execution fragment that contains
the following operations:

(1) a complete read operatign from r; thatscnt(p1, Q1)r,,

128

Nicolas C. Nicolaou——University of Connecticut, 2011

(2) a complete read operatign from ry thatscnt(pa, Q2)r,, and

(3) a complete read operatign from r3 thatscnt(ps, Q3)rs-

Let p; — p2 — p3. Recall thaté, is the extension of; that includes send and receive
events for any server € Q1 — (Q1 N Q2). Since the write operation is fast, any server in
Q1 N Q- receive a single write message from the write operation. sTthe state of every
servers € Q1 N Q2 is the same by the end of bath and¢; . This is the same for every server
s € Q2 — (Q1 N Q2) that does not receive any message from the write operatiencé] any
server in(), has the same state by the end of bgttand¢;.

Let us now examine how the state of the servers changes lagtentocation of the first
read operation. Since; does not receive any messages from any procegsandé; then the
state ofr; is the same by the end of both executions. Thus, the samesdvemt the invocation
to the end of the first communication round (including reg@osince its fast) gf; appear in
both A(&;) and A(&1). So any server i, N Q2 receive the same messages f@rin both
executions. Thus, the state of all the server@inat the response step pf is also the same
in A(&2) andA(&). Henceps, since it strictly contacts)s, cannot distinguistA (&) from
A(&). Thus, since it returns in A(&), it returnsv in A(&;) as well. In order to preserve
atomicity p3 has to returrv in A(&;) as well, sinceps — p3. According to our assumption
Q1N Q2N Q3 = 0. Thus no server iR; received any messages framw) in A(&;) but some
of them received messages fragmandp,.

Lastly, consider the executiahwhich is similar to&, but it ends before the invocation
of w(v). In other words, whil&, ends with the stefo, write(v),,, o’), £ ends with stater.
Observe that since no messages were delivered to the sarveisher{ nor &y, then the state

of every serves € Siso[s] = o'[s]. Let A(£) be the concatenation gfwith the execution

129

Nicolas C. Nicolaou——University of Connecticut, 2011

fragment that contains the operations p, andps as inA(&;). Since,Q1 N Q2 N Q3 =
then¢, contains no receive or send events for any sesverQs;. So, the state of every server

s € (Y3 at the end of; is the same as the stateét the end of, and subsequently the same
as the state of at the end of. Thus, with similar arguments as before, we can conclude tha
the state of every serverc Q3 is the same in both\ (¢;) andA (&) at the response step pf.
Sinceps strictly contacts?s, it cannot distinguish the two executions. Hence, sincetitrned

v in A(&) then it returnsv in A(§) as well. But according to our constructiar(v) is not
invoked in¢. So atomicity is violated because the read returns a vaktevihs not written.
That contradicts our initial assumption that we can obtast fjluorum-based atomic register

implementations whe®; N Q2 N Q3 = 0.

Inductive Hypothesis:For our induction hypothesis we assume that we cannot offasin
quorum based implementations whighl = |R| = n — 1 and(yco @ = 0. From Lemma

5.2.1 it follows that ifQ satisfiesﬂQEQ Q # (), then any algorithm that deploy@® can be fast.

Inductive Step:For our induction step we examine the case wh@e= |R| = n. By our
induction hypothesis we know that we cannot obtain fast @mgntations ifQ| = n — 1 and
ﬂ?:_f Q; = 0; otherwise, ifﬂg‘:—f Q; # 0 and by Lemma 5.2.1, any algorithm can be fast.
So we assume that we can obtain fast quorum-based impIeuimaE;txivherﬂ?:_l1 Qi # () and
(ﬂ?:_f Qi)NQn =, Qi =0, forQ; € Q.

We consider a generalization of the execution presentdtkibasic step. In particular, we
start from¢, that ends with the stefw, write(v),,, o’). Let now¢, be the finite execution frag-
ment that starts with the last statéof £, and ends with a state whesent(w(v), ﬂ?:‘f Qi)w-

That is, all the servers im?:‘f Q; receive messages from(v). As before, only the send and

130

Nicolas C. Nicolaou——University of Connecticut, 2011

receive events from the writer to the servers appegj.iThe concatenation @f, and¢;, yields

the executior;. If no servers exists in that intersection thg§ncontains no events but only
the stater’ and thust; is equal taf,. Similarly we construct a series of finite executions each
of which extend¢y. We say that executiogy, for 1 < k& < n — 1, is the result of the con-
catenation of executiog,_; and the execution fragmeg}_,, where¢; _, starts with the last
state of¢;,_; and ends with a state whesent(w(v), ﬂ;‘:_f Qi)w- Let, &,—1 end with a step
(0" write-ack,,, c”’) ando” is a state wherecnt(w(v), Q1),. Therefore, the write operation
w(v) completes by the end gf,_;. Note also that the write i¢),_ strictly contacts the servers
in Q1 N Q2, the write In&,,_3 the servers i), N Q2 N Q3 and so on.

Let us extend each executigp, for 1 < k < n — 1, by an execution fragment which
contains a set of complete read operatippsfor 1 < x < n — k + 1, such thalp, — p,11
andscnt(ps, Qz)r,, Yielding executionA(&;). Notice that every executiol (&) is similar
to A(&x—1) except from the fact that only a subset of servers that redeiwite messages for
operationw(v) in A(¢) receives write messages(¢;_1). FurthermoreA () contains
an additional read operatign,_j .o that strictly contacts the quoruf,, _».

Let us examine what is the return value of the last read dperaf an executiom\ (&), for
1 <k <n— 1. For executiom (¢, 1) atomicity is preserved if both read operatignsand
p2 return the value written byw(v), since the write operation is completed and precedes both
operations. In executioA(&,,—2) the write operatiow(v) is incomplete andent(w(v), Q1 N
Q2)w- Sincep; is fast then every serverc Q1 N Q2 and subsequent any servee (), reach
the same state in both(&,,—1) andA(&,,—2). Thus, sincecnt(p2, Q2).,, the read operatiop,
cannot distinguish\ (&,,_2) from A(&,—1) and thus, returns in A(§,,—2) as well. Atomicity

is preserved if the last read operationiiS,,), ps, returnsv as well. With a simple induction

131

Nicolas C. Nicolaou——University of Connecticut, 2011

we can show that the last two read operatipps; andp,,_x1 of any executiomA (&), for

1 < k < n—1, return the value written byw(v). From this it follows that read operatign _;
cannot distinguish executiorgs from &; thus, returns in both executions. Hence, atomicity
is preserved if read operatign, returnsv in A(&;) as well.

Consider now the executigrwhich is the same &% with the difference that it ends before
the invocation step of the write operation. In other woréiggi write(v),,, o’) is the last step
of &, then the last state @fis 0. We extends by an execution fragment that contains a set
of complete read operations;, for 1 < z < n, such thatp, — p,+1 andsent(pz, Qz)r,,
yielding executionA(¢). SoA(¢) is similar toA(&;) with the only difference that the write
operationscnt(w(v), ﬂ;‘z_ll Qi)w In A(&1) before the invocation of any read operation. By our
assumptionﬂ?:‘l1 Q; # 0. So it follows that the state of any server ﬂ;‘z_ll Q;in A(¢)is
different from the state of in A(&;) sinces received messages from the write operation in
A(&). Thus, it follows that any read operatipn, for 1 < ¢ < n — 1, can distinguish the two
executions sincecnt(p;, Q;)r,. SO it remains to examine read operatjgn

We know thatp,, strictly contacts),,. Since we assume th(a(ﬂ?:‘f ;) NQ, = 0 then
no servers € @, received messages framo{v) in neither executio; nor&. Moreover, since
all the read operations are fast, then any sesver@,, received the same messages from the
first round of any read operatign, for 1 < i < n, in bothA(&;) andA(¢). Thus, any server
s € @y reaches the same state in bditi¢) and A(¢;). From this follows thatp,, cannot
distinguishA(&;) from A(€). Therefore, since,, returnsv in A(&;), it returnsov in A(€)
as well. This however, violates atomicity sindg¢) does not contain the invocation and any
messages from the write operatioffv). Hence, this contradicts our initial assumption and

thusp,, can returnv and be fast only if), Q; # 0.

132

Nicolas C. Nicolaou——University of Connecticut, 2011

The main results follows from the Lemmas 5.2.2 and 5.2.1.

Theorem 5.2.3 A quorum-based implementation of a SWMR atomic read/wietgister A

that deploys a quorum systelfd| = » and support$R| > n readers can be fast ifp satisfies:

() Q#0.
QeQ

In other words, by Theorem 5.2.3, unconstrained fast implaations of atomic register
are possible if and only if all the quorums of the underlyingoaum system have @ommon
intersection. According to our failure model, a quorum igtiaif one of its members is faulty.
Hence, if any node ¢ ﬂQEQQ fails, then all quorums become faulty sin¢@ € Q, s € Q,
and the whole quorum systefd fails. Therefore, such quorum construction suffers from a
single point of failure and as a result it is not fault-tolgraln turn, any implementation that
relies on such quorum construction is not fault-tolerathexi So we derive the following

observation:

Observation 5.2.4 A fast quorum-based implementation of atomic register i faoilt-

tolerant.

5.2.2 SemiFast Implementations are Not Fault Tolerant

Given that fast implementations are not possible if commmaarsection property is not
satisfied by the quorum system, the natural question aribether fault-toleransemifastm-
plementations can be obtained. We show that fault-tolesamtifast implementations are also
impossible in the absence of a common intersection amongubrums used by the imple-

mentations. We use the properties of Definition 4.1.1.

133

Nicolas C. Nicolaou——University of Connecticut, 2011

The following lemma proves that if a read operation obtaiedatest value from all servers
of a quorum intersection alone, it cannot be fast. The fahgwemma applies to all quorum-

based implementations that use a quorum system without enoanmtersection.

Lemma5.2.5 Let Q be a quorum system without a common intersection that is bgeah
implementationA. A read operatiom; by readerr; thatscnt(p1,Q'),,, for @' € Q, cannot
be fast and return a valueif 3@ ¢ Q — {Q’'}, such thatZ = Q' N ﬂ Q| #0,and

Qed
Vs € Z,s.wal = v, andVs’ € Q' — Z, s'.val = v for somev’ older tharw.

Proof. SinceQ has no common intersection, then for apyc Q it follows that:

Q' N N @|=0
QeQ—{Q'}

Since for any@’, Q" € Q, Q' N Q" # (), there must exist two non empty sets of quorums
®,, P, C Qsuch thatb, =Q — ({Q'} U ®y) and:

Nl () Q|#0

Qe

Pick the largest seb,. that satisfies the above property. Th&p”’ € ®, the following is true:

Qnl (Y e|nQ”"=0 €)

QEP,

Consider now executior¢ that contains an incomplete write operation(v) that
sent(w(v), Nges,ujoy @w- We extend by a read operatiorp; from readerr; that
sent(p1, @)y, . Every servers € HQ@TU{Q,} @ received the messages from the write op-
eration, and sets its value toval = v. Furthermore since we assume a single writer and
operationw(v) is incomplete,v is the latest value written in the system. Assume to derive

contradiction thap is fast and returns.

134

Nicolas C. Nicolaou——University of Connecticut, 2011

Q’

Q,” | Q”

Figure 11: Intersections of three quoru®@s Q”, Q.

Let us extend by a second read operatipn by a reader, thatscnt(pa, Q"),,, Q" € Py.
Sincep; is fast and it does not perform second communication rouveth only the servers in
QQ@TU{Q,} (@ maintain the value. By equation (3) it follows thap, observes and returns an
older valuev’ violating atomicity. Sop; cannot be fast returning This completes our proof.
O

Using the above lemma we derive the following result.

Theorem 5.2.6 No quorum-based semifast implementation is possible withaum system

Q such thaf g @ = 0.

Proof. The proof builds upon execution constructions that exgjodgrum systen@ that con-
tain triples of quorums (similar to the one presented in Fgll) without a common inter-

section. Assume that we can obtain a semifast quorum-baggdrmentation exploiting such

135

Nicolas C. Nicolaou——University of Connecticut, 2011

quorum system. Let the quorumg, Q”, Q""" € Q be quorums that have no common intersec-
tion, i.e., Q' NQ" N Q" = 0.

Let, p¥ denote the:*” communication round of the read operatign Consider execution
& that contains the following operations:

1. a complete write operatian(v) thatscnt(w(v), Q"),, succeeded by,

2. aread operatiop; from r; thatscnt(p}, Q'),, .

Hence,w(v) — p1. In order to preserve atomicity; has to return 1 irf; and according to
Lemma 5.2.5 has to perform a second communication roundeé@foompletes.
Consider now an executigfj which is similar tog; but the write operation is incomplete.

In particularg] consists of the following operations:
1. an incomplete write operatian(1) thatscnt(w(v), @ N Q"),, succeeded by,
2. aread operatiop; from r; thatsent(pt, Q'),, .

Here,p; is concurrent withu(v) but is invoked after the write operatigant(w(v), Q' NQ").
Notice thatp; cannot distinguish between executigagnd¢;. Thus, it returng and performs
a second communication round before completing;ias well.

Let&] be extended by the second communication roune @ind a second read operation

ps thus containing the following operations:
1. anincomplete write operatian(v) thatscnt(w(v), @ N Q"),, succeeded by,
2. a complete read operatign from r; thatsent(pi, Q),, andsent(p?,Q’),, during its

first and second communication rounds respectively sueckley

136

Nicolas C. Nicolaou——University of Connecticut, 2011

3. acomplete read operatign from r, thatsent(p3, Q")

Here, bothp, andps are concurrent with the write but they are invoked after thigevoperation
sent(w(v), @ N Q). However, the reads are not concurrent with— po. Observe that in
order to satisfy propert$3of Definition 4.1.1,0, has to bdastsince it succeeds a slow read.
Moreover in order to preserve atomicity (and sipgegeturnsy), po must returnv as well.

Finally consider an executiofy which is similar tog] with the difference that the second
communication of the read operatipn is not yet completed. So the operations contained in

& are the following:
1. anincomplete write operatian(v) thatscnt(w(v), @ N Q"),, succeeded by,

2. an incomplete read operatign from r; that scnt(pl, Q),, andscent(p?, Q' N Q")

during its first and second communication rounds respdgtsuecceeded by,
3. acomplete read operatign from 5 thatsent(p3, Q")

Here, all operations are concurrent between each otheh Batls however, are invoked after
the writesent(w(v), Q' N Q")., andp, is invoked aftersent(p?, Q' N Q"),,. Sincep, receive
replies from the members of the quorupf, as in executiorg] observes that the servers in
Q"N Q' received messages franv), and from the first and the second communication round
of p1. Thus, it cannot distinguish the executiafisfrom &,. Sinceps is fast and returns in
&1, then is fast and returnsin & as well.

Finally we extendt, by a third read operatiops from r3 which scnt(pi, Q"),.,. Since
only the servers i)’ N Q" received valuey, and sincel’ N Q" N Q" = (), thenps observes

and returns an older valué. However this violates atomicity. Thug; has to be slow i,

137

Nicolas C. Nicolaou——University of Connecticut, 2011

in order to inform enough servers before completing. Thimaof p, will preserve atomicity
and also does not violate propei®B of Definition 4.1.1 in&. Since howeverp, does not
distinguish betweeg, and¢/, then if it is slow in, it must be slow ir¢j as well. But this will
violate propertyS3of Definition 4.1.1 ing} since there will be a slow reag) succeeding a
completed slow reagh() and both return the same value. That contradict our irasalmption
and completes our proof. O

We similar reasoning as in Section 5.2.1 we derive the foligwwbservation:

Observation 5.2.7 Semifast quorum-based implementations of atomic regastmnot fault-

tolerant.

5.2.3 Common Intersection in Fast and Semifast Implementains

As presented in Sections 5.2.1 and 5.2.2, a common intesdmtween all the quorums
of a given quorum system is necessary in order to obtain fastmifast implementations. Our
findings raise the following questiondas a common intersection necessary for the fast and
semifast approaches proposed in [30] and Section 4.2 otligisis?

We construct a simple example which will help us visualize ititersection requirements
of a fast implementation as proposed by [30]. Assume thevatlg setting under [30]: a set
of five servers with identifierss = {1,2,3,4,5} one of which may fail by crashingf(=
1). According to [30] fast implementations are possible dhlgaders are constrained under
IR| < % — 2. Therefore, this setting supports no more tf&n = 2 readers and one writer.
Let us assume that readers have identiffers: {r, '} and the writer has identifiep.

The algorithm presented in [30], relied on the number ofiespleceived for the completion

of each read/write operation. In particular, any read&vdperation was expecting| — f

138

)11

Figure 12: Graphical representation of quoruihs Q4 andQs.

servers to reply before completing. Thus, in our setting @psration had to wait for replies
from one of the following sets@); = {1,2,3,4}, Q2 = {1,3,4,5} Q3 = {1,2,4,5},Q4 =
{1,2,3,5}, Qs = {2,3,4,5}. Every two sets have a non-empty intersection and hencseg tho
sets compose a quorum systéin= {Q1, Q2, @3, Q4,Q5} where each); € Q : |Q;| =
|S| — f. Figure 12 depicts the sef¥;, Q4 andQs.

Let us now consider an execution of this algorithm that dosta write operation from
w, followed by a read operatiop from r and a read operatiopl from /. Since the system
supports two readers and one writer, in the worst case eatibijpant receives replies from a
different quorum for each operation. Let w.l.o.@.write a value inQs (scnt(w, @s5)qw), r to
sent(p, Q3),- andr’ to sent(p’, Q4),». Observe that the intersectidpy N Q4 N Q5 = {2,5}
and containsf + 1 (two) servers. Since both andr’ observed the value written hy, any
subsequent read operation (from eitheasr ') will also be aware of the value written hy.
As a result, any subsequent read will return an equal or nealee and violation of atomicity
is avoided. (Similar arguments can be made for the semifgstitom presented in Section

4.2.) Hence, the restriction on the number of readers altb@soncentration of the common

139

Nicolas C. Nicolaou——University of Connecticut, 2011

intersection between a subset of quorum sets, which ses\&4at spot” to ensure consistency

between the operations. This observation yields the falgwemark:

Remark 5.2.8 Fast or Semifast quorum-based implementations do notreequtommon in-

tersection in the quorum system they deploy if either:

e we relax the failure model and operations can wait to recedpties from more than a

single quorum, or

e we impose restrictions on the participation and on the coason of the quorum system.

Such restrictions however, will negatively affect the periance of the quorum system and
will introduce strong assumptions for its maintenance, in@akeventually the use of quorums
impractical. Thus, in this work we avoid making such assuomst and we prefer to trade

operation latency for higher fault-tolerance and appiidstb

5.3 Weak Semifast Implementations

Recall that fast implementations [30] require every readl arite operation to complete
in a single round. Semifast implementations (see Chapten4fe other hand, allow a single
complete read operation to be slow per write operation. eSirgither fast nor semifast imple-
mentations are fault-tolerant, one may ask whether we d¢ax seme of their requirements and
allow at least some operations to be fast in an unconstraingdrms of quorum construction
and patrticipation, environment. As demonstrated by [22, €i8gle round reads are possible
in quorum-based implementations in the MWMR environmelitemever it is confirmed that
a read operation is not concurrent with a write. Such styabegvever, did not overcome the

observation of [9] that reads concurrent with a write mustgeen a second round.

140

Nicolas C. Nicolaou——University of Connecticut, 2011

We show that one may obtaimeak-semifasimplementations in these settings defined as

follows:

Definition 5.3.1 (Weak-Semifast Implementations)An implementation of an atomic
R/W register is calledveak-semifastif it satisfies propertie$S1, S2 and S4 (but notS3) of

Definition 4.1.1.

From the fact that a weak-semifast implementation doesatwsfyg S3of Definition 4.1.1,
it follows that it allows more than a single complete readrafiens to be slow for each write
operation. On the other hand, such implementations needtigfyspropertyS4 and thus,
should be capable to yield executions that contain read aitel@oncurrency and all operations

are fast.

5.4 Weak-Semifast Implementation: Algorithm SLIQ

In previous sections we established that no fault-tolefasit or semifast quorum-based
implementations are possible. We therefore now considak-semifasinplementations. We
develop a client-side decision tool, call€iliorum Viewsand we devise an algorithm, called
SLIQ, for atomic registers. In1SQ, writes are fast and read operations may perform one or
two rounds. We deviate from the restrictive common intdisacpresented in Section 5.2
and we allow our implementation to use arbitrary quorum system. Our algorithm deploys
(timestamp,valuepairs to order read and write operations. We first preseritideebehind the
guorum views. In Section 5.4.2 we provide a compact desonpif the algorithm followed
by its formal specification in Section 5.4.3. Finally, we wshihat the algorithm is correct and

satisfies all the properties of the weak-semifast impleat@nmts in Section 5.4.4.

141

Nicolas C. Nicolaou——University of Connecticut, 2011

5.4.1 Examining Value Distribution — Quorum Views

To facilitate the creation of weak-semifast implementagiowe introduced a new client-
side decision tool, calleQuorum ViewsA quorum view refers to the distribution of a register
value as it is withessed by a read operation during a comratioic round. Our approach
inherits the(timestamp, value) pair to impose partial ordering on the written values. Adeac
value is associated with a unique timestamp, we define queivs in terms of the timestamp
distribution instead of the actual written value. ketxTS denote the maximum timestamp
that a read discovers during some round. Also,nép, c)s,.ts denote the timestamp that
servers sends during the’” round of the read operatignto the invoking reader. Given this

notation, quorum views are defined as follows:

Definition 5.4.1 (Quorum Views) Any read operatiorp that receives replies from all the

members of a quorur® € Q in some round, witness one of the followingorum views:
QV1. Vs € Q : m(p, ¢)sr.ts = mazT'S,

QV2. VQ' € Q,Q #Q,3ACQNQ’, st A#DandVs € A: m(p,c)s,.ts < maxTsS,

and

QV3. 35 € Q : m(p,¢)y pts < mazTS and3IQ' € Q,Q # Q andVs € Q N Q' :

m(p, c)sr.ts = mazxTS

Under the assumption that servers always maintain thedatiggestamp they receive, these
three types of quorum views may reveal the state of the wptration (complete or incom-
plete) which tries to write the value associatedrtezT'S. Figure 13 illustrates those quorum

views assuming that the read operatjgnreceives replies from the servers@ The dark

142

Nicolas C. Nicolaou——University of Connecticut, 2011

,
o000 00

o0 0000

o0 0000
C

13(a) 13(b) 13(c) 13(d)
Figure 13:(a) QV1, (b) QV2, (c) QV3 with incomplete write, (dJQ V3 with complete write.
nodes maintain the maximum timestamp of the system and wbies or “empty” quorums
maintain an older timestamp.

Recall that by our failure model a single quorum of serveguigranteed to be non-faulty.
Thus, any R/W operation is guaranteed to terminate as longveaits for the servers of a
single quorum to reply.

By the first quorum viewQV1 (see Figure 13(a)), the read operatpobtains the maxi-
mum timestamp-value pair from all servers of quor@mThis implies the possible completion
of the write operationv that propagates the value associated withw7'S: (1) The writer in-
vokedw to write (maxzT'S,v) pair, (2)Vs € @ received the message forand updated its
local register replica, and (3)s € @ possibly replied tav. Since the write operation cannot
wait for more than a single quorum to reply, therwompletes when those replies are delivered
to the writer. Thus, we say th&@ V1 implies a potentialljcomplete writeoperation.

By definition, every two quorumg), @’ € Q,Q N Q" # 0. Therefore, if there exists
a quorum(@ such thatvs € Q, m(p,c)s,.ts = maxTS, then it follows thatv@Q’ € Q,

s' € Q' N Q replies withm(p, ¢)y ,.ts = mazTS to p. That is, all servers in any intersection
of @ must reply withmaxT'S to a read operatiop. From this observationQ V2 reveals an

incomplete writeperation. Recall that, b V2, p witnesses a subset of servers that maintain

143

Nicolas C. Nicolaou——University of Connecticut, 2011

a timestamp older thamaxT'S in each intersection of) (see Figure 13(b)). This implies
that the write operation (which propagatesz7'S) has not yet received replies from any full
quorum and thus, has not yet completed.

Finally, QV 3, provides insufficient information regarding the statehsf tvrite operation.
Specifically, if an operation receives replies from a quotrtthat contains some servers with
timestamp less thamaxT'S) and witnesses some intersecti@Qm @’ that containgnaxT'S in
all of its servers, then a write operation might: (i) haverbeempleted and contact&dl (see
Figure 13(d)) or (ii) be incomplete and contacted a subsséenfersB such that) N Q' C B

andvQ"” € Q,Q" ¢ B (see Figure 13(c)).

5.4.2 High Level Description ofSLIQ

Using quorum views, we developed the first algorithm thaivedl fast operations and does
not depend on any service participation and quorum corigiruconstraints. In particular, the
algorithm allows: (i) more than a single slow reads per wojteration and (ii) read operations
to be fast even in cases they are concurrent with a write tperaBelow we provide a brief
description of the protocol of each participant of the ssgviT his algorithm utilizes timestamp-
value pairs where the value is a tugle vp) that contains both the new value to be written
and the previous value writtarp.

Writer. The write protocol involves the propagation of a write messia all the servers. Once
the writer receives replies from a full quorum it incremeit¢éstimestamp and the operation

completes.

144

Nicolas C. Nicolaou——University of Connecticut, 2011

Readers.The read protocol requires that a reader propagates a ressageeto all the servers.
Once the reader receives replies from a full quorum, it erasthe distribution of the maxi-
mum timestamp-value paifraxT'S, v, vp)) within that quorum. This distribution character-
izes a quorum view.

If the view is eitherQV1 or QV2 then the reader terminates in the first communica-
tion round. IfQV1 is observed, then the write operation that propagéates:7'S, v, vp) is
potentially completed and thus, the read operation returng QV2 is observed, then the
write operation that propagatesiazT'S, v, vp) is not yet completed. Since we have a single
well-formed writer, the detection ahazT'S implies the completion of the write operation
that propagated the previous value (associated withnaxz7'S — 1). Thus, in case the reader
observe9Q V2 it returns the valuep in a single round.

If QV3 is observed, then the reader cannot determine the statuseofvtite opera-
tion and thus, proceeds to a second communication. Duriisgrdétund, the reader sends
(mazxTS,v,vp) to all servers. Once the reader gets replies from a full quothe read oper-
ation completes and returms
Servers. The servers maintain a passive role; they just receive nedevate messages, update
their replica value if the timestamp included in a messadpgiser than their local timestamp,

and reply to those messages.

5.4.3 Formal Specification ofSLIQ

We now present the formal specification afi§ using Input/Output Automata [67] nota-
tion. Our implementation includes four automata: (i) auaon 3.1Q,, that handles the write

operations for the writer process, (i) automaton $1Q, that handles the reading for each

145

Nicolas C. Nicolaou——University of Connecticut, 2011

r € R, (iii) automaton $1Q, that handles the read and write requests on the atomiceefpst
eachs € S, and (iv) Channel, ,y that establish the reliable asynchronous process-teepsoc

communication channels (see Section 3.1.2).

Automaton SLIQ,,.

The state variables, the signature and the transitionseditip,, can be depicted in Figure

14. The state of thel$Q,, automaton includes the following variables:

e (ts,v,vp) € NxV x V: writer’s local timestamp along with the latest and the res

value written by the writer.

e wCounter € N: the number of write requests performed by the writer. Iglusethe

servers to distinguish fresh from stale messages.

e status € {idle, active,done}: specifies whether the automaton is in the middle of an
operation §tatus = active) or it is done with any requeststatus = idle). When
status = done, it indicates that the writer received all the necessarlieepo complete

its write operation and is ready to respond to the client.

e srvAck C S: asetthat contains the servers that reply to the write ngessas a result of

a write request. The set is reinitialized(t@at the response step of every write operation.

e failed € {true, false}: indicates whether the process associated with the aubomat

has failed.

146

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:
Input: Output: Internal:
write(val)w, v € V send(m)w,s, m € M, s€ S write-fixq
rev(m)s,w, m € M, s€ S write-ackqy
faily
State:
ts € N, initially O srvAck C S, initially 0
v €V, initially L status € {idle, active, done}, initially idle
vp € V, initially L failed, aBoolean initiallyfalse

wCounter € NT, initially O

Transitions:
Input write(val)w Output send((msgT, t, C))w,s
Effect: Precondition:
if —failed then status = active
if status = udle then —failed
status «— active seS
srvAck «— () (msgT,t,C) =
vp — v (WRITE, (ts, v, vp), wCounter)
(v,ts) < (val,ts + 1) Effect:
wCounter <« wCounter + 1 none
Input rev({msgT, t,C))s,w Output write-ack,,
Effect: Precondition:
if —failed then status = done
if status = active andwCounter = C'then —failed
srvAck «— srvAck U {s} Effect:

status < idle

Internal write-fixy,

Precondition: Input fail,,
—failed Effect:
status = active failed < true
3Q € Q: Q C srvAck

Effect:

status < done

Figure 14: $1Q,, Automaton: Signature, State and Transitions

The automaton completes a write operation in a single pieben awrite(val),, request
is received from the automaton’s environment, sh&us variable becomesctive, the previ-
ous valuevp gets the current value, the variahlegets the requested valuwel to be written,
andts is incremented. As long as theatus remains active the automaton sends messages to
all server processes and collects the identifiers of theesethat reply to those messages in

the srvAck set. The operation is done when the process receives régieshe members of

147

Nicolas C. Nicolaou——University of Connecticut, 2011

a full quorum, i.e.3Q € Q : Q C srvAck. Thestatus of the automaton becomegle when

the writer responds to the environment andwhe-ack,, event occurs.

Automaton SLIQ,..

The state variables, the signature and the transitionsedtlp, can be depicted in Figure

15. The state of thel$Q, automaton includes the following variables:

e (ts,v,vp) € N x V x V: the maximum timestamp discovered durirg last read

operation along with its associated value and previousevalu

e maxTS € N, maxPS € N, andretvalue € V: the maximum timestamp and postit

discovered, and the value that was returned during thedastoperation.

e rCounter € N: read request counter. Used by the servers to distingugsh from stale

messages.

e phase € {1,2}: indicates the active communication round of the read djpera

e status € {idle, active,done}: specifies whether the automaton is in the middle of an
operation §tatus = active) or it is done with any requeststatus = idle). When
status = done, it indicates that the reader decided on the value to beneduand is

ready to respond to the client.

e srvAck C M x S: a set that contains the servers and their replies to theaga@tion.

The set is reinitialized t@ at the response step of every read operation.

