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Distributed data services use replication to ensure data availability and survivability. With

replication comes the challenge of guaranteeing data consistency when multiple clients access

the replicas concurrently, and various consistency modelshave been proposed and studied.

Atomicity is the strongest consistency model, providing the illusion that data is accessed se-

quentially. A basic problem in distributed computing is theimplementation of atomic objects

(registers) that support read and write operations. This thesis explores the communication costs

of atomic read/write register implementations in asynchronous message-passing systems with

crash-prone processors. It considers such implementations under three assumptions.

First, we consider implementations in the single writer, multiple reader (SWMR) setting. It

is known that under certain restrictions on the number of readers, it is possible to obtain imple-

mentations where each read and write operation terminates after a single round-trip message

exchange with a set of replicas. Such operations are called fast. This thesis removes any re-

strictions on the number of readers and introduces a new implementation where writes are fast,

and at most one read operation performs two round-trips per write operation. Subsequently, we

show that such SWMR implementations impose limitations on the number of replica failures

and that multiple writer, multiple reader (MWMR) implementations with such characteristics

are impossible.



Then, we consider implementations in the SWMR setting whereoperations access the

replicated register by sending messages to a predefined setsof replicas with non-empty in-

tersections, called quorums. We show that more than one two-round read operation may be

required for each write in this setting and that general quorum-based implementations are not

fault-tolerant. Then we explore trading operation latencyfor fault-tolerance and introduce a

new decision tool that enables some read operations to be fast in any general quorum construc-

tion.

Finally, we examine the latency of read and write operationsin the MWMR setting. First,

we study the connection between fast operations and quorum intersections in any quorum-

based implementation. The decision tools introduced in theSWMR setting are then adapted to

the MWMR setting to enable fast read operations. Lastly, thethesis develops a new technique

leading to a near optimal implementation that allows (but does not guarantee) both fast read

and write operations in the MWMR setting.
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Chapter 1

Introduction

This dissertation investigates latency-efficient algorithms for consistent and fault-tolerant

distributed storage. In this chapter, we first present the motivation for this work and the chal-

lenges for implementing atomic data services in distributed message-passing asynchronous and

failure-prone systems. To survey the current results, we review the research in this area. Next,

we identify open problems derived from previous works and present the research contributions

of this dissertation.

1.1 Motivation

Availability of network storage technologies (e.g., SAN, NAS [46]) and cheap commodity

disks increased the popularity of reliable distributed storage systems. To ensure data avail-

ability and survivability, such systems replicate the dataamong multiple basic storage units –

disks or servers. A popular method for data replication and maintenance uses redundant arrays

of independent disks (RAID) [21, 80]. Although a RAID systemmay sometimes offer both

performance boosting and data availability, it usually resides in a single physical location, is

1
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controlled via a single disk controller, and is connected tothe clients via a single network in-

terface. Thus, this single physical location with its single interface constitutes a single point

of failure and a performance bottleneck. In contrast, a distributed storage system implements

reliable data storage by replicating data in geographically dispersed nodes, ensuring data sur-

vivability even in cases of complete site disasters. Researchers often focus on implementing

abstract objects that allow primitive operations, like read and write registers. Read/write regis-

ters can be used as building blocks for more complex storage systems or to directly implement

file storage systems, making them interesting in their own right.

A distributed read/write register implementation involves two distinct sets of participating

entities: thereplica hostsand theclients. Each replica host maintains a copy of the replicated

register. Each client is areader or a writer and performsread or write operations on the

register, respectively. In the message-passing environment, clients access the replicated register

by exchanging messages with the replica hosts. A reader performs a read operation as follows:

(i) accepts a read request from its environment, (ii) exchanges messages with the replica hosts

to obtain the value of the register, and (iii) returns the value discovered to the environment.

Similarly, a writer performs a write operation as follows: (i) accepts a value to be written on

the register, (ii) exchanges messages with the replica hosts to write this value on the register,

and (iii) reports completion to the environment.

Replication allows several clients to access different replicas of the register concurrently,

leading to challenges in guaranteeing replica consistency. To define the exact operation guaran-

tees in situations where the register can be accessed concurrently, researchers introduced differ-

entconsistency models. The strongest consistency model isatomicitythat provides the illusion

2
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that operations are performed in a sequential order, when inreality they are performed concur-

rently. In addition to atomicity, atomic register implementations must ensurefault-tolerance.

That is, any operation that is invoked by a non-faulty clientterminates, despite the failures in

the system.

Two obstacles in implementing an atomic read/write register areasynchronyandfailures.

A communication round-trip(or simply round) between two participants A and B, involvesa

message sent by A to B, then a message sent by B to A. Due to asynchrony, every message sent

between two participants experiences an unpredictablecommunication delay. As a result, a

communication round-trip involves two communication delays. To obtain the value of the reg-

ister during a read operation, a reader requires at least oneround and thus two communication

delays for: (a) delivery of a read message from the reader to at least a single replica host, and

(b) delivery of the reply from the replica host to the reader.Similarly, to modify the value of the

register during a write operation, a writer requires at least one round and thus two communica-

tion delays for: (a) delivery of a write message from the writer to at least a single replica host,

and (b) delivery of an acknowledgment from the replica host to the writer. Although the writer

may enclose the value to be written in its write message, the write operation cannot terminate

before receiving an acknowledgment from the replica host. In fact, this could lead to the ter-

mination of the write operation before the replica host receives the write message, either due

to delay or due to replica host failure. In any case, atomicity may be violated as a subsequent

operation will be unaware of the existence of the write operation. Consequently, both read

and write operations require at leasttwo communication delays, that is, asingle roundbefore

terminating. We refer to operations that terminate after their first round asfast.

3
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Fault-tolerance is not guaranteed if an operation communicates with a single replica host.

A crash failure may prevent the delivery of messages to that host, keeping clients waiting for

a reply and preventing them from terminating. Additionally, if two operations communicate

with different replica hosts, they may observe different replica values, thus atomicity may be

violated, as the second operation may return an older value than the one written or read by

the first operation. Therefore, a client needs to send messages to asubsetof replica hosts. To

tolerate failures, such a subset should contain more replica hosts than the maximum number of

allowed replica host failures. Moreover, to ensure that operations are aware of each other they

must obtain information from overlapping subsets of replica hosts.

Communicating with overlapping subsets of replicas may be insufficient to guarantee atom-

icity. Suppose a write operation communicates with a subsetA and a succeeding read operation

with a subsetB 6= A whereA ∩ B 6= ∅. The read operation obtains the value written from

the replica hosts in the intersectionA ∩ B. As the read succeeds the write, it returns the value

written. Consider, a different scenario where the write operation is delayed and communicates

only with the replica hosts inA ∩ B before the read communicates with the replica hosts in

B. The read operation cannot differentiate the two scenariosand thus returns the value being

written. A second read operation may communicate with a subset C, such thatA ∩ C 6= ∅,

B ∩ C 6= ∅, andA ∩ B ∩ C = ∅. Thus, the read is not aware of the delayed write and hence

returns an older value, violating atomicity. To ensure thatany succeeding operation observes

the written value, the first read operation can either: (i) ensure that the written value is propa-

gated to enough replica hosts by waiting for hosts not inA to reply, or (ii) propagate the value

to a subset of replica hosts that overlaps with the subset obtained by any subsequent operation.

As hosts not inA may crash, waiting for more replies may prevent the read operation from
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terminating. So it remains for the read operation to performanother round to propagate the

written value. As a result, atomic register implementations may contain operations that may

experience four communication delays before terminating.

In general the efficiency of atomic read/write register implementations is measured in terms

of the latency of read and write operations. The latency of anoperation is affected by two

factors: (a)communication, and (b)computation. In this thesis we focus on the operation

latency caused by communication delays and study the numberof rounds needed for each read

and write operation.

1.2 Background

A distributed storage algorithm is characterized by the number of writer and reader clients

it supports e.g., single writer multiple reader (SWMR) and multiple writer multiple reader

(MWMR), and the type of participant failures it tolerates (e.g., crash failures, arbitrary failures,

etc.).

A seminal work by Attiya, Bar-Noy, and Dolev [9] gives an algorithm for a SWMR atomic

register implementation in the asynchronous, crash-prone, message-passing environment. In

their solution, the register is replicated among a setS of replica hosts. Each read or write oper-

ation is guaranteed to terminate as long as less than|S|
2 replica hosts crash. Each value written

to the register is associated with a natural number, calledtimestamp, that is used by the read

operations to determine the latest value of the register. The writer issues the timestamps. At

each write operation the writer increments its local timestamp and conveys the new timestamp-

value pair to a majority of the replica hosts in a single communication round. The read protocol

requires two rounds to complete; in the first round it discovers the maximum timestamp-value
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pair, and in the second round it propagates this pair to a majority of replica hosts. Although

the value of the read is established in the first round, skipping the second round may lead to

violations of atomicity when the read is concurrent with a write. Subsequently, a folklore belief

developed that “reads must write” in multi reader atomic register implementations.

Lynch and Shvartsman in [68] generalized the majority-based solution of Attiya et al. [9]

and gave aquorum-basedatomic register implementation for the MWMR environment. In

their context, aquorum systemis a collection of sets of replica hosts, known asquorums, with

pairwise intersection. To support multiple writers, they introduced atwo round write protocol,

while they preserved the two round read protocol of [9]. The first round of the write protocol

was used to discover the latest value of the register. Yet, this was unnecessary in the single

writer environment, since the sole writer imposed a total ordering on the write operations.

To improve the longevity of the service, this work was the first to suggest and implement

the reconfigurationof the quorum system. To ensure safety of reconfigurations, the protocol

prevented the invocation of read or write operations duringreconfigurations.

Englert and Shvartsman in [34] overcame the problem of [68] by restarting any read or

write operations that detect an in-progress reconfiguration in the system. Building on this find-

ing Lynch and Shvartsman in [66] provided the first algorithmthat implemented a MWMR

atomic register in a fullydynamicsetting. Their solution preserved atomicity while allowing

participants to join and fail by crashing. The authors allowmultiple reconfigurers circumvent-

ing the failure of the single reconfigurer used in [34]. Both read and write operations needed

to perform at least two round protocols before completing.
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Dolev et al. [28] extended the work presented in [66] and introduced a MWMR read/write

atomic register in partitionable ad-hoc mobile networks. The authors in [28] assume that ad-

hoc mobile nodes usually populate distinct geographic locations, they calledfocal points. Each

focal point is implemented as a virtual node that participates in the service. Individual mobile

nodes invoke read and write operations on the atomic register, via the focal points they resided

in. Interestingly, this work was the first to introduce single round reads when it was confirmed

that the latest value was propagated to at least a single quorum.

A work in 2004 by Dutta et al. [30] was the first to introduce implementations of atomic

read/write registers in the SWMR environment where all operations required asingleround to

complete. Such operations are calledfast. This finding refuted the folklore belief that “reads

must write”. The same paper proved that such an efficient behavior is possible only when the

number of readers is inversely proportional to the number ofreplica hosts in the system. So,

while the first part of the work presents the possibility of practical atomic read/write register

implementations, the proved constraint raises major questions on the scalability of the service.

In addition, the authors show that fast implementations cannot exist in the MWMR environ-

ment.

The work in [30] demonstrates that it is possible to obtain fast atomic register implementa-

tions in systems where processes may fail by crashing. It is yet unknown if such a performance

may be achieved when participants may suffer arbitrary failures, such asByzantinefailures

[64]. Martin, Alvisi, and Dahlin in [73] were the first to implement atomic semantics assuming

byzantine replica hosts and without the use of replica host authentication. Their work applies

diffusion techniques to propagate and discover anacceptablevalue written on the atomic reg-

ister. As a result, the communication cost of their approachis high. Guerraoui and Vukolić
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in [53] developed an algorithm that allowed fast operationsdespite the existence of byzantine

replica hosts. Their approach relies on eventual-synchrony. A read or write operation could

terminate in a single round only if “enough” replica hosts replied within a predefined time in-

terval. If the specific number of replies could not be collected within this interval, an operation

had to proceed to a second and potentially third round to complete.

1.3 Thesis Contributions

This thesis aims to answer the following general question:

What is the operation latency of algorithms that implement atomic read/write register ab-

straction in an unconstrained, fail-prone, message-passing, asynchronous distributed system?

Our work focuses on systems with static participation that allow participants to crash. We

study the operation latency, in terms of the number of communication rounds required by each

read and write operation. Both SWMR and MWMR settings are considered. We establish

that the communication delay of each operation is affected by: (1) the number of reader and

writer participants, and (2) the subset of replica hosts that each client communicates with per

read/write operation. We developed four algorithms that implement atomic read/write registers.

Two of them are designed for the SWMR setting, and two are designed for the MWMR setting.

Each of the algorithms contains operations that need one or two rounds to terminate.
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1.3.1 SemiFast Implementations with Unbounded Number of Readers

Motivated by the result of Dutta et al. in [30], the first part of my thesis investigates the

possibility and cost of efficient implementations of atomicread/write registers that support

arbitrarily many readers.

Our work builds upon the result in [30]. To allow unbounded reader participation, we group

the readers into abstract entities, calledVirtual Nodes. Each virtual node serves as an enclosure

for multiple reader participants. Adapting the techniquespresented in [30], each virtual node

is treated as a separate participating entity, allowed to perform read operations. This allows

unbounded number of readers in each virtual node. Such a refinement raises challenges, es-

pecially in regards to maintaining consistency among readers of the same virtual node. Based

on this idea, we develop our first atomic read/write registerimplementation, called SF, that

requiressomeread operations to perform two rounds to terminate. In particular, at most a

single completeread operation performs two rounds for each write operation. Writes and any

read operation that precedes or succeeds a two-round read, is fast. This discovery leads to the

definition of a new class of implementations, calledsemifastimplementations.

Next, we ask whether the operation latency of reads and writes is affected by the number

of virtual nodes. We show that semifast implementations arepossible only if the number of

virtual nodes is less than|S|
f

− 2, wheref out of |S| replica hosts are allowed to crash. Notice

that such a bound does not restrict the number of readers, as long as a single virtual node exists

in the system. Moreover, semifast implementations are feasible only if each read operation

sends messages to a subset of at least3f replica hosts during the second round.
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Then, we ask whether semifast implementations are possiblein the MWMR environment.

We obtain a negative answer, and show that semifast implementations are impossible in the

simplest MWMR environment that contains 2 writers, 2 readers and encounters a single replica

host failure.

Lastly, given that semifast implementations do not guarantee that read operations con-

current with a two-round read are fast, we prove that the number of slow reads per write is

logarithmic in the number of readers|R| and does not grow larger than|R|. Empirical experi-

ments we conduct on single processor simulators and planetary scale environments agree with

our theoretical findings.

1.3.2 Examining Robustness of (Semi)Fast Implementations

Fast implementations studied in [30] and the first part of this thesis, rely on the knowledge

of the number of replica failures. That is also the case for the exploration of fast implementa-

tions under byzantine failures as studied in [53]. These works do not describe how the replica

hostaccess strategiesmay affect the fastness of the read or write operations. An access strat-

egy specifies the subsets of replica hosts that each operation may communicate with and can be

constructed by either: (a) knowing the maximum number of allowed failures1 , or (b) explicitly

specifying the subsets of replica hosts. Quorum systems belong to the latter category of access

strategies, and have been widely used by atomic read/write implementations. A quorum system

is a set of subsets with pairwise intersection. Here, we seekthe conditions that are necessary

and sufficient to enable fast read and write operations in systems that assume arbitrarily many

1In this case the access strategy requires an operation to communicate with all butf replica hosts, wheref the
maximum number of allowed failures
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participants and general quorum constructions. In other words, we investigate the fastness of

quorum-based implementations.

First, we examine the fault-tolerance of fast and semifast quorum-based implementations.

Interestingly, we discover that fast and semifast implementations are only possible if acommon

intersectionexists amongall quorums of the quorum system they use. This implies that such

constructions are not fault-tolerant since a single failure in the common intersection renders

the entire quorum system unusable.

So, we explore trading efficiency for fault-tolerance. We focus on techniques that allow

more than a single slow read operations per write, and enablesome fast operations in a general

and unconstrained quorum-based environment. Our investigation led to the introduction and

development of new client side decision tools, calledQuorum Views. Such tools do not depend

on the underlying quorum construction, and this makes them suitable for use with any general

quorum system. To establish the latest written value, quorum views examine the distribution

of a value in the members of a quorum. Using quorum views, we develop an atomic read/write

register implementation for the SWMR environment, called SLIQ. The new algorithm allows

all writes to be fast, while reads perform one or two round. Incontrast with fast and semifast

implementations, SLIQ allows multiple complete two-round reads per write operation. This

characteristic formed a new distinct class of implementations which we callWeak-Semifast.

Experimental results indicate that the operation latency of implementation SLIQ is very close

to the operation latency of semifast implementation SF in realistic scenarios.
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1.3.3 Fast Operations in the MWMR environment

Thus far we considered the impact of unconstrained constructions – in terms of reader

participation and replica host access strategy – on the efficiency of atomic read/write regis-

ter implementations. Next we explore whether fast operations are possible in systems with

multiple writers.

Traditional solutions for the MWMR environment (e.g., [34,66, 68]) demonstrate that two

rounds (four communication delays) are sufficient for any read or write operation. More re-

cently, [30] showed that it is impossible to obtain fast atomic register implementations for the

MWMR environment. Yet, it is not known whether algorithms that allowsomefast operations

may exist. A partial answer to this question was given by [28]that allow single round read

operations in the MWMR environment, whenever a read wasnot concurrentwith a write oper-

ation. No solution however, enabled single round write operations. Hence, a belief was shaped

that“writes must read”before writing a new value to the register in a multi writer environment.

We show that it is unnecessary for writers to read, by devising algorithms that implement

an atomic read/write register in the MWMR environment and allow both reads and writes to be

fast. This is currently thefirst known solution that allows fast write operations. Moreover, our

solution overcomes the shortcomings of previous approaches, and allows fast read operations

when those are concurrent with a write operation. Our results assume and employ general

quorum constructions.

First, we formally define the notion of theintersection degreefor a quorum system: a

quorum system has intersection degreen (also calledn-wise quorum system), if everynquorum

members of this system have a non-empty intersection. Giventhis definition we show that if
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a MWMR atomic register implementation deploys ann-wise quorum system, then it can only

allow up ton − 1 consecutive fast write operations in any execution.

Driven by this finding, we initially adjust and useQuorum Views– algorithmic techniques

presented in the SWMR model – to enable fast operations. Suchtools yield a new algorithm,

called CWFR, that allows some fast read operations, but does not allow fast write operations.

In order to enable fast write operations we introduce a new value ordering technique we

call server side ordering(SSO). As implied by its name, SSO transfers partial responsibility

of the ordering of write operations to the replica hosts. Atomicity requires that write operations

are totally ordered. However, two replica hosts may receivemessages sent within two write

operations in reverse order, and may order the writes according to the order each of them

received the write messages. As a result, operations that communicate with these two hosts

may observe a different ordering for the same write. To establish a single ordering for each

write operation we combine the global ordering imposed by the servers with a local ordering

established by each writer participant. If “sufficient” number of servers assign the same order

to a write operation then the desired total ordering is ensured. Using this technique we obtain a

MWMR atomic register implementation, called SFW, with fast read and write operations. This

implementation is near optimal in terms of the number of successive fast operations it allows.