148

Nicolas C. Nicolaou——University of Connecticut, 2011

o maxT'sAck C M x S andmazPsAck C M x S: these sets contain the servers that
replied with the maximum timestamp and maximum postit retpaly to the last read

request. The sets also contain the messages sent by thesesser
e maxT'sSrv C S: The servers that replied with theaxT'S.

e failed € {true, false}: indicates whether the process associated with the aubomat

has failed.

Any read operation requires one or two phases to complese gfaslow). The decision
on the number of communication rounds is based on the quoiems\that the reader obtains
during its first communication round.

A read operation is invoked when thei8, automaton receives ra@ad, request from its
environment. The status of the automaton becomaéme. As long as the reader is active, the
automaton sends messages to each sererS to obtain the value of the register replicas.
Thercv(m), , action is triggered when a reply from a sergés received. The reader collects
the identifiers of servers that replied to the current op@maand their messages, by adding
a pair (s, m) in the srvAck set. When the seirvAck contains the members of at least a
single quorunt of the quorum systerf), the set of messages is filtered to find the messages
that contain the maximum timestamp. Those messages aredpiaenazTsAck set. The
servers that belong into the collected quorum and have messanaxzT's Ack they are placed
separately in thenaxT'sSrv set.

From the newly formed sets the reader extracts the infoomag&garding the quorum view
of). Based on the quorum view the reader decides to completeptiration or proceed to a

second communication round. In particular, the readersisgad completes in one round trip

149

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:
Input: Output: Internal:
read,, 7 € R send-read(m), s, m € M, r€R, s€ S read-phasel-fix,.
revim)s,,, me M, r€R, s€S send-info(m),s, m € M, reR, s€S read-phase2-fix,.
fail,, r € R read-ack(val),, val € V, r € R

State:

ts € N, initially O

mazxTS €N, initially O

v €V, initially L

vp € V, initially L
retvalue € V, initially L
rCounter € NT, initially 0

Transitions:
Input read,.
Effect:
if =failed then
if status = idle then
status < active
rCounter «— rCounter + 1

Input rev((msgT,t,C))s,»
Effect:
if =failed then
if status = active andrCounter = C'then
srvAck — srvAck U {(s, (msgT,t,C))}

Output send({(msgT, t,C))r s
Precondition:
status = active
—failed
[(phase = 1 A (msgT,t,C) =
(READ, (mazTS, v, vp), rCounter))V
(phase = 2 A (msgT, t,C) =
(INFORM, (maxzT'S, v, vp), rCounter))]
Effect:
none

Output read-ack(val),
Precondition:

—failed

status = done

val = retvalue
Effect:

status < idle

Input fail,.
Effect:
failed «— true

phase € {1,2}, initially 1

status € {idle, active, done}, initially idle
srvAck C M x S, initially 0

maxAck C M x S, initially ()

maxTsSrv C S, initially ()

failed, aBoolean initiallyfalse

Internal read-phasel-fix,.

Precondition:
—failed
status = active
phase = 1
3JQ € Q: Q C srvAck
Effect:
mazTS — {max(m.t.ts) : (s,m) € srvAck AN s € Q}
maxAck —

{(s,m) : (s,m) € srvAck AN m.t.ts = mazTS}
(v, vp) «— {(m.t.v,m.t.wp) : (s,m) € mazxAck}
mazTsSrv «—

{s:s5€Q,(s,m) € maxAck}
if @ C maxTsSrvthen
ts — maxTS
retvalue «— v
status «— done
else
if 3Q" € Q,Q" # Q s.t.Q N Q" C maxTsSrvthen
ts «<— maxTS

retvalue «— v

phase «— 2

srvAck «— 0

rCounter «— rCounter + 1
else

ts «— maxTS — 1

retvalue <— vp

status < done

Internal read-phase2-fix,.
Precondition:

—failed
status = active
phase = 2

3Q € Q: Q C srvAck

Effect:

status < done
phase — 1

Figure 15: $1Q, Automaton: Signature, State and Transitions

150

Nicolas C. Nicolaou——University of Connecticut, 2011

when it observes V1 or QV2. As described in Section 5.4.QV1 denotes a complete
write operation andQ V2 an incomplete write operation. So the read operation retthra
valuev associated withnaxT'S if QV1 is observed; otherwise, @V 2 is retrieved, it returns
the valuevp which was associated withhazT'S — 1. In the case wher@V3 is witnessed
the read operation proceeds to a second round and aftemigletion returnsnaz7'S. As
shown in the algorithm the decision of the fast or slow bebraid determined in the internal
actionread-phasel-fix. If a second communication round is not necessary the reachtopn
completes and sets tBeéatus variable todone. Otherwise the phase number increases declar-
ing that a second communication round is necessary and #ratam is terminated when the

precondition ofread-phase2-fix is reached.

Automaton SLIQ,.

The server automaton has relatively simple actions. Theatige, state and transitions of

the S.1Q, can be depicted in Figure 16. The state of the3 contains the following variables:

e (ts,v,vp) € NxV x V:the maximum timestamp reported¢dy an invoked operation
along with its associated value and previous value. Thisiesvialue of the register

replica.

e Counter(p) € N: this array maintains the latest request index of eachtdreader or

writer). It helpss to distinguish fresh from stale messages.

e status € {idle,active}: specifies whether the automaton is processing a request re-

ceived Gtatus = active) Or it can accept new requestgqtus = idle).

151

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:
Input: Output:
rev(im)p,s, me M, seS, pe RUW send(m)sp, me M, s€ S, pe RUW
fails
State:
ts € N, initially O msgType € {WRITEACK,READACK,INFOACK}
v €V, initially L status € {idle, active}, initially idle
vp € V, initially L failed, aBoolean initiallyfalse

Counter(p;) € NT, p; € RU {w}, initially 0

Transitions:
Input rev({msgT,t,C))p,s Output send({(msgT, t,C))s,p
Effect: Precondition:
if —failed then —failed
if status = idle andC' > Counter(p) then status = active
status «— active p € RU{w}
Counter(p) «— C (msgT,t,C) =
if t.ts > ts then (msgType, (ts,v, vp), Counter(p))
(ts,v,vp) «— Effect:
(t.ts,t.v, t.up) status < idle
if msgT = WRITE then
msgType < WRITEACK Input fail
if msgT = READ then Effect:
msgType < READACK failed «— true

if msgT = INFORMthen
msgType < INFOACK

Figure 16: $1Q, Automaton: Signature, State and Transitions

e msgType € {WRITEACK,READACK,INFOACK }: Type of the acknowledgment depend-

ing on the type of the received message.

e failed € {true, false}: indicates whether the server associated with the autoniete

failed.

Each server replies to a message without waiting to receiyeother messages from any
process. Thus, the status of the server automaton determimether the server is busy pro-
cessing a messaget{tus = active) or if it is able to accept new messagesafus = idle).
When a new message arrives, the(m), s event is responsible to process the incoming mes-

sage. If thestatus is equal to idle and this is a fresh message from progeken thestatus

152

Nicolas C. Nicolaou——University of Connecticut, 2011

becomes active. Th€ounter(p) for the specific process becomes equal to the counter in-
cluded in the message. If the timestamp included in the vedainessage is greater than its
local timestamp. the server updates its timestamp and valtigbles to be equal to the ones
included in the received message. The type of the receivedage specifies the type of the
acknowledgment.

While the server is active, treend(m), , event may be triggered. When this event occurs,
the servers sends its local replica value, to a processThe execution of the action results
in modifying the status variable toidle and thus setting the server enable to receive new

messages.

5.4.4 Correctness ofSLIQ

To prove the correctness of our algorithm we need to showittsatisfies both Definition

3.2.4 terminatior) and Definition 3.2.5gtomicity).

Termination

According to our algorithm an operation terminates whenaveite-ack or read-ack event
appears in our execution. Moreover, by the assumed faila@eihthe adversary may fail all
but one quorums in our quorum system. Recall, that evergcbproces® terminates once it
receives replies from a single full quorugh Thus, it is easy to see that every correct process

terminates if the assumed failure model is satisfied.

153

Nicolas C. Nicolaou——University of Connecticut, 2011

Atomicity

We proceed to show that algorithm.iI® satisfies all the properties presented in Definition
3.2.5. We adopt the notation presented in Chapter 3. For letemgss we restate the notation
here as well. We usear), to refer to the variablear of the automatom,,. To access the value
of a variablevar of A, in a states of an executiort, we usec p].var (see Section 3.1.1).
Also, letm(r,c), s to denote the message sent frprto p’ during thec'” round of operation
7. Any variablevar enclosed in a message is denotedhbyr,), ,».var (see Section 3.1.2).
We refer to a stego, read-phasel-fix,., o’) as theread-fix stef a read operatiop invoked by
reader-. Similarly we refer to a stefy, write-fix,,, o’) as thewrite-fix stepof a write operation
w invoked byw. We use the notation ;. (), to capture the final state of a read or write fix
step (i.e.o’ in the previous examples) for an operationFinally, for an operationr, T inv(r)
ando,..(r) denote the system state before the invocation and afteetipnse of operation
7 respectively (as presented in Section 3.2). The timestamp;)[p].ts denotes the value of
the variablets of the automatord,, at the response step of operationThis is the timestamp
returned ifr is a read operation.

Given this notation, the value of the maximum timestamp ofeskduring a read operation
p from areader is o 4., [r]. marTS. As a shorthand we useaxT'S, = 0y [r]. maxTS
to denote the maximum timestamp witnesseg by

We adopt the definition of Atomicity as presented in Sectigh4to express the atomicity
properties using timestamps in the SWMR environment. Teelémma ensures that any pro-
cess in the system maintains only positive and monotoyigadireasing timestamps. Hence,

once some procegssets itso[p].ts variable to a valué at a stater of an executiorg, then it

154

Nicolas C. Nicolaou——University of Connecticut, 2011

cannot be the case thasets its timestamp to a valde< k at a states’ such thatz’ appears

aftero in €.

Lemma 5.4.2 In any executiorf € goodezecs(SLIQ,Q), o[p].ts < o'[p].ts for some process

p € Z, if o appears before’ in £.

Proof. It is easy to see the monotonic increment of the timestampl the processes.

Writer: For every write operation from the sole writenw, it holds thato,.. (. [w].ts =
Tinv(w)[W]-ts + 1 asts,, is modified only in thewrite(val),, event of the 81Q,, (see Figure
14). Thusts,, is incremented monotonically.

Server: A server process modifies the value of its variable duringrav(m),, s event, if
the timestamp enclosed in the received message is greatethtd locat s, variable of $1Q,.
Thus, when thecv(m),, s event happens for an operatisrthe server replies in thend(m/), ,,
event with a timestampy’.ts > m.ts.

Reader: A reader process modifies itsts, variable in theread-phasel-fix, event of

a read operatiom and can either take the value of the maximum timestamp ites#as,
Ores(p)[T]-ts = maxT'S), OF 0pey(py[r]-ts = maxTS,—1. To prove incremental monotonicity
of thets,. variable of the automatonL®3,. we need to show that, ., [r].ts > iy [1]ts.
In other words we need to show that the timestamp decided doyethd operation is geater
or equal to thets, variable at the invocation gb. There exists 3 cases to investigate: (1)
Tinv(p) [Tt < mazT'Sy, (2) Oiny(p[r]-ts = maxT'S, and, (3)0i,y(p [1]-ts > mazT'S),.

Consider the first case, wherg,,,(,[r].ts < maxTS,. Sinceo,.,)[r].ts equals

maxTS, or maxTS, — 1, then in both cases, () [r]-ts > Tinu(p) [7]-ts-

155

Nicolas C. Nicolaou——University of Connecticut, 2011

In the algorithm every message sent by shed(m), s event ofp, includes a timestamp
m(p, V)rsts = Tipy(p[r]- mazTS. Letp” — p be the last read operation invoked bye-
fore p. By theread-phasel-fix, of the 8.1Q,., it holds thato,,) [r].mazTS = mazTS,.
AlSO, Gipy(p)[T]ts = 0 ig()lr]-ts sinceread-phasel-fix, is the last event that modifigs,
in p'. Since,o iz [r]-ts = maxTSy OF 0y [r]ts = maxTS, — 1, it follows that
Tinv(p)[1]t5 < Tinu(p)[r]-maxT'S. As shown earlier, any serverthat receives a message
from r for p, replies with a timestamp(p, 1) ,.ts > m(p, 1), s.ts and thusn(p, 1)s ,.ts >
Tinv(p)[r]-mazT'S. Thus, the third case cannot arise since every messageeedasy any
read operation contains a timestamp greater or equal ;{1 [r].maxT'S > iy [r]-ts
variable.

So it remains to examine the second case whgyg) [r].ts = mazT'S,. Observe that
the case is possible only i;,,(,)[7].ts = Gy [r]-mazTS in the send(m), , event of
p. Thus,r sends a message(p, 1), s.ts = 0 (,)[r]-ts to every serves € S. Since
marTS, = oy [r]-ts, everys replies top with m(p, 1)s .ts = Gy [r]-ts. Thus, all
the members of the quorum from whighreceives messages, reply withaz7'S, and thus
the read operation observes the quorum W@W1. According to that view the read operation
decideso, ., [r].ts = maxTS, and thereforey, . ,)[r].ts = 0y, [r]-ts. This completes
the proof. O

The following lemma shows that every read operation retartimiestamp greater or equal

to the timestamp written by its last preceding write operati

156

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 5.4.3 In any executiort € goodexecs(SLIQ,Q), if the read, event of a read op-

eration p from readerr succeeds thevrite-fix,, event of a write operatiow in £ then,

Tres(p)[T]-8 = Opes) (W] ts.

Proof. A write operationw proceeds to a response step andwiiee-ack,, event only if the
writer receives replies from the members of a complete quoiet assume that every server
in the quorum@; € Q receives the messages for the write operatioccording to Lemma
5.4.2 thets, variable of every server automatoni8§;, for s € Q;, will be greater or equal
10 Oes(wy[w]-ts. It follows that any messagen(r, 1), sent by any serves € Q; to any
succeeding operation from p, contains a timestam(m, 1) p.ts > e [w] ts.

Suppose now that the read operatierirom r receives replies from the members of a
quorum@); € Q, not necessarily different fro;. By Lemma 5.4.2 every servef € Q;NQ;
replies top with a timestampm(p, 1)y ,.ts > m(w, 1)y w-t8 > Opes(w)w].ts. It follows
that, in theread-phasel-fix, event ofp, the maximum timestamp witnessedrigiz7'S, >
m(p, 1)g rts > Opeg(wy[w]-ts. According to the same event pf o,y [r].ts = mazT'S, or
Ores(py[T]-ts = maxTS, — 1. If maxTS, > 05y [w]-ts theno,qq) [1].ts > 0pegwy[w] ts.

Let us now assume thatazT'S, = 0,5 [w].ts. Since, every servey € Q;NQ; replies
topwithm(p, 1)y ,.ts < maxTS,andm(p, 1)s rts > m(w, 1)g -t > Opes(w)[w].ts, then
m(p,1)g r.ts = maxTS, = 0ycq)[w].ts. SO during theread-phasel-fix, event ofp, there
are two cases to examine: (@) = Q; and (2)Q; # Q;. If case 1 is true the); N Q; =
Q; and thus the read operation observes the quorum @&f and returnss,..q,)[r].ts =
maxT'S, in one communication round. If case 2 is valid apd# (;, then the read operation

observes the quorum vie®V 3 since all the members of the intersectiQnN Q; reply with

157

Nicolas C. Nicolaou——University of Connecticut, 2011

the maximum timestamp. In this case the read also returnsgh@mum timestamp after it
performs a second communication round. Thus in both casgg,[r].ts = mazTS, =
Tres(w)[w]-ts and that completes our proof. O
The final lemma examines the consistency between two reaatapes. We show that a
read operation always returns a greater or equal timestaampthe one returned by its preced-

ing read operations.

Lemma 5.4.4 In any executiorf € goodexecs(SLIQ,Q), if p andp’ are two read operations

from the readers and’ respectively, such that— o' in &, theno, .o, [1'].ts > 0,csm (0] t5.

Proof. Sincep — p in &, then theread-ack(val), event ofp occurs before theead! event
of p/. Let us consider that both read operations are invoked flmmsame reader = 7.

It follows from Lemma 5.4.2 thab,.,[r].ts < 0,.c4(,)[7]-ts because thes, variable is
incrementing monotonically. So it remains to investigateatvhappens when the two read
operations are invoked by two different processeandr’ respectively. Suppose that every
servers in a quorumg@); receives the messages of operatiowith an eventrcv(m), s, and
replies with a timestamp(p, 1); ,-.ts with an evensend(m), , to r. Notice that every server
replies, by Lemma 5.4.2, witm(p, 1)y .ts > 0ypy(p)[r]-maxT'S. Let the members of the
quorum@; (not necessarily different thaf);) receive messages and replyfo Again for
everys' € Qj, m(p',1)g 1.t8 > Giny(p)[r']-mazT'S. We know that the timestamp of the read
operationp after theread-phasel-fix, event ofp may take the value, .y, [r].ts = maxT'S,

OF Oes(py[7]-ts = maxTS, — 1. We examine those two cases separately and for each case we

show that, s, [1'].ts > 0pes(p) 1] ts.

158

Nicolas C. Nicolaou——University of Connecticut, 2011

Case 1:Consider the case whete,,)[r].ts = maxTS, — 1. Since some server € Q;
replies with a valuen(p,1),,.ts = maxTS, and since we assume a single writer then it
follows that a write operation’ with a timestam, .,y [w].ts = maxT'S, is invoked by the
writer. So thewrite-fix,, event of the write operation, Whoseo, .y, [w].ts = 0yes(p)[r]-ts =
maxTS,— 1, occurs before thesad-phasel-fix, event ofp. Since theead;. event ofp’ occurs
after theread-phasel-fix,. of p, then it also occurs after therite-fix,, event ofw. Hence, by

Lemma 4.2.70’7«63(pl)[7“/].t8 > Ores(w) [w].ts and thUSO’Tes(p/)[T/].tS > Ores(p) [r].ts.

Case 2:Here we examine the case wherg,)[r].ts = maxTS,. We know by definition
that in any quorum constructiof; N Q; # (. Moreover, by Lemma 5.4.2 any servere
Q;NQ;, s replies with a timestampu(p, 1), -.ts for p and with a timestamp(p’, 1) ,7.ts >

m(p,1)s,.ts for p'. So the maximum timestamp witnesseddys
maxTSy > m(p',1)s,.ts > m(p,1)s,.ts,Vs € Q; N Q; 4)

Sinceo r].ts = maxTS, it means that either observes a quorum vie@V1 or a

res(p) [

quorum viewQV 3. Let us examine the two cases separately.

Case 2a:ln this casep withessed V1. Therefore it must be the case thate Q;, s replies
with m(p, 1) ,.ts = mazT'S, = 0yes(p)[r]-ts. ThusYs € Q;NQ;, s replies with a timestamp

m(p',1)s.ts > m(p,1)s,.ts to p’, and hencey’ withesses a maximum timestamp
maz TSy > maxTS, = maxTSy > 0pey(p)lr]-ts (5)

Recall thaty’ returns eithew, .o, [1'].ts = maxTSy OF 0yeg(py[1']-ts = maxTS,y — 1.
If maxT Sy > 0yes(py[r]-ts then it follows thato, s, [1'].ts > Opeg(p)lr]-ts. If mazTSy =

Tres(p)[T] 15 thenr’ witnesses & V3 since there exists at least one intersecti@n{Q;) such

159

Nicolas C. Nicolaou——University of Connecticut, 2011

thatVs € Q; N Qj, m(p',1)s,.ts = mazTS,. Hence in this case
Jres(p/)[r’].ts =maxTS, = ares(p/)[r'].ts = Ores(p)lr]-ts

By this we show that, ip witnesses 8V 1, theno,..,,[r'].ts > 0es(p)[r]-ts.

Case 2b:This is the case wherg..(, [7].ts = maxT'S,, because witnessed a quorum view
QV3. Hence it follows thatdQ. € Q s.t. Vs € Q. N Qi,m(p,1)s,.ts = maxTS,. In
this casep proceeds in phase 2 before completing. Sipcer p’ theninwv(p’) happens after
theread-ack, in £&. That means thatv(p’) happens after theead-phase2-fix, action ofp as
well. Howeverp proceeds to phase 2 only after tlead-phasel-fix,.. From the latter action
we get thaw ¢,) [r].mazT'S = maxTS,. Once in phase 2 sends inform messages with its
0 fiz(p)[r]-mazT'S = mazT'S, to a complete quorum, s&y;. By Lemma 5.4.2, every server

s’ € Q. replies with a timestamp
m(p,2)s r.ts > maxTS, (6)

There are two subcases to consider(Ji) = @; and (i) Q; # Q.

Case 2b(i): Assume thatQ, = Q;. ThenVs € Qj;, s replies top’ with a timestamp

m(p',1)s,.ts > m(p,2)s,.ts (by Lemma 5.4.2). Therefore it follows that
mazTSy > m(p,2)s,.ts = maxTS,y > maxTS, (7)

from equation (6). IfmaxTS, > mazTS, then o, g ,n[r'lts > 0c5)[r]-ts since
Ores(p)[r]-ts = maxTS, ando, g [1'].ts = maxTSy O 0peg(iy [1'].ts = maxTSy — 1. If
maxTS,y = maxTS,thenVs € Q;,m(p’,1)s,.ts = mazTS, and thus’ observeQV1

and returnsr, o, [1'].ts = maxT'Sy = maxTS, = 0pes(p) 1] Ls.

160

Nicolas C. Nicolaou——University of Connecticut, 2011

Case 2Db(ii): It remains to examine what happengjf # Q;. As in case 2b(i)Ys € Qr N Q;,

s replies top” with m(p', 1),,/.ts > m(p,1)s.ts. It follows from equations (6) and (7) that
mazTSy > maxTS,. Asshownin case 2b(i), iharTS, > maxTS, theno, .y [r'].ts >
Tres(p)[r]-ts-

If now maxTS, = maxTS,, thenp’ observes every serverc Q;, N Q; to reply with
m(p',1)s,.ts = maxTS,. But this is exactly the definition cQ V3. So, ' proceeds to a
second communication round (phase 2) and returns a timpmpl)[r’].ts = maxT S, =
mazT'S, = Opeg(p)[r]-ts. |

Using the above lemmas we can obtain the main result of tbitoge

Theorem 5.4.5 Algorithm SLIQ implements a weak-semifast SWMR atomic read/write reg-

ister.

Proof. The atomicity requirement of the theorem follows from Lensrd4.2-5.4.4. We now
argue that 81Q belongs in the class of weak-semifast implementations hByonstruction of
SLIQ, writes are fast and reads require at most two communicediamds satisfying properties
S1, S2of Definition 4.1.1. To see thatL¥) also satisfie§4 assume the following execution:
(i) a write operationv sends messages to all the servers, (ii) the servers in amu@yueceive
the messages and replydo and (i) any read that returns, .. [w].ts strictly contactsQ;
after the servers if); replied tow. Observe that every such read operation witne€y¥9 if
Ores(w)[w].ts is the maximum, and thus is fast. If a bigger timestamp . [w].ts is observed
then a read returns,..,(.[wl.ts only if o,qy)[w].ts = 0pcqy[w].ts — 1. In such a case
the read returns the previous timestamp and by construthisnis done in a single round.

Therefore, all the reads that returp,(,,[w].ts are fast and propertg4of Definition 4.1.1 is

161

Nicolas C. Nicolaou——University of Connecticut, 2011

satisfied. Note that the messages from the servei} &r w may be in-transit and thus all the

reads may be concurrent with the write operation. This ceteplthe proof. O

5.4.5 Empirical Evaluation of SLIQ

To practically evaluate our findings, we simulate our algyoni using the the NS-2 network
simulator. We use the same test environment as in Sectiof2 i order to be able to extract
meaningful comparison results between the performanceeatito algorithms. In particular,
our test environment consists of one writer, a variable etaxer and server processes. We
use bidirectional links between the communicating nodet) handwidth, a latency af0ms,
and a DropTail queue. To model asynchrony, the processekraessages after a random
delay between 0 and 0s3c. According to our setting, only the messages from the invgki
processes to the servers, and the replies from the servéhng forocesses are delivered (no
messages are exchanged among the servers or the invokoespes).

We evaluate our approach over three types of quorum systaragrities Q,,,), matrix
quorums Q.), and crumbling walls@.). (A description of these quorum systems can be
found in [81].) In this section we present some of the plotsolv@ined exploiting crumbling
walls; all plots depicting the results of all the experimreente have conducted appear in the
Appendix A. The quorum system is generated apriori and isibliged to each participant
node via an external service (out of the scope of this work)dixhamic quorums are assumed,
so the configuration of the quorum system remains the sarnaghout the execution of the
simulation. We model server failures by choosing the naritfaquorum and allowing any

server that is not a member of that quorum to fail by crashiage that the non-faulty quorum

162

Nicolas C. Nicolaou——University of Connecticut, 2011

is not known to any of the participants. The positive timegpagtercInt is used, to model the
failure frequency or reliability of every server

We use the positive time parametet&it and wint (both greater than %ec) to model
the time intervals between any two successive read opesadind any two successive write
operations respectively. We consider three simulationates corresponding to the following
parameters(i) rInt < wint: this models frequent reads and infrequent writés, rInt =
wlnt: this models evenly spaced reads and writé) »Int > wint: this models infrequent
reads and frequent writes.

Furthermore for each one of the above scenarios we considesdttings:

(a) Stochastic setting the read/write intervals vary randomly withifd)...rInt] and

[0...wInt] respectively.

(b) Fixed setting the read/write intervals are fixed to the valueréht andwint respec-
tively.
We can summarize our simulations testbed for each classasfims and for the settings

presented above, as follows:

(l) Slmple Runs: @ca Qz, Qm) |S| = 25 (Qca Qm) or |S| =10 (Qm)’ cInt =0 (fall'
ure check for every reply) andR| € [10,20,40,80]. Here we want to demonstrate
the performance of the algorithm under similar environraggtiorum,failures) but with

different read load.

(2) Quorum Diversity Runs: (Q., Q,) |S| € [11,25,49] (Q.) and|S| € [11,25,49] (Q,),

cInt = 0 and|R| € [10,20,40,80]. These runs demonstrate the performance of the

163

Nicolas C. Nicolaou——University of Connecticut, 2011

randint data plot fixint data plot

“randint.all.crumpling.data.0" using 3:4:10 —— “fixint.all.crumpling.data.0" using 3:4:10 ——

%-2c0mm 50

Setting a: Stochastic simulations Setting b: Fixed intesiraulations

Figure 17: Simple runs using Crumbling Walls

algorithm in different quorum systems with varying quorurambership. Each quorum

is tested in variable read load.

(3) Failure Diversity Runs: (Q., Q.) |S| = 25, cInt € [10...50] with steps ofl0 and
|R| € [10, 20,40, 80]. These runs test the durability of the algorithm to failuristice
that the smaller the crash interval the faster we divergbdmbn-faulty quorum. As the
crash interval becomes bigger, less servers fail and thue quorums “survive” in the
quorum system. For this class of runs we test both the casen thie servers get the

crash interval randomly frorf0 . .. cInt] and[10.. .10 + cInt].

Figure 17 illustrates the results obtained when we assum@esiruns and exploiting crum-
bling walls quorum. The Z axis presents the percentage ot operations that perform two
communication rounds, the X axis corresponds to the numioeiader participants and the Y
axis represents time and in particular thie:t interval. In the stochastic environment (Figure

17.a) we observe that the percentage of slow reads drope amithber of readers increases,

164

Nicolas C. Nicolaou——University of Connecticut, 2011

regardless of the value offint. This behavior can be explained from the fact that the cencur
rency between the operations is minimized and thus the maritimestamp is propagated (by
both the writer and the readers) to enough servers that fagdast behavior. Since the conver-
gence point is similar regardless the number of readers,ittoeeasing the readers, increases
the number of fast reads and decreases the percentage afeslda: Similar behavior is ob-
served in the fixed interval environment (Figure 17.b) wenéhere is no strict concurrency
between the reads and the writes. The worst case is obsédrtresl @int where all operations
are invoked concurrently.

We conduct similar experiments for the rest of the cases amdesults appear in the
Appendix. Our results (including the ones given in the Agber) suggest that in realistic
cases (i.e. stochastic settings), the percentage of twonemication round reads does not
exceedl3%. The only case that requires more tt&ii¥ of the reads to be slow is the worst
case scenario were the read and write intervals are fixe@ tetfme value. Notice however that
this scenario is unlikely to appear in practical settingem@aring our results with the ones
obtained in Section 4.2.5.2, one can observe that the €liféer in the random scenarios does

not exceed%.

165

Chapter 6

Trade-offs for Multiple Writers

So far we have examined the fastness of implementationsifbat unbounded number of
readers and utilize general quorum constructions. In thégpter we investigate the existence
of implementations with executions that contain fast ofj@na when multiple writers partici-
pate in the service. First, we present the unique charatitsriof multiple-writer (MW) over
single-writer (SW) environments (Section 6.1). Next, wevide generic limitations that the
MW environment imposes on any R/W atomic register implemtion (Section 6.2). Then,
we present two separate algorithms that allow fast reacbamdite operations in the MWMR
environment (Sections 6.3 and 6.4). We first generalizedba bfQuorum Viewgsee Sec-
tion 5.4.1), that allows the introduction of fast read opierss in the MWMR environment. To
improve write operation latency, we then introduced a n@hr@ue, calle@erver Side Order-
ing, that allows both read and write operations to complete iimgles round. Our algorithms
are thdirst to allow single round read and write operations in the MWMRiemment without

making any assumptions on synchrony or the precedenc@retd#tread/write operations.

166

Nicolas C. Nicolaou——University of Connecticut, 2011

6.1 Introducing Fastness in MWMR model

One of the main challenges in atomic R/W register implentenmta is to provide dotal
ordering among the write operations.

In algorithms designed for the SWMR setting the sole writalyrarder locally the write
operations. This enables the introduction of single roumidevoperations: the writer deter-
mines locally the order of a write operation, and propagttasordering with the new value
to the replica hosts.

The existence of multiple writers prevents writers fromesidg a write operation locally.
To overcome this problem, implementations presented iMWMR setting [6, 22, 28, 36, 49,
34, 68, 66] suggested that every write operation shouldrileabout the latest value written
(and thus latest write operation), before propagating avedue to the register. For this pur-
pose, a two round write protocol was proposed where the €itstd queries the replica hosts
for the latest value of the register. Following these woddselief was shaped that “writes must
read” before writing a new value to the register in multi @rienvironments.

Dutta et al. [30] explored the possibility d&st implementations in the MWMR envi-
ronment. They showed that such implementations are impesassuming two readers, two
writers and a single server failure exist in the system. lafér 4 we showed that MWMR
are not possible isemifasimplementations either.