1.4 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 reviews relevant literature. Chapter

3 defines the model of computation, the terminology, and the notation that is used throughout

this thesis. Chapter 4 introduces semifast implementations, presents algorithm SF, and pro-

vides the theoretical bounds of such implementations. Chapter 5 studies the robustness of fast
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and semifast implementations, and introduces quorum viewsalong with algorithm SLIQ which

does not depend on any reader or construction constraints. Finally, we study the operation la-

tency of atomic register implementations under the MWMR environment in Chapter 6, where

we develop algorithms CWFR and SFW. We conclude in Chapter 7.
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Chapter 2

Related Work

This chapter presents the current research in distributed systems regarding implementations

of consistent distributed read/write (R/W) storage objects. We begin with an overview of

consistency semanticsin Section 2.1. Then, we provide an overview of theconsensusproblem

in Section 2.2 andgroup communication servicesin Section 2.3 and discuss how they can be

used to implement consistent data services. In Section 2.4 we talk aboutQuorum Systems.

In Sections 2.5, 2.6, and 2.7 we discuss implementations that establish consistent distributed

storage in message-passing, failure prone, and asynchronous environments.

2.1 Consistency Semantics

Lamport in [62], defined three consistency semantics for a R/W register abstraction in the

SWMR environment:safe, regular, andatomic.

The safe registersemantic ensures that if a read operation is not concurrent with a write

operation, it returns the last value written on the register. Otherwise, if the read is concurrent

with some write, it returns any arbitrary value that is allowed to be written to the register. The
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latter property renders this consistency semantic insufficient for a distributed storage system: a

read operation that is concurrent with some write may returna value that wasneverwritten on

the register.

A stronger consistency semantic is theregular register. As in the safe register, regularity

ensures that a read operation returns the latest written value if the read is not concurrent with

a write. In the event of read and write concurrency, the read returns either the value written by

the last preceding write operation, or the value written by the concurrent write. In any case,

regularity guarantees that a read returns a value that is written on the register, and is not older

than the value written by the read’s last preceding write operation.

Although regularity is sufficient for many applications that exploit distributed storage sys-

tems, it does not provide the consistency guarantees of a traditional sequential storage. In

particular, it does not ensure that two read operations overlapping the same write operation

will return values as if they were performed sequentially. If the two reads do not overlap then

regularity allows the succeeding read to return an older value than the one returned by the first

read. This is known as new-old read inversion.Atomic semanticsovercome this problem by

ensuring that a read operation does not return an older valuethan the one returned by a pre-

ceding read operation. In addition, it preserves all the properties of the regular register. Thus,

atomicity provides the illusion that operations are ordered sequentially.

Herlihy and Wing in [56] introducelinearizability, generalizing the notion of atomicity to

any type of distributed object. That same paper presented two important properties of lineariz-

ability: locality andnon-blocking. These properties distinguish linearizability from correctness

conditions likesequential consistencyby Lamport in [61] andseriazabilityby Papadimitriou
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in [78]. An in-depth comparison between sequential consistency and linearizability was con-

ducted by Attiya and Welch in [10]. As defined in [56], a property P of a concurrent system

is local if the system satisfiesP whenever each individual object satisfiesP . Thus, locality

allows a system to be linearizable as long as every individual object of the system is lineariz-

able. Non-blocking allows processes to complete some operation without waiting for any other

operation to complete.Wait-freedom, is stronger than non-blocking, and is defined by Herlihy

in [55]: any process completes an operation in a finite numberof steps regardless of the opera-

tion conducted by other processes. While wait-freedom ensures non-blocking on an operation

level, weakest non-blocking progress conditions guarantee only thatsome(and notall) opera-

tion complete in finite number of steps (lock-freedom) or require conflicting operations to abort

and retry (obstruction-freedom). Both non-blocking and locality properties enhance concur-

rency. Also, locality improves modularity (since every object can be verified independently),

and non-blocking favors the use of linearizability in time critical applications.

Subsequent works revisited and redefined the definitions provided in [62, 56] for more

specialized distributed systems. Lynch in [65] provided anequivalent definition of atomic-

ity of [62] to describe atomic R/W objects in the MWMR environment. The new definition,

totally orders write operations, and partially orders readoperations with respect to the write

operations. Shao et al. in [86], extended the definition of regularity of [62] to the MWMR

environment and presented three possible definitions, theycalledMWR1, MWR2andMWR3.

The weakest definition (MWR1) does not impose any ordering on the overlapping write op-

erations. The definitionMWR2is stronger, requiring that two reads must perceive the same

ordering for all the writes that do not strictly succeed them. The last and strongest definition,

MWR3, requires that two reads by the same reader preserve the order of the overlapping write
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operations. If a single writer is used in the system,MWR1andMWR2are equivalent to the

regularity definition given in [62].MWR3is stronger than Lamport’s definition for regularity

but is weaker than atomicity. Notice however thatMWR3is equivalent to atomicity in the case

of a single reader.

2.2 Consensus

One obvious way to implement safe, regular or atomic registers (see Section 2.1), is to

allow processes to reach agreement on a global event ordering. The fundamental problem

in distributed computing that examines how a number of independent processing entities can

agree on a common value isconsensus[63]. The consensus problem requires that the following

three properties are satisfied:

Agreement: All correct processes decide the same value.

Validity: The value decided was proposed by some process.

Termination: All correct processes reach a decision.

Multiple papers solve consensus for synchronous systems with failures (e.g., [64, 79, 91]).

A breakthrough work by Fischer, Lynch, and Paterson in [38],proves that it isimpossibleto

achieve agreement in a totally asynchronous system with a single crash failure. This impossi-

bility result does not state that consensus can never be reached: merely that under the model’s

assumptions, no algorithm can always reach consensus in bounded time. In order to solve

consensus, many studies tried to circumvent asynchrony by modifying the system model. Ex-

amples include Randomization (e.g., [83]), Failure Detectors (e.g., [20, 69]), Partial-Synchrony

(e.g., [7, 31, 26]), and Wormholes (e.g., [24, 77]).
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We note that achieving consensus is a more difficult problem than implementing atomic

R/W objects. As shown by Herlihy in [55], consensus can not besolved for two or more

processes by using atomic R/W registers.

2.3 Group Communication Services

Another way to achieve consistency in a distributed storageis to globally order the opera-

tion requests before those are delivered to the replica hosts.

Group communication services (GCS) have been established as effective building blocks

for constructing fault-tolerant distributed applications. The basis of a group communication

service is agroup membership service. Each process maintains a uniqueviewof the member-

ship of the group. The view includes a list of the processes that are members of the group.

Views can change and may become different at different processes. These services enable

multiple independent processes to operate collectively asa group, using a service to multicast

messages to all members of the group. Birman and Joseph in [15], introducedvirtual syn-

chronousmulticast which provides the stronger reliability guarantee: a message multicast to

a group view is delivered to every non-faulty process in thatview. If the sender of the mes-

sage fails during the multicast then virtual synchrony ensures that the message will either be

delivered to all remaining processes, or ignored by each of them. Virtual synchrony does not

provide any guarantees on the order in which multicasted messages are delivered.

There is a substantial amount of research dealing with specification and implementation of

GCSs (e.g., Ricciardi in [85], Neiger in [76], Chandra et al.in [19]). Notable GCS implemen-

tations include Isis by Birman and Joseph in [13] and Birman and Van Renesse in [16], Transis

by Dolev and Malki in [27], Newtop by Ezhilchelvan et al. in [35], Relacs by Babaoglu et al.
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in [11], Horus by Renesse et al. in [84], Ensemble by Hayden in[54] and by Dolev and Schiller

in [29]. Birman in [14] also used GCS to provide high levels ofavailability and consistency to

an air-sector control application for the French Air TrafficControl System.

Fekete, Lynch, and Shvartsman in [37], provided one of the first formal specifications for a

partitionable view-oriented GCS, calledview-synchrony. Their specification requires that each

processor knows the membership of the group in its current view, and messages sent by any

processor in a view must be received (if at all) in the same view. Processors, are not required to

know all the views of which they are members. To demonstrate the value of their specification,

the authors utilize it to construct a totally ordered-broadcast application. This application is

then used by algorithms that implement fault-tolerant atomic memory.

2.4 Quorum Systems

Intersecting collections of sets can be used to achieve synchronization and coordination of

concurrent accesses on distributed data objects. AQuorum Systemis a collection of sets known

asquorums, such that every pair of such sets intersects.

Gifford [47] and Thomas [88] used quorums to achieve mutual exclusion on concurrent

file and database access control respectively. Thomas [88],assumed a distributed replicated

database, and allowed multiple nodes to request a transaction by sending a corresponding mes-

sage to one database copy. Then, the host of that database copy had to gather the permission

of the majority of the replica hosts before executing the operation. Gifford in [47], proposed a

voting scheme to grant permission for distributed file access, by utilizing read and write quo-

rums. To tailor replica reliability and performance, he assigned votes (weights) to each replica

host: the fastest the replica host the more votes were assigned. The client had to contact the
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replica hosts and collectr (resp. w) votes during a read (resp. write) operation. By letting

r + w to be greater than the summation of the votes assigned to the hosts, the protocol ensured

that reads and writes would access a common host and hence, each operation would observe

the latest copy of the file.

Garcia-Molina and Babara [39], revisited and compared the counting (or vote assignment)

strategy presented in [47, 88], with a strategy that explicitly defines a priori the set of inter-

secting groups (i.e., the quorum system). Their investigation revealed that although the two

strategies appear to be similar, they are not equivalent since one may devise quorum systems

for which there exist no vote assignment. Following this finding, quorum systems for dis-

tributed services adhere to one of the following design principles:

• Voting: Quorums are defined by the number of distributed objects collected during an

operation.

• Explicit Quorums: Quorum formulation is specified before the deployment and use of

the quorum system.

The paper also studied the properties of the two strategies.Subsequent works by Peleg and

Wool in [81] and Naor and Wool in [75], focused on defining the criteria for measuring the

quality of quorum systems:

• Availability: Determines the fault tolerance of the quorum system by defining the prob-

ability that a quorum contains only correct members.

• Load: Determines the replica host load by specifying the frequency that each replica is

accessed.
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• Quorum Size: Smaller quorums may reduce the number of messages involved for a

quorum access.

Guided by those criteria, later works evaluated the efficiency of existing quorum systems

and devised new, improved constructions of quorum systems.Notable quorum constructions

are: Majority Quorum Systems introduced by Thomas in [88] and by Gifford in [47], Ma-

trix Quorum Systems used by Vitanyi and Awerbuch in [90], Crumbling Walls by Peleg and

Wool in [81], Byzantine Quorum Systems by Malkhi and Reiter in [70], and Refined Quorum

Systems by Guerraoui and Vukolić in [53].

Some works also consider probabilistic quorum constructions. Such constructions rely

on a probabilistic quorum discovery. Given a quorum access strategy, each pair of quorums

intersect with a non-zero probability with respect to the access strategy. Probabilistic quorums

were first presented by Malkhi et al. in [72] and were also usedby Abraham and Malkhi in [5]

and Konwar et al. in [60].

As efficient tools for collaboration and coordination, quorums attracted the attention of

researchers studying implementations of distributed shared memory. Upfal and Wigderson in

[89], introduced an atomic emulation of a synchronous R/W shared memory model, where

a set of processes shared a set of data items. To allow faster discovery of a single data item

and fault-tolerance, the authors suggested its replication among several memory locations. Re-

trieval (read) or modification (write) of the value of a data item involved the access of the

majorityof the replicas. The authors exploited coordination mechanisms to allow only a single

read or write operation per data item at a time. This work was the first to introduce and use

〈value, timestamp〉 pairs to order the written values, wheretimestamp ∈ N.
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Vitanyi and Awerbuch in [90] give an implementation of atomic shared memory for the

MWMR environment under asynchrony. Their work organized the register replicas in ann×n

matrix construction, wheren is the number of client processes. A processpi is allowed to

access the distinctith row and distinctith column per write and read operation respectively.

This strategy allows reads to be aware of any preceding writedue to the intersection of any row

with any column of the matrix. To accommodate concurrent write operations, the authors use

〈value, tag〉 pairs to order the written values. Atag is a tuple of the form〈timestamp,WID〉,

where thetimestamp ∈ N andWID is a writer identifier. Tags are compared lexicographically.

Namely, tag1 > tag2 if either tag1.timestamp > tag2.timestamp, or tag1.timestamp =

tag2.timestamp andtag1.WID > tag2.WID .

2.5 Consistent Memory Under Crash Failures

The work presented by [89] and [90] was designed for the synchronous and failure-free

environments. These approaches are inapplicable in the asynchronous, failure-prone, message-

passing model.

As discussed by Chockler et al. in [23], implementations in these environments must be

wait-free, tolerate various types of failures, and supportconcurrent accesses to replicated data.

A seminal paper by Attiya et al. [9] first introduced a solution to the problem, by devising

an algorithm that implements a SWMR atomic R/W register in the asynchronous message-

passing model. Their algorithm overcomes crash failures ofany subset of readers, the writer,

and up tof out of2f + 1 replica hosts. The correctness of the algorithm is based on the use of

majorities, a quorum construction established by voting. This work adopts the idea of [89] and

uses〈value,timestamp〉 pairs to impose a partial order on read and write operations.A write
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operation, involves a single round: the writer has to increment its local timestamp, associate

the new timestamp with the value to be written, and send the new pair to the majority (f + 1)

of the replica hosts. A read operation requires two rounds: during the first round the reader

collects the timestamp-value pairs from a majority of the replica hosts, discovers the maximum

timestamp among those, and propagates (in the second round)the maximum timestamp-value

pair to the majority of the replica hosts. Although the valueof the read is established after the

first round, skipping the second round can lead to violationsof atomicity when read operations

are concurrent with a write operation.

Lynch and Shvartsman in [68] generalized the majority-based approach of [9] to the MWMR

environment using quorum systems. To preserve data availability in the presence of failures,

the atomic register is replicated among all the service participants. To preserve consistency,

they utilize a quorum system (refer to it asquorum configuration). This allows read and write

operations to terminate a round as soon as the value of the replicated data object (register) was

collected from all the members of a single quorum (instead ofcollecting the majority of the

replicas as in [9]). To order the values written, the algorithm utilizes the〈tag,value〉 pairs as

those presented by Vitanyi and Awerbuch in [90], and requires every write operation to perform

two rounds to complete. Read and write operations are implemented symmetrically. In the first

round a read (resp. write) obtains the latest〈tag,value〉 pair from a complete quorum. In the

second round, a read propagates the maximum tag-value pair to some complete quorum. A

write operation increments the timestamp enclosed in the maximum tag, and generates a new

tag including the new timestamp and the writer’s identifier.Then, the writer associates the new

tag with the value to be written and propagates the tag-valuepair to a complete quorum. To

enhance longevity of the service the authors in [68] suggestthe reconfiguration (replacement)
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of quorums. Transition from the old to the new configuration could lead to violations of atom-

icity as operations can communicate with quorums of either the old or the new configuration

during that period. Thus, the authors suggest a blocking mechanism to suspend the read and

write operations during the transition.

A follow up work by Englert and Shvartsman in [34] made a valuable observation: taking

the union of the new with the old configuration defines a valid quorum system. Based on

this observation they allow R/W operations to be active during reconfiguration, by requiring

that any operation communicates with both new and old configurations. Both [34] and [68]

dedicate a single reconfigurer to propose the next replica configuration. The reconfiguration

involves three rounds. During the first round the reconfigurer notifies the readers and writers

about the new configuration and collects the latest registerinformation. During the second

round it propagates the latest register information in the members of the new configuration.

Finally, during the third round the reconfigurer acknowledges the establishment of the new

configuration. Read and write operations involve two roundswhen they do not discover that a

reconfiguration is in progress. Otherwise they may involve multiple rounds to ensure that they

are going to reach the latest proposed configuration.

A new implementation of atomic R/W objects for dynamic networks, called RAMBO, was

developed by Gilbert, Lynch, and Shvartsman in [48]. The RAMBO approach improves the

longevity of implementations in [34, 68], by introducing multiple reconfigurers (and thus cir-

cumventing the failure of the single reconfigurer) and a new mechanism to garbage-collect old

and obsolete configurations. The new service preserves atomicity while allowing participants

to join and fail by crashing. The use of multiple reconfigurers increases the complexity of the
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reconfiguration process. To enable the existence of multiple reconfigurers, the service incor-

porates a consensus algorithm (e.g., Paxos by Lamport in [63]) to allow reconfigurers to agree

on a consistent configuration sequence.

A string of refinements followed to improve the efficiency andpracticality of that service.

Gramoli et al. in [50] reduce the communication cost of the service and locally optimize the

liveness of R/W operations. To improve reconfiguration and operation latency, Chockler et al.

in [22], propose the incorporation of an optimized consensus protocol, based on Paxos. Aiming

to improve the longevity of RAMBO, Georgiou et al. in [41] implement graceful participant

departures. They also deploy an incremental gossip protocol that reduce dramatically the mes-

sage complexity of RAMBO, both with respect to the number of messages and the message

size. The same authors in [42] combine multiple instances ofthe service to compose a com-

plete shared memory emulation. To decrease the communication complexity of the service,

Konwar et al. in [59] suggest the departure from the all-to-all gossiping in RAMBO, and pro-

pose an indirect communication scheme among the participants. Retargetting [66] to ad-hoc

mobile networks, Dolev et al. in [28] formulate the GeoQuorums approach where replicas are

maintained by stationaryfocal pointsthat in turn were implemented by mobile nodes. A focal

point is active when some mobile nodes exist in it otherwise it is faulty. All the nodes in a focal

point maintain the same information about the register replicas. This is established by a reliable

atomic broadcast service, calledLBcast, that reliably delivers any message that is received at a

focal point to every mobile node within the focal point. Thisallows each focal point to act as

a single participant in a dynamic atomic register service. To achieve atomicity, focal points are

organized in a quorum system. To expedite write operations,the algorithm relies on a global

positioning system (GPS) [1] clock to order the written values. A write operation terminates
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in a singleround by associating the value to be written with the time obtained from the GPS

service. Joins and fails of focal points are handled similarly to [66].

Most RAMBO refinements preserve the use of consensus to establish reconfigurations.

Recall from Section 2.2 that consensus is impossible in the asynchronous setting with a single

crash failure [38]. GeoQuorum approach [28] avoids the use of consensus by using a finite

set of all possible focal point configurations. Thus, it is sufficient for a mobile node to dis-

cover the latest configuration, and contact and propagate the latest register information to all

configurations.

To depart from the need for consensus, Gramoli et al. in [49] propose a new approach

for self-adaptiveness of the dynamic system. Despite the consensus avoidance, their work

relies on failure detection by deploying a heartbeat protocol to detect departed or failed nodes.

Moreover, their reconfiguration scheme involves multiple communications rounds, accounting

the excessive gossiping protocol for failure detection andpropagation of the new configuration.