Consequently, MWMR implementations are impossiblallithe write operations are fast
or at most a single complete slow read per write is allowechstering that traditional algo-
rithms for the MWMR environment require two round write ogigons, devising algorithms

that allowanyfast write operations are interesting in their own right.

167

Nicolas C. Nicolaou——University of Connecticut, 2011

This stage of the thesis presents thist algorithms that allow fast write and/or read op-
erations in the MWMR environment. We show that one of the ritlgms developed is near
optimal with respect to the number of fast operations altbivea MWMR environment. We
proceed by presenting the implications and inherent litioita that the use of multiple writers
imposes in the system. Then we present algorithwF€ that adopts and generalizes the idea
of quorum views in the multiple writer environment. The aitfum is the first to allow some
fast read operations when those are invoked concurrenttywvite operations. The drawback
of CWFR is the adoption of the two round write operations. To overedims problem we
introduce a new technique, call&krver Side Orderingand we develop algorithmr8V. The

new algorithm is the first to allowothfast write and read operations.

6.2 Inherent Limitations of the MWMR Environment

In this Section we investigate the implications and restms that the MW setting may
impose on any execution of a R/W atomic register implemantaiWe study generat-wise

guorum constructions and we rely on the following definii@m any two R/W operations:

Definition 6.2.1 (Consecutive Operations)Two operationsr, 7’ areconsecutivein an exe-
cution¢ if: (i) they are invoked from processesandy’, s.t. p # p/, (ii) they complete ir¢,

and (iii) = — 7’ or 7’ — = (they are not concurrent).

Definition 6.2.2 (Quorum Shifting Operations) Two operationsr and«’ that contact quo-

rumsQ’, Q" € Q respectively, are callequorum shifting if = and =’ are consecutive and

Q+Q"

168

Nicolas C. Nicolaou——University of Connecticut, 2011

Definition 6.2.3 (Quorum Shifting Set) A set of operationdI is calledquorum shifting if

v, 7' € 11, w and=’ are quorum shifting operations.

Recall that we seek write operations that complete in asirgind. Itis thus necessary for
a write operation to propagate and write its indented valuad its first and only round. Since
we assume server failures, the writer may complete befonenumicating with all servers.
Moreover, by well-formedness (Definition 3.2.2), each psxinvokes a single operation at a
time. Thus, in the SW setting the invocation of a write ogerafrom the sole writer implies
the completion of any previous write operation. This is i tase for the MW setting as
multiple writers may invoke write operations concurrentliFollowing this observation we
show that a read operation may retrieve the latest writtturev@nd thus write operation) only
from the servers that receive messages fadiihe write operations that preceded that read.

This is captured by the following lemma:

Lemma 6.2.4 Let ¢ be an execution of an atomic read/write register implentemtad, andIl
be a set of consecutive write operationsinlf p a read operation ig s.t. w — p for every
w € II, thenp receives the latest value:/ if it communicates with a a servers.t. rcv(m),, s

appears irg for all write operationsv € II.

Proof. The proof follows from the fact that a server is not aware ofriit@n valueval unless:
1) it receives messages from the writer that propagate®vall) or 2) it receives messages
from a process that already observed valukin the system. Moreover a server may infer the
latest value at time in any execution if: 1) it receives messages from all theenojperations

invoked by timet’ < t (and thus contains all the values written), or 2) it receigetiessage

169

Nicolas C. Nicolaou——University of Connecticut, 2011

that contained the value history at titie< ¢ and received messages from all write operations
thereafter.

It is easy to see that a server may not be aware of the latast esken ifIl is a set of
consecutive write operations. Assume, to derive conttiadithat a server may return the latest
value to a read operation even if it does not receive messemasll the write operations. Let
us consider a serverat timet of an executiorg. Suppose thatreceived all the messages from
every write operation invoked by timé < ¢. Also, suppose w.l.0.g. that the latest value that
s received wasal. Since the write operations are consecutive, thehis the latest written
value in the system. We extend ngwby a write operationv that writes valueval’. Let the
resulting execution b&’. Assume thats does not receive messages framn &', Thus, s
cannot distinguistt from &’. Hence, it replies with a latest valuel to any read operation.
Since however the write operations are consecutive (arg] thtally ordered), the latest value
in the system igal’. Thus, contradiction. O

Given this finding and an-wisequorum system we show that it@ssibleto obtainsafe
register implementations if any execution contains— 1 consecutive, quorum shifting fast
write operations. We use(val) to denote the write operation that writes valug. Also,
recall that asafe registerconstitutes the weakest consistency guarantee and is d¢@pas
propertySR1L Any read operation that is not concurrent to any write opinatreturns the

value written by the last preceding write operation.

Lemma 6.2.5 Any execution fragmenp of a safe register implementation that uses an n-wise
quorum systen® s.t. 2 < n < |Q|, contains at most — 1 consecutive, quorum shifting, fast

write operations for any number of writefig/| > 2.

170

Nicolas C. Nicolaou——University of Connecticut, 2011

Proof. Let Q be somen-wisequorum system, wherz < n < |Q| its intersection degree. We
provide a series of execution constructions that depenti@intersection degree If n = 2
then¢ is the execution that consists of a single-{ 1 = 1) complete fast write operation
w(valy) invoked byw; which sent(w(valy), Q1)w, - If n = 3 then we extend, by a complete
fast write operationw(vals), from wq with sent(w(vals), Q2).,, to Obtain executiod; .

In general, ifn = i+ 2, we construct executiofy by extending executiog;_; with a com-
plete fast write operationy (i + 1), from w(; mod 2)41 With sent(w(i + 1), Qit1)w;; moq 241
By this construction any executigfj containsi + 1 (or n — 1) consecutive, quorum shifting
fast write operations.

We proceed by induction on the intersection degie& show that extending any of the
above executions with a read operatjpflom reader preserves propert$R1 In other words
the read operation is able to discern the latest write ojperaind return its value.

Induction baseWe assume that = 2 and hence, pairwise intersection between the quorums
of Q. In this case we extend executignby a read operatiop from r to obtain the following
execution{):

a) a complete fast write operatiar{val;) by w; which sent(w(valy), @Q1)w,, and

b) a complete read operatigrby r with scnt(p, Q;)..

It is easy to see that the read operatigrior any @, € Q, observes the valueal; written by
w(valy) in Q1 N Q; (# 0). Sincew(valy) is the only write operation thep will return the
value written byw(val;) and preserve properyR1

Inductive hypothesisAssume that, = k+2 and that extending execution constructi@rwith

a read operatiop preserves propertgR1 It follows thatp returns the value written by the last

proceeding write operation which & is w(valy11) thatsent(w(valg11), Qr+1)

Wk mod 2)+1"

171

Nicolas C. Nicolaou——University of Connecticut, 2011

Induction step:We now investigate the case whegeis a (k + 3)-wisequorum system. We
need to verify if executiorg; ., preserves propert$R1 Recall thaté;; is constructed by
extendingé;, with a fast complete write operatian(vali o). We further extendy, by a read
operationp by r to obtaing; , ;. The last three operations g, ; are the following:

a) a complete fast write operationw(valyy1) BY Wy moa 241 that
sent(@(vals1) Qi1 ug, a2+

b) a complete fast write operationw(valii2) DY Wiir mod 241 that
sent(w(valgya), Qk+2)w(k+1 ra0d 2)41° and

c) a complete read operati@rby r thatscnt(p, Q;),.
By the inductive hypothesis we know that the execution fragirof £, preserves property
SR1 Furthermore any + 3-wisequorum system is alsofa+ 2-wisequorum system. So, it
follows that if&;, is extended by a read operation then that read operatiomsetoy induction
hypothesispaly,1 or valiio. If valyq is returned then it follows that cannot distinguish
§41 from & and hence does not obsenué). ;> and violates propert$R1 SinceQ is also a

k + 2-wisesystem then it must be true that undgr"7 Q; # 0. Hence, the two writers),

andws and the servers iﬁ]f:f Q; # 0 can distinguish betweef} andg;,_ , since those are the
only servers that receive messages from all write opemtiémom the quorum construction
however we know thaf) has an intersection degree bf+ 3 and thusﬂfjf’ Qi # 0. So,
for any quorum@); that replies top it must hold that(ﬂfjf QZ-> NQ; # 0. Thus,3s €
(fjf QZ-> N @ such thats receives messages from every write operation sareplies top.
Hence,p also distinguisheg; , , from &, and returnsaly., preserving propertgR1 O

We now show that safe register implementationsnatgossibléf we extend any execution

that containsn — 1 consecutive writes, with one more consecutive, quoruntisgifwrite

172

Nicolas C. Nicolaou——University of Connecticut, 2011

operation. It suffices to assume a very basic system camgisfitwo writersw; andw-, and

one reader. Thus, our results hold for at least two writers.

Theorem 6.2.6 No execution fragment of a safe register implementation that uses an n-wise
quorum systenf s.t.2 < n < |Q|, can contain more tham— 1 consecutive, quorum shifting,

fast write operations for any number of write#d/| > 2.

Proof. Let Q be ann-wisequorum system, wherz < n < |Q]| it intersection degree. From
Lemma 6.2.5 we obtain that an implementation exploitingn-amisequorum system may con-
tainn — 1 consecutive, quorum shifting fast write operations antgteserve propertysR1
Thesis of this proof follows from the contradiction, where assume that an implementation
can includen consecutive fast writes and still satisfy propesiRl

Let Q be an £ + 2)-wise system and let;, be an execution of the safe register imple-
mentation that exploit§). Suppose the execution follows the construction in Lemr2eb6.
Thus, ¢ containsk + 1 consecutive, quorum shifting, fast writes. Moreover byitiguction
we know that¢, satisfiesSR1if extended by a read operation. Let us now ext€pdvith
a write w(valy2) from writer w1 mod 2)+1 Which sent(w(vali12), Qk+2)wirs moa 2417
and a read operationfrom r with sent(p, @;),. Notice that since: < |Q| thenk + 2 < |Q|
and thus there exists a quoruthe€ Q such that(ﬂfjf QZ-> NQ = 0. LetQ; € Q be such
quorum and w.l.o.g let us assume tliat = Q3. We denote the obtained execution by

A(&). Below we can see the last three operations in the execlgiquesice of\ (&):

a) a complete fast write operationw(valii1) bY W mod2)+1 Which

Scnt(wvalk+1) Qk+1)w(k mod 2)+17

173

Nicolas C. Nicolaou——University of Connecticut, 2011

b) a complete fast write operationw(valii2) bBY Wi1 mod 2)41 Which
sent(w(valisz), Qrr2)uwys mod 211t

c¢) and a complete read operatiptoy r with scnt(p, Qr+3)r-

Notice that by the above construction readdras to returrvaly o to preserve propert$R1
Since we assumed @& + 2)-wise quorum then, according to Lemma 6.204observes the
valuewvaly 1 as the latest written value from the servers(ﬂle QZ-> N Qi1 N Qrasg and
the valuevaly o as the latest written value from the servers(ﬂle QZ-> N Qkao N Qras.
We should note here that the servers in both sets receiveagessérom all write operations
{w(valy),...,w(valk)}. The servers in the first set however receive messagesdfoniy 1)
but not fromw(val2) and vice versa.

Consider now the execution fragmeht¢;) where the two write operations are switched.
More precisely we obtairg; by extendingé,_; with the write operationw(valy2) by
W(k+2 mod 2)+1- 1heN, we obtaim\ (¢},) by extendings; with the write operation(val 1)
BY w41 mod 2)4+1, @nd the read operatignfrom r. In more detail, the last three operations
that appear, and the quorums they contact are as follows:

a) a complete fast write operationv(valyy2) bBY Wit mod 2)+1 Which
sent(w(valkr2), Qk + 2)wk+1 mod 2)+1»

b) a complete fast write operationw(valii1) bBY Wk mod2)41 Which
sent(w(valgyq), Qk+1)w(k mod 2417

c) and a complete read operatipiy p with scnt(p, Qr+3),-

Observe that executions(;;) andA(¢},) differ only at the writers and the serversmﬁf Q;.
Any other server and the reader cannot distinguish betweetwo executions. In particular,

the reader does not receive any messages from any ser(@r'inQ;, since <ﬂfjf QZ-) N

174

Nicolas C. Nicolaou——University of Connecticut, 2011

Qr+3 = 0. Moreover, the reader observes the valuek..; andval o as the latest values
from the servers ir(ﬂf:1 QZ-) N Qrt1 N Qpys and (ﬂle QZ-) N Qi N Qpy3 respectively.
Since those are the same servers that replied with the sdoesvap in A(¢) thenr cannot
distinguishA(&;,) from A(&) and thus, has to retunmly, o in A(€),) as well. This however
violates propertySR1since inA(¢},) the two write operations are consecutive and the latest
completed write operation is(valg1). Hence the read operation had to retwtiy | in
A(¢&),) to preserve propertR1, contradicting our findings. O

Note that Theorem 6.2.6 also applies to both regular andiatB#W register implemen-
tations, as safety needs to be satisfied by both regular amdasemantics [62]. The theorem
is exempt in two cases: (i) a single writer exists in the syst@nd (ii) there is a common inter-
section among all the quorums in the quorum system. In thectuse the sole writer imposes
the ordering of the written values and in the second cas®tbating is imposed by the servers
of the common intersection that are accessed by every aperat

An immediate implication derived from Theorem 6.2.6 is timpossibility of having more
thann — 1 concurrentfast write operations. Since no communication between tliens is
assumed and since achieving agreement on the set of comiowrites is impossible (as shown

in [38]), that led us to the following corollary:

Corollary 6.2.7 No MWMR implementation of a safe register, that exploits:awise quorum

systemQ s.t.2 < n < |Q| and contains only fast writes is possible[J¥| > n — 1.

Moreover assuming that readers also may alter the valueeafetister replica, and thus

write, then the following theorem holds:

175

Nicolas C. Nicolaou——University of Connecticut, 2011

Theorem 6.2.8 No MWMR implementation of a safe register, that exploitsawise quorum

systemQ s.t.2 < n < |Q| and contains only fast operations is possiblé\\fU R| > n — 1.

This theorem shows that fast implementations are possithyeifdhe number of reader and
writer participants is bounded with respect to the inteisaaegree of the quorum system that
the algorithm uses. If readers do not modify the value of dggster then the theorem applies
on the number of writer participants. To our knowledge, Tkan6.2.8 is the first to provide
a general result on the relation of fast implementationsthadtonstruction of the underlying
quorum system.

We demonstrate that the result holds for algorithms thatvaseg technigues to construct
the underlying quorum system. Let us assume a model idémdiche one used in [30]. By
their algorithm each operation was waiting fdt| — f replica hosts to reply. Such voting
strategy implied a quorum system that contains quorumzefSi — f, and in extend implied

an (% — 1)-wise quorum system as depicted by the following lemma:

Lemma 6.2.9 The intersection degree of a quorum syst@rwherevQ € Q, |Q| = |S| — f

is equal to@ — 1.

Proof. Since anyQ € Q, |Q| = |S|— f then forQ, @’ € Q it follows that|QNQ'| > |S|—2f.
For three quorum®, @', Q" € Q it then follows that@ N Q' N Q"| > |S| — 3f. Generalizing

for n quorums we get:

@

1=0

> S| —nf

Since we want to find the biggestsuch that the intersection is not empty, then it should be

the case that

NQi#0=1[()Qil>0

i=0 =0

176

Nicolas C. Nicolaou——University of Connecticut, 2011

So, it follows that in the worst cagé| — nf > 0 and thusn > EJJ — 1. And that completes
the proof. O

Note that by Lemma 6.2.9 and Theorem 6.2.8, the system ircf8d¢l only accommodate:

ywwz\g(“ST’—l)—lstyvvuRyg‘ST’—z

Since only a single writer exist in their system, then itdals that|R| + 1 < (? — 2) and

hence|R| < (% —2) which is the bound derived in [30]. This leads us to the follmywemark.

Remark 6.2.10 Fast implementations, such as the one presented in [3@wfaur proved

restrictions on the number of participants in the service.

6.3 Enabling Fast Read Operations - AlgorithmCwFR

We explored the possibility to introduce fast operationthhinMWMR environment by ex-
ploiting techniques presented in the SWMR environment. ddwelopments of [28, 22], made
an effort to introduce fast read operations in the MWMR emwvinent, but their techniques did
not convince that such fast behavior is possible under redavaite concurrency.

In this section we introduce a new algorithm, we calvER, which enables fast read
operations by adopting the general idea of Quorum Viewst{@e&.4.1). The algorithm

employs two techniques:
(i) the classic query and propagate technique (two rourrdyfiie operations, and
(i) analysis of Quorum Views for potentially fast (singleund) read operations.

Read operations can be fast iwE€R even when they are invoked concurrently with one or

multiple write operations. This distinguishesMER from previous approaches. To impose a

177

Nicolas C. Nicolaou——University of Connecticut, 2011

total ordering on the written valuesWI-RrR exploits (tag, value) pairs as also used in prior
papers (e.g., [22, 28, 66]). Aug is a tuple of the form(ts, w) € N x W, wherets is the
timestamp andv is a writer identifier. Two tags are ordered lexicographycdirst by the

timestamp, and then by the writer identifier.

6.3.1 Incorporating Prior Techniques — Quorum Views

To comply with the ordering scheme ofAl-R we revised the definition of quorum views
as presented in Section 5.4.1, to examine tags instead estamps. The revised definition is

the following:

Definition 6.3.1 Let proces9, receive replies from every servein some quorunt) € Q for
aread or write operation. Let a reply froms include a tagn(r, ¢); ;,.tag and letmaxTag =

maxseq (m(m, c)s p.tag). We say thap observes one of the followinguorum views for Q:

QV1: Vs € Q:m(m, c)sptag = mazTag,

QV2:VQ' € Q: Q #QNIACQRNQ',st.A# DandVs € A:m(m,c)sp.tag < mazxTag,

QV3: 35" € Q : m(m,)y ptag < mazTag and3Q’ € Qst. Q # Q@ AVs e QNQ' :

m(m, c)sp.tag = maxTag

With similar reasoning as presented in Section 5.QY,1 implies the potential comple-
tion of the write operation that wrote a value associated witixT'ag. QV2 imposes its

non-completion an@ V3 does not reveal any information about the write completion.

178

Nicolas C. Nicolaou——University of Connecticut, 2011

6.3.2 High Level Description of CWFR

The original quorum views algorithm as presented in Sechighrelies on the fact that
a single writer is participating in the system. If a quorunewiis able to predict the
non-completeness of the latest write operation, is imnmelgiaunderstood that — by well-
formedness of the single writer — any previous write operais already completed. Mul-
tiple writer participants in the system prohibit such asptiom: different values (or tags) may
be written concurrently. Hence, the discovery of a writerapien that propagates some tag
does not imply the completion of the write operations thaippgate a smaller tag. So, al-
gorithm CwWFR incorporates an iterative examination of quorum views tiwtonly predicts
the completion status of a write operation, but also detibetsast potentially completed write
operation. Below we provide a high level description of olgoéathm and present the main
idea behind our technique.
Writers. The write protocol has two rounds. During the first round théew discovers the
maximum tag among the servers: it sends read messages &natsand waits for replies
from all the members of a single quorum. It then discovergrthgimum tag among the replies
and generates a new tag in which it encloses the increméantedtamp of the maximum tag,
and the writer’s identifier. In the second round, the writssaxiates the value to be written
with the new tag, it propagates the pair to a complete quoand ,completes the write.
Readers.The read protocol is more involved. When a reader invokea@dogeration, it sends
a read message to all servers and waits for some quorum to f@pte a quorum replies, the
reader determines theazTag. Then the reader analyzes the distribution of the tag within

the responding quorur® in an attempt to determine the latest, potentially completdte

179

Nicolas C. Nicolaou——University of Connecticut, 2011

operation. Detecting that the tag distribution satisfdé1 andQV 3 is straightforward. When
QV1 is detected, the read completes and the value associatetheitiscoverethaxTag is
returned. In the case @V 3 the reader continues into the second round, advertisiniatbst
tag (maxTag) and its associated value. When a full quorum replies to ¢eersd round, the
read returns the value associated withzT'ag.

Detection ofQV 2 involves discovery of the latest potentially completedtevoperation.
This is done iteratively by (locally) removing the serversn () that replied with the largest
tags. After each iteration the reader determines the neyésatag in the remaining server
set, and re-examines the quorum views on the distributiadheotag in the remaining servers.
This process eventually leads to eitf®@V1 or QV 3 being observed. 1QV1 is observed,
then the read completes in a single round by returning theevassociated with the maximum
tag among the servers thamainin Q. If QV 3 is observed, then the reader proceeds to the
second round as above, and upon completion it returns the eakociated with the maximum
tagmaxTag discovered among the original respondent§)in
Servers. The servers play a passive role. They receive read or wiifgeests, update their
object replica accordingly, and reply to the process thaikad the request. Upon receipt of
any message, the server compares its local tag with the thgded in the message. If the
tag of the message is higher than its local tag, the servartadae higher tag along with its

corresponding value. Once this is done the server repliggetmvoking process.

6.3.3 Formal Specification ofCwFR

We now present the formal specification ofvER using Input/Output Automata [67] no-

tation. Our implementation includes four automata: (i)oawton QvFR,, that handles the

180

Nicolas C. Nicolaou——University of Connecticut, 2011

write operations for each writep € W, (ii) automaton @vFR, that handles the reading for
eachr € R, (iii) automaton QvFR; that handles the read and write requests on the atomic
register for each € S, and (iv)Channel, ,y that establish the reliable asynchronous process-

to-process communication channels (see Section 3.1.2).

Automaton CWFR,,.

The state variables, the signature and the transitionseofthFR,, can be depicted in

Figure 18. The state of theWlFr,, automaton includes the following variables:

o ((ts,wid),v) € Nx W x V: writer's local tag along with the latest value written bgth

writer. The tag is composed of a timestamp and the identifireowriter.

e vp € V: this variable is used to hold the previous value written.

e maxT'S € N: the maximum timestamp discovered during the last writeraj.

e wCounter € N: the number of write requests performed by the writer. Iglusethe

servers to distinguish fresh from stale messages.

e phase € {1,2}: indicates the active communication round of the write apen.

e status € {idle, active,done}: specifies whether the automaton is in the middle of an
operation §tatus = active) or it is done with any requeststatus = idle). When
status = done, it indicates that the writer received all the necessarlieepo complete

its write operation and is ready to respond to the client.

e srvAck C S: asetthat contains the servers that reply to the write ngessas a result of

a write request. The set is reinitialized(t@t the response step of every write operation.

181

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:

Input: Output:

send(m)w,s, m € M, s€ S,we W
write-acky, w € W

write(val)w, val € V,w e W
rev(m)s,w, m € M, se S,wewW
faily, w € W

State:
tag = (ts,w) € N x W, initially {0, w}
v €V, initially L
vp € V, initially L
maxTS € N, initially 0
wCounter € NT, initially O

Transitions:
Input write(val)w
Effect:
if —failed then
if status = idle then
status < active
srvAck — ()
phase — 1
Up — v
v «— val
wCounter « wCounter + 1

Input rev((msgT, t,C))s,w
Effect:
if —failed then
if status = active andwCounter = C then
if (phase =1 A msgT = READ-ACK)V
(phase = 2 A msgT = WRITE-ACK) then
srvAck — srvAck U {s, (msgT,t,C)}

Output send((msgT, t,C))w,s
Precondition:
status = active
—failed
[(phase = 1A (msgT,t,C) =
(READ, (tag, vp), wCounter))V
(phase =2 A (msgT,t,C) =
(WRITE, (tag, v), wCounter))]
Effect:
none

Output write-ack,,

Precondition:
status = done
—failed

Effect:
status < idle

Internal:

phase € {1, 2}, initially 1

status € {idle, active, done}, initially idle
srvAck C M x S, initially §

failed, aBoolean initiallyfalse

Internal write-phasel-fix,,
Precondition:
—failed
status = active
phase = 1
QR eQ:Q C {s: (s,m) € srvAck}
Effect:
mazxTS « maxXscn(s,m)csrvAck(m.t.tag.ts)
tag = (maxT's + 1,w)
phase «— 2
srvAck «— ()
wCounter « wCounter + 1

Internal write-phase2-fix,,
Precondition:

—failed

status = active

phase = 2

QR eQ:Q C {s:(s,m) € srvAck}
Effect:

status «— done

Input fail
Effect:
failed < true

Figure 18: GvFRr,, Automaton:

Signature, State and Transitions

182

write-phasel-fix,,, w € W
write-phase2-fix,,, w € W

Nicolas C. Nicolaou——University of Connecticut, 2011

e failed € {true, false}: indicates whether the process associated with the automat

has failed.

The automaton completes a write operation in two phases.it& wperatiorw is invoked
when thewrite(val),, request is received from the automaton’s environment. sttae.s vari-
able becomesctive, the previous valuep gets the current value and the variablgets the
requested valueal to be written. As long as th&atus = active andphase = 1 the automa-
ton sends messages to all server processes and collectiethifiérs of the servers that reply
to those messages in thev Ack set. To avoid adding any delayed message from a previous
phase, the writer examines the type of the acknowledgmehtrenmessage counter. The ac-
tion write-phasel-fix occurs when the replies from the members of a full quorumeceived
by the writer, i.e.3Q € Q : Q C srvAck. In the same action the writer discovers the maxi-
mum timestampnaxT'S among the replies and generates the new tag. In particuéssigns
tag = (maxTS + 1, w). Once the new tag is generated, the writer changep/thee variable
to 2, to indicate the start of its second round, and reinitialitteesrv Ack to accept the replies
to its new round. When a full quorum repliesitothe status of the automaton becomésne.
This change, and assuming that the writer does not fail,leadbewrite-ack,,. Finally, when
the actionwrite-ack,, occurs, the writer responds to the environment ancsthéus variable

becomesdie.

Automaton CWFR,,.

The state variables, the signature and the transitionseofQhFR, can be depicted in

Figures 19 and 20. The state of th&vEr,- automaton includes the following variables:

183

Nicolas C. Nicolaou——University of Connecticut, 2011

({ts,wid),v) € N x W x V: the maximum tag (timestamp and writer identifier pair)

discovered during’s last read operation along with its associated value.

maxTag € N x W, andretvalue € V: the maximum tag discovered and the value that

was returned during the last read operation.

rCounter € N: read request counter. Used by the servers to distinguésh from stale

messages.

phase € {1,2}: indicates the active communication round of the read djoera

status € {idle,active, done}: specifies whether the automaton is in the middle of an
operation §tatus = active) or it is done with any requeststatus = idle). When
status = done, it indicates that the reader decided on the value to benetuand is

ready to respond to the client.

srvAck C M x S: a set that contains the servers and their replies to theomamtion.

The set is reinitialized t@ at the response step of every read operation.

maxAck C M x S: this set contains the messages (and the servers sendsrspiia

tained the maximum tag durings last read request.

maxTagSrv C S: The servers that replied with theaxTag.

reply@ C S: The quorum of servers that repliedstaluring the last read operation.

failed € {true, false}: indicates whether the process associated with the automat

has failed.

184

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:
Input: Output: Internal:
read,, r € R send(m)rs, me M, T€R, s€S read-phasel-fix,.
recv(im)s,, me M, r€R, s€S read-ack(val),, val € V, r € R read-phase2-fix,.
fail,, r€ R
State:
tag = (ts,wid) € N x W, initially {0, min(W)} status € {idle, active, done}, initially idle
maxTag = (ts,wid)y € N x W, initially {0, min(W)} srvAck C M x S, initially 0
v €V, initially L maxAck C M x S, initially 0
retvalue € V, initially L maxTagSrv C S, initially (
phase € {1,2}, initially 1 reply@Q C S, initially ()
rCounter € NT, initially 0 failed, a Boolean initiallyfalse

Figure 19: GvFR, Automaton: Signature and State

Any read operation requires one or two phases to completedfalow). The decision on
the number of communication rounds is based on the quorwvs\igat the reader establishes
during its first communication round.

The reader invokes a read operation when th&v€r, automaton receivesraad, request
from its environment. Thetatus of the automaton becomestive and the reader sends mes-
sages to each serverc S to obtain the value of the atomic register. Thee(m), action is
triggered when readerreceives a reply from server The reader collects the identifiers of the
servers and their replies by adding a pairm) in the srv Ack set. When- receives messages
from a single quorund) it detects the the maximum taghGz7T'ag) among the messages re-
ceived from the servers if). Those messages are placedinzTagAck set. The servers that
belong into the collected quorum and have messagesanT agAck, are placed separately
in themaxTagSrv set. Lastly, theeply@ variable becomes equal to the quorgimand the
valuev becomes equal to the value assignedtarT ag.

From the newly formed sets the reader iteratively analyzeslistribution of the maximum

tag on the members okplyQ, in an attempt to determine the latest write operation that h

185

Nicolas C. Nicolaou——University of Connecticut, 2011

Transitions:
Input read,. Internal read-phasel-fix,.
Effect: Precondition:
if =failed then —failed
if status = idle then status = active
status «— active phase =1
rCounter « rCounter + 1 Q€ Q:Q C{s: (s,m) € srvAck}
Effect:

Input rev((msgT, t,C))s,r reply@ — Q

Effect:
if —failed then

maxTag ma‘XSETEplyQ/\(S,m)ESTUACk(m't‘tag)
mazAck — {(s,m) : (s,m) € srvAck AN m.t.tag = maxzTag}

if status = active andrCounter = C then mazTagSrv «— {s : s € replyQ A (s, m) € mazAck}
srvAck — srvAck U{(s, (msgT,t,C))} v {m.twal : (s,m) € mazAck}

Output send({msgT,t,C))r, s Internal read-qview-eval,.
Precondition: Precondition:
status = active ~failed
—failed reply@Q # 0
[(phase =1 A (msgT,t,C) = Effect:
(READ, (maxTag,v), rCounter))V tag < MaXycreplyQn(s,m)csrvAck(m-t.tag)
(phase = 2 A (msgT, t,C) = mazAck — {(s,m) : (s,m) € srvAck A m.t.tag = mazTag}
(INFORM, (mazTag,v), rCounter))] mazTagSrv — {s : s € replyQ A (s,m) € mazxAck}
Effect: retvalue «— {m.t.wal : (s,m) € maxzAck}
none if reply@Q = maxTagSrv then

Output read-ack(val)
Precondition:
—failed
status = done
val=retvalue
Effect:
reply@ «— 0
srvAck «— ()
status < idle

Internal read-phase2-fix,.
Precondition:
—failed
status = active
phase = 2

status «— done
else

if 3Q" € Q,Q’ # replyQ s.t.replyQ N Q' C maxTagSrv then
tag «— maxTag
retvalue < v
phase «— 2
srvAck «— ()
rCounter «— rCounter + 1

else
reply@ «— reply@ — {s : s € maxTagSrv}

Input fail,.
Effect:
failed «— true

JQeQ:Q C{s:(s,m) € srvAck}

Effect:
status < done
phase — 1

Figure 20: GvFR,. Automaton: Transitions

186

Nicolas C. Nicolaou——University of Connecticut, 2011

potentially completed. This is done by thead-qview-eval, action. In particular, the iterative
approach works as follows. LetazTag, denote the maximum tag ireply@ at iteration?,
with maxTagy = maxTag. Also letreplyQ, be the set of servers that the read operation
examines during iteratiofi, with replyQq = reply@Q = . During every iteratior?, the

readerr proceeds as follows (locally) depending on the quorum viegbserves during in

replyQy:

Setl = 0 andreplyQo = reply@

Repeat until return:

QV1: Return the value associated withuzTag, = maxcrepiyq, (M(p)s,r-t-tag)

QV3: Proceed to a second round, and propagate messages tratheontT'agy =
maxTag to all servers. Once thead-phase2-fix, event occurs, return the value associ-

ated withmazTag.