A recent work by Aguilera et al. [6] showed that atomic register implementations are

possible in the dynamic MWMR environment without the use of consensus or failure detection.

Their algorithm utilizes views of the system to maintain thelatest system participation. When

a new node wants to join or depart the service a new view is introduced and propagated in the

majority of the processes. Process additions and removals are contributing into the creation of

an acyclic graph of views. Each process records the views known to each participant of the

service (itself included). To determine the sequence of theconfigurations, a process starts from

its local view and follows the directed acyclic graph to determine the latest view introduced in

the system. For this reason, operation termination is ensured only if the number of additions
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and removals (and thus reconfigurations) allowed isfinite. Following this procedure, a read,

write or reconfiguration operations take at least four rounds to complete.

2.5.1 Fastness under Crash Failures

Following the development in [9], a folklore belief formed that “atomic reads must write”,

i.e., a read operation needs to perform a second round. If that second round is avoided then

atomicity may be violated: a read operation may return an older value than the one returned by

a preceding read operation.

Dolev et al. in [28] introduced single round read operationsin the MWMR environment.

According to their approach – later used by Chockler et al. in[22] – a read operation could

return a value in a single round when it was confirmed that the write phase that propagated

that value completed. To assess the status of each write operation the algorithm associated a

binary variable, calledconfirmed, with each tag. A participant would set this variable for a tag

t in two cases: (i) it completed a write phase and propagated a value associated witht to a full

quorum, or (ii) it discovered thatt was marked as confirmed by some other participant. A read

operation can complete in a single round if the largest discovered tag is marked as confirmed.

This can happen iff some write phase that propagated the tag completed.

Despite the improvement achieved in the operation latency in [28, 22], this strategy is un-

able to overcome the problem presented in [9]: every read operation requires a second round–

and thus a “write” – whenever it is concurrent with a write operation. Dutta et al. in [30] are

the first to present fast operations that are not affected by read and write concurrency. Assum-

ing the SWMR environment the authors establish that if the number of readers is appropriately
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constrained with respect to the number of replicas, then implementations that containonly sin-

gle round reads and writes, calledfast, are possible. The register is replicated among a setS of

replica hosts (servers), out of whichf < |S|
2 (the minority) is allowed to crash. To implement

fast writes, the algorithm adopts the write protocol in [9] and involves the use of〈timestamp,

value〉 pairs to order the written values. The only difference is that the write operation propa-

gates the written value to|S| − f servers, instead of a strict majority of|S|2 + 1 required in [9].

The main departure of the new algorithm involves the server and reader implementations. In

particular, each server maintains a bookkeeping mechanismto record any reader that inquires

its local timestamp-value pair. This information is enclosed in every message sent by the server

to any requested operation. To provide up-to date information, a server needs to reset its local

bookkeeping information every time a new timestamp-value pair is received. The recorded

information is ultimately utilized by the readers to achieve fast read operations. The read pro-

tocol requires the reader to send messages to all the servers, and wait for|S|−f replies. When

those replies are received, the reader discovers the maximum timestamp (maxTs) among the

replies, and collects all the messages that contain that timestamp. Then, a predicate is applied

over the bookkeeping information contained in those messages. If the predicate holds, the

reader returns the value associated withmaxTs; otherwise it returns the value associated with

the previous timestamp (maxTS − 1). Note that the safety of the algorithm in the latter case

is preserved because of the single writer and the assumptionthat a process can invoke a single

operation at a time. Thus, the initiation of the write operation with maxTs implies that the

write operation with timestampmaxTs − 1 has already been completed. On the other hand,

if the read operation decides to returnmaxTs then the validation of the read predicate ensures
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the safety of the algorithm. The predicate is based on the following key observation: the num-

ber of servers that reply withmaxTs to any two subsequent read operations may differ by at

mostf . The authors show that fast operations are only possible if the number of readers is

R < |S|
f

− 2. Furthermore, the paper questions the existence of fast implementations in the

MWMR environment. It is shown that fast implementations arealso impossible in the MWMR

environment even assuming two writers, two readers, and a single server crash.

2.6 Consistent Memory Under Byzantine Failures

A more severe and difficult to handle failure model is the one where participants may

exhibit arbitrary and malicious behavior. Such failures are known asByzantine Failures. The

term Byzantine was first introduced in the context of consensus (see Section 2.2) by Lamport,

Shostack, and Pease in their Byzantine Generals problem [64]. In this problem, the generals

try to agree on a time to carry out an attack, and worry about the treacherous behavior of

some generals. In distributed storage implementations, replica hosts exhibit byzantine behavior

when replying with an outdated or incorrect value of their local replica. Some works also

consider byzantine readers and writers. In order to tolerate byzantine failures, implementations

of consistent memory adopt two different approaches:

• Verifiable: Authentication primitives are embedded to determine the validity of a value

propagated by a participant.

• Non-Verifiable: Reliance only on the number of failures in the system and the messages

exchanged between the participants.
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Verifiable approaches employ digital signatures. Malkhi and Reiter in [71] consider envi-

ronments where both clients and servers fail arbitrarily. First, the authors assume that the writ-

ers are not byzantine. Based on this assumption they developan algorithm that requires every

write operation to digitally sign every written value. The algorithm uses〈timestamp,value〉

pairs to order the written values. Similar to algorithms forthe MWMR environment under

crash failures, the algorithm involves two rounds for each write and read operation; the first

round is a query and the second round is a propagation phase. The digital signature used by

the writer serves two purposes: (a) it prevents any byzantine server from forging a non-written

value, and (b) it prevents any byzantine reader from writinga forged value during its second

round. In the second part of the paper the authors assume thatwriters may also be byzantine.

To prevent the writer from propagating different timestamps for a single value, they incorpo-

rate anechoprotocol in the server site. According to the protocol, the writer performs an extra

round to request signed messages (“echoes”) from the servers before propagating a value to be

written. Those signed messages are then attached to the written value.

Similarly, Cachin and Tessaro in [18] use verification to establish atomicity. In order to

achieve verifiability the authors exploit a technique presented by them in [17], calledverifiable

dispersal information. Their new algorithm uses threshold signatures (e.g., Shoup in [87]) and

a disperse protocol to prevent the forging of a value. The main idea is that a writer encodes

the value it wants to write (using threshold signatures) andproduces a vector of value blocks,

one for each server. Then, the writer propagates each block and its hash value to the servers. A

reader is able to decode the value written as soon as it receivescorrect replies from a number

of servers that exceeds the predefine threshold.
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While verifiable solutions are able to limit the power of malicious participants, they proved

to be computationally esurient. Thus, researchers sought techniques to allow non-verifiable

implementations. Due to the severity of byzantine failures, many developments do not manage

to achieve atomic semantics, but rather provide regular andsafe semantics (e.g., [3, 4, 52, 57,

70]).

Malkhi and Reiter in [70] introduced quorum systems, calledByzantine Quorum Systems,

to enable non-verifiable consistent memory implementations. Byzantine quorums specify the

characteristics that a quorum system must possess in order to ensure data availability and con-

sistency despite byzantine failures. The authors define theclass ofmasking quorum systems

that ensures: (i) there exist at least one quorum that contains only correct replica hosts, and

(ii) every intersection between two quorums contains at least 2f + 1 replica hosts, wheref is

the total number of byzantine failures. The second propertyguarantees that the intersection be-

tween every two quorums contains at leastf +1 correct replica hosts. Given this definition, the

authors explore two variations of masking quorum systems. First, theDissemination quorum

systemsare suited for services that use self-verifying information from correct participants. In

these systems, replica values are signed and faulty replicahosts can not undetectably alter the

value of the replica. Thus, it suffices for the intersection of every two quorums to contain at

least a single non-faulty replica host. The second and stronger variation is theOpaque quorum

systems. These systems do not rely on verifiability. They differ fromthe masking quorum

systems in that they do not need to know the failure scenariosfor which the service is designed

for. The participants can detect the correct values only by voting and thus, the intersection

of two quorums has to be large enough to suppress the values ofboth byzantine and out-date
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replica hosts. Using the defined quorum systems the authors describe implementations ofsafe

andregular registers.

Pierce and Alvisi in [82] study non-verifiable atomic semantics under byzantine failures.

Although the paper does not provide any algorithmic contributions, it shows that the problem

of obtaining atomic semantics can be reduced to that of regular semantics. Consequently, they

show that every regular protocol for the byzantine model canproduce an atomic protocol, if

the first is combined with awritebackmechanism (i.e., two round reads).

Martin, Alvisi, and Dahlin in [73] implement MWMR atomic storage on top of non-

verifiable byzantine servers. Their algorithm, called Small Byzantine Quorums with Listeners

(SBQ-L for short), relies on timestamps to order the writtenvalues. The authors show that any

protocol that toleratesf byzantine failures and provides safe or stronger semanticsrequires at

least3f + 1 servers. The proposed algorithm is optimal in this respect since it uses exactly

3f + 1 servers. To establish optimality the algorithm is based on two main ideas: (i) a read

operation returns a valuev only if it is confirmed by at least2f + 1 servers, and (ii) it em-

ploys the new idea of “listeners” to acquire a confirmed valuewhen a read is concurrent with a

write. The write protocol is carried out in two phases: a query and a propagation phase. As in

traditional MW implementations the writer determines the new timestamp in the query phase,

associates it with the value to be written, and propagates the pair in the second phase. How-

ever, since a write may skipf servers, it would be impossible for a read operation to obtain

2f +1 confirmed values if the total number of servers is3f +1. To overcome this problem, the

algorithm requires the writer to wait for at least3f +1 (and thus all) servers to receive its write

request. In the case where a read operation is concurrent with a write, it may not obtain2f + 1

confirmations of a value during its first round. Thus, the servers maintain a list of the ongoing
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read operations, so called the“Listeners” list. Whenever a server updates its local information

it sends the new information to every reader in its list. Whenthe necessary confirmations are

received by a reader, it sends a completion message to all theservers. This is to exclude itself

from the server list before returning the confirmed value.

One drawback of the SBQ-L algorithm is that the writer has to increment the maximum

timestamp it discovers during its query phase. Note that some of the timestamps received

originated potentially from byzantine servers. Considering that a byzantine server may reply

with an arbitrarily large timestamp, the adversary may try to exhaust the timestamp value space.

Bazzi and Ding in [12] address this problem by introducingnon-skippingtimestamps. Here the

writer collects thef +1 largest timestamps, and increments the smaller of those. Unfortunately

this work trades the optimality of SBQ-L for non-skipping timestamps, since it requires4f +1

servers.

2.6.1 Fastness Under Byzantine Failures

Both [12, 73] use diffusion techniques to propagate and discover an acceptable value writ-

ten on the register replicas. As such, they do not provide anyguarantees on the number of

rounds required by a read operation. Hence, the communication cost of these approaches is

high.

Abraham et al. in [3] study the communication complexity of write operations. The authors

introduce apre-writestrategy to develop regular register implementations. They suggest a two

round write operation: in the first round the writer propagates the value he intended to write,

and in the second round it propagates the value to be written.Readers in their system are

allowed to fail arbitrarily. Therefore, readers are precluded from changing the value of the
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register in any of their read operations. For this reason, every read can take up tof + 1 rounds

to complete, wheref the total number of replica host failures. In the same work the authors

show that2f + b + 1 replica hosts are needed forsafe storageimplementations, whereb out

of f replica hosts failures may be byzantine and the rest may be crashes. To complement their

findings, the authors also show that single round write operations exist if and only if more than

2f + 2b register replicas are used; otherwise two round write operations are necessary. This

bound is shown to be tight for both safe and regular semantics.

A follow up paper by Guerraoui and Vukolić in [52] investigates the efficiency of read

operations. This work shows two bounds: (a) two rounds are necessary for each read operation

to implementsafe storagewhen at most2f + 2b servers are used, and (b) two rounds are

necessary for each read and write operation to implementregular storagethat uses2f + b + 1

servers. The algorithms developed in this paper, store eachproposed timestamp in a two-

dimensional matrix with an entry for every reader and register replica. The matrix records the

entire history of the timestamps written on the register. Toachieve two round write and read

protocols, the paper adopts a technique similar to the one presented in [3], where the writer

propagates the value both in its first and second rounds.

Guerraoui, Levy and Vukolić in [51] establish single roundread operations for SWMR

atomic implementations with byzantine failures. Their system consists of at least2f + b + 1

servers, wheref is the total number of failures out of whichb may be byzantine and the

rest are crashes. The authors introduced the notion of“lucky” operations that characterizes

operations that aresynchronousandcontention-free. The operations that receive replies from

all the servers within some known time interval are called synchronous. The operations that

are not concurrent with any write operation are called contention-free. A “lucky” read or write
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operation may sometimes complete in a single round, and hence be fast. The authors show that

a “lucky” write (resp. read) can be fast in any execution where up tofw (resp.fr) servers fail,

provided thatfw + fr = f − b. Note that allfw (resp.fr) failures can be byzantine given that

fw < b (resp.fr < b).

A recent work by Guerraoui and Vukolić in [53] presents a powerful notion ofRefined

Quorum Systems(RQS), where quorums are classified in threequorum classes. The first class

contains quorums of large intersection, the second contains quorums of smaller intersection,

and the third class corresponds to traditional quorums. Theauthors specify the necessary and

sufficient intersection properties that the members of eachquorum class must possess. Then,

they use RQSs to develop an efficient Byzantine-resilient SWMR atomic object implementa-

tion and a solution to the consensus problem. The SWMR atomicobject algorithm relies on

timeouts between each round performed by a read or write operation. Initially, multiple rounds

are performed to detect asafeandvalid timestamp-value pair. If an operation communicates

with a first class quorum by the time they detect thesafetimestamp (indicating the end of the

first round), it is fast. If such a quorum can not be obtained within the timeout interval, then the

operation attempts to perform a second communication roundwith the hope to reach a second

class quorum. If such a quorum can not be obtained either, then the operation proceeds to a

third round to obtain replies from a third class quorum. Since according to their failure model

a single quorum remains non-faulty throughout the execution of the algorithm, the operation

will eventually receive the necessary replies in the third round. Thus, an operation may take

three rounds to complete once a safe timestamp-value pair isdetected.
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2.7 Partitionable Networks

Up to this point we surveyed failures that affect individualparticipants of the service. Net-

work partitions mainly cope withlink failures that may lead to the division of the underlying

network.

Karumanchi, Muralidharan, and Prakash in [58] explore the problem of information dis-

semination in partitionable ad-hoc networks. The authors replicate the information among

dedicated server nodes and use quorums to allow informationdiscovery. To maintain the lat-

est information, they assume loosely synchronized clocks.Loose synchronization allows the

write operations to use the writer’s local clock to timestamp the written values. The protocol

provides aregular register implementation.

Amir et al. [8] utilized a group communication service to provide a distributed replicated

shared object in the presence of process failures and network partitions. The authors assume

virtual synchrony, and thus a message sent by a process in some partition is delivered to every

process of that partition unless a process fails. Furthermore, they assume the existence of a

primary component. If the network is partitioned, update operations are applied only when

they become known to the primary component. Read operationscan be performed in network

partitions other than the primary component. The algorithmensures global ordering of the

operations and achieves atomic consistency for the shared object.
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Chapter 3

Model and Definitions

This chapter presents the model and terminology we use in thesequel. The model of

computation is presented in Section 3.1 and definitions of the data types and the terminology we

use follows in Section 3.2. Definitions of complexity measures for algorithms that implement

atomic storage objects are presented in Section 3.3.

3.1 Model of Computation

We assume a system that consists of a set offail-prone, asynchronous processeswith unique

identifiers from a setI. Process identifiers are partitioned into three sets:

• a setW⊆ I of writer identifiers

• a setR⊆ I of reader identifiers

• a setS⊆ I of replica host (or server) identifiers
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We say “processp” to denote the process associated with an identifierp ∈ I. Similarly, we

use “servers” if s ∈ S, “readerr” if r ∈ R and “writerw” if w ∈ W. Processes communicate

through asynchronous reliable or unreliable communication channels (see Section 3.1.2).

Our goal is to implement a service that emulates an atomic read/write register. Readers

(resp. writers) perform read (resp. write) operations on the atomic register. Each server main-

tains a copy of the replicated register. We useρ to denote a read operation. A write operation

is denoted byω. If the write operationω writes valueval then we use the notationω(val).

Any read or write operation is denoted byπ. An operationπ invoked by a processp can be

uniquely identified by a tuple〈pid, pc〉, wherepid is the id of the invoking process andpc a

local operation index fromp. In this thesis we assume uniqueness of each operation without

explicitly presenting the association of the operation with the process id and the index.

We consider single writer, multiple reader (SWMR) environments, where|W| = 1 and

|R| ≥ 1, and multiple writer, multiple reader (MWMR) environments, where|W| ≥ 1 and

|R| ≥ 1.

3.1.1 Input/Output Automata and Executions

Algorithms presented in this work are specified in terms ofInput/Output automata[67, 65].

An algorithmA is a composition of automataAp, each assigned to some processp ∈ I.

EachAi is defined in terms of a set of statesstates(Ap) and actionsactions(Ap). The

setstart(Ap) ⊆ states(Ap) denotes the set of initial states ofAp. The setactions(Ap) =

in(Ap) ∪ out(Ap) ∪ int(Ap), where the setsin(Ap), out(Ap), andint(Ap) denote the sets

of input, output, and internal actions that can be performed byAp respectively. Thesigna-

ture of Ap , sig(Ap), is the triple〈in(Ap), out(Ap), int(Ap)〉. The signatureextsig(Ap) =
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〈in(Ap), out(Ap), ∅〉 represents theexternal signatureor external interfaceof Ap. Finally, we

have a set oftransitionstrans(Ap) ⊆ states(Ap) × actions(Ap) × states(Ap). For each

actionα ∈ actions(Ap), this set contains a triple〈σ, α, σ′〉 defining the transition ofAp from

stateσ ∈ states(Ap) to stateσ′ ∈ states(Ap) as the result of actionα ∈ actions(Ap). Such

a triple is also called astepof Ap.

Two component automataAp andAp′ , for p, p′ ∈ I, can becomposedif there exists an

actionα ∈ actions(Ap) ∩ actions(Ap′), and the automata arecompatible:

• out(Ap) ∩ out(Ap′) = ∅

• int(Ap) ∩ int(Ap′) = ∅

Composition ensures that ifAp performs a step that involvesα, so doesAp′ that hasα in

its signature. Compatibility ensures that only one automaton in a composition controls the

performance of a given output action and if an automaton performs an internal action does not

force the other automaton to take a step.

So thecompositionof countable, compatible collection of automataA =
∏

p∈I Ap is

defined as:1

• out(A) =
⋃

p∈I out(Ap)

• int(A) =
⋃

p∈I int(Ap)

• in(A) =
⋃

p∈I in(Ap) −
⋃

p∈I out(Ap)

• sig(A) = 〈out(A), in(A), int(A)〉

• states(A) =
∏

p∈I states(Ap)

1The
Q

in the definition ofstates(A) andstart(A) refers to the ordinary Cartesian Product.
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• start(A) =
∏

p∈I start(Ap)

• actions(A) = in(A) ∪ out(A) ∪ int(A)

Every state of automatonA is a vector of the states of the component automataAp, and

is denoted byσ. For a stateσ of A, let σ[p] denote the state of the automatonAp in σ. Also,

let σ[p].var to denote the value of variablevar of the process automatonAp in stateσ[p].