QV2: SetreplyQ+1 = replyQe—{s : (s € replyQe) N(m(p)sr.t.tag = mazTage)}

and proceed to iteratioh+ 1.

Let us discuss the idea behind our proposed technique. @b#eat under our failure
model, any write operation can expect a response from at deasfull guorum. Moreover a
write w distributes its tagag,, to some quorum, sag’, before completing. Thus when a read
operationp, s.t. w — p, receive replies from some quoru@, then it will observe one of the
following tag distributions: (a) it = Q' , thenVs € Q,m(p)s, = tag, (QV1), or (b) if
Q # Q' ,thenVs € Q N Q',m(p)s,» = tag, (QV3). Hence, ifp observes a distribution as

in QV1 then it follows that a write operation completed and reagikeplies from the same

187

Nicolas C. Nicolaou——University of Connecticut, 2011

quorum that replied tp. Alternatively, if only an intersection contains a unifotag (i.e., the
case ofQV 3) then there is a possibility that some write completed inre@rsecting quorum
(in this example?’). The read operation is fast (V1 since it is determinable that the write
potentially completed. The read proceeds to the secondliou®V 3, since the completion of
the write is indeterminable and it is necessary to ensutethasubsequent operation observes
that tag. If none of the previous quorum views hold (and 082 holds), then it must be the
case that the write that yielded the maximum tag is not yetxetad. Hence we try to discover
the latest potentially completed write by removing all tkevers with the highest tag fro@
and repeating the analysis. If at some iterati@V/ 1 holds on the remaining tag values, then a
potentially completed write — that was overwritten by geeailues in the rest of the servers —
is discovered and that tag is returned (in a single round)o literation is interrupted because
of QV1, then eventuallfQV 3 is observed in the worst case, when a single server will nemai
in some intersection of). Since a second round cannot be avoided in this case, wehtake t
opportunity to propagate the largest tag observed.ilt the end of the second round that tag

is written to at least a single complete quorum and thus theéarecan safely return it.

Automaton CWFR;.

The server automaton has relatively simple actions. Thaasige, state and transitions
of the QwFR, can be depicted in Figure 21. The state of th&RR, contains the following

variables:

o ((ts,wid),v) € N x W x V: the maximum tag (timestamp, writer identifier pair)

reported tos along with its associated value. This is the value of thestegireplica ofs.

188

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:

Input:
rev(im)p,s, me M, seS, pe RUW
fails

State:
tag = (ts,wid) € N x W, initially {0, min(W)}
v €V, initially L
Counter(p) € NT, p € RUW, initially 0

Transitions:
Input rev((msgT,t,C))p,s
Effect:
if =failed then
if status = idle andC' > Counter(p) then
status < active
Counter(p) «— C
if tag < t.tag then

Output:
send(m)s,p, m e M, s€ S, pe RUW

msgType € {WRITEACK,READACK,INFOACK }
status € {idle, active}, initially idle
failed, aBoolean initiallyfalse

Output send((msgT, t,C))s p
Precondition:
—failed
status = active
pERUW
(msgT,t,C) =
(msgType, (tag, v), Counter(p))

(tag.ts,tag.wid,v) «— (t.tag.ts,t.tag.wid, t.val) Effect:

status «— idle

Input fail
Effect:
failed «— true

Figure 21: GvFR, Automaton: Signature, State and Transitions

e Counter(p) € N: this array maintains the latest request index of eachtdieader or

writer). It helpss to distinguish fresh from stale messages.

e status € {idle,active}: specifies whether the automaton is processing a request re-

ceived Gtatus = active) or it can accept new requestgqtus = idle).

e msgType € {WRITEACK,READACK,INFOACK}: Type of the acknowledgment depend-

ing on the type of the received message.

e failed € {true, false}: indicates whether the server associated with the autontets

failed.

189

Nicolas C. Nicolaou——University of Connecticut, 2011

Each server replies to a message without waiting to receiyeother messages from any
process. Thus, the status of the server automaton determimether the server is busy pro-
cessing a messagettus = active) or if it is able to accept new messagesafus = idle).
When a new message arrives, the(m), s event is responsible to process the incoming mes-
sage. If thestatus is equal to idle and this is a fresh message from progdken thestatus
becomes active. Th€ounter(p) for the specific process becomes equal to the counter in-
cluded in the message. Then the server checksif,), ;.t.tag > tags. The comparison is

validated if either:

e the timestamp of the received tag is greater than the timmgsia the local tag of the

server (i.e.n(m, *), s.t.tag.ts > tags.ts), or

e m(m,x*),s.t.tag.ts = tags.ts and the writer identifier included in the tag of the received
message is greater than the writer identified included iddb& tag of the server (i.e.,

m(m, *)p.s.t.tag.wid > tags.wid).

If any of the above cases hold, the server updatesit@ndwv variables to be equal to the
ones included in the received message. The type of the eztaiessage specifies the type of
the acknowledgment.

While the server is active, treend(m), , event may be triggered. When this event occurs,
the server sends its local replica value, to the proces3 he action results in modifying the

status variable toidle and thus setting the server enable to receive new messages.

190

Nicolas C. Nicolaou——University of Connecticut, 2011

6.3.4 Correctness oCWFR

We show that algorithm @FR, satisfies both termination and atomicity properties pre-

sented in Definitions 3.2.4 and 3.2.5 respectively.

Termination

Each phase of any read or write operation terminates whemtb&ing process receives
replies from at least a single quorum. According to our failonodel, all but one quorums may
fail (see Section 3.1.4). Thus, any correct process resedmies from at least the correct quo-
rum. Thus, every operation from a correct process eventtaininates and hence, Definition

3.2.4 is satisfied.

Atomicity

We now show that algorithm WFR satisfies the properties of Definition 3.2.5. We adopt
the notation presented in Chapter 3. In particular, wewsg to refer to the variablear of
the automaton @FR,. To access the value of a variabler of CWFR,, in a states of an
executioné, we useo[p|.var (see Section 3.1.1). Also, let(r,c),,, to denote the message
sent fromp to p’ during thec” round of operationr. Any variablevar enclosed in a message
is denoted byn(r, ¢), ,v.var (see Section 3.1.2). We refer to a stepread-qview-eval,., '),
whered’[r].status = done or o'[r].phase = 2, as theread-fix stepof a read operatiom
invoked by reader. Similarly we refer to a stefy, write-phase2-fix,,, ') as thewrite-fix step
of a write operationv invoked byw. We use the notation ;. (., to capture the final state

of a read or write fix step (i.eq’ in the previous examples) for an operation Finally, for

191

Nicolas C. Nicolaou——University of Connecticut, 2011

an operationr, ;,,(r) ando,.,(r) denote the system state before the invocation and after the
response of operation respectively (as presented in Section 3.2).

Given this notation, the value of the maximum tag observethdwa read operatiop from
areaden is o i, [r].mazTag. As a shorthand we useazT'ag, = 0 fiy(,)[r]-marTag to
denote the maximum tag witnessed dySimilarly, we useninT'ag, to denote the minimum
tag witnessed by. For a write operation we usearT'ag, = 0,5, [w].mazTag to denote
the maximum tag witnessed during the read phase. Thestate, is the state of the system
after thewrite-phasel-fix,, event occurs during operation Note thato,.,(r)[p].tag is the tag
returned ifr is a read operation. Lastly givéng’ and a set of servel that replied to some
operationr from p, let (Q)>'" = {s: s € Q Am(7)s,.tag > tag'} be the set of servers in
Q that replied with a tag greater thamg'.

Similar to Section 4.2.4, we can express the ordering of/waéd operations with respect
to the tags they return/write. For the operation orderingatisfy the atomicity conditions of
Definition 3.2.5, the tags written and returned must satiséyfollowing properties for every

finite or infinite executiort of CWFR:

TG1. For each process the tag, variable is alphanumerically monotonically nondecregsin

and it contains a non-negative timestamp.

TG2. If the read,- event of a read operation from readerr succeeds the write-fix step of a

write operationw in § then,o,..q(,)[r]-tag > 0,.c((W] tag.

TG3. If w andw’ are two write operations from the writets andw’ respectively, such that

w — W' iNE, theno, g [w'].tag > 0pes0) (W] tag.

192

Nicolas C. Nicolaou——University of Connecticut, 2011

TGA4. If p andp’ are two read operations from the readerand r’ respectively, such that

p — p'ing, theno, ., n[r'l.tag > 0,5 [r]-tag.

First we need to ensure that any process in the system nmrargaly monotonically non-
decreasing tags. In other words, if some progessts itstag, variable to a valug at a state

o in an executiorg, thentag, # ¢ such that < k at a stater’ that appears after in &.

Lemma 6.3.2In any execution{ € goodexecs(CWFR,Q), o'[s].tag > o[s].tag for any

servers € S and anyo, o’ in £, such thatr appears before’ in £.

Proof. It is easy to see that a servemodifies itstag variable when the stef, rcv(m),, 5, 0').
From that stepg[s|.tag # o'[s].tag only if s receives a message durimngv, s such that
m(m, 1), s.tag > o[s].tag. This means that either: ap(w,1),s.tag.ts > ol[s|.tag.ts
or b) m(m, 1), s.tag.ts = ofs]l.tag.ts and m(x, 1), s.tag.wid > o[s].tag.wid. So, if
ols].tag # o'[s].tag, theno[s].tag < o'[s].tag and the tag is monotonically incrementing.
Furthermore, since the initial tag of the server is set0tanin(wid)) and the tag is updated
only if m(m, 1), s.tag.ts > ols].tag.ts, then for any state””, it holds thato”[s].tag.ts is
always greater than O. O
We can also show that a server replies with a higher tag thauortke it receives in a re-

guesting message.

Lemma 6.3.3 In any execution{ € goodexecs(CWFR,Q), if a servers receives a mes-
sagem(w, 1), s from a proces9, for operationr, thens replies top with m(,1), ,.tag >

m(m, 1), s.tag.

Proof. When the server receives the message from processbrst comparesn(, 1), s.tag

with its local tagtags. If m(m, 1), s.tag > tags then the server setags = m(m, 1), s.tag.

193

Nicolas C. Nicolaou——University of Connecticut, 2011

From this it follows that the tag of the server at the stateafter rcv, s is o'[s].tag >
m(m, 1), s.tag. Since by Lemma 6.3.2 the tag of the server is monotonicadlydecreas-
ing, then when thaend; ,, event occurs, the server repliesptavith a tagm(n,1)s ,.tag >

o'[s].tag > m(m, 1), s.tag. Hence, the lemma follows. O

The next lemma shows the monotonicity of tags in every wptecess.

Lemma 6.3.4 In any executior € goodexecs(CWFR,Q), o'[w].tag > o[w].tag for any
writer w € W and anyo, o’ in &, such that appears before’ in £. Also, for any stater in ¢,

olw].tag.ts > 0.

Proof. Each writer processaw modifies its local tag during its first communication
round. In particular when thewrite-phasel-fix,, event happens for a write opera-
tion w, then the tag of the writer becomes equalttgy, = (maxTag,.ts + 1,w).
So, it suffice to show that,,.[w].mazTS < mazTag,. Suppose that all the
servers of a quorunml € @, received messages and replied i@ for w. Every
message sent fromw to any servers < (; (when send, ; occurs), contains a tag
m(w, Dw,stag = Oipy)[w].mazTS. By Lemma 6.3.3, any € (@ replies with a tag
m(w, s w-tag = m(w, 1)y stag > Oy [w].mazTS. Thus,Vs € Q, m(w, 1) .tag >
Tinv(w)[w]-mazTS and it follows thatm(w, 1)sw-tag.ts > iy [w].mazTS tag.ts. Since
mazTag,.ts = max(m(w,1)sw-tag.ts) thenmazTagy.ts > i) [w].maxTS tag.ts
and henceg, ., [w]-tag = (mazTag,.ts +1,w) > 0 () [w].maxTS. Therefore not only
the tag of a writer is nondecreasing but we show explicitht the writer’s tag is monotonically

increasing. Furthermore since the writer adopts the maxirtag sent from the servers, and

194

Nicolas C. Nicolaou——University of Connecticut, 2011

since by Lemma 6.3.2 the servers tags contain non-negatastamps, then it follows that
the writer contains non-negative timestamps as well. O

The next lemma shows the monotonicity of the tags in evergaea

Lemma 6.3.5In any executionf € goodexrecs(CWFR,Q), o'[r].tag > olr].tag for any
readerr € R and anys, o’ in &, such thatr appears before’ in £. Also, for any stater

ing, ofr].tag.ts > 0.

Proof. Notice that the tag variable of a readevis,(,)[7].tag < 0iny(p) 1] maxTS when the
read, event occurs. So, it suffices to show that,,[r]-tag > 0. () [r]-mazT'S. With simi-
lar arguments to Lemma 6.3.4 it can be shown that for every) that replies to an operatign
invoked byr, m(p, 1)sr.tag > Oipy(p)[r]-maxT'S. SincemazTag, = max(m(p,1)s,.tag)
and minTag, = min(m(p,1)s,.tag) then it follows that bothmaxzTag,, minTag, >
Tinv(p)[r]-mazT'S. By the algorithm the tag returned by the read operatiomisT'ag, <
Ores(p)[T]tag < maxTag,. HENCE,0,c4p)([r]-tag > 0iny(p)[r]-mazTS. Thus, no matter
which of the tags is chosen to be returned at the end of the apachtion nondecreasing
monotonicity is preserved. Also since by Lemma 6.3.2 allsbevers reply with a non nega-

tive timestamp, then it follows thatcontains non-negative timestamps as well. O

Lemma 6.3.6 For each procegs € R UW US thetag variable is monotonically nondecreas-

ing and contains a non-negative timestamp.

Proof. Follows from Lemmas 6.3.2, 6.3.4 and 6.3.5 O
The following lemma states that if a read operation returtaégar < maxTag it must
be the case that any pairwise intersection of the replieduwp@ontains a server such that

tags < T.

195

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 6.3.7 In any executior¢ € goodexecs(CWFR,Q), if a read operationp from r re-

ceives replies from the members of quor@mand returns a tag,..,(,)[r].tag < mazTag,,

thenVQ' € Q,Q’ # Q, (Q NQ') — (Q)>Trestwlrltag £ ¢,

Proof. By definition the intersection of two quorungs, Q' € Q is not empty. Let us assume
to derive contradiction that a read operatjpmay return atag,..,(,)[r].tag < mazTag, and
may exist(QNQ’)—(Q)>r==w [l — ¢ According to our algorithm, wherad-qview-eval
event occurs, we first check if eith&V1 or QV 3 is observed if). If neither of those quorum
views is observed then we remove all the servers with theentimaximum tag frond) and
we repeat the check on the remaining servers. It followsdimae all the servers ¢ Q N Q’
were removed frond) then it must be the case that(p, 1)y .tag > 0yc5(p[7]-tag. So there
must be atag’ > 0,.4,[r]-tag st. A = (Q N Q') — (Q)>" # 0 and all servers’ € A

replied withm(p, 1)y ,.tag = 7'. If this happens there are two cases for the reader:

a) Vs € (Q) — (Q)>7,m(p, 1)y ,.tag = 7" and thusQV1 is observed and the reader

returnso,.q(,)[r]-tag’ = 7', or

b) Vs’ € A,m(p,1)y ,.tag = 7' and thus,QV3 is observed and the reader returns

Ores(p)[r]-tag’ = maxTag,,.

SincemazTag, > 7', then in any case the read operatiomould return atag, .(,)[r].tag’ >

0res(p)[7]-tag and that contradicts our assumption. |
Derived from the above lemma, the next lemma states thatdaageration returns either

themaxTag or the maximum of the smaller tags from the pairwise intdises of the replied

quorum.

196

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 6.3.8 In any executior¢ € goodexecs(CWFR,Q), if a read operatiop from r re-
ceives replies from a quoru@, thenvQ' € Q, Q" # Q, 0,c5(p)[7]-tag > min(m(p, 1)s) for

seQNQ.

Proof. This lemma follows directly from Lemma 6.3.7. Let a subsesefvers inQ N Q’
replied top with the minimum tag among all the servers of that intersectsayr. If the
iteration of theread-eval-qview, event ofp reaches tag then eitherp observesQV1 and
returnso,..q(,)[r].tag = 7 or it observedQ V3 and returnss,.,(,)[r].tag = mazTag, > 7.
This is true for all the intersection@ N Q’, for @ # Q’. And the lemma follows. O

Next we show that a read returns a higher tag than the oneewhit a preceding write.

Lemma 6.3.9 If in an execution{ € goodexecs(CWFR,Q), the invocation step of a read

operationp from readerr succeeds the write-fix step of a write operatiorfrom w then,

Ores(p) [T]'tag > Ores(w) [w]'tag-

Proof. Assume w.l.0.g. that the write operation receives messfgestwo, not necessarily
different, quorums) and@’ during its first and second communication rounds respégtive
Furthermore, let us assume that the read operation reaejpkss from a quorund)”, not nec-
essarily different from or @)/, during its first communication round. According to the algo
rithm the write operatiow detects the maximum tag frof), increments that and propagates
the new tag taQ’. SinceVs € Q,mazTag, > m(w,1)s,.tag then from the intersection
property of a quorum system it follows thet’ € (Q N Q") U (Q N Q"), 0yes(wy [w].tag >
mazTag, > m(w,1)y ,-tag. From the fact thatv propagates, (. [w].tag in w's second
communication round and from Lemma 6.3.3 it follows thatrgvec (Q' N Q") replies with

atagm(w,2)sw-tag > 0yeq)[w]-tag during the second round af.

197

Nicolas C. Nicolaou——University of Connecticut, 2011

Since theread, operation succeeds the write-fix stepuafthen from Lemma 6.3.3 the
read operation will obtain a tagi(p,1)s,.tag > m(w,2)sw-tag > 0pesw)lwl-tag, from
every servers € Q' N Q". So,min(m(p,1)s,.tag) > Opesy[w].tag. Thus from Lemma
6.3.80,cs(p)[r]-tag > m(p,1)s, for s € Q' N Q" and hencer, ., (,)[r].tag > 05w [w].tag
completing the proof. O

The next lemma shows thatwFRr satisfiesT G3.

Lemma 6.3.10 In any executiort € goodezecs(CWFR,Q), if w andw’ are two write oper-

ations from the writersv andw’ respectively, such that — w’ in &, thenares(w,)[w’].tag >

Ores(w') [w] tag

Proof. From the precedence relation of the two write operatiordlitdvs that the write-fix step
of w occurs before therite, event ofw’. Recall that for a write operatian, o, () [w].tag =
(mazxTag,.ts+1,w). So, it suffices to show here thatuzTag,, > maxTag,. This however
is straightforward from Lemma 6.3.3 and the value propabdtging the second communi-
cation round ofv. In particular letw propagater, ., [w].tag > maxTag, to a quorumg).
Notice that every € Q replies withm(w, 2)s w-tag > 0yes(w) [w].tag to the second commu-
nication round ofu. Furthermore, let the write operatiari receive replies from a quorudy’,
not necessarily different tha@, during its first communication round. Since the write-figpst
of w occurs before therite,, event ofw’ then, by Lemmas 6.3.2 and 6.3’ € Q N Q'
m(W', Vg > m(w,2)sw > Ores(w)[w]tag. Thus, maxTag, > m(w',1)g.w >
Tres(w)[w]-tag and hence, since,.y,w].tag = (marTag, .ts + 1,w’) > maxTag.,

theno, s [w'l.tag > 0,cq) W] tag. O

198

Nicolas C. Nicolaou——University of Connecticut, 2011

The following two lemmas show that the tags returned by rgmetagions in @/FR satisfy

propertyTG4.

Lemma 6.3.11 In any executiort € goodexecs(CWFR,Q), if p andp’ are two read oper-

ations from the readers and ' respectively, such that — o’ in &, theno, ., [r'].tag >

Ores(p) [T‘] tag.

Proof. Sincep — p’ in &, then theread-ack, event ofp occurs before theead,. event of
p'. Lets consider that both read operations are invoked fraenstme reader = /. It
follows from Lemma 6.3.5 that, ., [7].tag < 0,c5()[r]-tag because théag variable is
monotonically non-decrementing. So it remains to invesgégvhat happens when the two read
operations are invoked by two different processeandr’ respectively. Suppose that every
servers € () receives the messages of operatiowith an eventrcv(m), s, and replies with
a tagm(p, 1), ,.tag with an eventend(m), , to r. Notice that for every server that replies,
as mentioned in Lemma 6.3.8y(p, 1)s r-tag > 0y () [r]-mazT'S. Let the members of the
quorum@’ (not necessarily different thap) receive messages and replystoAgain for every

s' € Q,m(p,1)g 1 = Cinupy[r].maxTS. We know that the tag of the read operatjon
after theread-qview-eval, event ofp may take a value betweenaxT'ag, > 0,cq(p)[r]-tag >
minTag,. It suffice to examine the two extreme cases and every inthateevalue can be
proved similarly. So we have two cases to examines 1), [r].tag = minTag,, and 2)

Ores(p)[T]-tag = maxTag,.

Case 1: Consider the case whewg..) [r|.tag = minTag,, including the case where
minTag, = maxTag, This may happen only if theead-qview-eval, event reaches

an iteration with tagr = minTag, and observedQV1. In other words all servers

199

Nicolas C. Nicolaou——University of Connecticut, 2011

s € Q — (Q)77 reply withm(p,1)s,.tag = minTag,. By Lemma 6.3.7 it follows that
Q@NQ)—(QNQ)T # O and thus every server € Q N Q' replies top with a tag
m(p,1)s,.tag > minTag,. By Lemma 6.3.2 it follows that every servet € Q N Q,
replies with a tagn(p’,1)s ,.tag > m(p,1)s r.tag > minTag,. The read operatiop’
may return a value within the intervatinTag, < 0,¢s(,[1'].tag < maazTag,. Since for ev-
ery servers’ € Q N Q', m(p', 1)y .tag > minTag, = 0,es(p)(r]-tag thenmaxzTagy >
m(p', 1) s prtag > Opes(pyr]-tag. Hence, ifo,qq,[r']l.tag = maxTag, it follows that
Ores(p) '] :tag > Opeg(p)[r]-tag. On the other hand, it,cq([r'].tag = minTag, we
need to consider two cases: @aynTag,y > minTag, and b)minTag, < minTag,.
If the first case is valid then it follows immediately that.,)[r'].tag > minTag, and
thus 0,.cq()[r']-tag > Opeg(p)lr]-tag. If case b) is valid then it follows that the iteration
reaches a tag equal t@inTag,. Since however every servet € Q N Q’', replies with
m(p',1)g tag > minTag,, thenm(p', 1)y v.tag > minTag, as well and thus all
these servers are removed by iteration where tag is equalitd’ag,. So it follows that

(QNQ) - (Q)”>™nTa9, — ¢ and that contradicts Lemma 6.3.7. So the case is impossible.

Case 2:Here we examine the case whete,(,[r].tag = mazTag,. This may happen after
theread-qview-eval, of p if either observes a quorum vie@V1 or a quorum viewQV3. Let

us examine the two cases separately.

Case 2a:In this casep withessed Q V1.
Therefore it must be the case that € Q, s replied withm(p, 1), ,.tag = mazTag, =

minTag, = Ores(p)lr]-tag. Thus by Lemma 6.3.%s € Q N @', s replies with a tag

200

Nicolas C. Nicolaou——University of Connecticut, 2011

m(p',1)s.tag > m(p,1)s,.tag to p’, and hencep’ witnesses a maximum tag
mazTagy > mazxTag, = maxTagy > 0pesp[r]-tag (8)

Recall thatminTag, < 0pcsnlr'ltag < maxzTagy. Clearly if o,.,,[1"].tag =
mazTagy theno, ., n[r'l.tag > 0,cq)[r]-tag. So it remains to examine the case where
Ores(p)[']-tag < marTag,. By Lemma 6.3.8¢,.,[r'].tag must be greater or equal to
the minimum tag of any intersection f. Sincemin(m(p’, 1)y ,r.tag) > 0,c5(,)[r]-tag, for

everys' € Q N Q', then by that lemma,. .o, [1'].tag > 0,05 [7] tag.

Case 2b:This is the case where,.,(,[r].tag = maxzTag,, because witnessed a quorum
view QV 3. In this casey proceeds in phase 2 before completing. Since p’ and sincey’
happens after theead-ack,> action of p, it means thap’ happens after theead-phase2-fix,.
action of p as well. Howeverp proceeds to phase 2 only after thead-phasel-fix, and
read-qview-eval,. actions. In the latter actiop fixes themaxTag variable to be equal to the
maxTag,. Once in phase 3 sends inform messages withax1'ag, to a complete quorum,

say@”. By Lemma 6.3.6, every serverc Q" replies with a tag
m(p,2)sr-tag > maxTag, = m(p,2)s.tag > Ores(p)[r]-tag (9)

So o' will observe (by Lemma 6.3.2) that at least’ € Q' N Q", m(p', 1)y .tag >

Ores(p)[r]-tag. Hence by Lemma 6.3.,8 returns atag, .., [r'].tag > min(m(p', 1)y ,.tag)

and thusg,..s () [1'].tag > 0,5 [7]-tag and this completes our proof. |
Lastly the following lemma states that if two read operatiogturn two different tags then

the values that correspond to these tags are also different.

lread-ack, occurs only if all phases reach a fix point and thetws variable becomes equal done

201

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 6.3.12 In any executiorf € goodexecs(CWFR, Q), if p andp’ two read operations
from readers- andr’ respectively, such that (resp. p’) returns the value written by (resp.
W), then if o,cq(p) [1].tag # ores(p '] tag thenw is different thano’ otherwise they are the

same write.

Proof. This lemma is ensured because a unique tag is associatedhtevetien value by the
writers. So it cannot be the case that two readers suchuibat, [r].tag # 0,cq()[r']-tag
returned the same value. |

Using the above lemmas we can obtain:
Theorem 6.3.13 Algorithm CwFR implements a MWMR atomic read/write register.

Proof. This theorem follows from Lemmas 6.3.6, 6.3.9, 6.3.10, a@dl. Moreover Lemma
6.3.12 shows that each value is associated with a uniquartdghus operations can be ordered

with respect to the tags they write or return. O

6.4 Server Side Ordering - Algorithm SFW

In traditional MWMR atomic register implementations, [&8}, 66, 36] (including algo-
rithm CwFR) the writer is solely responsible for incrementing the taaf imposes the ordering
on the values of the register. With the new technique, andhglomid approach, this task is now
also assigned to the servers, hence the naemeer Side Orderin¢SSO). Figure 22 presents a
data flow of the two techniques.

At a first glance, SSO appears to be an intuitive and straightfrd approach: servers
are responsible to increment the timestamp associatedtiathlocal replica whenever they

receive a write request. Yet, this technique proved to beemély challenging. Traditionally,

202

Nicolas C. Nicolaou——University of Connecticut, 2011

writer server

writer server P1: write(tw,v)

P1: read()
-

reply(t,)
Find max (t;)
t,, = inc(t,)
P2: write(t,,v)
reply(max(t,,t;))

Figure 22: Traditional Writer Side Ordering Vs Server Sidel€ing

reply(t,v)

P2: write(t,,v)

t,, = max(t,)
- 5

reply(max(t,,t,))

Return(OK)

two phase write operations were querying the registeraagplfor the latest timestamp, then
they were incrementing that timestamp and finally they weségaing the new timestamp to
the value to be written. Such methodology established thet andividual writer was respon-
sible to decide aingleanduniquetimestamp to be assigned to a written value. Following this
technique a belief was shaped that “writes must read”.

The new technique promises to allow the writer avoid theypaase during a write opera-
tion. However, allowing the servers to increment the timegis introduces new complexity to
the problem:multiple anddifferenttimestamps may now be assigned to the same write request
(and thus the same written value). Since timestamps argaseder the write operations, then
multiple timestamps for a single write imply the appearaoicte same operation in different
points in the execution timeline. Hence the great challaade provide clients with enough
information so that they decide a unique ordering for eadttemr value to avoid violation of
atomicity. For this purpose we combine the server generateestamps dlobal ordering

with writer generated operation countelasc@l ordering.

203

Nicolas C. Nicolaou——University of Connecticut, 2011

In this Section we present algorithnF\& which adopts SSO to allow fast readd write
operations. To our knowledge, this is thiest algorithm that allows fast write operations in the

MWMR environment.

6.4.1 New Way of Tagging the Values

Algorithm SFW uses(tag, val) pairs, to impose ordering on the values written to the
register. In contrast to traditional approaches wheredbed a two field tuple, this algorithm
requires the tag to be a triple. In particular, the is of the form(ts, wid, wec) € N x W x N.

The fieldsts and wid are used as in common tags and represent the timestamp aed wri
identifier respectively. Fieldc represents the write operation counter and is used to gissh
between write operations originating from the writer wittemtifier wid. In other wordsts
represent thglobal andwc the local value orderings, and are incremented by the servers and
writers respectively (as required by SSO).

The necessity of the third field in a tag lies on the followingservation: if a tag is a
tuple of the form(ts, wid), then two server processesnds’ may associate two different tags
(tss,w) and(tsy,w) respectively to a single write operation Any operation however that
witnesses such tags is not able to distinguish whether ¢sarédier to a single or different write
operations fromw. By including the writer’s local orderingc in each tag, the tags will become
(tss,w,wc) and (tsg, w,wc). From the new tags it becomes apparent that the same write
operation was assigned two different timestamps. Theegipte compared lexicographically.

In particular, we say thatg; > tags if one of the following holds:

1. tag;.ts > tags.ts, Or

204

Nicolas C. Nicolaou——University of Connecticut, 2011

2. (tagy.ts = tags.ts) A (tagy.wid > tags.wid), Or

3. (tagy.ts = taga.ts) A (tagy.wid = tags.wid) A (tag,.we > tags.wc).

Notice that in traditional approaches, where the writerentents the timestamp each
writer generates aniquetimestamp for each of its writes. The writer identifier intticase
is included in the tag to distinguish two write operationgiked bydifferentwriters that gen-

erated thesametimestamp.

6.4.2 High Level Description ofSFW

Below we present a high level description of the algoritheWS The algorithm deploys
guorum systems and relies on the assumption that a singtemuse non-faulty throughout the
algorithm’s execution. To enable fast operations, algoriS-W involves two predicates: one
for the read protocol and one for the write protocol. Bothdprates reveal the latest written
value by evaluating the distribution of a tag within the qurarthat replies to the read or write
operation. The description that follows focus on tags emithnd returned. The association of
values to those tags is straightforward.

Server. We begin with the description of the server as it plays a ficanit role in the system.
In SFW, each server maintains the value of the replica and gexsethe tags associated with
each value. As in the previous algorithms, the server waitsfad/write requests. If a read
request is received, the server updates its local infoondftag, val) pair) if the tag enclosed
in the request is greater than the local tag of the servero,Alamarks the enclosed tag as

confirmed, since a read/write requests contain the lastahge pair returned by the invoking

205

Nicolas C. Nicolaou——University of Connecticut, 2011

process. In addition to the local information updates, #wer generates a new tag when it

receives a write request from some writer The elements of the new tag are:

(i) the incremented timestamp of the local tag of the server,

(ii) the identifier of the sender of the request (w), and

(iif) the new value enclosed in the request.

The new tag is inserted in a set, calleghrogress that stores all the tags generated by the
particular server. Only a singe tag per writer is kept in thie $hus, the server removes all the
tags ofw from the set before adding the new tag. Once the tag is adéesktirer replies ta
with the generated tag.

Writer. The write operation requires one or two rounds. To perfornrigeveperationw, a
writer w sends messages to all of the servers and waits for a quorurase @), to reply. Once

w receives replies from all the servers of some quoélyw collects all of the tags assigned to
w from theinprogress set of each of those servers. Then it applies a predicateearotiected
tags. That predicate checks if any of the collected tagsappesome intersection @ with

at most; — 1 other quorums, where the intersection degree of the deployed quorum system.
If there exists such a tag then the writer adopts as the tag of the value it tried to write;
otherwise the writer adopts the maximum among the colleetgslin the replied quorum. The

writer proceeds in a second round to propagate the tag asktgrthe written value if:

(a) the predicate holds but the tag is only propagated intensiection of) with more than

5 —2 other quorums, or

(b) the predicate does not hold.

206

Nicolas C. Nicolaou——University of Connecticut, 2011

In any other case the write operation is fast and completessingle communication round.
In short, the key idea of the predicate depends on the oliservhat if ~ is observed in the
intersection defined by the predicate then no other tag will be observed in an equal or
bigger intersection by any subsequent operation. Thausill be uniquely associated with

by any operation since no other tag will satisfy the pre@adtany subsequent operation that
returns the value written hy.

Reader. The reader protocol is similar to the writer protocol in tle@mse that it uses a predi-
cate to decide the latest tag written on the register. Whemehder wants to perform a read
operationp, it sends messages to all the servers and waits for all thersein some quorum
Q to reply. As soon as those replies arrive, the reader dissdlie maximum confirmed tag
(mazCT) among the received messages. In addition it collects altahs contained in every
inprogress set received in a setP. Then the reader discovers and returns the largest tag

maxTag € inP that:
() mazTagsmazCT, and
(i) maxTag satisfies the reader predicate (defined below).

According to the read predicatg,must discovermazTag in an intersection betweef) and

at mosts — 2 other quorums, where the intersection degree of the quorum system. As we
discuss in later sections, this ensures that any subseqperation will at least observe the
maxTag returned byp. If there exists no such tag imP, thenmazCT is returned. Notice
that a read operatiop cannot return any tag smaller thamzC'T, as it denotes a tag already
decided by an operatiom that precedes or is concurrent wigh A read operation is slow and

performs a second communication round if one of the follgnéases hold:

207

Nicolas C. Nicolaou——University of Connecticut, 2011

(a) the predicate holds but the tag is propagated in an atdtosm betweer) and exactly

g — 2 other quorums, or

(b) the predicate does not hold andizC'T' is not propagated in an intersection betwégn

and at most, — 1 other quorums.

During the second round, the reader propagates the tagedediding the first round to some

quorum of servers.

6.4.3 Formal Specification ofSFW

In this section we provide the formal description afV® using Input/Output Automata
[67]. The algorithm is composed of four automata: V%, automaton for every € W, (ii)
SFW,. automaton for every € R, (iii) SFW; automaton for every € S to handle the read and
write requests on the atomic register, and (¥M)annel, , and Channels), that establish the
reliable asynchronous process-to-process communicetiannels (see Section 3.1.2). Unlike
previous algorithms we first present the formal specificatibthe S*W ; automaton. This will

help us present important data types that are used lateebye#der and writer automata.

Automaton SFW,.

The state variables, the signature and the transitionseo8thV, automaton are given in

Figure 23. The local state of a server proceds defined by the following local variables:

o ((ts,wid,wc),v) € N x W x N x V: the local tag stored in the server along with its

associated value. This is the latest tag-value pair red@vegenerated at server

208

Nicolas C. Nicolaou——University of Connecticut, 2011

e confirmed, € N x VW x N: the largest tag known by that has been returned by some

reader or writer process.

e inprogress, C N x W x N: set which includes all the latest tags assigned by write

requests. The set includes one tag per writer.

e Counter(p) € N: this array maintains the latest request index of eachtdreader or

writer). It helpss to distinguish fresh from stale messages.

e status € {idle,active}: specifies whether the automaton is processing a request re-

ceived Gtatus = active) Or it can accept new requestgqtus = idle).

e msgType € {WRITEACK,READACK,PROPACK}: Type of the acknowledgment depend-

ing on the type of the received message.

failed € {true, false}: indicates whether the server associated with the autontets

failed.

Each serves waits to receive read or write messages originated from gmoeess that

invokeds a read or write operation respectively. Each ngesgaceived by contains:

(@) mType € {W, R, RP}: the type of the messad&:write, R:read,P:propagation,

(b) t € N x W x N: the local tag op,

(c) wval € V: the value to be written if invokes a write operation or the latest value returned

by p if p invokes a read operation,

(c) opCount € N: the sequence number of the operatiop iifivokes a write ott.tag.wc if

p invokes a read, and

209

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:
Input: Output:
rev(im)p,s, me M, seS, pe RUW send(m)sp, me M, s€e S, pe RUW
fails
State:
tag € N x W x N, initially {0, min(W), 0} Counter(p) € Nt,p € RUW, initially 0
v €V, initially L msgType € {WRITEACK,READACK,PROPACK}
inprogress C N x W x NT x V, initially 0 status € {idle, active}, initially idle

confirmed € N x W x Nt x V, initially {0, min(W), 0} failed, a Boolean initiallyfalse

Transitions:
Input rev((msgT, t, val, opCount, C))p,s Output send((msgT, inprog, conf, C))sp
Effect: Precondition:
if =failed then —failed
if status = idle andC' > pCount(p) then (msgT, inprog, conf, C') =
status «— active (msgType, inprogress, confirmed, Counter(p))
Counter(p) < count Effect:
if tag < t.tag then status = idle
((tag.ts, tag.wid, tag.wc), v) «—
((t.tag.ts, t.tag.wid, t.tag.wcy, t.val) Input fail,
if msgType = W then Effect:
(tag.ts, tag.wid, tag.wc) «— failed « true

(tag.ts + 1, p, opCount)
inprogress «—
(inprogress — ({x,p,*),*)) U (tag, val)
if confirmed < t.tag then
confirmed «— t.tag

Figure 23: $W, Automaton: Signature, State and Transitions

(d) C e N: a counter that distinguishes new from stale messageszrom

Upon receipt of any type of messagejpdates its local information as needed. In particular,
if t.tag > tags thens assignstags = t.tag and its valuev = t.val. Similarly if ¢.tag >
confirmed 4.tag, thens setsconfirmed, = t. Once those updates are completed, the server
replies back to procegsif mType € {R, RP}. If mType = W, s needs to take additional
actions to record the value to be written. Firsgenerates and assigns to its lota) a new

tag (hewT ag) that contains the following fields:

e tag.ts + 1: the timestamp of the local tag incremented by 1,

e t.tag.wid: the identifier of the requesting writer, and

e opCount: the sequence number of the write operation at the reqgestiiter.

210

Nicolas C. Nicolaou——University of Connecticut, 2011

Note, that the new tag is greater than bothtilig, andt.tag, the tag included in the message.
Once the new tag is generatedupdates itsinprogress, set. Constructed to hold one entry
per writer, the server removes any entry of a write operdtiom p from the inprogress, set,
before adding the new tag-value pair in it. As a result,itheogress, contains the latest tags
assigned by to any write operations that requested the server’s repldae. Thus, in the
worst case thénprogress, contains a single tag for each writer. The importance ofgitie

inprogress 4 IS twofold:

1. Each write operation witnesses the tag assignments teathe to be written from all
servers in the replying quorum (since even a concurrenewrill not overwrite the tag
of the specific write). Thus, the writer can establish if afyhe tags was adopted by

enough servers in the replying quorum or if it needs to prodd¢ea second round.

2. Each read operation obtains full knowledge on the tagsrteg to each writer, and is
able to predict which tag each writer adopts for its latestenmperation. By ordering
the tags the reader is able to establish the write operatitimtie largest tag and hence,

the latest written value.

The read and write predicates, utilize the above obsenstio allow fast read and write op-
erations. Once a servercompletes all the necessary actions, it acknowledges enesgage

received by sending itBiprogress , set andconfirmed ; variable to the requesting process

Automaton SFW,,,.

The state, signature and transitions of ti\§, automaton are given in Figure 24. The

variables that define the state of theV%,, are the following:

211

Nicolas C. Nicolaou——University of Connecticut, 2011

e ((ts,w,wc),v) € Nx{w}xNxV:writer's local tag along with the latest value written
by the writer. The tag is composed of a timestamp, the identif the writer, and the

sequence number of the last write operation.

e vp € V: this variable is used to hold the previous value written.

e wc € N: the sequence number of the last write operation or 0 if thigewdid not

perfrom any writes.

e wCounter € N: the number of write requests performed by the writer. Iglusethe

servers to distinguish fresh from stale messages.

e phase € {W, RP}: indicates whether the write operation is in the write omargation

phase (first or second round respectively).

e status € {idle,active,done}: specifies whether the automaton is in the middle of an
operation §tatus = active) or it is done with any requeststatus = idle). When
status = done, it indicates that the writer received all the necessarligepo complete

its write operation and is ready to respond to the client.

e srvAck C S x Msy: a set that contains the servers and their replies to the vaifuest.

The set is reinitialized t@ at the response step of every write operation.

e failed € {true, false}: indicates whether the process associated with the aubomat

has failed.

To uniquely identify all write operations, a writes maintains a local variablec that
is incremented each time invokes a write operation. That variable denotés local or-

dering on the write operations it performs. Any other precesthe system may identify a

212

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:

Input: Output:
send(m)w,s, m € Ma, s€ S,we W
write-acky, w € W

write(val)w, val € V,w € W
rev(m)s,w, m € My, s€ S,weWwW
faily, w € W

State:

tag = (ts,w,wc) € N x {w} x N, initially {0, w,0}

v €V, initially L
vp € V, initially L
we € NT, initially O

Internal:
write-phasel-fix,,,, w € W
write-phase2-fix,,, w € W

phase € {W, RP}, initially W

wCounter € NT, initially O

status € {idle, active, done}, initially idle
srvAck C S x Ma, initially ()

failed, a Boolean initiallyfalse

Transitions:
Input write(val)w Internal write-phasel-fix,,
Effect: Precondition:
if =failed N\ status = idle then —failed
status < active status = active
srvAck «— phase = W
phase — W JQ € Q:Q C {s:(s,m) € srvAck}
vp — v Effect:
v« val T — {<t57 w, *> : (tsv w, *> € U(s,m)EsrvAck m.inprogress}
wCounter <« wCounter + 1 if 37, MS, Q" :
we — we + 1 reT

AMS ={s:5€ QA (s,m) € srvAck A T € m.inprogress }
Input rev({inprogress, con firmed, C))s,w AQICQst0<i<|Z—1] A (Nore@iviepn @) € MS
Effect: then
if —failed then (tag.ts, tag.wid, tag.wc) «— (T.ts, w,wc)

if status = active andwCounter = C then if i > max(0, 5 — 2) then

srvAck — phase — RP
srvAck U {(s,m)} wCounter «— wCounter + 1
else

Output send((msgT, t, val, we, C))w, s status < done

Precondition: else
status = active (tag.ts, tag.wid, tag.we) «— max,cr((T.ts, w,wc))
—failed wCounter «— wCounter + 1
(msgT,t,val, we,C) = phase — RP
(phase, (tag, vp), v, we, wCounter) srvAck < 0
Effect:
none Internal write-phase2-fix,,

Precondition:

Output write-ack,, status = active

Precondition: —failed

status = done phase = RP

—failed IQeQ:QC {s:(s.,.) € srvAck}
Effect: Effect:

status «— idle status < done

Input fail,,
Effect:
failed < true

Figure 24: $W,, Automaton: Signature, State and Transitions

213

Nicolas C. Nicolaou——University of Connecticut, 2011

write operatiornw by the tuple(w, we): w was invoked by writerw, and it was thevc write
from w. When thewrite(val),, occurs, then the writer sends messages to any sereeS

by actionsend(m),, s. Each message toincludes the type of the message (W or RP), the
last written value along with the tag that the writer assecieato that value (¢ag, vp)), the
new value (), the sequence counterq), and the counter that helps the detection of delayed
messagesu{Counter). Each time the actiomcv(m),,, occurs, the writer receives a reply
from s. As noted in the server protocol, each servaeplies with a message that contains
m(w)s w-inprogress set andm(w)s .,.con firmed variable. Once the writer receives mes-
sages from the servers of a full quorugy it collects the tags generated from eacke @)

for w. A predicate is then applied to every tag in the collectiortcéyding to the predicate,
we want to know for a tagag if there is any subset of the servers of the replied quorum s.t
they that generatethg and cover the intersection between the replied quoruntand other
quorums inQ. If tag satisfies the predicate, the writetisg,, variable becomes equal tag.

More formally the writer predicate is the following:

Writer predicate for a write w (PW): 3 7,Q%, MS where: 7 € {{.,w) : (,w) €
m(w, 1)g.inprogress N s € Q}, MS ={s:s€ Q N T € m(w,1)s,.inprogress },

andQ’ € Q,0 <i < |§ — 1], st (Ngegiggy Q) S MS.

In case the predicate is true for> max(0, 5 — 2), the writer changes itshase = RP
variable and reinitializes the-v Ack set. This leads the writer to a second round. As soon as the
writer receives replies from the servers of a full guorumimyiits second round, it terminates
the operation by setting th&atus variable toidle. The idea behind the predicate is quite

intuitive: since we assume anwise quorum system, if all of the servers in the intersectd

214

Nicolas C. Nicolaou——University of Connecticut, 2011

theminority (< 5) of anyn quorums observe a particular tag then the intersectionyobter
minority of quorums has at least one server in common withfitise intersection (since we
assume that ever quorums intersect). If the predicate does not hold for anhefcollected
tags then the writer assigns the maximum of the collectesl taghe value to be written, and

proceeds to a second round to propagate the particular &gutbquorum.

Automaton SFW,..

The state, signature and transitions of ti\& automaton are given in Figure 25. The

variables that define the state of theV®, are the following:

e ((ts,wid,wc),v) € N x {w} x N x V: the latest tag-value pair returned by the reader
r. The tag is composed of a timestamp, a writer identifier, &edsequence number of

the write operation from that writer.

e rCounter € N: the number of read requests performedrby. Is used by the servers

to distinguish fresh from stale messages.

e phase € {R, RP}: indicates whether the read operation is in the read or gatpzn

phase (first or second round respectively).

e status € {idle, active,done}: specifies whether the automaton is in the middle of an
operation §tatus = active) or it is done with any requeststatus = idle). When
status = done, it indicates that the writer received all the necessarligepo complete

its write operation and is ready to respond to the client.

e maxCT € N x W x N x V: the maximum confirmed tag-value pair discovered during

the last read operation from

215

Nicolas C. Nicolaou——University of Connecticut, 2011

Signature:
Input: Output: Internal:
read,, 7 € R send(m)rs, m € M2, T€R, s€S read-phasel-fix,., 7 € R
rev(im)s,,, m e My, reR, s€S read-ack(val),, val € V, r € R read-phase2-fix,, » € R
fail,, r€R

State:

tag = (ts,wid, wc) € NxWxN, initially {0, min(W), 0} status € {idle, active, done}, initially idle
v € V,initially L

srvAck C S x My, initially 0
phase € {R,RP}, initially R mazCT € N x W x N x V, initially {(0, min(W),0), L}
rCounter € NT, initially 0 mPtag C N x W x N x V, initially
failed, aBoolean initiallyfalse

Transitions:
Input read,. Internal read-phasel-fix,.
Effect: Precondition:
if —failed N status = idle then —failed
phase — R status = active
status < active phase = R
rCounter < rCounter + 1 3Q € Q: Q C {s: (s,m) € srvAck}
Effect:

Input rev((inprogress , confirmed, C'))s.r mazCT — {max(m.confirmed) : (s,m) € srvAckANs € Q}

Effect: ‘mPtag ={r 2T € U(s,m)esrvackaseq m.inprogress }
if —failed N status = active then if 37, MS,Q7:
if rCounter = C then T = MaX,/cinprag(T') St
srvAck «— 7 > mazCT
srvAck U {(s,m)} AMS ={s:s€QAN(s,m) € srvAck AT € m.inprogress }
ANQICQst0<j< |_7§L —2] A (nQ’e(qu{Q}) Q) C MS
Output send((msgT, t,val, we, C))r, s then
Precondition: ((tag.ts, tag.wid, tag.wc), v) «— ((1.ts, T.w, T.we), T.val)
status = active if j = max(0, 5 — 2) then
—failed phase — RP
(msgT,t,val,we,C) = else
(phase, (tag, v), v, tag.wc, rCounter)) status < done
Effect: else
none MC «—{s:
s € QA (s,m) € srvAck N m.confirmed = mazCT}
) (tag.ts, tag.wid, tag.wc) «—
O;,teilét]a?t?gn?(:k(val)r (mazCT.ts, mazCT . w, mazCT . wc)
~failed ' v «— mazCT .val
status = done if 3C : C C Q/\ ‘C| <n-—-2A (nQ/GCQl) OQ C MC then
val = retvalue status «— done
Effect: else
reply@Q «— 0 phase — RP
srvAck «— ()
status «— idle Internal read-phase2-fix,.
Precondition:
Input fail,. ~failed)
Effect: status = active
iled — t phase = 2
failed — true IQeQ:Q C{s:(s,.,.) € srvAck}
Effect:
status < done
phase — 1

Figure 25: $W,. Automaton: Signature, State, and Transitions

216

Nicolas C. Nicolaou——University of Connecticut, 2011

e inPtag C N x W x N x V: a set that contains all the tags discovered during a read

operation fronv-.

e srvAck C S x Msy: a set that contains the servers and their replies to the vaifuest.

The set is reinitialized t@ at the response step of every write operation.

e failed € {true, false}: indicates whether the process associated with the aubomat

has failed.

The reader protocol is similar to the writer protocol in tle@se that it uses a predicate to
decide the latest tag written on the register. When the reaelforms a read operatign it
sends messages to all servers and waits for all servers imgoonumc to reply. A message is
sent when theend(m), s occurs and a message is received whendhgn), , action occurs.
When those replies are received, the actert-phasel-fix, is enabled. If that action occurs,
the reader discovers the maximum confirmed tag«{CT) among the received message. In
addition, it collects all the tags contained in evetyp); ,.inprogress set received innPtag.
Then the reader examines the tag&iftag to find the largest tag, sayaxTag, that is greater
thanmazCT and also satisfies the reader predicate. Notice, that thayebmlarger tags than
mazTag in inPtag. Although those tags are greater thamxC'T, they do not satisfy the
predicate. The reader predicate for a read operatitiom r that receives messages from a

guorumq, is the following:

Reader predicate for a read p (PR): 3 7,Q/,MS, where: max(r) €
Useq m(p, 1)s,r-inprogress, MS = {s : s € Q A 7 € m(p,1)s,.inprogress},

andQ’ € Q.0 <j < [§ -2/, st.(Noegiuggy Q) € MS.

217

Nicolas C. Nicolaou——University of Connecticut, 2011

The reader predicate shares a similar idea as the writeicated To ensure that subsequent
operations do not return a smaller tag — and hence an oldae vathe reader must discover
mazTag in an intersection betweed and at most; — 2 other quorums, where the intersec-
tion degree of the quorum system. If there exists no tag iftag that is greater thamaxCT
and satisfies the predicate, themxzCT is returned. Notice that a read operatiprcannot
return any tag smaller thamaxC'T. Recall from the server description thauxzCT denotes
atag already decided by an operatiothat precedes or is concurrent wjth

A read operation is slow and performs a second round ipthee variable becomes equal

to RP. This happens in two cases accordingdad-phasel-fix,.:
(a) the predicate holds witfi’/| = max(0, % — 2), or
(b) mazCT is not propagated in afn — 1)-wise intersection.

During the second round, the reader reinitializes the setgfessrv Ack, propagates the tag
decided during the first round of the read operation, ancsw@aiteceive replies from the servers
of some quorund). Once those replies are received the actéad-phase2-fix,, may occur, and
the status becomesione. Oncestatus = done the actionread-ack(val), returns the value to
the environment. Notice that if a second round is not necgskanstatus becomes equal to

done in the read-phasel-fix, action.

Remark 6.4.1 By close investigation of the predicates of AlgorithraV8, one can see that
SFW approaches the bound of Theorem 6.2.6, as it produceste@that contain up te /2
fast consecutive write operations, while maintaining atoaonsistency. Obtaining a tighter

upper bound is subject of future work.

218

Nicolas C. Nicolaou——University of Connecticut, 2011

6.4.4 Correctness ofSFW

We proceed to show the correctness of algorithFiVSthat is, to show that the algorithm

satisfies the termination and atomicity properties presemt Definitions 3.2.4 and 3.2.5.

Termination

Termination can be shown similar to Section 6.3.4. Eachelodsny read or write op-
eration terminates when the invoking process receiveseefiiom at least a single quorum.
According to our failure model, all but one quorums may faiég Section 3.1.4). Thus, any
correct process receives replies from at least the cortextugq. Thus, every operation from a

correct process eventually terminates and hence, Defiritid.4 is satisfied.

Atomicity

For the rest of the section we use part of the notation intedun Chapter 3 and Section
6.3.4. We denote bynprogress|w|.tag the tag of the write operatio@ in aninprogress set.
Analogouslyo|[s].inprogress [w].tag andm(m, c), .y .inprogress |w].tag, are used to denote the
tag of the writew in the inprogress, set at a state and in them(w, ¢),, ;s .inprogress setin
the message sent fromto p’ during thec!” round of operationr. By well-formedness, it
follows that a write operationy = (w, wc) precedes a write operatianl = (w, wc’), both
invoked by the same writew € W, if and only if we < wc’. For a read/write operation
7 invoked from a reader/writer procegs we denote by, [p].tag the value of thetag
variable at theead /write event ofr. The tag assigned to a write= (w, wc) can be obtained

by 0cs(w) (W] tag = (ts,w), wherets € N the timestamp included in the tag. Similarly, the tag

219

Nicolas C. Nicolaou——University of Connecticut, 2011

returned by a read operatignis denoted by, ., [7].tag. Also, letm(m,c)sp.confirmed
andm(m, ¢)s p.inprogress denote thecon firmed variable andinprogress set thats sends to
p during thec®” round of . Finally, letQ’ C Q be a set of quorums with cardinalit®?| = i
(see Section 3.1.4).

Recall that the two predicates used in the algorithm are adilewiing assuming that an

operation received messages from a quofim

Writer predicate for a write w (PW): 3 7,Q%, M S where: 7 € {(x,w) : (x,w) €
m(w, 1)gp.inprogress N s € Q}, MS ={s:s€ Q N T € m(w,1)s,.inprogress },

andQ’ € Q,0 < i < |2 — 1], s.t.(Ngegivgo; Q) € MS.

Reader predicate for a read p (PR): 3 7,Q/,MS, where: max(r) €
Useq m(p, 1)s,r-inprogress, MS = {s : s € @ A 7 € m(p,1)s,.inprogress }, and

@ CQ,0 < j <max(0, [§ —2]), s:t.(Noegiugg) Q) S MS.

The writer predicate is located imrite-phasel-fix of Figure 24 and the reader predicate
is located inread-phasel-fix of Figure 25. We adopt the definition of atomicity presented i
Section 6.3.4, that expresses the three properties of befird.2.5 based on the tags returned
from the read/write operations.

First, we show that each process maintains monotonicalyecreasing tags.

Lemma 6.4.2 In any executiorf € goodexecs(SFW,Q), o’[s].tag > o[s].tag for any server

s € S and anyo, ¢’ in &, such that appears before’ in &.

Proof. Itis easy to see that a servemodifies itstag, variable only if the tag in a received mes-

sage from a procegsduring an operatiom is such thatn(r,), s.tag > tag,. In addition, if

220

Nicolas C. Nicolaou——University of Connecticut, 2011

m(m, 1), s.mType = W is a write messageéqug,.ts = max(tags.ts, m(w, 1), s.tag.ts) + 1.
Since from a stater to a states’ only these these modifications can be applied on the
server's tag them’[s].tag > ols].tag, and hence the server’s tag is monotonically increas-
ing. Furthermore, since the initial tag of the server is ge{(t min(wid),0) and since
m(m, *)ps.tag > tags only if m(m, %), s.tag.ts > tags.ts, thentag,.ts is always greater
than 0. O

The next lemma shows the monotonicity of the confirmed véiabeach server.

Lemma6.4.3In any execution{ € goodexecs(SFW,Q), o'[s].confirmed >

o[s].confirmed for any servers € S and anyo, ¢’ in &, such thats appears before’ in

£

Proof. From the algorithm it follows that the servemodifies the value of itson firmed;

variable only if the tagn(w, %), s.tag in a message received Byfrom p for operationr, is

such thatn(z,), s.tag > con firmeds. Thus, the lemma follows. O
The following lemma examines the monotonicity of the tagaflewriter as this is kept in

the inprogress set of each server.

Lemma 6.4.4 In any executiort € goodexecs(SFW,Q), o'[s].inprogress [(w, wd)].tag >
o[s].inprogress [(w, wc)|.tag for any serves € S, any writerw € W, and anyr, ¢’ in £, such

thato appears before’ in €.

Proof. Notice that the servey maintains just a single record for a writerin its inprogress
set. Each time the serverreceives a new writen(w, 1),, s message from a write opera-

tion w = (w,we) from w, it first updates its local tag ifag, < m(w, 1), s.tag and then

221

Nicolas C. Nicolaou——University of Connecticut, 2011

generates a new tag. The generated tag and, hence the tagdnisethe inprogress, is
o[s].inprogress [w].tag > m(w, 1)y s.tag, sinceo|s].inprogress w].tag = (tags.ts + 1,w).
The local tag of the server becomes equal to the generatedatad) thuso|[s].tag >
m(w, 1)y s.tag at stater. By Lemma 6.4.2 the local tag of the sergds non decreasing. So, if
o’ is the state right before’ (possiblys” = &) in &, it must be true that”[s].tag > o[s].tag.
Since, s adds the new write operation’ = (w,wc) it follows that it generates a tag
o' [s].inprogress [W'].tag > o"[s].tag. Therefore,o’[s].inprogress|w'].tag > o[s].tag, and

henceo’[s].inprogress|[w'].tag > o|s].inprogress [w].tag and the lemma follows. O

Lemma 6.4.5In any execution¢ € goodexecs(SFW,Q), if a servers € S receives
a tag m(m, %), s.tag from a processp for an operationr, then s replies top with a

m(m, *)s p.confirmed > m(m,*), s.tag.

Proof. It follows by Lemma 6.4.3 thats upgrades thecon firmeds variable only if
the tag enclosed in the messagér, *), s.tag > confirmeds. If so, s replies with
m(m, *)sp.confirmed = m(m,*), s.tag; otherwise it replies withn(r, %) ,.con firmed >
m(m, %), s.tag to operationr.]
The next lemma shows that when a server receives a write geeggpenerates a tag greater

than the tag enclosed in the received message and any ajitbetserver has generated.

Lemma 6.4.6 In any execution € goodexecs(SFW,Q), if a servers € S receives
a tag m(w, 1) s.tag from a processw € W, for the first communication round of a
write operationw (i.e. type W), thens replies with anm(w, 1), ,,.inprogress that con-
tains m(w, 1)s . inprogress [w].tag > m(w, 1)y s.tag andm(w, 1), ,.inprogress [w].tag =

/
MAaX7/ cym(w) s, . inprogress (T)

222

Nicolas C. Nicolaou——University of Connecticut, 2011

Proof. When s receives’W message from the write operatian, it checks if the tag
m(w, 1)y s.tag is greater than its local tag. If so it updates its tag to bektqun (w, 1),, s.tag.
Thus, after this update it is true that the tagspfags > m(w, 1), s.tag. If W message is re-
ceived fromw, thens generates a new tag = (tags.ts + 1, w, m(w, 1), s.wc). Thus, the
new tag is greater than the local tag of the semfer> tags and thusr’ > m(w, 1), s.tag
as well. Then,s replaces any previous operations framin its inprogress, set and in-
serts the new tag. Since = (w,m(w,1), s.tag) then 7’ is the unique value ok in
server inprogress,. Thus it follows thatm(w, 1)s ,,.inprogress|w].tag = 7' and hence
m(w, 1)s . inprogress [w].tag > tags.