The transition settrans(A) is the set of triples〈σ, α, σ′〉 such that, for allp ∈ I, if α ∈

actions(Ap) then〈σ[p], α, σ′[p]〉 ∈ trans(Ap); otherwiseσ[p] = σ′[p]. Such a triple is called

a step ofA.

An execution fragmentφ of A is a finite or an infinite sequenceσ0, α1, σ1, α2, . . . , αz, σz , . . .

of alternating states and actions, such that everyσk, αk+1, σk+1 is a step ofA. If an execution

fragment begins with an initial state ofA then it is called anexecution. The set of all execu-

tions ofA is denoted byexecs(A). We say that an execution fragmentφ′ of A, extendsa finite

execution fragmentφ of A if the first state ofφ′ is the last state ofφ. Theconcatenation, φ◦φ′,

of φ andφ′ is the result of the extension ofφ by φ′ where the duplicate occurrence of the last

state ofφ is eliminated, yielding an execution fragment ofA.

Finally, we denote byξ|Ap ∈ execs(Ap) the execution ofAp extracted from an execution

ξ ∈ execs(A), when: (i) each pairαk, σk such thatαk /∈ actions(Ap) is deleted fromξ, and

(ii) every remainingσz (i.e.,z 6= k) is replaced withσz[i] in ξ.

3.1.2 Communication

We consider theasynchronous, message-passingenvironment where processes communi-

cate by exchanging messages. Each channel is modeled by a channel automatonChannelp,p′,
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for p, p′ ∈ I. Thus, we consider a system automatonA that is the composition of process

automataAp, for p ∈ I, and channel automataChannelp,p′, for p, p′ ∈ I. Each stateσ of

A is a vector of the stateσ[p] for each processp ∈ I, and the stateσ[p, p′] for each channel

Channelp,p′, for p, p′ ∈ I.

A channelChannelp,p′ automaton models the communication between two processes

p, p′ ∈ I. The external signature of aChannelp,p′ automaton is defined by an input action

send(m)p,p′ and an output actionrcv(m)p,p′ for some messagem in an alphabetM .

In this thesis we develop algorithms that considerreliable communication channels.

Definition 3.1.1 (Reliable Channel)A channel betweenp, p′ ∈ I is reliable in an execution

φ ∈ execs(A) if for any execution fragmentφ′ of A that extendsφ all of the following hold:

• ∀send(m)p,p′ event inφ, ∃ succeedingrcv(m)p,p′ in φ ◦ φ′ (message delivery), and

• ∀rcv(m)p,p′ events inφ, ∃ precedingsend(m)p,p′ in φ (message integrity).

We say that processp sendsa messagem to processp′ in an executionφ of A, if the event

send(m)p,p′ appears inφ. Similarly, we say that a processp′ receivesm that was sent from

processp in an executionφ of A, if the eventrcv(m)p,p′ occurs inφ. A messagem is delivered

to processp′ from processp in φ, if m was sent byp and received byp′ in φ. Finally, a message

m is said to bein-transit in φ, if m was sent byp but not received byp′ in φ.

Each message can be uniquely identified by a tuble〈src, dest, π, c〉, wheresrc anddest

are the process identifiers of the sender and receiver respectively, π is the operation during

which this message is sent, andc a message index forπ incremented by the sender. We denote
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by m(π, c)p,p′ the cth message exchanged between processesp to processp′ during opera-

tion π. We usem(π, c)p,p′ .var to denote the value of variablevar contained in the message

m(π, c)p,p′ .

We say that processp contactsa subset of processesG ⊆ I, for an operationπ in an

executionφ, if for every processp′ ∈ G:

(a) p sends the messagem(π, c)p,p′ to p′,

(b) p′ receives the messagem(π, c)p,p′ sent byp,

(c) p′ sends a reply messagem(π, c)p′,p to p, and

(d) p receives the replym(π, c)p′,p from p′.

We denote bycnt(π,G)p the occurrence of such contact. Ifcnt(π,G)p occurs, and addi-

tionally no other processp′ ∈ I − G receives any message fromp within operationπ, then we

say thatp strictly contactsG; this is denoted byscnt(π,G)p.

3.1.3 Failures

Failures are considered to arrive from an unspecified external entity, theadversary. The

adversary determines which components of the system fail, what faults they suffer, and at what

step on the computation those faults occur. In this work we assume anomnicientandon-line

adversary that has complete knowledge of the computation , and it makes instant and dynamic

decisions during the course of computation.

We assume that the automatonAp of each processi contains an actionfailp ∈ actions(Ap),

which defines the type of failure that processp may undergo. The adversary decides if and
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when a step〈σk, failp, σk+1〉 appears in an executionξ ∈ execs(A). A failp event may change

only the state of processi. That is, if a step〈σk, failp, σk+1〉 appears inξ, then:

• for every process automatonAp′ such thatp 6= p′, σk[p
′] = σk+1[p

′],

• for every channelChannelp′,p′′ , for p′, p′′ ∈ I, σk[p
′, p′′] = σk+1[p

′, p′′], and

• 〈σk[p], failp, σk+1[p]〉 ∈ trans(Ap).

The algorithms presented in this thesis are designed to toleratecrash failures.

Definition 3.1.2 (Crash Failures) For an algorithmA we define the set of executionsFC(A)

to be a subset ofexecs(A) such that∀ξ ∈ FC(A), ξ contains zero or one (crash) step

〈σk, failp, σk+1〉 for somep ∈ I, and for any step〈σz, αz+1, σz+1〉 ∈ ξ wherez ≥ k + 1,

σk+1[p] = σz[p] = σz+1[p].

A processp crashesin an executionξ ∈ FC(A), if ξ contains a fail step forp. We say

that a processp is faulty in an executionξ if p crashes inξ; otherwisep is correct. We allow

the adversary to fail any subset of writer and reader processes, with identifiers inW ∪ R, in

any executionξ ∈ FC(A). We limit the power of the adversary to fail only a proper subset of

server processes, with identifiers inS, in any executionξ ∈ FC(A). Let f denote the number

of maximum replica host failures allowed. For an implementation A we can define good

executions in terms of the maximum number of host failures asfollows:

Definition 3.1.3 (f-Good Executions)An executionξ ∈ FC(A) of an algorithmA is anf -

good executionif there existsF ⊆ I, 0 ≤ |F | ≤ f , such that∀p ∈ F , there is a step

〈σk, failp, σk+1〉 in ξ. The set of allf -good executions ofA is denoted bygoodexecs(A, f).
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3.1.4 Quorum Systems

We focus on quorum systems over the set of server identifiersS. A quorum system is

defined as follows:

Definition 3.1.4 (Quorum System)A quorum systemQ⊂ 2S is a set of subsets ofS, called

quorums, such that:

• ∀Q∈ Q : Q ⊆ S, and

• ∀Q,Q′ ∈ Q : Q ∩ Q′ 6= ∅

We generalize the definition of quorum systems based on the number of quorums that

together have a non-empty intersection. LetQi denote any set ofi quorums fromQ.

Definition 3.1.5 (n-Wise Quorum Systems)A quorum systemQ ⊂ 2S , is calledn-wise, for

2 ≤ n ≤ |Q|, if ∀Qn ⊆ Q,
⋂

Q∈Qn

Q 6= ∅.

A regular quorum system (Definition 3.1.4) is a 2-wise quorum system. We now define

the intersection degree of a quorum system:

Definition 3.1.6 (Intersection Degree)A quorum systemQ ⊂ 2S hasintersection degreeδ,

if Q is aδ-wise quorum system, but not a(δ + 1)-wise quorum system.

From Definition 3.1.6 if a quorum systemQ has intersection degreeδ = |Q|, then there

exists a common intersection among all the quorum sets ofQ. A quorum systemQ with

intersection degreeδ, for 2 ≤ δ ≤ |Q|, is also an-wise quorum system for everyn < δ.

We now define quorum system failures with respect to the crashfailures of the server

processes.
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Definition 3.1.7 (Faulty Quorum) A quorumQ ⊆ S is faulty in a stateσz of an execution

ξ ∈ FC(A), if ξ contains a crash step〈σc−1, fails, σc〉 such thats ∈ Q andz ≥ c.

If a quorumQ is not faulty in a stateσz of ξ ∈ FC(A), thenQ is correct in that state.

Definition 3.1.8 (Faulty Quorum System) A quorum systemQ ⊂ 2S is faulty in a stateσz

of an executionξ ∈ FC(A), if ∀Q ∈ Q, Q is faulty inσz of ξ.

We assume that the adversary may failall but onequorumQ ∈ Q in any executionξ ∈

FC(A). The correct quorumQ is not known to any processp ∈ I. Our failure assumption

implies that no R/W operation can wait for more than a single quorum of replicas to reply.

If any processp ∈ I initiating a read or a write operation waits for additional messages after

receiving responses from a complete quorum of replicas, such an operation may not terminate.

Implementations that use quorum systems to specify the subsets of servers that each reader and

writer may access, are calledquorum-basedimplementations. Good executions for a quorum

based implementationA are defined as follows:

Definition 3.1.9 (Q-Good Executions) An executionξ ∈ FC(A) of an algorithmA that uses

a quorum systemQ, is aQ-good executionif there existsQ ∈ Q, such that∀s ∈ Q there

does not exist step〈σk, fails, σk+1〉 in ξ. The set of allQ-good executions ofA is denoted by

goodexecs(A, Q).

For an implementationA, goodexecs(A) denotes the setgoodexecs(A, f) if A assumes

knowledge of the maximum number of replica host failures, orthe setgoodexecs(A, Q) if A

uses a quorum systemQ.

46



Nicolas C. Nicolaou––University of Connecticut, 2011

3.2 Consistency and Object Semantics - Atomic Read/Write Registers

Input:

readx,p, x ∈ X, p ∈ R

write(v)x,p, v ∈ Vx, x ∈ X, p ∈ W

Output:

read-ack(v)p,x, p ∈ R, x ∈ X, v ∈ Vx

write-ackp,x, p ∈ W, x ∈ X

Figure 1: External Signature of a Read/Write Atomic Memory Service.

Our goal is to devise algorithms that implement an atomic R/Wmemory abstraction. Let

X be a set of register identifiers. Each registerx ∈ X may be assigned a valuev from a

set of valuesVx, where⊥ ∈ Vx the initial value ofx. A read/write registerx ∈ X, is

modeled by an I/O automatonAx with input actionsin(Ax) = {readx,p,write(v)x,p}, and

output actionsout(Ax) = {read-ack(v′)p,x,write-ackp,x}, wherev, v′ ∈ Vx andp ∈ I. A

read/write memoryM is thecompositionof a countable,compatibleread/write register I/O

automataAx, for x ∈ X.

Let automatonM implement a R/W memory abstraction. We say that a processr, for

identifier r ∈ R, invokes a read operation on registerx ∈ X in an executionξ ∈ execs(M)

if a step〈σk, readx,r, σk+1〉 appears inξ. Similarly, we say that a processw, for identifier

w ∈ W, invokes a write operation onx ∈ X in an executionξ ∈ execs(M) if a step

〈σz,write(v)x,w, σz+1〉 appears inξ.

The step〈σk, readx,r, σk+1〉 or 〈σz,write(v)x,w, σz+1〉 is called invocation stepof a

read or write operationπ respectively, and is denoted byinv(π). The corresponding

〈σk−1′ , read-ack(v)r,x, σk′〉 or 〈σz−1′ ,write-ackw,x, σz′〉, for k′ ≥ k + 1 and z′ ≥ z + 1,

is theresponse stepand is denoted byres(π). The statesσk andσz are calledinvocation states
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and the statesσk′ andσz′ are calledresponse statesof read or write operationπ. An invoca-

tion state ofπ is denoted byσinv(π). Similarly, the response state ofπ is denoted byσres(π).

Following is the definition for operation completeness:

Definition 3.2.1 (Operation Completeness)An operationπ is incomplete in an execution

ξ ∈ execs(M), if ξ containsinv(π) but does not containres(π); otherwise we say thatπ is

complete.

We assume that the executions ofM are well-formed. Namely, a process does not invoke a

new operation until it receives the response for a previously invoked operation in any execution

of M. This notion is captured by the following definition.

Definition 3.2.2 (Well-Formedness)An executionξ ∈ execs(M) is well-formed if for any

read or write operationπ invoked by a processp, ξ contains a stepinv(π) and does not contain

any stepinv(π′) for any operationπ′ invoked byp before the stepres(π) appears inξ.

In an execution, we say that an operation (read or write)π1 precedesanother operationπ2,

or π2 succeedsπ1, if the response step forπ1 precedes the invocation step ofπ2; this is denoted

by π1 → π2 [62]. Two operations areconcurrentif neither precedes the other. This can be

expressed more formally by the following definition:

Definition 3.2.3 (Precedence Relations)Two operationsπ1 andπ2 may have one of the fol-

lowing precedence relations in an executionξ ∈ execs(M):

• π1 precedesπ2 (π1 → π2): res(π1) appears beforeinv(π2) in ξ

• π1 succeedsπ2 (π2 → π1): inv(π1) appears afterres(π2) in ξ
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• π1 is concurrent to π2 (π1 ↔ π2): neitherπ1 → π2, norπ2 → π1 in ξ.

Correctness of an implementation of an atomic read/write register is defined in terms of the

atomicity(safety) andtermination(liveness) properties.

Definition 3.2.4 (Termination) Consider an operationπ that is invoked by processp, and

inv(π) appears in a finite executionφ ∈ execs(M). Then there exists a finite execution

fragmentφ′ ∈ execs(M) that extendsφ, such that ifp is correct inφ ◦ φ′ ∈ execs(M) and

φ ◦ φ′ ∈ goodexecs(M), thenres(π) appears inφ ◦ φ′.

In other words, termination ensures that an operation invoked from a processp is going to

terminate as long asp is correct and the system obeys the failure model. Atomicityis defined

as follows [65]:

Definition 3.2.5 (Atomicity) Consider the setΠ of all complete operations in any well-formed

execution. Then for operations inΠ there exists an irreflexive partial ordering≺ satisfying the

following:

A1. If for operationsπ1 andπ2 in Π, π1 → π2, then it cannot be the case thatπ2 ≺ π1.

A2. If π ∈ Π is a write operation andπ′ ∈ Π is any operation, then eitherπ ≺ π′ or π′ ≺ π.

A3. The value returned by a read operation is the value written bythe last preceding write

operation according to≺ (or ⊥ if there is no such write).

A read/write registerx ∈ X is atomic, if it has the external signaturesig(Ax) =

〈in(Ax), out(Ax), ∅〉, and in addition it satisfieswell-formedness(Definition 3.2.2),termi-

nation (Definition 3.2.4), andatomicity (Definition 3.2.5) conditions. Finally, anatomic
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read/write memoryM is thecompositionof a countable,compatibleatomic read/write reg-

ister I/O automataAx, for x ∈ X. The external signature of an atomic memory abstraction is

given in Figure 1.

In the sequel, we focus on the implementation of a single atomic R/W register abstraction

and thus, from this point onward we omit the names of the registers.

3.3 Complexity Measures

We measure theoperation latencyof an atomic register implementation in terms ofcom-

munication rounds(or simply rounds). A round is defined as follows [30]:

Definition 3.3.1 (Communication Round) Processp performs acommunication round dur-

ing an operationπ in an executionξ ∈ execs(A) of an algorithmA, if all of the following hold:

CR1. p sends messages forπ to a set of processesZ ⊆ I,

CR2. when a message forπ is delivered toq ∈ Z, q sends a reply forπ to p without waiting

for messages from any other process, and

CR3. whenp receives “sufficient” replies it terminates the round (either completingπ or start-

ing a new round).

Using Definition 3.3.1, we can define fast operations and fastimplementations ([30]):

Definition 3.3.2 (Fast Operations)Consider an operationπ that is invoked by a processp in

an executionξ ∈ execs(A), of some implementationA. We say thatπ is a fast operation

if it completes when processp performs asinglecommunication round betweeninv(π) and

res(π); otherwiseπ is slow.
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Definition 3.3.3 (Fast Implementation) An implementationA is calledfast implementation

if every executionξ ∈ goodexecs(A) contains only fast operations.

For quorum-based implementations that use a quorum systemQ, communication rounds

can be defined over quorums of servers.

Definition 3.3.4 (Quorum-Based Communication Round)A process p performs a

quorum-based communication round, in an executionξ ∈ execs(A) of a quorum-based

implementationA during operationπ if:

QBR1. p sends messages forπ to a set of processesZ ⊆ I,

QBR2. when a message forπ is delivered toq ∈ Z, q sends a reply forπ to p without waiting

for messages from any other process, and

QBR3 Whenp receives replies fromat least a single quorumit terminates the round (either

completingπ or starting a new round).

By Definition 3.3.4, a quorum-based communication round defers from Definition 3.3.1 in

the last property, where the servers of at least a single quorum are expected to reply. Now, we

can define fastness for quorum-based implementations.

Definition 3.3.5 (Fast Quorum-Based Operations)Consider an operationπ that is invoked

by a processp in an executionξ ∈ execs(A), of some quorum-based implementationA. We

say thatπ is afast quorum-based operationif it completes when processp performs asingle

quorum-based communication round betweeninv(π) andres(π); otherwiseπ is slow.
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Definition 3.3.6 (Fast Quorum-Based Implementation)An implementationA is calledfast

quorum-based implementationif every executionξ ∈ goodexecs(A, Q) contains only fast

quorum-based operations.

To obtain or modify the value of the atomic register, a read orwrite operation requires at

least a single communication round. To ensure termination,any processp ∈ R ∪ W needs

to send messages to alls ∈ S and wait for replies from a setZ ⊆ S. By Definitions 3.3.2

and 3.3.5 a (quorum-based) operation invoked by a processp is fast if it completes after two

communication delays: (i) a message fromp to all s ∈ S, and (ii) a reply from everys ∈ Z to

p. The setZ may: (a) have cardinality|S| − f , if the maximum number of server failuresf

is known, or (b) contain a quorumQ in case of a quorum-based implementation. For the rest

of the thesis we assume that the messages from the readers andwriters to the servers, and the

replies from the servers to the readers and writers are delivered. All other messages remain in

transit.
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Chapter 4

Trading Speed for Reader Participation

As discussed in Chapter 2,fast implementations of atomic R/W registers require that the

number of reader participants in the service must be restricted with respect to the number of

replica hosts [30]. In this chapter we present a new family ofatomic R/W register implemen-

tations that trade the fastness ofsomeoperations to allowunrestrictednumber of readers in

the service. We call such implementationssemifast. In the sections that follow, we explain

the restrictions that fast implementations impose in the service and formally define semifast

implementations. Next, we present a semifast implementation of an atomic R/W register and

we analyze its operation latency. Finally, we specify the conditions that need to be satisfied for

semifast implementations to be feasible.

4.1 Fast and Semifast Implementations

Dutta et al. [30] were the first to introduce fast implementations of atomic R/W registers.

Their algorithm implements an atomic R/W register in the SWMR environment, whereall read

and write operations require asingleround to complete. Such an efficient behavior however,
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comes with a price: (1) the number of readers must be bounded by |R| < |S|
f

− 2 and (2)

single round (fast) implementations are not possible for the MWMR environment even with

two writers, two readers and a single server failure. While single round implementations seem

to be restrictive, works like [68] demonstrated that if all operations performtwo rounds(slow),

then we can obtain atomic R/W register implementations thatallow multiple writers and un-

restricted number of readers. Naturally, the following question arises: How many operations

need to beslow in order to overcome the limitations imposed by fast implementations?

4.1.1 Semifast Implementations

We partly answer the above question by introducingsemifastimplementations.

A semifast implementation of an atomic R/W register allows fast writes and reads; yet,

under certain conditions it allows reads to perform two rounds. Below we formally define

semifast implementations. The notationR(ρ) [90], used in the definition, denotes the unique

write operation that wrote the value returned by a read operation ρ.

Definition 4.1.1 (Semifast Implementation)An implementationA of an atomic object is

semifast if the following are satisfied:

S1. In any executionξ of A, everywrite operation is fast.

S2. In any executionξ of A, any completereadoperation performs one or two communication

rounds.

S3. In any executionξ of A, if ρ1 is a two-round read operation, then any read operationρ2

with R(ρ1) = R(ρ2), such thatρ1 → ρ2 or ρ2 → ρ1, must be fast.

S4.There exists an executionξ of A that contains at least one write operationω and at least one
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read operationρ1 with R(ρ1) = ω, such thatρ1 is concurrent withω and all read operationsρ

with R(ρ) = ω (includingρ1) are fast.

PropertiesS1andS2of Definition 4.1.1, explicitly specify the fastness of readand write

operations: writes have to terminate after a single round, while reads are allowed to perform

at most two rounds. By propertyS3only asingle completeslow read operation is allowed per

write operation. Therefore, if a slow read operation returns a valueval then any read operation

that returns valueval andprecedesor succeedsthe slow read must be fast. Finally, property

S4 rules out trivial solutions that allow fast operations onlyin the absence of read and write

concurrency. Hence,S4 requires that semifast implementations allow read operations to be

fast even if those are executed concurrently with a write operation. Such a characteristic will

enable executions where all read and write operations are fast.

In the next section, we show that a semifast implementation may allow unrestricted number

of readers. Here, a single complete slow read operation is enough to remove the constraint

on the number of readers imposed by fast implementations. Later, we show that semifast

implementations also have some limitations: (1) implementations that arrange the readers into

groups, can be semifast iff the number of groups is|V| < S
f
− 2, (2) semifast implementations

are possible if|S| > 3f , and (3) semifast implementations are not possible in theMWMR

environment.

4.2 Semifast Implementation: Algorithm SF

In this section we present algorithm SF. This algorithm trades the speed of some read

operations for allowing unbounded number of reader participants in the service. SF implements

55



Nicolas C. Nicolaou––University of Connecticut, 2011

a SWMR semifast atomic R/W register since it satisfies the properties in Definitions 3.2.5 and

4.1.1 for theSWMR setting.

In brief, the algorithm adopts the timestamp-value pair technique to order the values written

on the atomic register. To allow unbounded reader participation, SF introduces the notion of

virtual nodes, abstract entities that enclose a set of reader participants. The constructed entities

take the place of individual readers in an adapted form of thefast implementation of [30]. As a

result, the new algorithm achieves the same performance as [30] when read requests originate

from a single reader per virtual node. Things become challenging when requests originate from

multiple readers residing in both the same and different virtual nodes.

4.2.1 Grouping Reader Participants – Virtual Nodes

Writer

Servers

Readers

r1
r2

rR

Siblings

Virtual Nodes

vr1 vr2 vrV

Figure 2: Virtual Nodes.

The notion ofvirtual nodesallows SF to accom-

modate arbitrarily many readers. Figure 2 illustrates

the deployment of virtual nodes on top of the set of

reader processes. A virtual node is a set of reader iden-

tifiers and has a unique identifier from a setV. Each

reader process with identifierr ∈ R maintains a local

variable that specifies the virtual node that the reader

belongs to. Let us denote byνr the virtual node as-

signed to readerr.

If two readersr, r′ belong to the same virtual node,

such thatνr = νr′ , then we say thatr andr′ aresib-

lings. Note that it is not necessary for a reader to be aware of its siblings or the members of the
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other virtual nodes. This allows local assignment of each individual reader to a virtual node.

For instance, the virtual node of a readerr ∈ R can be equal toνr = (r mod max(|V|))+1,

assuming that reader identifiers are natural numbers.

In a later section we show that it is not possible to obtain a semifast implementation if

the number of virtual nodes is more than|S|
f

− 2. In contrast with [30], the restriction on the

number of virtual nodes does not affect the number of reader participants: a single virtual node

can support unbounded number of readers.

4.2.2 High Level Description ofSF

Before we proceed to the formal specification of our algorithm, we provide a high level

description. The algorithm uses timestamp-value pairs to order the values written on the regis-

ter and each writer associates a timestamp with two values〈v, vp〉. The variablev is the new

value to be written, while the variablevp is the last value written by the writer. The algorithm

consists of three protocols, one for the writer, one for the reader, and one for the server.

Writer. The write protocol involves the increment of the timestamp and its propagation,

along with the writer’s new and previous value, to all the servers. The operation completes

once the writer receives|S| − f replies from the servers.

Reader. The read protocol is more complicated. A reader sends read messages to all the

servers and once it receives|S|−f replies, determines the value to be returned by consulting the

validity of a predicate. The predicate depends on (i) the maximum timestamp witnessed within

the replies, (ii) the number of servers that replied with that timestamp, and (iii) the number of

virtual nodes (members of which) witnessed that timestamp through those servers. The idea

behind the predicate is presented in the next section. If thepredicate holds then the reader
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returns the valuev associated with the maximum timestamp it witnessed (maxTS); otherwise

it returns the previous valuevp (associated with the previous timestampmaxTS − 1). If the

predicate holds with certain conditions, then a reader may perform a second communication

round before returning valuev.

Server. Each server process maintains an object replica and updatesits object’s value when

it receives a message that contains a timestamp greater thanits local timestamp. Additionally,

the server records the virtual nodes that requested its atomic object and replies with the infor-

mation of the atomic object (timestamp,value) along with the recorded set of virtual nodes. If

a server receives a message from a the second communication round of a read operation, it

stores the timestamp-value pair enclosed in the message in variablepostit. The postit variable

indicates that the server witnessed the intention of a read operation to return the stored pair.

4.2.3 Formal Specification ofSF

Here we present the formal specification of algorithm SF. We assume that the number

of unique virtual ids is such that|V| < |S|
f

− 2. (We show in Section 4.3.1 that semifast

implementations are impossible when|V| ≥ |S|
f

− 2). The algorithm is composed of four

automata: (i) SFw for w ∈ W, (ii) SFr for r ∈ R, (iii) SFs for s ∈ S, and (iv)Channelp,p′ for

p, p′ ∈ I. The SFw, SFr and SFs automata are given in Figures 3, 4 and 5, and 6 respectively.

TheChannelp,p′ automaton follows the specification of a reliable channel (see Section 3.1.2).

Moreover, as discussed in Section 3.3, we assume that only messages from the readers and the

writer to the servers, and the replies from the servers to thereaders and the writer are delivered.

The system automaton of algorithm SF is the composition of automata SFw, SFr and SFs, with

channel automataChannelp,s or Channels,p for p ∈ R ∪W ands ∈ S.
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Automaton SFw.

The state variables, the signature and the transitions of the SFw are given in Figure 3. The

state of the SFw automaton consists of the following variables:

• 〈ts, v, vp〉 ∈ N×V ×V : writer’s local timestamp along with the latest and the previous

values written by the writer.

• wCounter ∈ N: counts the write requests performed by the writer. This is used by the

servers to distinguish fresh from stale messages.

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an

operation (status = active) or it is done with any requests (status = idle). When

status = done, it indicates that the writer received all the necessary replies to complete

its write operation and is ready to respond to the client.

• srvAck ⊆ S: a set that contains the servers that reply to the write messages as a result of

a write request. The set is reinitialized to∅ at the response step of every write operation.

• failed ∈ {true, false}: indicates whether the process associated with the automaton

has failed.

The automaton completes a write operation in a single phase.When awrite(v)w request

is received from the environment, thestatus variable becomesactive, the previous valuevp

gets the current value and the new valuev is updated with the value requested to be written.

The timestampts is incremented and is associated with the two values. As longas thestatus

remains active the automaton sends one message to every server process and collects the iden-

tifiers of the servers that reply to those messages in thesrvAck set. When|srvAck| ≥ |S|−f ,
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Signature:

Input:
write(v)w , v ∈ V

rcv(msg)s,w, msg ∈M , s ∈ S
failw

Output:
send(msg)w,s , msg ∈M , s ∈ S
write-ackw

Internal:
write-fixw

State:
ts ∈ N, initially 0
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
wCounter ∈ N+, initially 0

srvAck ⊆ S, initially ∅
status ∈ {idle, active, done}, initially idle

failed, a Boolean initiallyfalse

Transitions:
Input write(v)w

Effect:
if ¬failed then
if status = idle then
status← active

srvAck← ∅
vp ← v

(v , ts)← (v, ts + 1)
wCounter← wCounter + 1

Input rcv(〈msgT, t, seen,C, postit〉)s,w

Effect:
if ¬failed then
if status = active andwCounter = C then
srvAck← srvAck ∪ {s}

Internal write-fixw

Precondition:
¬failed

status = active

|srvAck| ≥ |S| − f

Effect:
status← done

Output send(〈msgT, t, C, vid〉)w,s

Precondition:
status = active

¬failed

s ∈ S
〈msgT, t, C, vid〉 =
〈WRITE, 〈ts, v , vp〉, wCounter, 0〉

Effect:
none

Output write-ackw

Precondition:
status = done

¬failed

Effect:
status← idle

Input failw
Effect:

failed← true

Figure 3: SFw Automaton: Signature, State and Transitions

the precondition of thewrite-fix action is met and thestatus of the operation becomesdone.

This, enables thewrite-ack action and once it occurs the writer responds to the environment

and reinitializesstatus = idle waiting for the next write request.

Automaton SFr.

The state variables, the signature and the transitions of the SFr are given in Figures 4 and

5. The state of the SFr automaton consists of the following variables:
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Signature:

Input:
readr , r ∈ R
rcv(m)s,r , m ∈M , r ∈ R, s ∈ S
failr, r ∈ R

Output:
send(m)r,s , m ∈M , r ∈ R, s ∈ S
read-ack(val)r , val ∈ V , r ∈ R

Internal:
read-phase1-fixr

read-phase2-fixr

State:
vid ∈ V , initially (r mod (

|S|
f
− 2)) + 1

ts ∈ N, initially 0
maxTS ∈ N, initially 0
maxPS ∈ N, initially 0
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
retvalue ∈ V , initially ⊥
rCounter ∈ N+, initially 0

phase ∈ {1, 2}, initially 1
status ∈ {idle, active, done}, initially idle

srvAck ⊆M × S, initially ∅
maxTsAck ⊆M × S, initially ∅
maxPsAck ⊆M × S, initially ∅
maxTsSrv ⊆ S, initially ∅
failed, a Boolean initiallyfalse

Figure 4: SFr Automaton: Signature and State

• vid ∈ V: the virtual node to which the readerr belongs.

• 〈v, vp〉 ∈ V ×V : the value and previous value associated with the maximum timestamp

discovered duringr’s last read operation.

• maxTS ∈ N, maxPS ∈ N: the maximum timestamp and postit discovered.

• 〈ts, retvalue〉 ∈ N×V : the timestamp and value returned during the last read operation.

• rCounter ∈ N: read request counter. Used by the servers to distinguish fresh from stale

messages.

• phase ∈ {1, 2}: indicates the active communication round of the read operation.

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an

operation (status = active) or it is done with any requests (status = idle). When

status = done, it indicates that the reader decided on the value to be returned and is

ready to respond to the client.
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Transitions:
Input readr

Effect:
if ¬failed then
if status = idle then
status← active

rCounter← rCounter + 1

Input rcv(〈msgT, t, seen, C, postit〉)s,r

Effect:
if ¬failed then
if status = active andrCounter = C then
srvAck ← srvAck ∪ {(s, 〈msgT, t, seen,C, postit〉)}

Output send(〈msgT, t, C, vid〉)r,s

Precondition:
status = active

¬failed
ˆ

(phase = 1 ∧ 〈msgT, t, C, vid〉 =
〈READ, 〈maxTS, v , vp〉, rCounter, vid〉)∨

(phase = 2 ∧ 〈msgT, t, C, vid〉 =
〈INFORM, 〈maxTS, v , vp〉, rCounter, vid〉)

˜

Effect:
none

Internal read-phase2-fixr

Precondition:
¬failed

status = active

phase = 2
|srvAck| ≥ 2f + 1

Effect:
status ← done

phase← 1

Output read-ack(val)r

Precondition:
¬failed

status = done

val = retvalue

Effect:
status ← idle

Input failr
Effect:

failed← true

Internal read-phase1-fixr

Precondition:
¬failed

status = active

phase = 1
|srvAck| ≥ |S| − f

Effect:
maxTS ←
{max(m.t.ts) : (s, m) ∈ srvAck}

maxPS ←
{max(m.postit) : (s, m) ∈ srvAck}

maxTsAck ← {(s, m) : (s, m) ∈ srvAck and
m.t.ts = maxTS}

maxPsAck← {(s, m) : (s, m) ∈ srvAck and
m.postit = maxPS}

(v, vp)← {(m.t.v, m.t.vp) : (s, m) ∈ maxAck}
maxTsSrv ← {s : s ∈ Q, (s, msg) ∈ maxAck}
if ∃β ∈ [1, . . . , |V|], andMS ⊆ maxTsAck s.t.
|MS| ≥ |S| − βf and|

T

(s,m)∈MS m.seen| ≥ β

then
ts ← maxTS

retvalue← v

if |
T

(s,m)∈MS m.seen| = β then
phase← 2
srvAck← ∅
rCounter← rCounter + 1

else
status← done

else
if maxPS = maxTS then

ts ← maxTS

retvalue← v

if |maxPsAck| < t + 1 then
phase← 2
srvAck ← ∅
rCounter← rCounter + 1

else
status← done

else
ts ← maxTS − 1
retvalue← vp

status← done

Figure 5: SFr Automaton: Transitions
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• srvAck ⊆ M ×S: a set that contains the servers and their replies to the readoperation.

The set is reinitialized to∅ at the response step of every read operation.

• maxTsAck ⊆ M × S andmaxPsAck ⊆ M × S: these sets contain the servers that

replied with the maximum timestamp and maximum postit respectively to the last read

request. The sets also contain the messages sent by those servers.

• maxTsSrv ⊆ S: The servers that replied with themaxTS.

• failed ∈ {true, false}: indicates whether the process associated with the automaton

has failed.

The reader automaton may involve one or two rounds before theresponse step of a read

operation occurs. When the reader automaton receives aread()r request from its environment,

it sets thestatus variable toactive and increments the read counter. This enables the ac-

tions rcv andsend. The reader sends a read message to every server (whensend occurs) and

collects (via thercv action) the identifiers of the servers and their replies in the srvAck set.

As phase is initialized to1, the send action transmitsREAD messages to the servers. Once,

|srvAck| ≥ |S| − f the actionread-phase1-fix is enabled. When this action occurs, the reader

discovers the maximum triple〈maxTS, v, vp〉 and the maximum postit valuemaxPS among

the received messages. Then, it collects the server acknowledgments that containmaxTS and

maxPS in the setsmaxTsAck andmaxPsAck respectively. To determine the value to be

returned the reader consults the validity of a predicate. The predicate depends on: (i) the max-

imum timestamp witnessed within the replies (maxTS), (ii) the number of servers that replied

with that timestamp (|maxTsAck|), and (iii) the number of virtual nodes (members of which)

witnessed that timestamp through those servers. The latternumber is derived from theseen set
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which is attached in the reply of each server. The predicate,calledSF-RP, is formally written

as follows:

Reader predicate (SF-RP):∃β ∈ [1, V + 1] and∃MS ⊆ maxTsAck, s.t.

(|MS| ≥ |S| − βf) ∧ (| ∩m∈MS m.seen| ≥ β)

By theread-phase1-fix action, the reader returns the new valuev associated with the max-

imum timestamp if one of the following conditions is satisfied:

(i) SF-RPholds, or

(ii) the maxPS = maxTS.

In such case, the read operation may perform one or two rounds. Thephase variable becomes

2 and the reader proceeds in a second round in the following cases:

(1) SF-RPholds with| ∩m∈MS m.seen| = β, or

(2) SF-RPdoes not hold andmaxPS = maxTS, but |maxPsAck| < f + 1.

When none of the conditions (i) or (ii) hold the read operation returns the previously written

valuevp in a single round. If one round is enough then thestatus variable becomesdone by

the end ofread-phase1-fix and the response actionread-ack(v) is enabled. Ifphase = 2, the

srvAck = ∅ and the reader sendsINFORM messages to all servers. Once,|srvAck| ≥ |S| − f

the actionread-phase2-fix is enabled. When that action occursstatus becomesdone and

phase is reinitialized to 1. Now, the second round is completed andthe reader is ready to

respond to the client.

Clearly, in item (2) above, the second round is necessary as afuture read operation may not

observemaxPS in any of the servers when|maxPsAck| < f + 1. Let us now examine why
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a second round is needed in case of (1). The predicateSF-RP is derived from the following

observation:

Observation 4.2.1 For any two read operationsρ1 andρ2 that witness the samemaxTS from

maxTsAck1 andmaxTsAck2 servers respectively (one message per server), the sizes ofthe

sets|maxTsAck1| and|maxTsAck2| differ by at mostf . That is:

||maxTsAck1| − |maxTsAck2|| ≤ f

Consider the following example to visualize the idea behindthe predicate. Letφ be

an execution fragment that contains a complete write operation ω that propagates the triple

〈maxTS, v, vp〉 to |S|−f servers. Let extendφ by a read operationρ1 that discoversmaxTS

in |S| − 2f server replies (missingf of the servers that replied toω). Sinceω → ρ1 thenρ1

has to returnv (the value associated withmaxTS) to preserve atomicity.

Assume now an execution fragmentφ′ that contains an incomplete writeω that propagates

the new value withmaxTS to |S|− 2f servers. Let us extendφ′ by a readρ1 from readerr. If

ρ1 discoversmaxTS in |S|−2f servers – by receiving replies from all the servers that received

messages fromω – then it cannot distinguishφ from φ′ and thus has to returnv in φ′ as well.