For the second part of the proof notice that any tag added @ ithprogress,
set of s contains the timestamp of the local tag ef along with the id of the
writer and the writer's operation counter. Furthermorencei by Lemma 6.4.2 the
tag of a server is monotonically incremented then, when ihgm), s event hap-
pens, say at state, ofs|.tag > maXrcq(s].inprogress (7). Since the new tag entered
in the set ism(w, 1) .inprogress|w].tag = (o[s].tag.ts + 1,w) then it follows that
m(w, 1)s.p.inprogress [w].tag > o[s].tag and hencem(w, 1), .inprogress|w].tag >
MAX ;o [s].inprogress (7). Thereforem(w, 1), .,.inprogress [w].tag is the maximum tag in the
set. That completes the proof. O

The following lemma shows the uniqueness of each tag imthegress , set of any server

seS.

223

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 6.4.7 In any executiorf € goodexecs(SFW, Q), if a servers € S maintains two tags
T1, Ty € inprogress, such thatry = (ts1,wy,wey) andry = (tsq, we, wee), thenwy # wo

andts; 75 tso.

Proof. The first part of the lemma, namely that # w-, follows from the fact that the server
s adds a new tag for a write operation fram by removing any previous tag improgress
associated with a previous write fromy. Hence only a single write operation is recorded in
the inprogress , for every writer process) € W, and thus our claim follows.

Let us assume, for the second part of the lemma, that w.levgss receives the message
from w,; before receiving the message fram Before replying tav;, s adds in thenprogress
set the tagn, = (tags.ts + 1,w;,wep), and setgags = 71. The servers repeats the same
process forw,. Since by Lemma 6.4.2 the local tagg, of the server in monotonically non-
decreasing, then it follows thatgs > 7 whens receives the message fram. Thus, if
Ty = (tags.ts + 1, we, wea), thenry, > (11.ts + 1, we, wey), and hences.ts > 1.ts + 1. SO
T9.ts > 711.ts and the lemma follows. O

The following lemma proves the monotonicity of the tag Vialéaat any writer.

Lemma 6.4.8 In any execution{ € goodexecs(SFW,Q), o'[w].tag > o[w].tag for any

writer w € W and anyo, ¢’ in &, such that appears before’ in &.

Proof. Each writer processy modifies its local tag during its first communication round.
When thewrite-phasel-fix,, event happens for a write operatian tag, becomes equal
to either the tag that satisfies the predicate or the maximagm lboth derived from the
m(w, 1)s .inprogress sets found in the reply of every serverto w for w. So it suf-

fices to show that,,, . [w].tag < minseq(m(w,1)s - inprogress|w].tag), assuming that

224

Nicolas C. Nicolaou——University of Connecticut, 2011

all the servers of a quorur® < Q, receive messages and replyo for w. Notice that
every message sent from to any servers €) (whensend(m), s occurs), contains a
tag m(w, 1)w,s-tag = oinyw)lw].tag. Since by Lemma 6.4.6, every serverc (@ replies
with m(w, 1) 4 .inprogress [w].tag > m(w, 1), s.tag (to any communication round @),
thenm(w, 1)s .. inprogress [w].tag > 0iny (0 [w].tag and the claim follows. Furthermore by
Lemma 6.4.2 and Lemma 6.4.6 it follows thattontains non-negative timestamps as wgll.

Next we show the monotonicity of the tag at each reader psoces

Lemma 6.4.9 In any executiorf € goodexecs(SFW,Q), o’'[r].tag > o[r].tag for any reader

r € R and anyo, ¢’ in &, such thatr appears before’ in &.

Proof. Thetag, variable atr is modified only ifr invokes some read operatignand be-
comes equal to either the maximum tag in thép, 1), ,..inprogress set that satisfies the read
predicate or the maximum(p, 1), ..con firmed tag obtained from some servethat reply
to r for p. Notice however that, ., [r].tag is equal to somen(p, 1) ,.inprogress [w].tag

of some writew, only if m(p, 1), ,.inprogress [w].tag > max(m(p, 1)s.confirmed). So

it suffices to show thamax(m(p, 1)s,.confirmed) > iy [r]-tag. Assume that all
the servers in a quorun® € Q reply to p. Sincep includes itSaj,,(,)[r]-tag in ev-
ery message sent during the eveahd(m), s to any servers € (@, then by Lemma
6.4.5, s replies with am(p,1)s,.confirmed > 0, ,)[r]-tag. Hence it follows that
max(m(p, 1)s,.confirmed) > 0, (,)[r]-tag as well and our claim holds. Also since by
Lemma 6.4.2 all the servers reply with a non negative tirmgtathen it follows thatrdr

contains non-negative timestamps as well. O

225

Nicolas C. Nicolaou——University of Connecticut, 2011

Lemma 6.4.10 For each process € R UW U S, tag, is monotonically nondecreasing and

contains a non-negative timestamp.

Proof. Follows from Lemmas 6.4.2, 6.4.8 and 6.4.9 O
One of the most important lemmas is presented next. The leshmas that two tags can

be found in the servers of an intersection amérguorums only ift > 2.

Lemma 6.4.11 In any executio € goodexecs(SFW, Q), if a read/write operation invoked
by p receives replies from a quoru®@ € Q and observes two tagg and , for a write
operationw = (w,wc), S.t. 71 = (ts1,w,we), 7o = (ts9,w,wc), ts1 # tse andry IS
propagated in &-wise intersection, then, is propagated in at leastwise intersection as well

H n+1
iff k> 24t

Proof. Let S;, C (@ be a set of servers such thats < S, replies with
m(m,1)s p.inprogress [w].tag = 7 to m andS;, C Q the set of servers such that’ € S,
replies withm(m, 1) ,,.inprogress(w].tag = 7 to w. Since bothr; andr, are propagated
in a k-wise intersection and since every server maintains jugtgescopy in itsinprogress
set forw, then there exists two sets of quoru@$ and Q% such that(ﬂQeQ;f Q) C S, and
m@e@‘g Q) CS, and(ﬂQEQIf Q)N mge@’; Q) = 0. From the fact thasS,,S,, C Q, it
follows thatQ € Q} and@ < Q4. S0,(Naegt Q) = (Ngege-1 Q) NQ and(Noegy Q) =
(Nocos-1 @) NQ, and hencdMoeqr) M (Noegs Q) = (Noegr-1 Q) N (Noegs Q) N
Q = 0. By definition we know that)’ is the quorum set that containgqjuorums. So the
intersection contains at most- 1+ k£ — 1+ 1 = 2k — 1 quorums. Since we assumemwise

intersection then the two sets of quorums maintain an enmpgysection only if they consist

226

Nicolas C. Nicolaou——University of Connecticut, 2011

of more tham quorums. Hence it follows that the intersection is emptynid anly if:

n+1
2

2k —1>n< k>

This completes the proof. O
From the previous lemma we can derive that if the predicatbéefnriter holds for some

tag then this is the only tag that may satisfy the writer'dprate.

Lemma 6.4.12 In any executiort € goodexecs(SFW,Q), if T is the set of tags witnessed
by a write operatiorw from a writerw, during its first communication round, amde 7" a tag

that satisfies the writer predicate, thgrl € T such thatr’ # 7 satisfies the writer predicate.

Proof. Let us assume to derive contradiction that there exist aqfdiagst, 7 € T that
both satisfy the writer predicate. Furthermore assumettietvrite operatiorent(w, Q).
According to the predicate a write operation accepts a tdg n3Q’ c Q such that
i € [0...5 — 1] and the tag is contained in all the serverse ((Ngcgivigy Q). If
the predicate is valid for with i = 0 then clearly all the servers € @ reply with
m(w, 1)s..1nprogress [w].tag = 7. Thus, the write operation does not observe any server
s" € @ that replies withm(w, 1)y ,,.inprogress [w].tag = 7’ and hence’ cannot satisfy the
predicate, contradicting our assumption.

Note that since we assumewise intersections ank-wise intersection < n — 1) con-
tains an(k + 1)-wise intersection. So if satisfies the predicate with< § — 1 it also satisfies
it with i = 2 — 1. If now 7 satisfies the predicate wifl)’| = 2 — 1 then it follows that
there exists an intersectidifi)gc oy Q) such that every € ((Ngegiuqgy Q) reply tow
with m(w, 1) . inprogress [w].tag = 7. SinceQ' is a set of quorums that contaifjs— 1

members thehQ’ U {Q}| = % and thusr is propagated in a#-wise intersection. Sincé

227

Nicolas C. Nicolaou——University of Connecticut, 2011

is smaller than7%1 then by Lemma 6.4.11;" cannot be propagated #-wise intersection
and thus can only be propagated in at lgdst- 1)-wise intersection. That however means
that 3Q* such that|Q* U {Q}| = 5 + 1, and hence: = 3, andVs’ € (Ngegeuio) Q)
m(w, 1) g w-.inprogress (w].tag = 7'. Since the predicate is only satisfieckitc [0... 5 — 1]
then it follows thatQ* does not satisfy the predicate. That contradicts our assompand
completes our proof. O
Given that a writer will decide on a single tag per write opierawe show that each reader

associates the same tag as the writer with each written.value

Lemma 6.4.13In any executior{ € goodexecs(SFW,Q), if a write operationw from w
witnesses multiple tags and sets . (,)(w].tag = 7, then any read operation from r that

returns the value written hy decides atag,.s,)[r]-tag = 7 = 0ye5() [w] - tag.

Proof. We proceed in cases and we show that either the read operetiions the value written
by w ando,.q4(,)[r]-tag = 0res(w)[w]-tag or the case is impossible and thusloes not return
the value written byo. Let us assume w.l.0.g. thatt(w, @), andcnt(p, Q),, during their
first communication round. There are two cases to considénéonrite operation: (1 is fast
and completes in one communication round, or{23 slow and performs two communication

rounds. Let us examine the two cases separately.

Case 1: Here the write operation is fast and thus its predicate is valid and completes
in a single communication round. Sinceis fast then there is a sét/S = {s : s €
Q" N Opesw)lwltag = m(w,1)s . inprogressw].tag} and a set of quorum®’ with
0<i<g—3 st (Nocgugy Q) S MS. Every serves € ((gegivgg oy Q) replies

with am(p, 1)s ,.inprogress[w].tag = 0res([w].tag tor for p, if s receives messages from

228

Nicolas C. Nicolaou——University of Connecticut, 2011

w beforep. Otherwises replies with a tag for an older write operationwof Since according
to the predicat¢Q’| < 2 — 3 then the union of the sé@’ U {Q’, Q}| < % — 1 (strictly less if
Q = Q' or@ € QY. Thus, the intersectioerQiU{Q,vQ} Q) involves atmost+2 < 5 —1
quorums and hence by Lemma 6.4.11 everytagt o, [w].tag is observed by in a
k-wise intersection, such that> & — 1. Thus,p either observes @’ C Q'U ', such that
Vs € (ﬂQGQJU{Q} Q) reply withm(p, 1)y .inprogress [w].tag = 0,5, [w]-tag, and hence
the predicate is valid foj < i+ 1 < § — 2 and returnso, ., [1].tag = yes([w]-tag,
or since no other tag satisfies its predicate it returns aevafla writew’ # w. Notice that
since the predicate is false for any read operatiopreceding or concurrent with then no
tag other thaw,.,(,)[w].tag is propagated in the confirmed variable of any server as®atia

with the write operationv. Hence, ifp returns the value written by, then it returns a tag

Ores(p) [T]'tag = Ores(w) [w]'tag-

Case 2:Here the write operation is slow. This may happen in three cases: (a) either the pred-
icate was true withQ’| = % —2 or |Q’| = % — 1, or (b) the predicate was false and thus no tag
7 € T'received from asetof servetd S = {s: s € Q' A7 = m(w, 1)s .inprogress [w].tag}

Case 2a:Here the predicate is true witfd’| = 2 — 2 or [Q’| = % — 1. Notice that the read
operationp may observe the tag, .., [w].tag in the intersectior(ﬂQEQiU{Q,Q} Q). Thus

the set|Q’| < |Q* U {Q'}| which in the first case it would bg < % — 1 and in the second
casej < 5. We should consider the two cases trseparately. Notice that sinaedoes not

modify the inprogress set during its second communicatomd then the read observes the

229

Nicolas C. Nicolaou——University of Connecticut, 2011

same values in that set no matter if it succeeds the first @nsecommunication round af.

So our claims are valid for both cases.

Case 2a(i): Here o, (. [w].tag is propagated in the servesse ((Ngegivign Q). fori =
5 — 2. Since the value,..q(,,)[w].tag is sent by any server € (ﬂQEQiU{QgQ} Q) to p, then

there are three possible cases@andQ’:

DO=Q =j=i

52
) QeQ=j=0-Ql=3-3
3 Q¢EQU{QY= =0 uU{Q}=35-1

By Lemma 6.4.11 it follows that for any of the above cases,tagy”’ # Ores(w)[w].tag may
be propagated in &-wise intersection, such that> 3 + 1 and thusj > 7 for such a tag.

In the first two cases the predicate p@fholds sincej < % — 2, and thusp returns
Tres(p)[T]tag = 0Opegwy(w].tag for w. It remains to examine the third case where=
|Q"U{Q'}| = % — 1. Inthis case|Q’ U{Q}| = j + 1 = %, and thus by Lemma 6.4.11, none
of the tags assigned to will satisfy the predicate. Sp returns the value ab if it observers

maxseq (m(p, 1)s,.confirmed) = (maxTS,w), and hencémazT'S,w) = 0yes([w]-tag.

Lets € @ be the server that replied powith m(p, 1), ,.con firmed = (mazT'S,w). Server

s sets its confirmed tag tomazT'S,w) if it receives one of the following messages: (a) a

W message for a write’ such thatv — «’, (b) aRP from a second communication round
of w, (c) aRP from the second communication round of a read operatiothat returns a
tag (maxTS,w), or (d) aR from a read operatiop” that already returne@imaz7'S,w). If

(a) or (b) is true, and since the writer propagates the tagtirns in any of those messages,

230

Nicolas C. Nicolaou——University of Connecticut, 2011

then (maazT'S,w) = 0y¢5(.)[w].tag. Thus, we are down to the case that some reads propa-
gated the tag in the confirmed variable. Since héthAndp” should precede or be concurrent
to p then they are also concurrent or succeed the first commioricedund ofw. So, ei-

ther they observed (gs) the tago,.s(.)[w] tag in a set of quorumsQ’| < 5 — 1, 0rno

tag forw satisfies their predicate. Sinae,.,(.[w].tag is the only tag that may satisfy their
predicate, then both reads must propadater7'S,w) = 0,¢s(.[w].tag. So, it follows that

Tres(p)[T]-1ag = Oreg(w)[w] tag in this case as well.

Case 2a(ii): Let us assume in this case that the write operation receiygg,,)[w].tag from
every serveg € (ﬂQeQiU{Q,} Q), andi = 4§ — 1. With similar reasoning as in Case 2a(i) we

have the following cases f@p andQ’ for p:

2)QeQ=;=Q-Ql=3-2
) Q¢QUUIQT=i=1QU{Q} =73

Observe again that in the first two cases and by Lemma 6.4.diheotagr’ # o,¢s(.)[w].tag
for w is propagated in less thdhwise intersection, and thus does not satisfy the predicate
for p.

If @ € Q, then the predicate is satisfied wijh = 5 — 2 for p and thus it returns
Ores(w)[w]-tag. Alsoif @ = Q" andj = 5 — 1 then as showed in case 2agijlso returns
Ores(p)[T]-tag = Opes(w)[w]-tag.

So it remains to examine the case whefe¢ Q' U {Q'} andj = %. It follows that

QP U{Q} =j+1=%+1andVs (Nocaivgoy @) m(p, 1)s,r-inprogress [w].tag =

231

Nicolas C. Nicolaou——University of Connecticut, 2011

Ores(w)[w]-tag. The read operatiorp may decide to return a tag’ different from
Ores(w)[W]-tag, if there are servers € ((Noeq:-uqgy Q) suchthat’ € m(p, 1)y ,.inprogress
andz < 3 — 2. Furthermore, it must be true thef)ocqiugy @) N (Nocg-uir @) =9
otherwise a server in that intersection would reply eithghw:(p, 1) ,.inprogress [w].tag =
Ores(w)[w]-tag or m(p, 1), -.inprogress [w].tag = 7'. It suffices then to show that the afore-
mentioned intersection is impossible. Since we know that 5 — 2 andj = § then the
intersection((gegi @) N (MNgeg- @) NQ containsj +z+1=5+5-2+1=n-1
quorums. Since we assumedwise quorum system then the intersectiQ’ﬁQeQJ Q)N
(Ngeg- @) NQ # 0. That will be true even if we assume a smalgf. So, no tag in
this case satisfies the predicateppfand thusp returns the value written by only if it ob-
serversmaxscq(m(p, 1)sr.confirmed) = (mazT'S,w). With similar arguments as in Case
2a(i), we can show that no read or the write operation willpagate a tag different than
Ores(w)[w].tag for w and thus no server replies with a tag(p, 1) .inprogress [w].tag #

Tres(w)[w]-tag. Thus if p returnsw, theno,..., [r].tag = 0,4 [w].tag in this case as well.

Case 2b:In this case the predicate does not hold for the write opmrati So any tag received
from w was observed in a se iy Q)| such that > 3. Let us split this case in two

subcases:(ij) = 5, and (ii)i > 3.

Case 2b(i): Based on the three cases presented in case 22 fo7dQ’ thenp may observe

one of the following distributions fas,..,,)[w].tag:

NR=Q =

I

-~

I
0|3

QReQWV=;=0-Ql=35-1,

232

Nicolas C. Nicolaou——University of Connecticut, 2011

I QEQU{QT=j=Qu{Q}=75+1

Observe that neither of the cases satisfies the predicgte Farthermore in the first two cases
p observesr, .. [w].tag in the intersectioniﬂQEQjU{Q} Q)and|Q/UQ|=j+1<5+1.
So according to Lemma 6.4.11 no ta§) # o, [w].tag will be propagated in &-wise
intersection, such that < & 4 1 and hence”’ will not satisfy the predicate fos either.

It remains to examine the third case whete,) [w].tag is received from every server
s € (Nocgiuggy Q»and|Q U Q| =j + 1 = 5 + 2. We need to examine if there could be
set of quorumg)* such that: < 5 — 2 and every serves’ € ((Ngeg:uigy Q) replies top
with a tagm(p, 1)y ,.inprogress [w].tag # 0,cq()[w].tag for w. Such a set would satisfy the
predicate forp and thusp would returnm(p, 1) ,.inprogress [w].tag. This is only possible if
(Noegi @) N (Ngeg- Q) NQ = 0. Sincej = 5 + 1 andz = 5 — 2 then the intersection
consists ofj +z+1 = 5+ 1+ 5 —2+ 1 = n quorums. Since we assume arnvise
quorum system then it follows that the intersection is nopsmrhus, there exist no tag equal
to m(p, 1)y ,.inprogress (w].tag and hence no tag will satisfy the predicatepah this case.
So, p will return the value written byv only if it observes a maximum confirmed tag such
that maxscq (m(p, 1)s,r.confirmed) = (maxTS,w). But since the predicate will be false
for every read operation, then the first to confirm a tagdois the writerw in the second
communication round ab. Since thoughw returnso, ..., [w].tag then it propagates that tag
during its second round to a full quorum. Thus, any read djgerahat returns the value of
must observenaxseq (m(p, 1)s,.confirmed) = (maxT'S,w) = 0,c4)[w].tag and hence

retUrnso . cs(p) [1]-tag = 0peq(w) (W] tag.

233

Nicolas C. Nicolaou——University of Connecticut, 2011

Case 2b(ii): Suppose now that the predicate does not hold for the writesius® it observed
every tag to be distributed in at least some intersedfdBcqi g Q). Wherei > 3. Letus
assume that = 5 + 1. By that it follows that the read operatignwould observe the writer

tag inQ’ in one of the following distributions:

NR=Q=j=i=5+1,

2 QeQ=;=0-Ql=1

3 QEQUI{QYT = =QU{Q} =5+2
Obviously none of the cases satisfy the predicatg. dfurthermore, in the first two cases, by
Lemma 6.4.11 and as shown in case 2b(i), no tag assignedatisfies the predicate fprand
so if p returns the value written hy, it returns the value propagated durin® second round.

Finally we need to explore what happens in the case wjere 5 + 2. So we should
examine if we can devise a tag far such that is distributed in some set of quoru®sg
such that: < 3 — 2 and every serves’ € ((Ngeq:uig) Q) replies top with a tagr’ =
m(p, 1)y .inprogress [w].tag such thatr’ # o,..,)[w].tag. Such a set would satisfy the
predicate folp and thusp would return7’. This is only possible if(gcgi Q) N (Ngeg-)N
Q = 0. Sincej = 4 +2andz = 4 — 2 then the intersection consists pf- 2 + 1 =
5 +2+5—2+1=n+1quorums. Thus, such intersection is possible. If howpveceives
7’ from every server’ € (Noco=uigy Q) and since every server € ((geg:=ug,01 Q)
replies tow with a tagm(w, 1)s ,,.inprogress [w].tag = 7' before replying tg, then there are
three possible distributions for the write operatiofior ' as observed in the replying quorum
Q"

N)Q=Q=i=2=%-2,

234

Nicolas C. Nicolaou——University of Connecticut, 2011

QeW=i=|0-Q|=3-3
3 Q¢QU{Rt=i=Q*u{Q}=35-1

This however shows that in any case the predicatesfshould have been true for the taf
But this contradicts our initial assumption that the pratkdorw is false and hence such a case
is impossible. Thus, no read operation observes a difféagnt that satisfies its predicate and
so every reagh that returns the value af must observenaxcq(m(p,1)s,,.confirmed) =
(maxTS,w) = 0res(w)[w]-tag. As shown in case 20(D,cs(p)[r]-tag = Ores(wy[w] tag. O
Since Lemma 6.4.13 shows that every read operation retbensame tag for the same
write operation then from this point onwards we can say tifidrdnt tags represent different

write operations. This is presented formally by the follogicorollary:

Corollary 6.4.14 In any executiorf € goodexecs(SFW,Q), if two read operationg and o/
return tagso, () [*|-tag = Opeg(w)[*]-tag and o, o [¥].tag = 0,5 [¥]-tag respectively,
then eitherw,..;(,) [+].tag = 0ycq(p)[*]-tag @andw = W' OF 0, [*]-tag # Oyes(py[¥]-tag and

w# W,

Lemma 6.4.15In any execution{ € goodexecs(SFW,Q), if a servers € S replies
with a m(w,1)s.inprogress|[w].tag to the write operationw from w, then s replies
to any subsequent message from an operatiorfrom p with m(7)s . inprogress,
St MaXrep(n), ,.inprogress (T) = M(w, 1)sw-inprogress|w].tag if = is a read and

MAX 7 (1), .inprogress (T) > M(w, 1) w-inprogress [w].tag if 7 is a write.

Proof. If = is a write operation from a process’ then by Lemma 6.4.6s

replies to 7 with m(m,1)s . inprogress(ml.tag = MaXrepm(n), ., inprogress (T)-

235

Nicolas C. Nicolaou——University of Connecticut, 2011

But before s adds m(m, 1), .inprogress|n].tag in inprogress,, according again
to Lemma 6.4.6, m(m, 1), .inprogress[r].tag was greater than any tag in that
set. Since s also addedm(w,1)s,,.inprogress|w|.tag before replying tow then

it follows that m(w, 1), .inprogress|r|.tag = MAX ey (r), /. inprogress (r) >
m(w, 1)s .inprogress [w].tag.

If = is a read operation from then by algorithm 8W servers receives either &
or RP message. In none of those casespdates itsinprogress, set. By Lemma 6.4.6
when servers replied tow, m(w, 1)s - inprogress(w].tag = MaX cpm(w), ,.inprogress (T)-
Thus if s did not receive any write message between the messagedramd = then the
operation 0bServemax, cp,(r), ,..inprogress (T) = M(7, 1)s.inprogress|w].tag. Otherwise,
with the combination of the first part of this proof,observesmax ., x). ,.inprogress () >
m(w, 1)s..inprogress [w].tag. Hence our claim follows. O

The next lemma shows that the tag returned by a read opeisiamger than the maximum

confirmed tag received by the read.

Lemma 6.4.16In any execution{ € goodexecs(SFW,Q), if a read operatiorp from
r receives a confirmed tagi(p, 1)s,.confirmed from a servers, then o,y [r]-tag >

m(p,1)s,r.confirmed.

Proof. Let the read operatiom receive replies from the servers i@. By the algo-
rithm a read operation returns either theaxycq(m(p, 1)y ,.confirmed) or the maxi-
mum tagr that satisfies predicateéR. Notice that ifmaxycq(m(p, 1)y r.confirmed) >
7 then the reader does not evaluate the predicate but rath@mser,.,)[r].tag =

maxgyecq(m(p,1)s,.confirmed) in one or two communication rounds. Singereturns

236

Nicolas C. Nicolaou——University of Connecticut, 2011

either o,.cq(,)[r]-tag = maxgeq(m(p,1)s r.confirmed) > m(p,1)s,.confirmed or
Ores(p)[T]-tag = 7 > maxgeq(m(p, 1)y r.confirmed, then in either case,..,(,[r]-tag >
m(p,1)s,r.confirmed. O

Next we show that BV satisfies propertf G2.

Lemma 6.4.17 In any executiorg € goodexecs(SFW, Q), if the read,. event of a read opera-
tion p from readenr € R succeeds therite,, event of a write operatiow from w € W in an

executions then, o,y [r].tag > 0ycq)[w] tag.

Proof. Let assume that every server in the quorugisQ” € Q (not necessarily)’ # Q")
receives the messages for the first and the second (if anyjnooination rounds of the
write operationw respectively and reply to those messages. Also let the rseine) re-
ply to the first communication round of operation, not necessarily different thar or
Q". Moreover letT = {(x,w) : s € Q A (x,w) € m(w)sw.inprogress} be the
set of tags witnessed hy during its first communication round. Notice that either:) (1
Ores(wylw].tag = 7 such thatr € T and its distribution satisfies the predic®®V, or (2)
Ores(w)[w]-tag = maxgeq (m(w, 1)s - inprogress [w].tag), otherwise. We should investi-
gate these two cases separately. The read operation retdags, ., (,)[r].tag equal to ei-
ther themaxseq (m(p, 1)s,r-.confirmed) or the maximum tag i), m(p)s - inprogress
that satisfies predicateR. Therefore ifmaxseq (m(p,1)s.confirmed) > 0,e5.)w]-tag
or 31 € Useq m(p)s,r-inprogress S.t. 7 > 0,05 [w]-tag that satisfiesPR then p returns
Ores(p)[T]tag > 0res(y[w] tag. Also notice that ifw invokes a write operation’ such that
w — ' then by Lemmas 6.4.4, 6.4.6 and 6.4.5 it follows that everyesaeceiving messages

from o’ will reply to p with m(p,1)s,.con firmed > 0yc5[w].tag sincew will include

237

Nicolas C. Nicolaou——University of Connecticut, 2011

Ores(w)[w]-tag in its next write operation. Thug returnse,..,,)[r].tag > o5 [w]-tag in
this case as well. So it suffices to examine the case where ithep writew’ s.t. w — ' and
no7’ € Useq m(p)s,r-inprogress s.t.7" > 0,05, [w].tag andr’ satisfies the predicate for the

read operatiom.

Case 1:Observe that by Lemma 6.4.12,., [w].tag is the only tag that satisfies the writer
predicate for the write operatian = (w, wc). In this case we need to consider the following
subcases for the set of quorur@éthat satisfies the predicalRW: (a)i < 5 — 2 and thus the
write operation is fast, or (b) € [§ — 2, 5 — 1] and thus the write operation is slow. Notice
that by Lemma 6.4.15 it follows that every servere ((Ngcgiuigr.oy Q) replies top with
m(p)s,inprogress that contains a tag > o,.s(,)[w].tag. Since we only examine the cases

where nos receives messages from a writé from w s.t. w — &/, thus it must hold that

m(p)s,r-iNprogress = 0pes((W] tag.

Case la:This is the case where the write operation is fast and hénces — 2 and every
servers € ((Noecgiuigy Q) replies witho ... [w].tag € m(w)s,w.inprogress tow. The read
operationp will witness the tagr, .. [w].tag from the servers irQﬂQGQ]-U{Q} Q) where@

andQ’ may be as follows:
1)Q=Q =j=i<5-2,
2)QeQ=;=0-Q|<5 -3,
3 QEQUQ=j=lQu{Q}<5-2

Inany casgj < % — 2 and thus the predicatR is valid for thep for 0,4, [w].tag. Hence,

p returnso,. .y, [r].tag = 0,5, [w].tag in one or two communication rounds.

238

Nicolas C. Nicolaou——University of Connecticut, 2011

Case 1b: This is the case wherec [§ — 2,5 — 1] and thus the predicate holds for but
w proceeds to a second communication round before compldiingng its second roundy
propagates the tag...,[w].tag to a complete quorum say”. Sincew — p and by Lemma
6.4.5, then any serverc Q N Q" replies top with am(p, 1) ,.confirmed > e [w].tag.

Thus by Lemma 6.4.16,4,)[r].tag > m(p,1)s,.con firmed, and hencer, .y, [r].tag >

Ores(w) [w] lag.

Case 2:In this case the predicate does not hold dor Thus the writer discovers the maxi-
mum tag among the ones it receives from the servers and @tgsathat to a full guorum say
Q", not necessarily different fror@ or @’. It follows that by Lemma 6.4.3 will receive a
m(p, 1)s r.confirmed > 0,5, [w].tag from any serves € Q'NQ". Thus by Lemma 6.4.16
pretUnSo, .) [r].tag > 0,5 [w]-tag in this case as well. O

The remaining Lemmas shows that\8 satisfiesTG3 andTG4.

Lemma 6.4.18In any executiort € goodexecs(SFW, Q), if w andw’ are two write opera-

tions from the writersv andw’ respectively, such that — o’ in &, thenares(w,)[w/].tag >

Ores(w) [w] tag.

Proof. First consider the case whare= w’ and thusv andw’ are two subsequent writes of the
same writer. Itis easy to see by Lemmas 6.4.8 and 6.4.4that, [w].tag > 0ycs(n[w].tag
since the tag of the writer is monotonically increasing. &utlie rest of the proof we focus on
the case where andw’ are invoked from two different writers # w’. Let us assume that ev-
ery server in the quorum@’, Q" € Q (not necessarily)’ # Q") receives the messages for first
and the second (if any) communication rounds of the writeaimm w respectively and reply

to those messages, anddgbe the quorum that replies to the first communication round’sf

239

Nicolas C. Nicolaou——University of Connecticut, 2011

operation, not necessarily different th@hor Q”. Notice here that since’ decides about the
tag ;¢ [w']-tag in its first communication round, then it suffices to examins first com-
munication round alone. Moreover [Ef = {(x,w) : s € Q' A (%,w) € m(w)s y.inprogress }
be the set of tags witnessed byduring its first communication round afid the respective set
of tags forw’. Notice that either: (¥ yes(w)lw]-tag = 7 such that- € Ty and its distribution
satisfies the predicaW, or (2) 0, [w].tag = max,eq (m(w, 1)s - inprogress [w].tag),

otherwise. We now study these two cases individually.