Let ρ2 be a read operation fromr′ s.t.ρ1 → ρ2. The readρ2 may discovermaxTS in |S|−3f

replies by missingf of the servers that replied toω. Let us examine theseenset of the servers

that reply to bothρ1 andρ2. We know thatr belongs to the virtual nodeνr andr′ belongs to

the virtual nodeνr′ . There are two cases to consider forνr andνr′ : (a) eitherνr 6= νr′ (b) or

νr = νr′ (r andr′ are siblings). Notice that every server adds the virtual node of a reader to its

seenset before replying to a read operation. Thus, all|S| − 2f servers that containedmaxTS

replied with aseen = {0, νr} to r because they added the virtual node of the writer (0) and
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the virtual node ofr before replying forρ1. With similar reasoning all|S| − 3f servers that

replied forρ2 send aseen = {0, νr , νr′} to r′. So, ifνr 6= νr′ then the predicate will hold with

β = 2 for r and withβ = 3 for r′. Thus,r′ will also returnv preserving atomicity. If, however,

νr = νr′ then the predicate will hold forr but will not hold forr′ and, thusr′ will return an

older value (possiblyvp) violating atomicity. As a result, a second round is necessary when a

read observes| ∩m∈MS m.seen| = β, and this explains item (1) presented above.

Automaton SFs.

Signature:

Input:
rcv(m)p,s, m ∈M , s ∈ S, p ∈ R ∪ {w}
fails

Output:
send(m)s,p , m ∈M , s ∈ S, p ∈ R ∪ {w}

State:
ts ∈ N, initially 0
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
seen ⊆ V ∪W , initially ∅
Counter(p) ∈ N+, p ∈ R ∪ {w}, initially 0

postit ∈ N, initially 0
msgType ∈ {WRITEACK,READACK,INFOACK}
status ∈ {idle, active}, initially idle

failed, a Boolean initiallyfalse

Transitions:
Input rcv(〈msgT, t, C, νp〉)p,s

Effect:
if ¬failed then
if status = idle andC > Counter(p) then
status← active

Counter(p)← C

if t.ts > ts then
(ts, v, vp)←

(t.ts, t.v, t.vp)
seen← {νp}

else
seen← seen ∪ νp

if msgT = WRITE then
msgType← WRITEACK

if msgT = READ then
msgType← READACK

if msgT = INFORM then
if t.ts > postit then
postit← t.ts

msgType← INFOACK

Output send(〈msgT, t, seen, C, postit〉)s,p

Precondition:
¬failed

status = active

p ∈ R ∪ {w}
〈msgT, t, seen, C, postit〉 =
〈msgType, 〈ts, v , vp〉, Counter(p), postit〉

Effect:
status ← idle

Input fails
Effect:

failed← true

Figure 6: SFs Automaton: Signature, State and Transitions
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The servers maintain a passive role. The signature, state and transitions of the SFs are

given in Figure 6. The state of the SFs contains the following variables:

• 〈ts, v, vp〉 ∈ N×V ×V : the maximum timestamp received bys in a read/write message

along with its associated value and previous value. This is the value of the register

replica.

• seen ∈ V ∪ W: a set that contains the virtual identifiers of the processesthat inquired

the register replica value from servers. If that process is the writer then it records the id

of the writer as it does not belong to any virtual node.

• postit ∈ N: the largest timestamp received bys in a message sent during the second

round of a read operation. The value of this variable indicates that some read operation

decided to return the value associated with the timestamp equal to postit.

• Counter(p) ∈ N: this array maintains the latest request index of each client (reader or

writer). It is used bys to distinguish fresh from stale messages.

• status ∈ {idle, active}: specifies whether the automaton is processing a request re-

ceived (status = active) or it can accept new requests (status = idle).

• msgType ∈ {WRITEACK,READACK,INFOACK}: Type of the acknowledgment depend-

ing on the type of the received message.

Upon receiving a read or write message (i.e., thercv event occurs) of the form

〈msgType, 〈ts′, v′, vp′〉, vid〉, the server proceeds as follows. First, it compares its local times-

tampts with the timestamp enclosed in the messagets′. If ts′ > ts then it updates the value

of its local register copy by assigning〈ts, v, vp〉 = 〈ts′, v′, vp′〉. Then, it changes itsseen set
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accordingly: if the server updates its local register valuethen it resets itsseen set and includes

only thevid enclosed in the message; otherwise it appends itsseen set withvid. Finally, it

sets its local variablepostit = ts′ if the message received is anINFORM message andpostit is

smaller thants′. Once the server updates its local variables it sends a reply(whensend occurs)

to the requesting process. Each reply is of the form〈〈ts, v, vp〉, seen, postit〉.

4.2.4 Correctness ofSF

In this section we show the correctness of our algorithm. We first prove that SF satisfies the

termination and atomicity conditions (Definitions 3.2.4 and 3.2.5). Then we verify that SF is

indeed a semifast implementation by showing that it preserves all properties of Definition 4.1.1.

The main result of this section is:

Theorem 4.2.2 Algorithm SF implements a semifast atomic SWMR read/write register.

4.2.4.1 SF Implements a Fault-Tolerant Atomic Read/Write Register

In this section we prove that algorithm SF satisfies all properties of Definitions 3.2.4 (ter-

mination) and 3.2.5 (atomicity) and thus correctly implements a fault tolerant atomic read/write

register.

Termination

According to our failure model, any subset of readers, the writer, and up tof servers may

crash. Any read or write operation in algorithm SF reaches its fixpoint whenever it receives

|S| − f replies from the server processes. Thus, since no operationwaits for replies from any
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reader or the writer, and as long as less or equal tof server processes crash, then any operation

invoked by a correct process eventually terminates. This, satisfies the termination condition.

Atomicity

Now we prove atomicity of the SF implementation. We proceed by showing that atomic

consistency is preserved between operations, no matter whether the invoking processes are

siblings or not. Operations in SF are ordered with respect to the values they write or return.

In particular, an operationπ is ordered before an operationπ′ if the value written or returned

by π is “older” than the value written or returned byπ′. To establish the order of the values,

SF associates each value with a timestamp. Timestamps writtenand returned can be used

to establish the partial order of operations and whether such order satisfies atomicity. In

particular, we say that a valueval1 associated with timestampts1 is “older” than a valueval2

associated with timestampts2 if ts1 < ts2.

Before proceeding to the proofs we introduce the notation weuse throughout the rest of

the chapter. We adopt the notation presented in Chapter 3 with some additions. We usevarp to

refer to the variablevar of the automatonAp. To access the value of a variablevar of Ap in a

stateσ of an executionξ, we useσ[p].var (see Section 3.1.1). We use the notationσfix(π), to

capture the state right after the occurrence of aread-phase1-fix event ifπ is a read operation or

write-fix event ifπ is a write operation. Finally, for an operationπ, σinv(π) andσres(π) denote

the system state before the invocation and after the response of operationπ respectively (as

presented in Section 3.2). Therefore,σres(π)[p].ts denotes the value of the variablets of the

automatonAp at the response step of operationπ and is the timestamp returned ifπ is a read

operation.
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We usesrvAck(π) to denote the set of servers that reply to the first round of operation

π and srvInf(π) to denote the set of servers that reply to the second round ofπ. Thus,

srvAck(ρ) contains the servers that receive theREAD messages, andsrvInf(ρ) contains the

servers that receive theINFORM messages fromρ. The value of the maximum timestamp

observed during a read operationρ from a readerr is σfix(ρ)[r].maxTS. As a shorthand we

usemaxTSρ = σfix(ρ)[r].maxTS to denote the maximum timestamp witnessed byρ. By

maxTsSrv(ρ) we denote the set of servers that reply withmaxTSρ. Let, maxTsMsg(ρ)

be the set of messages sent by those servers. Also, letm(π, c)p,p′ to denote the message sent

from p to p′ during thecth round of operationπ. A variablevar enclosed in a message is

denoted bym(π, c)p,p′ .var (see Section 3.1.2). Thus, for a read operationρ invoked byr,

m(ρ, c)s,r ∈ maxTsMsg(ρ) if m(ρ, c)s,r.ts = maxTSρ.

We can express the atomic order of operations on the basis of timestamps:

TS1. For each processp thetsp variable is non-negative and monotonically nondecreasing.

TS2. If a write operationω(k) precedes a read operationρ from readerr, such thatω(k) → ρ

then,σres(ρ)[r].ts ≥ k.

TS3. if a readρ returnsk (k ≥ 1), thenω(k) either precedesρ (ω(k) → ρ) or is concurrent

with ρ (ω(k) ↔ ρ),

TS4. If ρ and ρ′ are two read operations from the readersr and r′ respectively, such that

ρ → ρ′, thenσres(ρ′)[r
′].ts ≥ σres(ρ)[r].ts.

It is not difficult to see that the order of operations imposedby the conditions on the times-

tampts provides the partial order required by Defintion 3.2.5.
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We show that implementation SF preserves the above conditions in any given execution.

We begin with a lemma that plays a significant role in the correctness proof. The lemma follows

from the fact that no more thanf servers may fail and that the communication channels are

reliable.

Lemma 4.2.3 Let two readers with ids〈r, ν〉 and〈r′, ν〉 be siblings and invoke readsρ andρ′

respectively, s.t.ρ → ρ′. Then, for any executionξ ∈ goodexecs(SF, f), | |maxTsSrv(ρ)| −

|maxTsSrv(ρ′)| | ≤ f .

We now proceed to show the first and third atomicity conditions (as given above) as their

proof arguments are simpler to present.

Lemma 4.2.4 For any executionξ ∈ goodexecs(SF, f), if a read operationρ in ξ returns, it

returns a non negative integer.

Proof. From algorithm SF the value of the timestamp is incremented by the automaton SFw.

Since the timestamp variable at any automaton is initialized to 0, then any automaton witnesses

a timestamp≥ 0. As any read operationρ may returnmaxTSρ or maxTSρ − 1, when

maxTSρ ≥ 1 (and thus some write operation is invoked), thenmaxTSρ ≥ 0. So it remains to

examine the case wheremaxTSρ = 0.

Consider an executionξ of SF. The timestamptss variable of the SFs automaton, for

every servers ∈ S, is initialized to0 in ξ. Consider now a read operationρ in ξ that is

performed by the reader〈r, νr〉 and witnessesmaxTSρ = 0. It follows thatρ receives more

than|S|−f replies withmaxTSρ = 0. Before replying toρ, each servers ∈ srvAck(ρ) adds

the virtual id,νr, of the reader in itsseen set. So, every servers ∈ srvAck(ρ) will reply with
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a timestampm(ρ, 1)s,r.ts = 0 and am(ρ, 1)s,r.seen set that contains at least the elementνr.

Thus,|maxTsSrv(ρ)| ≥ |S| − f and the predicate will be true forβ = 1. Therefore,ρ will

returnmaxTSρ = 0 which is not negative. This completes the proof.

2

We now show that the timestamp of any server is monotonicallyincreasing.

Lemma 4.2.5 In any executionξ ∈ goodexecs(SF, f), if σ[s].ts = k for a servers ∈ S, then,

given any stateσ′ such thatσ appears beforeσ′ in ξ andσ′[s].ts = y, we have thaty ≥ k.

Proof. This is ensured by actionrcv(m)p,s of the SFs in Figure 6. The timestamp variable

tss of the server automaton changes only if the received timestamp from processp for some

read/write operationπ, is m(π, ∗)p,s.ts ≥ tss when thercv(m(π, ∗)p,s)p,s event occurs; oth-

erwise it remains unchanged. Thus, ifσ[s].ts = k at stateσ, then for any stateσ′ that comes

afterσ in ξ, σ′[s].ts ≥ σ[s].ts, and hencey ≥ k. 2

We now show the monotonicity of the postits for any server.

Lemma 4.2.6 In any executionξ ∈ goodexecs(SF, f), if σ[s].postit = k for a servers ∈ S

then, given any sateσ′ such thatσ appears beforeσ′ in ξ andσ′[s].postit = y, we have that

y ≥ k.

Proof. This is ensured by actionrcv(m)p,s of Figure 6. 2

Given the above lemmas we can prove conditionTS2by the following lemma:

Lemma 4.2.7 For any executionξ ∈ goodexecs(SF, f), if a readρ is complete and succeeds

some writeω(k) (ω(k) → ρ), thenρ returnsℓ such thatℓ ≥ k.
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Proof. Suppose that the writerω performs aω(k) operation and precedes the readρ op-

eration by reader〈r, νr〉 in executionξ. Let srvAck(ω(k)) be the|S| − f servers that re-

ply to ω(k) in the same execution. The read operationρ may witness timestampk from

maxTsSrv(ρ) = srvAck(ω(k))∩ srvAck(ρ), with cardinality|maxTsSrv(ρ)| ≥ |S|− 2f ,

asρ may missf servers that replied to theω(k). Sinceω(k) → ρ the timestampm(ρ, 1)s,r.ts

from each servers ∈ maxTsSrv(ρ), per Lemma 4.2.5, is greater or equal tok. So,ρ receives

a maximum timestampmaxTSρ ≥ k. From the implementation we know that the reader re-

turns eithermaxTSρ or maxTSρ − 1. We consider two cases:

Case 1: maxTSρ > k. Sinceρ returns eithermaxTSρ or maxTSρ − 1, it follows that either

case it returns a timestamp greater or equal tok.

Case 2: maxTSρ = k. As we mentioned above each server inmaxTsSrv(ρ) replies with a

m(ρ, 1)s,r.ts ≥ k. SincemaxTSρ = k, every servers ∈ maxTsSrv(ρ) replies with a times-

tampm(ρ, 1)s,r.ts = k to ρ. So, for everys ∈ maxTsSrv(ρ), m(ρ, 1)s,r ∈ maxTsMsg(ρ).

Thus, |maxTsMsg(ρ)| ≥ |S| − 2f . But since every servers ∈ maxTsSrv(ρ) receives a

message withm(ω(k), 1)w,s.ts = k from the writer before receiving any message fromρ,

thenw is included in theseen set ofs. Also, before anys ∈ maxTsSrv(ρ) responds toρ,

it includesνr in its seen set. So,SF-RP will hold for β = 2 andρ returnsmaxTSρ = k.

Observe that any read operation returnsmaxTSρ, since the writerw has no sibling, and thus

the predicate holds forβ = 2 no matter which reader performs the read operation. 2

We say that apostit = k is introducedin the system by a read operationρ, if ρ is com-

plete, performs two rounds, and sends message (INFORM, k, , ) during its second round. The

following lemma shows that if apostit = k is introduced to the system, then there exists a

maximum timestampmaxTS in the system such thatmaxTS ≥ k.
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Lemma 4.2.8 For any executionξ ∈ goodexecs(SF, f), if ∃s ∈ S s.t. σ[s].postit = k

when it receives a message from a read operationρ at some stateσ, then any succeeding read

operationρ′ will observe a maximum timestampmaxTSρ′ ≥ k.

Proof. Consider an executionξ of SF where the read operationρ introduces a postit equal tok

to the system. It follows thatρ observes as the maximum timestamp in the systemmaxTSρ =

k. Assume that|maxTsMsg(ρ)| ≥ |S| − βf and| ∩m∈maxTsMsg(ρ) m.seen| = β, and thus

ρ performs an informative operation. Sinceβ ∈ [1, |V| + 1] and|S| > (|V| + 2)f , we get that

|maxTsMsg(ρ)| > f . So, ifsrvAck(ρ′) is the set of servers that replies toρ′ (|srvAck(ρ′)| =

|S| − f ), then per Lemma 4.2.5 there is a server,s ∈ maxTsSrv(ρ) ∩ srvAck(ρ′) that

replies toρ′ with a timestampm(ρ′, 1)s,r′ .ts ≥ k. Since,ρ′ detects a maximum timestamp

maxTSρ′ ≥ m(ρ′, 1)s,r′ .ts, hencemaxTSρ′ ≥ k. 2

Lemma 4.2.9 For any executionξ ∈ goodexecs(SF, f) if a read operationρ receives a

postit = k thenρ will return a valuey ≥ k.

Proof. Consider an executionξ of SF which contains a read operationρ by a reader〈r, νr〉. It

follows from Lemma 4.2.8 that if readρ receives apostit = k, then it will detect a maximum

timestampmaxTSρ ≥ k. LetmaxTSρ = k. So, either the predicate will hold or the condition

whetherpostitr = maxTSρ will be true andρ will return y = maxTSρ in both cases. Thusρ

will return y = k. If now maxTSρ > k thenρ will return y = maxTSρ if the predicate holds

or y = maxTSρ − 1 otherwise. Note that sincepostit = k, it is less thanmaxTSρ and so the

postit condition does not hold. Either caseρ will return a valuey ≥ k. 2

We proceed to the proof of conditionTS3.
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Lemma 4.2.10 In any executionξ ∈ goodexecs(SF, f), if a read operationρ returnsk ≥ 1,

then the write operationω(k) either precedesρ (ω(k) → ρ) or is concurrent withρ.

Proof. Consider an executionξ of SF. Note that in order for a timestampk to be introduced

in the system duringξ a write operationω(k) must be invoked (since only the writer incre-

ments the timestamp). We now investigate what happens when areader returns a timestamp

ts = k in ξ. We know thatρ returns, according to the implementation, eitherk = maxTSρ or

k = maxTSρ − 1. The first case is possible if the predicateSF-RPholds for the reader or if

the reader observes somepostit = maxTSρ. If the predicate holds,ρ detectsmaxTSρ = k

in |maxTsMsg(ρ)| ≥ |S| − βf messages. Since|V| < |S|
f

− 2 and β ≤ |V| + 1, then

|maxTsMsg(ρ)| > f . So, there is at least one servers ∈ srvAck(ρ) that receives messages

from ω(k) before replying toρ. If ρ returnsk because of a postit, then per Lemma 4.2.8, times-

tampk was already introduced in the system. Thus, for both casesω(k) is either concurrent or

precedes the read operationρ.

In the case where the reader returnsk = maxTSρ − 1 it follows that the reader detects a

maximum timestampmaxTSρ = k + 1 in the system. Thus, theωk+1 operation has already

been initiated by the writer. Hence,ω(k) operation has already been completed and preceded

ρ or was concurrent and completed beforeρ completes. 2

We next prove that conditionTS4, is satisfied for read operations invoked from sibling

(Lemma 4.2.11) or non-sibling (Lemma 4.2.12) readers. We proceed by investigating all cases

of the predicateSF-RP used in algorithm SF in either of the above cases. Note, that the

relation between the readers may affect the cardinality of theseen set at the server side. Thus,

we analyze each case separately.
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Lemma 4.2.11 For any executionξ ∈ goodexecs(SF, f) that contains two read operationρ

andρ′, s.t.ρ andρ′ are invoked by the sibling readers〈r, z〉 and〈r′, z〉 respectively andρ → ρ′,

then ifρ returnsk andρ′ returnsy, y ≥ k.

Proof. We consider an executionξ of SF. We first investigate the case wherer = r′. In

this caseρ denotes the first read operation ofr andρ′ a succeeding read operation from the

same reader. Letσres(ρ)[r].ts = k be the value returned fromρ. During the readρ′, r sends

a READ message to every servers ∈ S with m(ρ′, 1)r,s.ts = maxTSρ ≥ k. This message

is received by every servers′ ∈ srvAck(r′) which according to Lemma 4.2.5 replies with

a timestampm(ρ′, 1)s,r.ts ≥ maxTSρ ≥ k. So, maxTSρ′ ≥ k. If maxTSρ′ = k then

|maxTsMsg(ρ′)| = |S| − f and the predicate holds forβ = 1. Thus,y = maxTSρ′ = k.