Case 1: This is the case where the predic&®&/ holds forw. Thus according to the pred-
icate there exists some set of quoruf| < § — 1 such thatvs € (Ngcgiuigy Q)
m(w, 1)s-inprogress [w].tag = oyeq. [w].tag. From the predicate we can see that i< 4

theni € [0, 1]. So we can split this case into two subcasesn(a) 4, and (b)n < 4.

Case la: Here we assume that > 4 and thus the predicate may be satisfied with
i < g—-1landg —1 > 0. From the monotonicity of the servers (Lemma 6.4.2)
and from Lemmas 6.4.6 and 6.4.7, it follows that every sesler (Nocgivio gy Q)
replies with am(w’, 1)y .inprogress(w'].tag > m(w,1)s 4.inprogress|w].tag and thus
m(w', 1)y -inprogress [W'].tag > 0,05 [w].tag. There are three subcases 1Qr (i)

Q = Q' (i) Q € Q, or (iii) Q ¢ Q'U{Q'}. If one of the first two cases is true thehobserves

a set of quorum$Q?| < & — 1 such that every servef € (erQZU{Q} Q) replies with a tag
greater thaw,..y(,,)[w].tag. Since|Q* U{Q}| = z + 1 > 3, then according to Lemma 6.4.11
no tagr’ < oy, [w].tag is propagated in an intersectiofi gcgaygqy Q) such thad < 3.
Thus, no such tag satisfies predicBi for «’. It follows thatw’ returns a tagr, (. [w'].tag

either because,. (. [w'].tag € m(w')s . .inprogress, ands € (Noecu(gy) and PR

240

Nicolas C. Nicolaou——University of Connecticut, 2011

is satisfied 010, [w'].tag = maxseq(m(w', 1) . inprogress[w'].tag). In both cases
Oresw) [W']-tag > Opes(wy[w]-tag.

It remains to investigate the subcase (iii) whére¢ Q' U {Q'}. If i < % — 2 thend/
observes a set of quorurls < 5 —1 and the proof is similar as in cases (i) and (ii). If however
i = 5 — 1 then befores completes it performs a second communication round anchgaips
Ores(w)[w]-tag to afull quorum@”. But every serves € Q" that receives this message sets its
local tag totags = 0,es(w)[w]-tag if opeq[w].tag > tags; otherwise they do not update their
tag. Thus, every serverc Q" contains a tagags > Ores(w)[w]-tag whenw completes. Since
by Lemma 6.4.2 the local tag of a server is monotonicallygasing, then by Lemmas 6.4.6 and
6.4.7, every serves € Q N Q" reply with m(w', 1), . inprogress|w'].tag > 05 [w] tag
tow’. S0,|Q% = [{Q"}| = 1. Since we assume that> 4 thenz < £ —1 and hence as before
and by Lemma 6.4.11 there cannot existtag< o,.s(.)[w].tag that satisfies the predicate for
w'. Thus in this case, .. [w'].tag = m(w', 1)s 4 .inprogress [w'].tag for somes € Q N Q"

and hencer, ., [w'].tag > 0ycs(0)[w].tag.

Case 1b:Heren < 4. In this case it follows that the predicate is valid fowith i € [0, 1].
If the predicate is valid foi = 0 then it follows thatw receiveso, (. [w].tag from all the
servers inQ" while if i = 1 it receives that tag from a pairwise intersection. Noticat the
predicate fow holds for|Q¢| = 1 only in the case where = 4 and with|Q?| = 0 for n < 3.
Thus in any cas€ocqivgg,oy @) # 0- Hence in case the predicate does not hold.foand
returns themax,cq (m(w’, 1), - inprogress [w'].tag) theno,cy) [w'].tag > 0,cq)[w] tag.

So it remains to explore the two cases where the predicatks adfw’.

241

Nicolas C. Nicolaou——University of Connecticut, 2011

If the predicate forw holds with |Q?| = 0 then it follows that all the servers <
Q N Q' reply, by Lemmas 6.4.6 and 6.4.7, &8 with m(w’, 1), .inprogress [w'].tag >
m(w, 1)s,-inprogress [w].tag and thus greater tham,.y,[w].tag. Notice that forw’
the predicate may also hold for a quorum $€*| € [0,1]. If the predicate for
w' holds with z = 0, then it follows that every serves € (@Q replies with
m(w', 1) g inprogress [w'].tag = o,c5.)[w'].tag. Since every servers € Q N Q' replies
with m (W', 1) 5 o - inprogress [w'].tag > 0,c(.)[w].tag, then it follows that every serverc Q
replies with that same tag, and heneg.,.[w'].tag > 0yc5)[w]-tag. Otherwise, if
z = 1, let us assume to derive contradiction tiigt = {Q"'} for Q" # Q’,Q, and ev-
ery servers € ((Noeg-uggy @) = Q" N Q reply tow' with a7’ < 7,04,)[w]-tag. Since
7' < Opes(w)[w]-tag, then it must be the case the” N Q) N (Q'N Q) = (. Since we
assume: = 1 it follows thatn = 4 and hence this is impossible. Thus the predicate may only
hold in this case fof)* = {Q’} and for a tag obtained by the servers@hn ¢ and hence
Tres[W']tag > 0pegw)[w].tag.

If the predicate forw holds with |Q?| = 1 thenw performs a second communication
round propagating, (., [w].tag to a full quorum, sayQ”. Thus every serves ¢ Q N Q"
replies by Lemma 6.4.6 with a tag(w’, 1), .. inprogress [w'].tag > 0,5 [w].tag. Since
a full intersection replies ta’ with m(w’, 1), .inprogress|w'].tag > 0pcq)(w]-tag then
following similar analysis as in the previous case (and bynb® 6.4.11) we can show

that there cannot exist tag < o,.s.)[w].tag to satisfyw"s predicate. Thus.' retruns

Ores(w) [W]tag > Opes([w] tag.

242

Nicolas C. Nicolaou——University of Connecticut, 2011

Case 2:In this case the predicate does not holddaend thus proceeds to a second communi-
cation round propagating a tag.,,[w].tag = maxs € Q(m(w, 1) w.inprogress|w].tag)

to a full quorum, sayQ”. Since every serves € Q N Q" replies by Lemma 6.4.6 with a
tag m(w’, 1), . inprogress [w'].tag > 0,cq)[w].tag then by Lemma 6.4.11 and following
similar analysis as in Case 1b, we can show that there carisvtagr’ < Ores(w)[w].tag to

satisfyw"’s predicate. Thus' retrunso, .o [w'].tag > 0,c4.)[w].tag in this case as welld

Lemma 6.4.19In any executiort € goodexecs(SFW,Q), if p andp’ are two read opera-

tions from the readers andr’ respectively, such thai — p’ in £, then Ores(p)T]-tag >

Tres(p)[r']-tag.

Proof. Let us assume w.lo.g. thatto scnt(Q’, p), andscnt(Q", p), (not necessarily different
than Q') during its first and second communication round respdgtivéloreover lety’ to
sent(Q, p'),+ during its first communication round. Notice here that sinceead operation
decides on the tag that it returns whead-phasel-fix happens then we only need to investigate
the first communication round of. Let us first consider the case where the two read operations
are performed by the same reader, i.e= /. In this case- will enclose in every message sent
out a tag greater or equal 9., [7].tag Thus every serves € @, by Lemma 6.4.5, replies
to p’ with m(p’, 1) ,s.confirmed > oyeqp)[r]-tag. Thus by Lemma 6.4.1¢' returns a tag
Ores(p)[1']4ag = Opes(p)[r]-tag.

So it remains to investigate the case wherg /. Notice that ifp proceeds to a second
communication round, either because the predicate holdgQfg = 5 — 2 or not enough
confirmed tags where received, thprpropagatess,,(,)[r].tag in Q" before completing.

By Lemmas 6.4.5 and 6.4.16 it follows that every servee Q" N Q replies top’ with a

243

Nicolas C. Nicolaou——University of Connecticut, 2011

m(p',1)sr.confirmed > 0,05, [r1]-tag and thusy’ returnse,.q) [r'l.tag > ,eqp)[r]-tag
in one or two communication rounds. Thus we left to exploe ¢hse where is fast and
returns in a single communication round. This may happemvindases: (1) predicateR
holds forp with j < 5 — 3 or (2) p returns the maximum confirmed tag which he observed in

ak-intersection withk < n — 1. Let us examine those two cases.

Case 1: In this casep returnso, .., [r].tag because it receives that tag from every server

n

s € (ﬂQeQJU{Q’} Q), st j < 5 —3ando,c,)lrl-tag = m(p, 1)s,.inprogress|w].tag

for some write operationv = (w,wc) from writer w. Thus by Lemma 6.4.15 ev-
ery servers € ((gegivgo,oy @), replies top” with a m(p', 1),,+.inprogress [w'].tag >
Ores(p)[T]-tag as the tag for a writes’ from the writer w. So there are two sub-
cases to consider: (a) there exists servee (ﬂQGQjU{Q,,Q} Q) such that replies with

m(p', 1) . inprogress [w'].tag > 0yeq(p)[7]-tag, and (b) all servers ifg.qs Q) N Q' N Q

reply withm(p', 1), .. inprogress [w'].tag = oyes(p)[r]-tag.

Case la:lf there existss € ((Ngegiugor,y @) such thatm(p', 1), inprogress[w’].tag >
Ores(p)[T]tag, then it follows that the m(p',1),, . inprogress[w'].tag >
m(p, 1)s .inprogress w].tag and thus writerw performed a writew’ such thatw — w'.
But according to the algorithm the message thatsent to s for ' contains a tag
T 2 Opesw)lw]-tag. Hence by Lemma 6.4.5 replies withm(w, 1) .confirmed > 7
to w and thus, by monotonicity of the confirmed tag (Lemma 6.43)replies with

m(p',1)s,.confirmed > 7 > 0ye5)[w]-tag 1o p’ as well. Therefore from Lemma 6.4. 16

returns ata@, () [1'].tag > oyes(wy[w]-tag and thuso,.q) [r'].tag > 0,05 7] tag.

244

Nicolas C. Nicolaou——University of Connecticut, 2011

Case 1b: If all the servers in s € (Nocwivge,or @) reply with
m(p', 1), inprogress [w'].tag = 0,cq)[r]-tag then there are three different val-
ues for Q to consider: ()Q = Q', (i) Q € @, and (i) Q ¢ Q U Q.
Since j < 4 — 3 then in all three cases the predicaRR holds for p’ for at
least tag m(p’, 1), .inprogress|w'l.tag and with a quorum setlQ*| < % — 2.
Thus o' either returns am(p’, 1), .confirmed > m(p',1),,.inprogress|w'].tag,
a tag m(p/,1)s,.inprogress|«].tag > m(p', 1), inprogress [w'].tag or
m(p', 1), inprogress [w'].tag. HENCe, 0pey(p)[r']-tag > 0pes(p[r]-tag in this case as

well.

Case 2: In this casep is fast and returns in one communication round since he wbder
& 0yes(p)[r]-tag = m(p,1)s,.confirmed tag from every serves € (ﬂQEQjU{Q,} Q) such
thatj = n — 2. Since we assume thé&t is ann-wise quorum system then it follows that
(Nocaivggy @ # 0 (since|Q7 U{Q',Q}| < j +2 = n), and hence’ receives a
m(p',1)s,r.confirmed > o,c4,)[r]-tag from at least a single server Mocqivio.or Q)
Thus by Lemma 6.4.16" returns o, .q[1'].tag > 0,c4(5)[r]-tag and that completes the

proof. O
Theorem 6.4.20 SFW implements a near optimal MWMR atomic read/write register

Proof. It follows from Lemmas 6.3.6, 6.4.17, 6.4.19, 6.4.18 andi34 O

245

Chapter 7

Summary and Future Directions

This dissertation examined the operation latency of atoead/write memory implemen-
tations in failure prone, asynchronous, message passuigements. We researched the ex-
istence of such implementations under process crashes MS#Whd MWMR environments.
We developed algorithmic solutions that utilize new tegleis to provide an efficient solution
to this problem. In addition, we studied the implicationslé environmental parameters on
the operation latency of read and write operations, and mehthe conditions that improve
the operation latency of those operations. We now providarasary of the contributions of

this thesis and we identify future directions in this reshaarea.

7.1 Summary

This thesis presents results in three topic areas. Baseleoresults presented in [30],
we first examine whether implementations of a SWMR atomigstegcan support unbounded
number of readers while allowing some operations to corapgieta single communication

round. We definesemifastimplementations that allow writes and all, busimgle complete

246

Nicolas C. Nicolaou——University of Connecticut, 2011

read operation per write, to be fast. By introducing the aroif Virtual Nodes we present
the semifast algorithm Sthat implements a SWMR atomic register. We show that setifas
implementations are possible only if the number of virtuatles is bounded undey| <

EJJ — 2, and the second round of a read operation communicates Wehs3f + 1 servers.
Furthermore, we investigate whether semifast MWMR atoragister implementations are
possible and we obtain a negative answer.

Next, we examine the relation between the latency of readvarid operations and the
organization of the replica hosts. We show that (semi)fagtiementations can be obtained
when organizing the replica hosts in arbitrary intersectats (i.e.general quorum systems
only if there exists a common intersection among those ddtswvever, this implies that if
a replica host in the common intersection fails then no djmerawill obtain replies from a
complete set and thus, no operation will terminate. Thitatés the termination condition and
makes such implementations non-fault-tolerant since shiffgr from asingle point of failure
This finding led to the introduction affeak-semifasimplementations that allow more than a
single slow read per write. To devise a weak-semifast algori we developed a client side
decision tool, calledQuorum Views The idea of the tool is to examine the distribution of a
value in the replies from a specific quorum. Utilizing thelte@ obtain algorithm 81Q that
allows some read operations to be fast.i@Gallows arbitrarily many readers to participate
in the service and does not impose any restrictions on theuquoonstruction of the replica
hosts.

The examination of the efficiency of R/W atomic register iempentations in the MWMR
setting was our third goal. First, we investigate the impdd!WMR setting on the fastness

of read and write operations. We discovered that, in a systatdeploys am-wise quorum

247

Nicolas C. Nicolaou——University of Connecticut, 2011

system, at most — 1 consecutivendquorum shiftingreplica modifications can be fast. This
includes both read and write operations when they modifytiee of the register replicas.
Therefore, if both reads and writes modify the registericeplalue, no more thapy U R| >

n — 1 clients may participate in a fast implementation. Next, wespnt two algorithms that
enable fast read and write operations in the MWMR settingst Aive generalized the Quorum
Views idea to be used in the MWMR setting. The generalizeddin was used by algorithm
CWFR, to allow slow (or classic) writes and some fast read opamnati The algorithm uses
quorum views tdteratively analyze the value distribution in the replies of a specifiorgm,

to detect the latest potentially completed write operatidinlike previous algorithms (i.e.,
[28, 22]), CwWFR allows read operations to be fast even when they are comtustiéh write
operations and before the value they return is propagat@domplete quorum. Next, to enable
fast write operations in the MWMR setting, we proposed shever side orderingapproach
which transfers partial responsibility of the ordering bé&tvalues to the servers. Using this
technique we managed to obtain algorithm\\& This algorithm is near optimal in terms of
the number of successive fast write operations it allowspdrticular, $W uses am-wise
quorum system and allows— 1 consecutive, quorum shifting write operations to be fabis T
is thefirst atomic register implementation that allows both write a@aldoperations to be fast

in the MWMR setting.

7.2 Future Directions

The thesis focused on the study of the operation latencyeofvaite atomic register imple-
mentations in systems that tolerate benigashfailures and assumiféx participationand re-

liable communication. However, real systems may expegeeaciable participationdynamic

248

Nicolas C. Nicolaou——University of Connecticut, 2011

participation), link failures that may lead to the division of the networletwork partition,
and message alterations and arbitrary process failbyesiitine failures These environmen-
tal parameters introduce new challenges in devising eficia terms of operation latency,
atomic R/W register implementations. We present poss#dearch directions that utilize the
results presented in this thesis as the basis for the dewelapof efficient atomic memory
implementations in more hostile environments. In paréigubection 7.2.1 deals with environ-
ments where system participation may change during theuigacof the service and Section
7.2.2 considers systems that cope with byzantine faillifgmlly, Section 7.2.3 examines the

application of distributed storage in specialized envinents.

7.2.1 Dynamism

System participation may change dynamically during theetien of a service if: (i) par-
ticipants are allowed to join, fail and voluntarily leaveetiervice, and/or (ii) unreliable chan-
nels cause network partitions. In this section, we studyirti@ications of dynamic systems
on atomic register implementations and propose possiblmitgues to obtain lower bounds on

the operation latency of such implementations.

7.2.1.1 Fast Operations in Dynamic Systems

Dynamic service participation improves the scalabilityl daongevity of the service, as it
allows participants to join and fail/leave the service at point in the execution. As discussed
in Chapter 2, solutions designed to handle dynamic padiicip require high communica-
tion demands: participant additions and removals leadteadiy to the need to reorganize

(reconfigure) the set of replica hosts to include or exclertew or departed participants.

249

Nicolas C. Nicolaou——University of Connecticut, 2011

Algorithms like the ones presented in [34, 68, 66], sepatatgoin/depart and reconfiguration
protocols. More recently, [6] combined the two protocold anggested the tracing of the new
system view (service participation) whenever an additipnemoval occurred in the system.

This categorization boils down to the replica organizatiuat each algorithm utilizes:

(i) Voting: participants need to know the replica hosts, and

(i) Quorums: participants need to know the replica haesidthe replica organization.

Voting techniques eliminate the necessity of having a dedit entity to decide and prop-
agate the next replica configuration as long as the servidiipants know the set of replica
hosts. However, knowledge of the replica hosts when quorarasised does not imply the
knowledge of the next configuration. For this reason, atgors that use quorums need to in-
troduce a separate service to reorganize the replica hstquorums, and propagate the new
configuration to the service participants.

We suggest investigation of both directions. On one hantipg@llows reconfiguration-
free approaches, but it requires propagation of the sefptiteehosts at each node addition or
removal. On the other hand quorums will allow inexpensiieg@nd trade operation-latency

during periodic reconfigurations.

Utilizing Voting Strategies.

We will first examine the incorporation of voting strategiesobtain an atomic register

implementation. The main research questions we need toiegare:

(a) How fast a join/remove operation can hethd

(b) How fast a read or write operation can be that is concurrenttwa join/removal?

250

Nicolas C. Nicolaou——University of Connecticut, 2011

Note that any read and write operation that detects it is motwarrent with a join/removal may
follow the algorithmic approaches proposed for the statigrenment.

The adoption and combination of techniques presented m[Bpand static environments
may help us to answer the above questions. The first goal camibgrove the operation la-
tency of join and departure protocols. Intuitively a joirofmcol needs at least three rounds: (i)
the new participant (joinee) sends join request to an exjservice participant (joiner), (ii) the
joiner propagates the new system view (known locally antuding the joinee) and gathers
the latest system view in the same round, and (iii) the jogerds the join acknowledgment
and the system view to the joinee. Merging rounds (i) andfiijorcing the joinee to commu-
nicate with a set of participants (say a majority) may desedle latency of the join protocol.
Departures on the other hand (assuming that a participardeg@art on its own) should include
at least a single round similar to round (ii) of the join piaib

As the second step we need to focus on read and write opevatiéach operation may
witness (from the received replies) that a join or deparaira participant is in progress. As
joins/departures may alter the set of replica hosts, eaehatipn is responsible for discov-
ering the latest replica host membership and communicdteangufficient number of recent
replica hosts. This will guarantee that the operation akesethe latest written value. An op-
eration may need to perform multiple rounds to “catch up’hwtiite new joins/departures. The
challenge is to reduce the amount of rounds needed for ‘icetakp”. It appears that such
procedure is affected by the setting we assume: SWMR or MWRARwvell formedness, only
a single write operation (and thus, a single value) may beragness by the sole writer, in
the SWMR setting. Older values have been propagated by aletadwrite operation. Since

the sole writer is the only one who modifies the value of thdicapit may propagate some

251

Nicolas C. Nicolaou——University of Connecticut, 2011

“traces/clues” on how many new configurations it encountamgwith the value to be written.

This could potentially help read operations to discoveldlest configuration in fewer rounds.
In the MWMR setting multiple writers may perform concurrevrite operations. Thus, discov-
ery of the latest replica host configuration becomes ever rloallenging. Operation latency

@, for
C

of such implementations can benefit from: (i) relaxing thikufa model (e.g.,f <
¢ > 2 a constant) and allowing the operations to contact moréceepbsts, and/or (ii) restrict-

ing the number of participants.

Utilizing Quorum Systems.

The fastness of reconfiguring the replica hosts and projpag#ie new organization to
the service participants is the main concern when usingumsr Also, every read and write
operation that is concurrent with a reconfiguration need=gure that old and new configu-
ration maintain the latest replica information. Thus, ri@ss of read/write operations is also
affected as an operation may need to perform additionald®um contact the servers of the

latest configuration. Thus, the main challenges we needdreas are:

(&) How fast a quorum system can be reconfigureiiti

(b) How fast read/write operation can be during a reconfiguratfwocess?

Things are simpler when we assume a single reconfigurer. ilgke seconfigurer imposes
a total ordering on the series of configurations (its locdeong). Thus, it may locally obtain
the next configuration. To preserve atomicity, a reconfigomaneeds to ensure that the latest
replica information will be propagated to enough replicaghe new configuration. For this

purpose we propose enhancing the role of every reader atel woiassist the reconfigurer

252

Nicolas C. Nicolaou——University of Connecticut, 2011

in this task. This will allow a reconfiguration to be fasteut it may require extra rounds

from each read or write operation that is concurrent withcaméiguration. It is essential to

expedite the reconfiguration process, since this may allonemeads and writes to be faster.
Here techniques from [34, 66], along with those proposedihieze fast operation in the static
environment with quorums may be utilized. Moreover, hav@egess to the order of recon-
figurations from the single reconfigurer, may help readéwiperations to utilized techniques
similar to the ones proposed earlier in this section to ptade latest configuration.

The introduction of multiple reconfigurers improves fatglierance but introduces the need
of achieving agreement between the reconfigurers on theaoeiguration to be deployed.
This will affect negatively the fastness of a reconfigunafgzocess, since extra rounds will be
needed for the agreement protocol. Thus, it is importaniverge from traditional solutions
(i.e., [66]) that use consensus to decide on the next coafligni: This may affect the flexibility
of the system. For instance, the works in [28, 6] assunfedta set of configurations and thus,
each read/write was communicating with a single quorum femoh possible configuration.
So, a challenging task is to design a protocol that will ingpagotal ordering on the config-
uration sequence, without utilizing strong primitiveselikonsensus and failure detection. It
will be interesting to analyze the latency of such protoewid its effect on the latency of read
and write operations. The utilization of some techniquesented for the single reconfigurer
may also find application in the multiple reconfigurer settifrinally, it will be important to
examine if restricting the number of participants and tlganization of the replica host allows

expediting some of the read, write, or reconfiguration ojiama.

253

Nicolas C. Nicolaou——University of Connecticut, 2011

7.2.1.2 Fast Operations in Partitionable Networks

Connectivity failures can split the network into non-commuating groups, callegarti-
tions In this section we consider another aspect of dynamic systbat does not depend on
the join/departure of network participants, but ratheplags channel inability to deliver mes-
sages. Let us first provide a formal definition of an unre@atitannel similar to the Definition

3.1.1 of reliable channels presented in Section 3.1.2.

Definition 7.2.1 (Unreliable Channel) A channel betweep, p’ € T is unreliable in an exe-
cutiong € execs(A), if for any execution fragment’ of A that extends) one of the following

holds:
e Jsend(m),, eventing andf succeedingcv(m), ,» in ¢ o ¢’ (message logsor

e dJrcv(m),,s eventing and? precedingsend(m),,» in ¢ (message forginy

The main results related to information dissemination antbsistency in partitionable net-
works was presented in Section 2.7. Karumanchi et al. [58]ged in implementing a regular
register using synchronized clocks to expedite write djsra. On the other hand, Dolev et al.
[28] demonstrated that it is possible to obtain atomic tegisnplementations in a partitionable
ad-hoc mobile network by utilizing a connected focal poiritastructure.

The above results, either focused on weaker consistencgrg@s or relied on practically
expensive broadcasting primitives. So, one may akkit possible to obtain latency efficient
atomicR/W register implementations in partitionable networks?

There is a thin line that divides an environment with dynapacticipation — where indi-

vidual nodes are added and removed — and an environmentlithas aetwork partitions —

254

Nicolas C. Nicolaou——University of Connecticut, 2011

where groups of nodes are detached. The main differencim libe perception of the nodes in
the group once they are detached from the rest of the netviodikvidual nodes stop partici-
pating in the service because either: (i) they departedwailily, or (ii) they do not receive any
messages — replies or requests — from any other process @ystam, or (iii) they failed. In
all three cases the node stops participating in the ser@oehe other hand when the network
is split into some partitions, the nodes within a partitioayncontinue to communicate. There-
fore — because of asynchrony and failures — they may assusthéhtty are the only correct
processes in the system. So they may take measures — sioifarse proposed by [66] — to
reorganize the register replica within their partition asdover the execution of the service.
Such an approach, however, would affect the consistendyeafegister replica among the dif-
ferent partitions. So can we preserve consistency amongefieas of the different network
partitions?

Consistency between network partitions (or participanugs) was studied in the context
of group communication services. Birman and Joseph in [ag@iested the Isis system which
designated one of the partitions to fmémary. Operations are performed on the primary par-
tition while any non-primary partition was “shut-down”. @idra et al. [19] showed that it
is impossible for the participants to agree on a primaryito@mtin an asynchronous message
passing system. To overcome this problem Dolev and Malk2i} {ntroduced Transis which
did not rely on a single primary component but rather allowpdrations to be performed on
all partitions.

Transis seems to be applicable in additive applications. ekample given in [27] is a
tabulation service. During a merge, lost messages were cmicated and the vote tally could

be recovered. The order of the messages in such applicasiord important as long as we

255

Nicolas C. Nicolaou——University of Connecticut, 2011

ensure that all of them are delivered. In contrast, atonigster implementations require
operations to be ordered sequentially. Totally-orderashticast among all the groups was
presented in [37]. This approach allowed the clients toguarfan operation in any existing
group and held the broadcast service responsible to déigenessage in the same order to all
the groups. Atomicity is derived by allowing each participto apply each ordered request to
its local replica copy.

It would be interesting to investigate the number of roundsded to establish a totally-
ordered message broadcast service as suggested in [37].Is@Vavant to examine hybrid
approaches that combine techniques presented in the GC$8erfsistent message delivery
within the groups, and techniques presented to establishiaconsistency among individual
processes. Our approaches should utilize methodologésgipied in [15, 27, 37] to ensure the
reliable delivery of the messages despite participaniried. During merging, reliable delivery
of messages will ensure that all the messages exchangethemitopagated to the merged
network. Techniques like timestamping (e.g., [9]) can bEdus allow participants to order the
messages they witness, and impose consistency betweepetsions in the merged group.

Operation latency needs to be measured over a larger setechtmms: (i) Reads and
Writes, (ii) Message Broadcasting, and (iii) Group Mergilige may need to study the opera-
tion latency of each service individually and then investiigthe implications their combination

will impose on operation latency.

7.2.2 Byzantine Failures

The thesis focused on systems with crash-prone processegrtivide the assurance that

every process does not deviate from its program specifitaéig long as it remains active in

256

Nicolas C. Nicolaou——University of Connecticut, 2011

the system. In this section we present possible future titire that consider failures where
the processes may exhibit arbitrary behavior. These &slare widely known aByzantine
Failures [64]. Our goal will be to study the operation latency of ator®R/W register imple-
mentations where the participants may exhibit byzantireier. Similar to Definition 3.1.2

for crash failures, byzantine failures can be defined folynes follows:

Definition 7.2.2 (Byzantine Failures) For an algorithmA we define the set of executions
Fp(A) to be a subset afrecs(A), such that in any executighe Fp(A), for all p € Z, there
are zero or more stefisy, fail,, o1 1) that are transitions from a staig [p] € states(A,) to

any arbitrary statey,,;[p] € states(A,).

A proces is byzantinen an executiorg € Fp(A), if £ contains a byzantine step fpr A
byzantine stefio;,_1, faily, o) Of @ procesp may be the same as a crash step_1, fail,, o)
of p, if op[p] = o¢[p]. If an executiort € Fp(A) contains only crash steps, thére F(A)
as well and thusF-(A) C Fg(A). Due to the severity of this type of failures, early papers
investigated tight lower bounds and introduced algoritfonsafeandregular semantics (e.g.,
[3, 52, 70]).

Abraham et al. [3] showed a tight lower bound on the commuiuicaefficiency ofwrite
operations. In particular, they showed that in the SWMR rhal&vrite operation needs two
rounds when at motf + 2b register replicas are used; otherwise a single round icaarti
The work considered to be the total number of replica host failures, out of whiahay be
byzantine and the rest may crash. Additionally, this workvetd that2f 4+ b + 1 register

replicas are needed in order to establigate storageinder byzantine failures.

257

Nicolas C. Nicolaou——University of Connecticut, 2011

Extending upon this work, Guerraoui and Vucoli¢ [52] stdlithe operation latency of
read operations in the SWMR environment under byzantine faslufiéhe authors showed that
two rounds for every read operation are necessary for thieimgntation osafe storagewhen
at most2f + 2b register replicas are used. Interestingly, they showetdithan both reads and
writes perform two rounds, gegular register is possible even undgptimal resiliencevhere
2f 4+ b+ 1 register replicas are used.

Guerraoui, Levi and Vucoli¢ [51], showed that “lucky” R/Werations of amtomicstor-
age implementation may be fast whp+ b + 1 register replicas are used. For them, lucky
operations are the ones that are not concurrent with any ofiezation.

Another direction to the solution of the problem was presériy Gerraoui and Vukoli¢
[53]. In this work, the authors introduce a new family of quor systems, calle®Refined
Quorum Systemghat allow somdast operations in atomic register implementations under
byzantine failures. To achieve fastness, they rely on alsgmization assumption that required
each operation to wait for a predefintaheout interval

The results presented by previous works show that it is deiffto implementany consis-
tent semantic under the assumption of byzantine replicgshd$owever prior results do not
adequately answer the questidtow fast read and write operations of an atorRéW register
implementation can be under asynchrony and byzantineréaitu

Byzantine processes may reply witbmevalue from the set of values allowed to be written
on the register. Adoption of that value by a reader may leaddiations of consistency. To
avoid this problem, each correct process needs to collpliesdrom at least a subset of correct

processes. Two strategies are utilized:

1. Detect the byzantine failures, or

258

Nicolas C. Nicolaou——University of Connecticut, 2011

2. Collect replies from a set of processes that strictly @ioistany possible set of byzantine

failures

Byzantine failure detection allows correct processesgoati the replies originating from
byzantine processes. Authentication is commonly usedcititfédie the detection of erroneous
behavior. Processes use cryptographic primitives to ptewméormation forging. However,
authentication is computationally expensive. The secoradegy collects a set of processes,
large enough to contain all byzantine and at least a singlectoprocess. This strategy does
not depend on any computational load but it requires knogdeaf either of the following
parameters: (i) the number of byzantine processes, or §iét af subsets of processes, such
that only the processes of a single subset can be byzantirtbe ffirst case a correct process
will collect more replies than the number of byzantine peses. On the second case a strict
superset of a subset of those sets need to be collected.

To conclude, the regular and safe implementations pregeant@revious works (e.g.,
[3, 51, 52, 53, 70]) can provide a basis for the developmeratarmic register implementa-
tions. Allowing operations to perform extra rounds in immpkntations that guarantee safe
and regular semantics, like [52], may lead to atomic coestst. As shown by [3], relaxing
fault-tolerance and allowingb + 2f + 1 replica hosts immediately enables single round write
operations. Quorums may also be used to improve operatiemchg by adopting techniques as
the ones presented in [53, 70] or techniques similar to Quoriews in Section 5.4.1. Obvi-
ously direct application of quorum views in an environmératt tsuffers from byzantine failures
is impossible: every server in a single intersection mapnep faulty value and thus, two dif-

ferent read operations may witness different values in #meesset of replica hosts. Finally,

259

Nicolas C. Nicolaou——University of Connecticut, 2011

assuming byzantine clients (readers and writers) reqtlieadoption of authentication tech-
niques (see [73, 70]). Gossip among the servers may alloadsjpg the client authentication

and preserve value confidence among the servers.

7.2.3 Other Environments

Partially synchronous environments [31] maintain inténgsproperties and pose a good
candidate for a latency-efficient atomic register impletagon. Operations may take advan-
tage of the periods of synchrony to collect more informatibout the replicated register. Such
information may allow operations to complete in a single ommication round, even when

such performance is impossible in the asynchronous model.

260

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Bibliography

Global positioning system (GPS). http://www.gps.gov/
NS2 network simulator. http://www.isi.edu/nsnam/ns/

ABRAHAM, |., CHOCKLER, G., KEIDAR, |., AND MALKHI, D. Byzantine disk paxos:
optimal resilience with byzantine shared memabystributed Computing 185 (2006),
387-408.

ABRAHAM, |., CHOCKLER, G., KEIDAR, |., AND MALKHI, D. Wait-free regular stor-
age from byzantine componentsformation Processing Letters 102 (2007), 60—65.

ABRAHAM, |., AND MALKHI, D. Probabilistic quorums for dynamic systemBis-
tributed Computing 132 (2005), 113-124.

AGUILERA, M. K., KEIDAR, |., MALKHI, D., AND SHRAER, A. Dynamic atomic
storage without consensus. Proceedings of the 28th ACM symposium on Principles of
distributed computing (PODC '09New York, NY, USA, 2009), ACM, pp. 17-25.

ALISTARH, D., GILBERT, S., QUJERRAOUI, R., AND TRAVERS, C. How to solve con-
sensus in the smallest window of synchrony. DiSC '08: Proceedings of the 22nd
international symposium on Distributed Comput{@grlin, Heidelberg, 2008), Springer-
Verlag, pp. 32—46.

AMIR, Y., DOLEV, D., MELLIAR-SMITH, P. M., AND MOSER L. E. Robust and
efficient replication using group communication. Tech. ré994.

ATTIYA, H., BAR-NOY, A., AND DoOLEV, D. Sharing memory robustly in message
passing systemslournal of the ACM 42(1(1996), 124-142.

ATTIYA, H., AND WELCH, J. L. Sequential consistency versus linearizabiliyCM
Trans. Comput. Syst. 12 (1994), 91-122.

BaBAOGLU, O., DavoLl, R., GACHINI, L.-A., AND BAKER, M. G. Relacs: A com-
munications infrastructure for constructing reliable laggtions in large-scale distributed
systems. IrHawaii International Conference on System Scientes Alamitos, CA,
USA, 1995), IEEE Computer Society, p. 612.

261

Nicolas C. Nicolaou——University of Connecticut, 2011

[12] BAzzi, R. A., AND DING, Y. Non-skipping timestamps for byzantine data storage
systems. InProceedings of 18th International Conference on DistrglitComputing
(DISC)(2004), pp. 405-4109.

[13] BIRMAN, K., AND JOSEPH T. Exploiting virtual synchrony in distributed systems.
SIGOPS Oper. Syst. Rev.,, 51(1987), 123-138.

[14] BIRMAN, K. P. A review of experiences with reliable multicaSoftware: Practice and
Experience 29:91999), 741-774.

[15] BIRMAN, K. P.,AND JOSEPH T. A. Reliable communication in the presence of failures.
ACM Trans. Comput. Syst, 5 (1987), 47-76.

[16] BIRMAN, K. P., AND RENESSE R. V. Reliable Distributed Computing with the ISIS
Toolkit. IEEE Computer Society Press, Los Alamitos, CA, USA, 1993.

[17] CAcCHIN, C.,AND TESSARQ S. Asynchronous verifiable information dispersal Dis-
tributed Computing, 19th International Conference, DISQ2, Cracow, Poland, Septem-
ber 26-2(2005), pp. 503-504.

[18] CACHIN, C., AND TESSARQ S. Optimal resilience for erasure-coded byzantine dis-
tributed storage. |IEEE Computer Society, pp. 115-124.

[19] CHANDRA, T. D., HADZILACOS, V., TOUEG, S.,AND CHARRON-BOST, B. On the
impossibility of group membership. IRODC '96: Proceedings of the fifteenth annual
ACM symposium on Principles of distributed comput{hgw York, NY, USA, 1996),
ACM, pp. 322-330.

[20] CHANDRA, T. D., AND TOUEG, S. Unreliable failure detectors for reliable distributed
systems.J. ACM 43 2 (1996), 225-267.

[21] CHEN, P. M., LEE, E. K., GIBSON, G. A., KATZ, R. H., AND PATTERSON, D. A.
Raid: high-performance, reliable secondary storageCM Computing Surveys 2@
(1994), 145-185.

[22] CHOCKLER, G., GLBERT, S., QRAMOLI, V., MUSIAL, P. M., AND SHVARTSMAN,
A. A. Reconfigurable distributed storage for dynamic neksodournal of Parallel and
Distributed Computing 691 (2009), 100-116.

[23] CHOCKLER, G., KEIDAR, |., GUERRAOUI, R.,AND VuKkoLIC, M. Reliable distributed
storage.|[EEE Computel(2008).

[24] CORREIA, M., NEVES, N. F., LUNG, L. C., AND VERiISSIMO, P. Low complexity
byzantine-resilient consensuBistrib. Comput. 173 (2005), 237-249.

[25] DAVIDSON, S. B., GARCIA-MOLINA, H., AND SKEEN, D. Consistency in a partitioned
network: a surveyACM Comput. Surv. 13 (1985), 341-370.

[26] DoLEv, D., DWORK, C.,AND STOCKMEYER, L. On the minimal synchronism needed
for distributed consensus. ACM 34 1 (1987), 77-97.

262

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Nicolas C. Nicolaou——University of Connecticut, 2011

DoLEy, D., AND MALKI, D. The transis approach to high availability cluster commu
nication. Commun. ACM 3% (1996), 64—70.

DoLEV, S., GLBERT, S., LYNCH, N., SHVARTSMAN, A., AND WELCH, J. Geoquo-
rums: Implementing atomic memory in mobile ad hoc netwotks?roceedings of 17th
International Symposium on Distributed Computing (DI$Z5)03).

DoOLEV, S.,AND SCHILLER, E. Communication adaptive self-stabilizing group mem-
bership service. vol. 14, IEEE Press, pp. 709-720.

DUTTA, P., QUERRAOUI, R., LEVY, R. R.,AND CHAKRABORTY, A. How fast can a
distributed atomic read be? Rroceedings of the 23rd ACM symposium on Principles of
Distributed Computing (PODQR004), pp. 236—245.

DWORK, C., LYNCH, N., AND STOCKMEYER, L. Consensus in the presence of partial
synchrony.J. ACM 35 2 (1988), 288-323.

ENGLERT, B., GEORGIOU, C., MUSIAL, P. M., NICOLAOU, N., AND SHVARTSMAN,
A. A. On the efficiency of atomic multi-reader, multi-writdistributed memory. Iro-
ceedings 13th International Conference On Principle Oftihsited Systems (OPODIS
09) (2009), pp. 240-254.

ENGLERT, B., GEORGIOU, C., MUSIAL, P. M., NicoLAOU, N., AND SHVARTSMAN,
A. A. On the efficiency of atomic multi-reader, multi-writdrstributed memory. Tech.
rep., University of Connecticut, 2009.

ENGLERT, B., AND SHVARTSMAN, A. A. Graceful quorum reconfiguration in a robust
emulation of shared memory. Proceedings of International Conference on Distributed
Computing Systems (ICDCE&000), pp. 454-463.

EZHILCHELVAN, P., MACEDO, R., AND SHRIVASTAVA, S. Newtop: a fault-tolerant
group communication protocolDistributed Computing Systems, International Confer-
ence on(1995), 0296.

FAN, R., AND LYNCH, N. Efficient replication of large data objects. Distributed
algorithms (Oct 2003), F. E. Fich, Ed., vol. 2848/2003 loécture Notes in Computer
Sciencepp. 75-91.

FEKETE, A., LYNCH, N., AND SHVARTSMAN, A. Specifying and using a partitionable
group communication servicdCM Trans. Comput. Syst. 19 (2001), 171-216.

FISCHER, M. J., LYNCH, N. A., AND PATERSON, M. S. Impossibility of distributed
consensus with one faulty procegeurnal of ACM 322 (1985), 374-382.

GARCIA-MOLINA, H., AND BARBARA, D. How to assign votes in a distributed system.
Journal of the ACM 324 (1985), 841-860.

GEORGIOU, C., KENTROS S., NcoLAou, N. C., AND SHVARTSMAN, A. A. An-
alyzing the number of slow reads for semifast atomic reatéwegister implemen-
tations. InProceedings Parallel and Distributed Computing and SystéRDCS09)
(2009), pp. 229-236.

263

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Nicolas C. Nicolaou——University of Connecticut, 2011

GEORGIOU, C., MUSIAL, P. M., AND SHVARTSMAN, A. A. Long-lived RAMBO:
Trading knowledge for communicationTheoretical Computer Science 38B (2007),
59-85.

GEORGIOU, C., MusIAL, P. M., AND SHVARTSMAN, A. A. Developing a consis-
tent domain-oriented distributed object servitEEE Transactions of Parallel and Dis-
tributed Systems (TPDS) 201 (2009), 1567—-1585. A preliminary version of this work
appeared in the proceedings of the 4th IEEE Internationad@®gium on Network Com-
puting and Applications (NCA05).

GEORGIOU, C., NicoLAOU, N., AND SHVARTSMAN, A. Fault-tolerant semifast imple-
mentations for atomic read/write registers. Aroceedings of the 18th ACM Symposium
on Parallelism in Algorithms and Architectures (SPA2006), pp. 281-290.

GEORGIOU, C., NicoLAoU, N. C., AND SHVARTSMAN, A. A. On the robustness
of (semi) fast quorum-based implementations of atomiceshanemory. INDISC '08:
Proceedings of the 22nd international symposium on Disted ComputingBerlin, Hei-
delberg, 2008), Springer-Verlag, pp. 289-304.

GEORGIOU, C., NicoLAoOU, N. C.,AND SHVARTSMAN, A. A. Fault-tolerant semifast
implementations of atomic read/write registedsurnal of Parallel and Distributed Com-
puting 69 1 (2009), 62—79. A preliminary version of this work appehirethe proceed-
ings 18th ACM Symposium on Parallelism in Algorithms and Ritectures (SPAA0G6).

GIBSON, G. A.,AND VAN METER, R. Network attached storage architectu@mmmun.
ACM 43 11 (2000), 37-45.

GIFFORD, D. K. Weighted voting for replicated data. 8OSP '79: Proceedings of the
seventh ACM symposium on Operating systems princfp#29), pp. 150-162.

GILBERT, S., LYNCH, N. A., AND SHVARTSMAN, A. A. Rambo: a robust, recon-
figurable atomic memory service for dynamic networl3istributed Computing 234
(2010), 225-272.

GRAMOLI, V., ANCEAUME, E., AND VIRGILLITO, A. SQUARE: scalable quorum-
based atomic memory with local reconfiguration. SAC '07: Proceedings of the 2007
ACM symposium on Applied computifidew York, NY, USA, 2007), ACM, pp. 574—
579.

GRAMOLI, V., MUSIAL, P. M., AND SHVARTSMAN, A. A. Operation liveness and
gossip management in a dynamic distributed atomic datacservin Proceedings of

the ISCA 18th International Conference on Parallel and blistted Computing Systems,
September 12-14, 2005 Imperial Palace Hotel, Las VegasaddewJS(2005), pp. 206—

211.

GUERRAOUI, R., LEVY, R. R.,AND VukoOLIC, M. Lucky read/write access to robust
atomic storage. IDSN '06: Proceedings of the International Conference onéelable
Systems and Networké/ashington, DC, USA, 2006), IEEE Computer Society, pp—125
136.

264

Nicolas C. Nicolaou——University of Connecticut, 2011

[52] GUERRAOUI, R., AND VUKOLIC, M. How fast can a very robust read be? R®ODC
'06: Proceedings of the twenty-fifth annual ACM symposiurRonciples of distributed
computing(New York, NY, USA, 2006), ACM, pp. 248-257.

[53] GUERRAOUI, R., AND VUKOLIC, M. Refined quorum systems. Rroceedings of the
twenty-sixth annual ACM symposium on Principles of disteld computing (PODCOQ7)
(New York, NY, USA, 2007), ACM, pp. 119-128.

[54] HAYDEN, M. G. The ensemble systefhD thesis, Ithaca, NY, USA, 1998.

[55] HERLIHY, M. Wait-free synchronization. ACM Trans. Program. Lang. Syst. , 13
(1991), 124-149.

[56] HERLIHY, M. P.,AND WING, J. M. Linearizability: a correctness condition for concur
rent objects ACM Transactions on Programming Languages and SystemsLASPL2
3(1990), 463-492.

[57] KANJANI, K., LEE, H., AND WELCH, J. L. Byzantine fault-tolerant implementation
of a multi-writer regular register. IParallel and Distributed Processing Symposium,
International (Los Alamitos, CA, USA, 2009), IEEE Computer Society, pp81—

[58] KARUMANCHI, G., MURALIDHARAN, S., AND PRAKASH, R. Information dissemi-
nation in partitionable mobile ad hoc networks. SRDS '99: Proceedings of the 18th
IEEE Symposium on Reliable Distributed Systéwiashington, DC, USA, 1999), IEEE
Computer Society, p. 4.

[59] KONWAR, K. M., MusIAL, P. M., NicoLAaou, N. C., AND SHVARTSMAN, A. A.
Implementing atomic data through indirect learning in dyi@networks. InSixth IEEE
International Symposium on Network Computing and Appbicat (NCA 2007), 12 - 14
July 2007, Cambridge, MA, USR007), pp. 223-230.

[60] KONWAR, K. M., MUSIAL, P. M., AND SHVARTSMAN, A. A. Spontaneous, self-
sampling quorum systems for ad hoc networks7tim International Symposium on Par-
allel and Distributed Computing (ISPDC 2008), 1-5 July 20B@akow, Poland(2008),
pp. 367-374.

[61] LAMPORT, L. How to make a multiprocessor computer that correctlycates multipro-
cess progranmEEE Trans. Comput. 28 (1979), 690-691.

[62] LAMPORT, L. On interprocess communication, part |: Basic formalisiistributed
Computing 12 (1986), 77-85.

[63] LAMPORT, L. The part-time parliamentACM Transactions on Computer SystemsZ2.6
(1998), 133-169.

[64] LAMPORT, L., SHOSTAK, R., AND PEASE, M. The byzantine generals problerACM
Transactions on Programming Languages and Syste(h98R), 382—401.

[65] LYNCH, N. Distributed Algorithms Morgan Kaufmann Publishers, 1996.

265

Nicolas C. Nicolaou——University of Connecticut, 2011

[66] LYNCH, N., AND SHVARTSMAN, A. RAMBO: A reconfigurable atomic memory service
for dynamic networks. IfProceedings of 16th International Symposium on Distridute
Computing (DISC}J2002), pp. 173-190.

[67] LYNCH, N., AND TUTTLE, M. An introduction to input/output automata.CWI-
Quarterly (1989), 219-246.

[68] LYNCH, N. A., AND SHVARTSMAN, A. A. Robust emulation of shared memory us-
ing dynamic quorum-acknowledged broadcastsProceedings of Symposium on Fault-
Tolerant Computind1997), pp. 272—-281.

[69] MALKHI, D., AND REITER, M. Unreliable intrusion detection in distributed compu-
tations. INCSFW ’'97: Proceedings of the 10th IEEE workshop on Compugeui8y
FoundationgWashington, DC, USA, 1997), IEEE Computer Society, p. 116.

[70] MALKHI, D., AND REITER, M. Byzantine quorum systemgistributed Computing 11
(1998), 203-213.

[71] MALKHI, D., AND REITER, M. K. Secure and scalable replication in phalanx. In
In Proceedings of the 17th IEEE Symposium on Reliable Digkeid System§L998),
pp. 51-60.

[72] MALKHI, D., REITER, M. K., WooL, A., AND WRIGHT, R. N. Probabilistic quorum
systemslInf. Comput. 1702 (2001), 184—206.

[73] MARTIN, J.-P., Avisl, L., AND DAHLIN, M. Minimal byzantine storage. Im Pro-
ceedings of the 16th International Symposium on Distrihi@@emputing (DISG2002),
Springer-Verlag, pp. 311-325.

[74] MITZENMACHER, M., AND UPFAL, E. Probability and Computing Cambridge Uni-
versity Press, 2005.

[75] NAOR, M., AND WooL, A. The load, capacity, and availability of quorum systems.
SIAM Journal of Computing 22 (1998), 423—-447.

[76] NEIGER, G. A new look at membership services (extended abstratBODC '96: Pro-
ceedings of the fifteenth annual ACM symposium on Princigfieéstributed computing
(New York, NY, USA, 1996), ACM, pp. 331-340.

[77] NEVES, N. F., CORREIA, M., AND VERISSIMO, P. Solving vector consensus with a
wormhole.|IEEE Trans. Parallel Distrib. Syst. 182 (2005), 1120-1131.

[78] PapaDIMITRIOU, C. H. The serializability of concurrent database updafiesirnal of
ACM 26 4 (1979), 631-653.

[79] PARVEDY, P. R.,AND RAYNAL, M. Optimal early stopping uniform consensus in syn-
chronous systems with process omission failures. SRAA '04: Proceedings of the
sixteenth annual ACM symposium on Parallelism in algorghand architecturegNew
York, NY, USA, 2004), ACM, pp. 302-310.

266

Nicolas C. Nicolaou——University of Connecticut, 2011

[80] PATTERSON, D. A., GIBSON, G., AND KATZ, R. H. A case for redundant arrays of
inexpensive disks (raidSIGMOD Rec. 1,/3 (1988), 109-116.

[81] PELEG, D., AND WooL, A. Crumbling walls: A class of high availability quorum sys
tems. InProceedings of 14th ACM Symposium on Principles of DisteihlComputing
(PODC)(1995), pp. 120-129.

[82] PIERCE, E., AND ALVISI, L. A recipe for atomic semantics for byzantine quorum sys-
tems. Tech. rep., University of Texas at Austin, Departnoéi@omputer Science, 2000.

[83] RaBIN, M. O. Randomized byzantine generals.SRCS '83: Proceedings of the 24th
Annual Symposium on Foundations of Computer Sci@heshington, DC, USA, 1983),
IEEE Computer Society, pp. 403-409.

[84] RENESSE R. V., BIRMAN, K. P.,AND MAFFEIS, S. Horus: A flexible group commu-
nications systemCommunications of the ACM 32996), 76-83.

[85] RIcCIARDI, A. M. The group membership problem in asynchronous systeRttD
thesis, Ithaca, NY, USA, 1993.

[86] SHAO, C., RERCE, E., AND WELCH, J. L. Multi-writer consistency conditions for
shared memory object®istributed Computing2003), 106—120.

[87] SHoOuUPR V. Practical threshold signatures. BUROCRYPT2000), pp. 207-220.

[88] THOMAS, R. H. A majority consensus approach to concurrency coifitmromultiple
copy databaseACM Trans. Database Syst, 2 (1979), 180-209.

[89] UPFAL, E.,AND WIGDERSON, A. How to share memory in a distributed systefour-
nal of the ACM 34(1)1987), 116-127.

[90] VITANYI, P., AND AWERBUCH, B. Atomic shared register access by asynchronous
hardware. IrProceedings of 27th IEEE Symposium on Foundations of C@nfatence
(FOCS)(1986), pp. 233—-243.

[91] WANG, X., TEO, Y. M., AND CAO, J. Message and time efficient consensus protocols
for synchronous distributed systends.Parallel Distrib. Comput. 685 (2008), 641—-654.

267

Appendix A

SLIQ Simulation: Plots

In this section we present all graphs obtained during theaulsition of the algorithm in
different scenarios. In the figure®,, denotes the use of majority quoruni3, the use of
crumbling walls, and), the use of matrix quorums. Figure 26 demonstrates how tloeitdm
performs in the simple run scenario, exploiting differenbqum systems. In the experiment
illustrated by Figures 27 and 28 we consider runs with végiginorum membership. We ran
those simulations on the most efficient quorum construst{@e., crumbling walls and matrix
quorums). Lastly, Figures 29-32 examine the performandéetilgorithm under executions
with variable failure scenarios.

268

Nicolas C. Nicolaou——University of Connecticut, 2011

randint data plot

fixint data plot
“randint.all.crumpling.data.0" using 3:4:10 ——

“fixint.all.crumpling.data.0" using 3:4:10 ——

%-2comm

#Readers

#Readers

26.a(1) - Q. 26.b(1) - Q.

randint data plot

fixint data plot
“randint.all.matrix.data.0" using 3:4:10 ——

“fixint.all. matrix.data.0" using 3:4:10 ——

%-2comm

%-2comm

#Readers

#Readers

26.a(1) - Q, 26.b(1) - Q,

randint data plot

fixint data plot
“randint.all. majorities.data.0" using 3:4:10 ——

“fixint.all. majorities.data.0" using 3:4:10 ——

B

o0 ©o000,,555
SroNvAoRDN R

%-2comm

%-2comm

#Readers

#Readers

26.a(1) - Qy, 26.b(1) - Q,,
Setting a: Stochastic simulations Setting b: Fixed intesiraulations

Figure 26: Simple runs

269

Nicolas C. Nicolaou——University of Connecticut, 2011

randint varServers plot fixint varServers plot

“randint.all crumpling.varServers.data.2.3" using 3:4:11 —— “fixint.all.crumpling varServers.data.2.3" using 3:4:11 ——

6

55

5

9%-2comm 9%-2comm 45
:

35

3

25

#Readers #Readers
27.a(2)(i) - Q. 27.b(2)(4) - Q.
randint varServers plot fixint varServers plot
“randint.all.crumpling.varServers.data.4.3" using 3:4:11 —— “fixint.all.crumpling.varServers.data.4.3" using 3:4:11 ——

95

90

%-2comm %-2comm 85
75

70

65

#Readers
27.b(2)(7) - Q.
randint varServers plot fixint varServers plot
“randint.all.crumpling.varServers.data.6.3" using 3:4:11 —— “fixInt.all.crumpling.varServers.data.6.3" using 3:4:11 ——

%-2comm %-2comm

#Readers #Readers

27.a(2)(iti) - Q. 27.b(2)(7i1) - Q.
Setting a: Stochastic simulations Setting b: Fixed intesiraulations

Figure 27: Crumbling Walls - Quorum Diversity Runs

270

Nicolas C. Nicolaou——University of Connecticut, 2011

randint varServers plot fixint varServers plot

“randint.all. matrix.varServers.data.2.3" using 3:4:11 —— “fixint.all. matrix.varServers.data.2.3" using 3:4:11 ——

%-2comm %-2comm

#Readers #Readers

28.a(2)(i) - Qx 28.0(2)(i) - Q,

randint varServers plot fixint varServers plot

“randint.all.matrix.varServers.data.4.3" using 3:4:11 —— “fixint.all. matrix.varServers.data.4.3" using 3:4:11 ——

%-2comm %-2comm
#Readers
28.b(2)(1) - Q,
randint varServers plot fixint varServers plot
“randInt.all.matrix.varServers.data.6.3" using 3:4:11 —— “fixint.all. matrix.varServers.data.6.3" using 3:4:11 ——
%-2comm %-2comm

#Readers #Readers

28.a(2)(ii1) - Q, 28.b(2)(4i7) - Q,
Setting a: Stochastic simulations Setting b: Fixed intesiraulations

Figure 28: Matrix - Quorum Diversity Runs

271

Nicolas C. Nicolaou——University of Connecticut, 2011

randint varCint, plot

“rapdint.all.crumpling varCint_0..cint_data.2.3" using 3:8:13 ——

13
125

12

%-2comm 19 g
11

105

10

9.5

29.a(3)(i) - Q.

randint varCintg plot

“randint.all.crumpling.varCint_0..cint_data.4.3" using 3:8:13 ——

11.
%-2comm

randint varCint, plot

“randint.all.crumpling varCint_..cint_data.6.3" using 3:8:13 ——

%-2comm
11.

29.a(3)(iti) - Q.
Setting a: Stochastic simulations

fixint varCintg plot

“fixint.all.crumpling.varCint_0..cint_data.2.3" using 3:8:13 ——

a.
%-2c0mm 46

29.6(3)(i) - Q.

fixint varCintq plot

“fixint.all.crumpling.varCint_0..cint_.data.4.3" using 3:8:13 ——

%-2comm
29.b(3)(#) - Q.
fixint varCinty plot
“fixint.all.crumpling.varCint_0..cint_.data.6.3" using 3:8:13 ——
%-2comm

29.b(3)(7i1) - Q.
Setting b: Fixed intesiraulations

Figure 29: Crumbling Walls - Failure Diversity Rung ¢t € [0. .. 50])

272

Nicolas C. Nicolaou——University of Connecticut, 2011

randint varCint, plot

“randint.all matrix.varCint_0. cint_data.2.3" using 3:8:13 ——

#Readers

30.a(3)(#) - Qq

randint varCintg plot

“randint.all. matrix.varCint_0..cint_data.4.3" using 3:8:13 ——

11.
%-2comm 49
105
10
95

randint varCint, plot

“randint.all matrix.varCint_0. cint_data.6.3" using 3:8:13 ——

%-2comm

#Readers

30.a(3)(iii) - Q,

Setting a: Stochastic simulations

fixint varCintg plot

“fixint.all.matrix.varCint_0..cint_data.2.3" using 3:8:13 ——

45
9%-2c0mm 44

#Readers

30.b(3)(i) - Q.

fixint varCintq plot

“fixInt.all. matrix.varCint_0..cint_data.4.3" using 3:8:13 ——

%-2comm
#Readers
30.b(3) (i) - Qu
fixint varCinty plot
“fixint.all.matrix.varCint_0..cint_.data.6.3" using 3:8:13 ——
1
0.5
%-2comm

0
7 5 Cint

#Readers

30.b(3)(7i7) - Q,
Setting b: Fixed intesiraulations

Figure 30: Matrix - Failure Diversity Rung{nt € [0. .. 50])

273

Nicolas C. Nicolaou——University of Connecticut, 2011

randint varCint; 0 plot

“randint.all.crumpling varCint_10..cint_data.2.3" using 3:8:13 ——

#Readers

3L.a(3)(i) - Q.

randint varCint;0 plot

“randint.all.crumpling.varCint_10..cint_.data.4.3" using 3:8:13 ——

%-2comm 10.5
10
9.5

#Readers

randint varCint; 0 plot

“randint.all.crumpling varCint_10..cint_data.6.3" using 3:8:13 ——

%-2comm

#Readers

31.a(3)(iii) - Q.

Setting a: Stochastic simulations

fixint varCint,0 plot

“fixint.all.crumpling varCint_10. cint_data.2.3" using 3:8:13 ——

%-2comm
#Readers
31.b(3)(4) - Q.
fixint varCint,0 plot
“fixInt.all.crumpling.varCint_10..cint_.data.4.3" using 3:8:13 ——
%-2comm
#Readers
31.b(3) (%) - Qc
fixint varCint,0 plot
“fixint.all.crumpling.varCint_10..cint_data.6.3" using 3:8:13 ——
1
0.5
%-2comm

0
7 5 Cint

#Readers

31.b(3)(#i7) - Q.
Setting b: Fixed intesiraulations

Figure 31: Crumbling Walls - Failure Diversity Rung ¢t € [10. .. 60])

274

Nicolas C. Nicolaou——University of Connecticut, 2011

randint varCint; 0 plot

“randint.all matrix.varCint_10..cint_data.2.3" using 3:8:13 ——

%-2comm

32.a(3)(i) - Qu

randint varCint;0 plot

“randint.all. matrix.varCint_10..cint_data.4.3" using 3:8:13 ——

%-2c0mm 10

randint varCint; 0 plot

“randint.all matrix.varCint_10..cint_data.6.3" using 3:8:13 ——

13

125

12

%-2comm 11.5
11

32.a(3)(iti) - Q,
Setting a: Stochastic simulations

fixint varCint,0 plot

“fixint.all.matrix.varCint_10..cint_data.2.3" using 3:8:13 ——

%-2comm
32.b(3)(7) - Q,
fixint varCint,0 plot
“fixInt.all.matrix.varCint_10..cint_.data.4.3" using 3:8:13 ——
%-2comm
32.b(3)(ii) - Qu
fixint varCint,0 plot
“fixint.all.matrix varCint_10..cint_data.6.3" using 3:8:13 ——
%-2comm

32.b(3)(4i7) - Q,
Setting b: Fixed intesiraulations

Figure 32: Matrix - Failure Diversity Rung{nt € [10...60])

275