Otherwise, ifmaxTSρ′ > k, they will be equal tomaxTSρ′ or maxTSρ′ − 1 and thus, in

either casey ≥ k. By a simple induction we can show that this is true for every read operation

of r(includingρ′) afterρ. For the rest of the proof we assume thatr 6= r′. We investigate the

following two possible cases: (1)ρ returnsk = maxTSρ − 1 and (2)ρ returnsk = maxTSρ.

In all cases we show thatk ≤ y or that the case is impossible.

Case 1: In this casek = maxTSρ − 1. Therefore, some servers reply toρ with maxTSρ =

k + 1, and hence a write operationω(k + 1) has started beforeρ is completed. Soω(k)

completes beforeρ completes and thereforeω(k) → ρ′ sinceρ → ρ′. Thus by Lemma 4.2.7

ρ′ returns a valuey ≥ k.

Case 2: In this casek = maxTSρ. Hence either there is someβ ∈ [1, |V| + 1] such that

|maxTsMsg(ρ)| ≥ |S| − βf and | ∩m∈maxTsMsg(ρ) m.seen| ≥ β or ρ received apostit

equal tomaxTSρ from some server. We examine those two possibilities.
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Case 2(a): It follows that k = maxTSρ, and there is someβ ∈ [1, |V| + 1] such

that maxTsMsg(ρ) consist at least|S| − βf messages received byρ with timsetampk

and | ∩m∈maxTsMsg(ρ) m.seen| ≥ β. Since |V| < |S|
f

− 2 and β ∈ [1, |V| + 1],

then |maxTsMsg(ρ)| = |S| − βf > f . Following we investigate the cases where

| ∩m∈maxTsMsg(ρ) m.seen| = β and | ∩m∈maxTsMsg(ρ) m.seen| > β. (1) First lets ex-

amine the case whereρ returnsk = maxTSρ because| ∩m∈maxTsMsg(ρ) m.seen| = β.

According to the implementation,ρ has to inform|srvInf(ρ)| ≥ 2t + 1 servers about its

return value,k. Sinceρ precedesρ′, at least|srvInf(ρ) ∩ srvAck(ρ′)| ≥ f + 1 servers,

that informed byρ, will reply to ρ′. Any servers ∈ srvInf(ρ) ∩ srvAck(ρ′), by Lemma

4.2.8 will reply with am(ρ′, 1)s,r′ .postit ≥ k to ρ′ and with a timestampm(ρ′, 1)s,r′ .ts ≥ k.

So ρ′ will observe a maximum timestampmaxTSρ′ ≥ k. According now to Lemma 4.2.9

ρ′ will return a valuey ≥ k. (2) The second case arise whenρ returnsk = maxTSρ be-

cause| ∩m∈maxTsMsg(ρ) m.seen| > β. We can split this case in two subcases regarding

the value returned byρ′. The two possible values thatρ′ might return isy = maxTSρ′ or

y = maxTSρ′ − 1:

(i) Consider the case wherey = maxTSρ′ . Since ρ returnedk = maxTSρ, as we

showed in Lemma 4.2.10 , there is a write operationω(k) that precedes or is concurrent

with ρ. As stated above|maxTsMsg(ρ)| > f and hence there is a servers such that

s ∈ maxTsSrv(ρ) ∩ srvAck(ρ′). By Lemma 4.2.5,s sends a timestampm(ρ′, 1)s,r′ .ts ≥ k

to ρ′, and hencemaxTSρ′ ≥ k. Soy ≥ k.

(ii) Now, consider the case whereρ′ returnsy = maxTSρ′ − 1. Since|maxTsSrv(ρ)| > f ,

there must be a servers ∈ maxTsSrv(ρ) ∩ srvAck(ρ′) and s replies with a timestamp

m(ρ′, 1)s,r′ .ts ≥ k to ρ′. So the highest timestamp insrvAck(ρ′)(i.e. maxTSρ′ = y + 1)
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will be greater or equal tok. If the inequality is true, namelyy + 1 > k, then clearly

the value returned byρ′ is y ≥ k. If the equality holds andy + 1 = x then the

highest timestamp received byρ′, maxTSρ′ = y + 1 = k. Hence, any servers ∈

maxTsSrv(ρ) ∩ srvAck(ρ′) replies with a timestampm(ρ′, 1)s,r′ .ts = x = y + 1 to ρ′.

Recall that in this case we assumed that| ∩m∈maxTsMsg(ρ) m.seen| > β. Also, according

to Lemma 4.2.3,||maxTsMsg(ρ′)| − |maxTsMsg(ρ)|| ≤ f and since|maxTsSrv(ρ)| =

|maxTsMsg(ρ)| ≥ |S|−βf , it follows thatρ′ receives the maximum timestampmaxTSρ′ =

k from |maxTsSrv(ρ′)| = |maxTsMsg(ρ′)| ≥ |S| − (β + 1)f servers. Notice, that for any

s ∈ maxTsSrv(ρ) ∩ S2, m(ρ, 1)s,r.ts = m(ρ′, 1)s,r′ .ts = k. Since the timestamp is the

same ands sentm(ρ, 1)s,r beforem(ρ′, 1)s,r′ thenm(ρ, 1)s,r.seen ⊆ m(ρ′, 1)s,r′ .seen. As

a result| ∩m∈maxTsMsg(ρ) m.seen| ≤ | ∩m∈maxTsMsg(ρ′) m.seen|. Notice that, since the

two readers are siblings, if nonon-sibling reader receives replies from those servers in be-

tweenρ andρ′, thenm(ρ, 1)s,r.seen = m(ρ′, 1)s,r′ .seen and| ∩m∈maxTsMsg(ρ) m.seen| =

| ∩m∈maxTsMsg(ρ′) m.seen|. Either case,| ∩m∈maxTsMsg(ρ′) m.seen| > β and hence

| ∩m∈maxTsMsg(ρ′) m.seen| ≥ β + 1. Observe that the predicateSF-RP holds forβ + 1

since|maxTsMsg(ρ′)| ≥ |S| − (β + 1)f , and thusρ′ must returnmaxTSρ′ = k = y + 1,

contradicting the initial assumption thatρ′ returnsy = k − 1. The same result applies in both

cases whereβ ≤ |V| andβ = |V| + 1 since theseen set remains unchanged.

Case 2(b):Hereρ returnsk = maxTSρ because some postits equal tomaxTSρ received by

ρ. We have to consider two cases here. Either (1)ρ receives more thanf + 1 postits, or (2)ρ

receives less thanf + 1 postits. Both cases imply that, a reader〈r′′, νr′′〉 performed a readρ′′,

and is about to return or already returned the maximum timestamp (which is equal tomaxTSρ)

in the system. Furthermore implies thatρ′′ initiates an informative phase which is concurrent
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or precedes the read operationρ. By analyzing the cases we obtain the following results:

(1) If ρ receives more than or equal tof + 1 messages containing a postit with value

postit = maxTSρ = k, then the writerw initiated aω(k) operation during or beforeρ is

completed. Every servers ∈ srvInf(ρ′′) ∩ srvAck(ρ) replies toρ with m(ρ, 1)s,r.postit =

maxTSρ. The readerr′ receives replies from|srvAck(ρ′)| = |S| − f servers. Since

|srvInf(ρ′′)∩srvAck(ρ)| ≥ f +1, then|srvAck(ρ′)∩ (srvInf(ρ′′)∩srvAck(ρ))| ≥ 1. So

the read operationρ′ receives a reply from at least one servers ∈ srvInf(ρ′′) ∩ srvAck(ρ).

Hence, from Lemma 4.2.6,ρ′ receives apostits ≥ k from s and according to Lemma 4.2.9

will return a valuey ≥ postits and thusy ≥ k.

(2) Let us now examine the case whereρ receives less thanf + 1 messages containing postits

with value equal tomaxTSρ. Let us assume again that|srvInf(ρ′′) ∩ srvAck(ρ)| < f + 1

is the set of servers that reply withpostit = maxTSρ to ρ. Since |srvAck(ρ′)| =

|S| − f , it is possible that|(srvInf(ρ′′) ∩ srvAck(ρ)) ∩ srvAck(ρ′)| = 0, So ρ in-

forms |srvInf(ρ)| ≥ 2f + 1 servers with apostit = maxTSρ before completing. So

there exists a servers′ ∈ srvAck(ρ′) ∩ srvInf(ρ) that replies toρ′. By Lemma 4.2.6,s′

replies with am(ρ′, 1)s′,r′ .postit ≥ maxTSρ, and by Lemma 4.2.9,ρ′ returns a timestamp

y ≥ m(ρ′, 1)s′,r′ .postit. Henceρ′ returns a valuey ≥ k. 2

We now examine if the timestamps returned by non sibling processes satisfy conditionTS4

presented above.

Lemma 4.2.12 For any executionξ ∈ goodexecs(SF, f) that contains two read operationρ

andρ′, s.t. ρ andρ′ are invoked by non-sibling readers〈r, νr〉 and〈r′, νr′〉 respectively and

ρ → ρ′, then ifρ returnsk andρ′ returnsy, y ≥ k.
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Proof. Consider an executionξ of SF. We study the case wherer 6= r′ andνr 6= νr′ in

ξ, and hence the two readers are not siblings. We proceed in cases and show thaty ≥ k

or the case is impossible. We know thatρ may return eithermaxTSρ or maxTSρ − 1. It

can be shown similarly to case (1) of Lemma 4.2.11 that whenρ returnsk = maxTSρ − 1

then ρ′ returnsy ≥ k. It remains to investigate the cases where: (1)ρ returnsmaxTSρ

because the predicateSF-RPdoes not hold but it receives somepostit = maxTSρ, and (2)

ρ returnsmaxTSρ because it receives|maxTsMsg(ρ)| messages that contain the maximum

timestampmaxTSρ such that there isβ ∈ [1 . . . |V| + 1] and|maxTsMsg(ρ)| ≥ |S| − βf

and| ∩m∈maxTsMsg(ρ) m.seen| ≥ β.

Case 1: In this caseρ returnsk = maxTSρ because some servers ∈ srvAck(ρ) replies

with m(ρ, 1)s,r.postit = maxTSρ. According to SF some process (sibling or not ofr),

say r′′, performs a read operationρ′′ and is about, or already returned a timestamp equal

to maxTSρ. There are two cases to consider based on the cardinality ofsrvInf(ρ′′) ∩

srvAck(ρ): (1) |srvInf(ρ′′) ∩ srvAck(ρ)| ≥ f + 1 and (2)|srvInf(ρ′′) ∩ srvAck(ρ)| <

f + 1. If (1) is true andr receives|srvInf(ρ′′) ∩ srvAck(ρ)| ≥ f + 1, then ρ re-

turns k = maxTSρ without performing a second communication round. Since theset

of servers that respond toρ′ is |srvAck(ρ′)| = |S| − f , it follows that there is at least

one servers ∈ srvAck(ρ′) ∩ (srvInf(ρ′′) ∩ srvAck(ρ)). According to Lemma 4.2.6,s

replies toρ′ with a m(ρ′, 1)s,r′ .postit ≥ k. Furthermore by Lemma 4.2.9,ρ′ returns a value

y ≥ m(ρ′, 1)s,r′ .postit. So obviouslyρ′ returns a valuey ≥ k. On the other hand if (2) is true

andρ receives|srvInf(ρ′′) ∩ srvAck(ρ)| < f + 1 postits, then, before returning,ρ informs

every servers ∈ srvInf(ρ) (|srvInf(ρ)| ≥ 2f + 1) with a m(ρ, 2)r,s.postit = maxTSρ.
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So there exists a servers ∈ srvAck(ρ′) ∩ srvInf(ρ) that replies toρ′. By Lemma 4.2.6s,

replies with am(ρ′, 1)s,r′ .postit ≥ maxTSρ and by Lemma 4.2.9 it follows thatρ′ returns a

timestampy ≥ m(ρ′, 1)s,r′ .postit. Hence it follows again thaty ≥ k.

Case 2: This is the case whereρ returnsmaxTSρ because the predicateSF-RP holds,

namely, there isβ ∈ [1 . . . |V| + 1] and |maxTsMsg(ρ)| ≥ |S| − βf such that

| ∩m∈maxTsMsg(ρ) m.seen| ≥ β. Recall again that sinceβ ∈ [1 . . . |V|+ 1] and|V| < |S|
f
− 2,

|maxTsMsg(ρ)| ≥ |S| − βf > f . So, if maxTsSrv(ρ) are the servers that reply with

messages inmaxTsMsg(ρ), there is at least one servers ∈ maxTsSrv(ρ) ∩ srvAck(ρ′).

Therefore,s replies toρ′, by Lemma 4.2.5, with a timestampm(ρ′, 1)s,r′ .ts ≥ k. Hence,ρ′

observes a maximum timestampmaxTSρ′ ≥ k. If ρ′ observesmaxTSρ′ > k then clearly,

sinceρ′ returns eithery = maxTSρ′ or y = maxTSρ′ −1, it returns a valuey ≥ k. It remains

to investigate the case where the maximum timestamp observed byρ′ is maxTSρ′ = k. Since

maxTSρ′ = maxTSρ = k it follows that any server ins ∈ maxTsSrv(ρ) ∩ srvAck(ρ′)

replies toρ′ with a timestampm(ρ′, 1)s,r′ .ts = k. Furthermore, sinceρ′ might miss up to

f servers frommaxTsSrv(ρ) and |maxTsSrv(ρ)| = |maxTsMsg(ρ)| ≥ |S| − βf , it

follows thatρ′ receives the maximum timestampmaxTSρ′ = k from |maxTsSrv(ρ′)| =

|maxTsMsg(ρ′)| ≥ |S| − (β + 1)f servers. There are two possible return values forρ′.

Eithery = maxTSρ′ = k or y = maxTSρ′ − 1 ⇒ y + 1 = k. So the only case that needs

further investigation is wheny + 1 = k. We consider two possible scenarios:ρ satisfies the

SF-RPwith an (1)β < |V| + 1 and (2)β = |V| + 1.

Case 2(a): Here ρ satisfies the predicate usingβ < |V| + 1. This implies that

∩m∈maxTsMsg(ρ)m.seen might contain less than|V| + 1 elements and thus not every virtual

81



Nicolas C. Nicolaou––University of Connecticut, 2011

identifier is included. So we have to consider two subcases: (1) νr′ /∈ ∩m∈maxTsMsg(ρ)m.seen

and (2)νr′ ∈ ∩m∈maxTsMsg(ρ)m.seen.

(1) Let us first assume thatνr′ /∈ ∩m∈maxTsMsg(ρ)m.seen. Consider the set of servers

maxTsSrv(ρ) ∩ srvAck(ρ′). Since|maxTsSrv(ρ)| = |maxTsMsg(ρ)| ≥ |S| − βf and

|srvAck(ρ′)| = |S| − f then|maxTsSrv(ρ) ∩ srvAck(ρ′)| ≥ |S| − (β + 1)f ≥ 1. Also,

since the readρ precedesρ′, and any servers ∈ maxTsSrv(ρ) replies withm(ρ, 1)s,r.ts =

maxTSρ = k to ρ, then any servers′ ∈ maxTsSrv(ρ)∩srvAck(ρ′) replies with a timestamp

m(ρ′, 1)s′,r′ .ts ≥ k to ρ′. So, all the servers in the setmaxTsSrv(ρ) ∩ srvAck(ρ′) reply to

ρ′ with m(ρ′, 1)s′,r′ .ts = k = y + 1. For any servers′ ∈ maxTsSrv(ρ) ∩ srvAck(ρ′),

we know thatm(ρ, 1)s′,r.ts = m(ρ′, 1)s′,r′ .ts = k. Since m(ρ, 1)s′,r is sent before

m(ρ′, 1)s′,r′ , then m(ρ, 1)s′,r.seen ⊆ m(ρ′, 1)s′,r′ .seen. Thus∩m∈maxTsMsg(ρ)m.seen ⊆

∩m∈maxTsMsg(ρ′)m.seen. Moreover, every servers ∈ maxTsSrv(ρ′) addsνr′ into its

seen set before replying toρ′. Therefore,νr′ ∈ ∩m∈maxTsMsg(ρ′)m.seen. By assump-

tion, νr′ /∈ ∩m∈maxTsMsg(ρ)m.seen, and so it follows that| ∩m∈maxTsMsg(ρ′) m.seen| ≥

| ∩m∈maxTsMsg(ρ) m.seen| + 1 ≥ β + 1. Since|maxTsSrv(ρ′)| = |maxTsMsg(ρ′)| and

|maxTsSrv(ρ′)| ≥ |maxTsSrv(ρ) ∩ srvAck(ρ′)| ≥ |S| − (β + 1)f , then the predicate

SF-RP holds forρ′ with β + 1. Thusρ′ returnsmaxTSρ′ = k = y + 1, contradicting the

assumption that it returnsy < k.

(2) Let us now consider the case whereνr′ ∈ ∩m∈maxTsMsg(ρ)m.seen. So either (i)r′

itself or (ii) a sibling of r′ performs a read operation beforeρ′. Assume that (i)r′ it-

self performs a read, sayρ′′, beforeρ′. So sinceνr′ ∈ ∩m∈maxTsMsg(ρ)m.seen, r′ re-

ceives a maximum timestampmaxTSρ′′ = maxTSρ during read operationρ′′. Due to

well-formedness (Definition 3.2.2)ρ′′ → ρ′ and so, duringρ′, r′ sends aREAD message
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with m(ρ′, 1)r′,s.ts = maxTSρ ≥ k to every servers ∈ S. This message is received

by any servers ∈ srvAck(ρ′) which according to Lemma 4.2.5 replies with a timestamp

m(ρ′, 1)s,r′ .ts ≥ maxTSρ ≥ k. If m(ρ′, 1)s,r′ .ts = k then the set of servers that reply

with the maximum timestampmaxTSρ to ρ′ is |maxTsSrv(ρ′)| = |srvAck(ρ′)| ≥ |S| − f .

Since every servers ∈ srvAck(ρ′) before replies toρ′ addsνr′ to its seen set, then predi-

cateSF-RPholds withβ = 1. If now m(ρ′, 1)s,r′ .ts > k, thenρ′ returns a valuey such that

y = m(ρ′, 1)s,r′ .ts or y = m(ρ′, 1)s,r′ .ts−1 and thus in any casey ≥ k. Both cases contradict

the assumption thaty + 1 = k.

In case (ii)νr′ ∈ ∩m∈maxTsMsg(ρ)m.seen because a sibling ofr′ initiates a read operation

beforeρ′. As we discussed above,|maxTsSrv(ρ′)| ≥ |maxTsSrv(ρ) ∩ srvAck(ρ′)| ≥

|S| − (β + 1)f and furthermore any servers ∈ maxTsSrv(ρ) ∩ srvAck(ρ′) replies

to ρ′ with a timestampm(ρ′, 1)s,r′ .ts = k = y + 1. Let m(ρ, 1)s,r and m(ρ′, 1)s,r′

be the messages of a servers ∈ maxTsSrv(ρ) ∩ srvAck(ρ′), in maxTsMsg(ρ) and

maxTsMsg(ρ′) respectively. We know thatm(ρ, 1)s,r.ts = m(ρ′, 1)s,r′ .ts. Since

m(ρ, 1)s,r is sent beforem(ρ′, 1)s,r′ , then m(ρ, 1)s,r.seen ⊆ m(ρ′, 1)s,r′ .seen. Thus,

∩m∈maxTsMsg(ρ)m.seen ⊆ ∩m∈maxTsMsg(ρ′)m.seen. Every server that replies toρ′, first

addsνr′ into its seen set and thusνr′ ∈ ∩m∈maxTsMsg(ρ′)m.seen. Since though,νr′

was already in∩m∈maxTsMsg(ρ)m.seen, it follows that | ∩m∈maxTsMsg(ρ′) m.seen| ≥

|∩m∈maxTsMsg(ρ) m.seen| ≥ β. If | ∩m∈maxTsMsg(ρ) m.seen| > β, then| ∩m∈maxTsMsg(ρ′)

m.seen| ≥ β + 1. Since |maxTsSrv(ρ′)| = |maxTsMsg(ρ′)| ≥ |S| − (β + 1)f ,

SF-RP holds with β + 1 and ρ′ returnsmaxTSρ′ = k = y + 1. If on the other hand

| ∩m∈maxTsMsg(ρ) m.seen| = β then ρ performs an informative operation before return-

ing, sending them(ρ, 2)r,s.postit = k to every servers in the set|srvInf(ρ)| ≥ 2f + 1.

83



Nicolas C. Nicolaou––University of Connecticut, 2011

So, there is a servers ∈ srvAck(ρ′) ∩ srvInf(ρ) that replies, by Lemma 4.2.6, with

a m(ρ′, 1)s,r′ .postit ≥ k to ρ′. So according to Lemma 4.2.9,ρ′ returns a valuey ≥

m(ρ′, 1)s,r′ .postit ≥ k. Hence we derive contradiction based on the initial assumption that

k = y + 1.

Case 2(b): ρ satisfies the predicate withβ = |V| + 1. Since |W ∪ V| = |V| + 1 and

| ∩m∈maxTsMsg(ρ) m.seen| ≥ β = |V| + 1, it follows thatνr′ ∈ ∩m∈maxTsMsg(ρ)m.seen.

Observe that the set of servers that reply toρ with messages inmaxTsMsg(ρ),

|maxTsSrv(ρ)| ≥ |S| − βf > f . So as shown in the previous case (Case 2(a))ρ′ returns a

valuey ≥ k deriving a contradiction. 2

Theorem 4.2.13Algorithm SF implements an atomic read/write register in the SWMR model.

Proof. Since the writer, any subset of readers and up tof servers might fail by crashing,

we ensure termination in any execution of the implementation by letting any reader or writer

to wait for messages only from|S| − f servers during any communication round. All the

conditionsTS1 - TS4are preserved in any executionξ by Lemmas 4.2.4, 4.2.10, 4.2.7, 4.2.12.

Thus, the order of operations satisfy all the atomicity properties (Definition 3.2.5). Since both

termination and atomicity properties are preserved the result follows. 2

4.2.4.2 SF is a SemiFast implementation

In this section we show that implementation SF is a semifast implementation, that is, it

satisfies all the properties of Definition 4.1.1. We use the same notation as in the previous

section. We first show that SF satisfies propertyS3of Definition 4.1.1.
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Lemma 4.2.14 For any executionξ ∈ goodexecs(SF, f), if ρ is a two-round read operation,

then any read operationρ′ with R(ρ) = R(ρ′), such thatρ → ρ′ or ρ′ → ρ, must be fast.

Proof. Sinceρ′ may precede or succeedρ we examine the two cases. We proceed by con-

sidering an executionξ of SF that contains bothρ andρ′, and we show that in each caseρ′

is fast or the case is not possible. For the rest of the proof westudy the timestamps returned

by the read operations since every value is associated with aunique timestamp. Let us as-

sume that timestampts = k is associated withvalk, written by the unique write operation

R(ρ) = R(ρ′) = ω(k).

Case 1: Starting with the case whereρ → ρ′ there are two subcases to investigate: (a)ρ′

observes a maximum timestamp equal tok, and (b)ρ′ observes a maximum timestampk + 1.

Obviously in the second subcase,ρ′ is concurrent withω(k + 1) but ω(k + 1) is not yet

completed.

The fast behavior ofρ′ in the first subcase follows from the fact thatρ informs every

servers in the set|srvInf(ρ)| ≥ 2f + 1 with the timestampm(ρ, 2)r,s.ts = k. So ρ′

witnesses|srvAck(ρ′)∩ srvInf(ρ)| ≥ f +1 postits equal tok during its first communication

round. Since the maximum timestampmaxTSρ′ observed byρ′ is also equal tok, thenρ′,

according to Lemma 4.2.9, returnsmaxTSρ′ no matter the validity ofSF-RP. Moreover since

|srvAck(ρ′)∩srvInf(ρ)| ≥ f +1 any subsequent read operation witnesses at least one server

in srvInf(ρ) and thusρ′ completes without proceeding to a second communication round.

Consider now the second subcase whereρ′ observes a maximum timestamp equal tok +

1. From the implementation we know that a read operation may return either the observed

maximum timestampmaxTSρ′ or maxTSρ′ − 1. Sinceρ′ returnsk, it implies that a decision
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for returningmaxTSρ′ − 1 is taken byρ′. According to the implementation, a reader may

perform a second communication round only when it decides toreturn maxTSρ′ . In any

other case the reader is not required to perform two communication rounds. Soρ′ returns

maxTSρ′ − 1 in one communication round as desired.

Case 2:Consider now the case whereρ′ → ρ. Sinceρ performs two communication rounds, it

returns the maximum timestampk, thatρ observed during its first communication round. On

the other handρ′ also returnsk, by either returningmaxTSρ′ or maxTSρ′ − 1. Soρ′ may

observe a maximum timestampmaxTSρ′ = k or maxTSρ′ = k + 1.

Let us first investigate the case wheremaxTSρ′ = k+1. Recall thatρ receives replies from

|srvAck(ρ)| = |S| − f servers. Sinceρ observes amaxTSρ = k, then ifmaxTSρ′ = k + 1,

it means thatk + 1 is introduced to less thanf servers in the system. In order forρ′ to

satisfySF-RP there must exist anmaxTsMsg(ρ′) that contains messages of the servers in

maxTsSrv(ρ′), such that|maxTsMsg(ρ′)| ≥ |S| − βf for β ∈ {1, . . . , |V| + 1} and|V| <

|S|
f
− 2. Therefore we require that|maxTsMsg(ρ′)| ≥ f . However since|maxTsSrv(ρ′)| ≥

|maxTsMsg(ρ′)| and |maxTsSrv(ρ′)| ≤ f , we have that|maxTsMsg(ρ′)| ≤ f and thus

the predicate does not hold forρ′. Notice that for each read operationρ′′ → ρ (including ρ′)

observing a maximum timestampmaxTSρ′′ = k + 1, SF-RPdoes not hold and hence no read

operation performs a second communication round informingthe servers with apostit = k+1.

So it follows that the second condition whether there arepostit = k + 1 is false forρ′ as well

and thusρ′ returnsmaxTSρ′ − 1 = k. As previously stated, if aρ′ returnsmaxTSρ′ − 1, it

does so in one communication round.

86



Nicolas C. Nicolaou––University of Connecticut, 2011

It is left to examine the case whereρ′ observes amaxTSρ′ = k. Remember that

ρ performs a second communication round in two cases: (a) the predicate holds with

| ∩m∈maxTsMsg(ρ) m.seen| = β and (b) it observes “insufficient” postits sent by a concurrent

read operation. For simplicity of our analysis we assume that no read operation is concurrent

with ρ and thatρ performes a second communication round because case (a) is true. Since

ρ′ returnsmaxTSρ′ = k then either (i) the predicate holds forρ′ or (ii) ρ′ observed some

postit = k. Let us examine those subcases and show that in each caseρ′ is fast or the case is

impossible.

Suppose that the predicate holds forρ′. So there is anβ ∈ {1, . . . , |V| + 1} and there is

|maxTsMsg(ρ′)| ≥ |S|−βf such that|∩m∈maxTsMsg(ρ′)m.seen| ≥ β. If |∩m∈maxTsMsg(ρ′)

m.seen| = β thenρ′ proceeds to a second communication round informing|srvInf(ρ′)| ≥

2f +1 servers about the maximum timestamp is about to return,maxTSρ′ = k. Sinceρ′ → ρ,

then |srvAck(ρ) ∩ srvInf(ρ′)| ≥ f + 1, and thus,ρ observes “enough” postists equal to

k = maxTSρ and does not perform a second communication round. This however contradicts

our initial assumption, rendering this case impossible forρ′. Therefore the predicate validity

is possible forρ′, only if | ∩m∈maxTsMsg(ρ′) m.seen| > β. This is the case though whereρ′

returns in one communication round as desired.

It remains to study the case whereρ′ returnsmaxTSρ′ = k because of some postits equal

to k. There are two subcases to consider: (1)ρ′ does not observe more thanf + 1 postits so it

performs a second communication round and (2)ρ′ observes more thanf+1 postits and returns

in one communication round. The first subcase results inρ performing only one communica-

tion round as described above contradicting our initial assumption. In the second subcase

there is a read operationρ′′ that is concurrent or precedesρ′ and performs two communication
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rounds. Sinceρ′ receives more thanf + 1 postits equal tomaxTSρ′ , it returns in one commu-

nication round. Moreover, since we assumed that no read operation is concurrent withρ, then

ρ′′ completes before the invocation ofρ. Soρ′′ will inform at least|srvInf(ρ′′)| = 2f + 1

servers with a postit equal tok. Hence|srvAck(ρ) ∩ srvInf(ρ′′)| ≥ f + 1 and thusρ returns

in one communication round leading to contradiction. 2

We now show that SF satisfies the fourth property of Definition 4.1.1. The following proof

assumes that all the read operations are concurrent with thewrite operation and yet are fast.

Lemma 4.2.15 There exists an executionξ ∈ goodexecs(SF, f) that contains at least one

write operationω(k) and the set of read operationsΠ = {ρ : R(ρ) = ω(k)}, such that

|Π| ≥ 1, ∃ρ ∈ Π, ρ is concurrent withω(k) and∀ρ ∈ Π, ρ is fast.

Proof. Consider that each read operationρ ∈ Π returns the timestamp written byR(ρ) = ω(k).

Recall that a read operationρ returns either the maximum timestampmaxTSρ ormaxTSρ−1.

So the timestampk is returned byρ either whenρ witnessesmaxTSρ = k or when it witnesses

maxTSρ = k + 1. A read operation is fast in the following cases: (1) the predicateSF-RP

holds and| ∩m∈maxTsMsg(ρ) m.seen| > β, or (2) more thanf + 1 postits equal tomaxTSρ

witnessed, or (3) the operation returnsmaxTSρ − 1. A read operation need performs two

communication rounds when| ∩m∈maxTsMsg(ρ) m.seen| = β or whenρ observes less than

f + 1 postits equal tomaxTSρ in the replies from the servers.

Let us assume, to derive a contradiction, that for any execution ξ of SFthat contains a

write operationω(k), ∃ρ ∈ Π that returnsR(ρ) = ω(k) after performing two communication

rounds. Consider the following finite execution fragment that is a prefix ofξ, φω. We assume

thatφω contains the write operationω(k) performed by the writerw that writes timestampk.
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Moreover, assume that|srvAck(ω(k))| = |S|−γf servers received theWRITE messages from

ω(k) in φω , where1 < γ ≤ |V| − 1. Thus the write operation is incomplete.

We extent nowφω by the finite execution fragmentφ1 which containsγ − 2 read oper-

ationsρ1, . . . , ργ−2 performed byγ − 2 readers each of them from different virtual nodes.

Let 〈r1, νr1〉, . . . , 〈rγ−2, νrγ−2〉 be the identifiers of the readers that invoke the read opera-

tions. Furthermore every reader〈ri, νri
〉 receives replies from all the servers that reply to the

write operation. Hence each reader〈ri, νri
〉 witnesses a|maxTsMsg(ρi)| = |S| − γf and

an | ∩m∈maxTsMsg(ρi) m.seen| ≤ γ − 1 and thus| ∩m∈maxTsMsg(ρi) m.seen| < γ. So the

predicateSF-RP is false for any readρi from 〈ri, νri
〉, returning timestampmaxTSρi

− 1 in

one communication round.

We further extend the execution fragmentφ1 by execution fragmentφ2 that contains

two read operations performed by two sibling processes〈r, νγ−1〉 and 〈r′, νγ−1〉. Observe

that those processes are not siblings with any of the previous readers. Let the read oper-

ationsρ and ρ′ that are performed by the two sibling readers respectively,miss exactlyf

servers that receiveWRITE messages fromω(k). However, let them miss differentf servers.

For example, if the serverss1, . . . , s2f receivedWRITE messages, thenρ skips the servers

sf+1, . . . , s2f andρ′ skips the serverss1, . . . , sf . Notice now that both readers observe an

| ∩m∈maxTsMsg(ρ) m.seen| = | ∩m∈maxTsMsg(ρ′) m.seen| = γ, since they receive mes-

sages from servers that also reply to the read operationsρ1, . . . , ργ−2. However, both reads

ρ and ρ′, since they missf of the servers that receiveWRITE messages, they witness an

|maxTsMsg(ρ)| = |maxTsMsg(ρ′)| = |S| − (γ + 1)f . So SF-RP is false for them as

well and they returnmaxTSrd − 1 (resp.maxTSrd′ − 1) in one communication round.
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Finally we extendφ2 by φ3 that contains two read operationsρ∗ by the reader〈r∗, νγ〉

andρ∗∗ by the reader〈r∗∗, νγ+1〉. Both readers are not siblings of any of the previous read-

ers. We do not make any assumption about the relation of the two reads, that is, they may

be concurrent. Let both reads receive messages from all the servers that reply to the writer

and thus|maxTsMsg(ρ∗)| = |maxTsMsg(ρ∗∗)| = |S| − γf . Recall that any servers ∈

maxTsSrv(ρ∗) and any servers′ ∈ maxTsSrv(ρ∗∗) contain aseen = {w, ν1, . . . , νγ−1},

and before replying toρ∗ andρ∗∗, they addνγ andνγ+1 respectively in theirseen sets. Suppose

that the intersection is| ∩m∈maxTsMsg(ρ∗) m.seen| = γ + 1 for ρ∗ and| ∩m∈maxTsMsg(ρ∗∗)

m.seen| = γ + 2 for ρ∗∗, that is, the servers reply toρ∗ before replying toρ∗∗. HenceSF-RP

holds by| ∩m∈maxTsMsg(ρ∗) m.seen| > γ | ∩m∈maxTsMsg(ρ∗∗) m.seen| > γ for both reads

and thus they returnmaxTSρ∗ = maxTSρ∗∗ = k in one communication round. Notice that

ρ∗, ρ∗∗ ∈ Π sinceR(ρ∗) = R(ρ∗∗) = ω(k).

Any subsequent read operationρℓ by a reader〈rℓ, νrℓ
〉 witnesses an|maxTsMsg(ρℓ)| ≥

|S| − (γ + 1)f and| ∩m∈maxTsMsg(ρℓ) m.seen| ≥ γ + 2. So if ρℓ witnessesmaxTSρℓ
= k

thenSF-RPholds forρℓ and moreoverρℓ returnsmaxTSρℓ
= k in one communication round.

If ρℓ returnsk even though it witnesses a maximum timestampmaxTSρℓ
= k + 1 it is also

fast since any read operation that returnsmaxTSρℓ
− 1 is fast. So by this construction we

showed that there exists an executionξ of SF containing a write operationω(k) and all the

read operationsρ ∈ Π such thatR(ρ) = ω(k) are fast, contradicting our initial assumption.

That completes our proof. 2

We now state the main result of this section.

Theorem 4.2.16Algorithm SF implements a semifast atomic read/write register.
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Proof. We need to show that anyξ ∈ goodexecs(SF, f) satisfies all the properties of Definition

4.1.1. The properties (1) and (2) of Definition 4.1.1 are trivially satisfied since all the write

operations as implemented by SF are fast and every read operation does not require more

than two communication rounds to complete. Properties (3) and (4) of the same definition are

ensured by Lemmas 4.2.14 and 4.2.15. Thus anyξ of SF satisfies all properties of Definition

4.1.1 and SF is a semifast implementation. 2

4.2.5 Quantifying the Number of Slow Reads

Algorithm SF provides guarantees on the fastness of the read operations that precede and

succeed a slow read operation. However, guarantees are not given for the read operations

concurrent with a slow read. Thus, multiple readers may be slow per write operation. In this

section we evaluate the performance of our algorithm in terms of how many reads need to be

slow per write operation. We present both theoretical and empirical results:

(i) A probabilistic analysis of algorithm SF, and

(ii) Implementation and simulation of algorithm SF.

4.2.5.1 Probabilistic Analysis

For our probabilistic analysis we assume that for any read operation ρ we have

Pr[ρ invoked by somer ∈ νr] = 1
|V| . That is, the read invocations may happen uniformly from

the readers of any virtual node. We also assume that readers are uniformly distributed within

the virtual nodes. We say that evente happens with high probability (whp) ifPr[e] = 1−|R|−c,

for |R| the number of readers andc > 1 a constant; we say that evente happens with negligible

probability if Pr[e] = |R|−c.
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In summary, we first investigate how the cardinality of setseen of a specific server is

affected by the read operations. We show that if a servers receivesµ|V| log |R| read messages

without an interleaving write message, theseen set ofs contains all the virtual nodes with

high probability. Given this result, we then present two read and write contention conditions:

(a) Low contentionif 4f servers receive messages from a write operation before receiving any

read message, and (b)High contentionotherwise. We analyze the two conditions separately.

We show thatO(log |R|) andO(|R|) slow read operations may occur per write operation, with

high probability, under low and high contention respectively.

We use the notation presented in Chapter 3 and Section 4.2.4.

The setseen and fast read operations

We seek the number of read operations required, for a single server to record all virtual

nodes in itsseen set. We first present some definitions that characterize the ordering relation

of messages in an execution of the algorithm.

Definition 4.2.17 (Message Ordering)A messagem(π, k)p,s ∈ M from processp to server

s for an operationπ, is ordered beforea messagem(π′, z)p′,s ∈ M from processp′ to server

s for an operationπ′ in an executionξ ∈ goodexecs(SF, f), if action rcv(m(π, k)p,s)p,s ap-

pears before the actionrcv(m(π′, z)p′,s)p′,s in ξ|SFs. Otherwise,m(π, k)p,s is ordered after

m(π′, z)p′,s.

Next, we define the notion ofconsecutiveread messages. In brief, two read messages

received at servers are called consecutive ifs did not receive any write messages between

them.
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Definition 4.2.18 (Consecutive Read Messages)Two read messagesm(ρ, k)r,s,m(ρ′, z)r′,s

are consecutive in an executionξ ∈ goodexecs(SF, f), if m(ρ, k)r,s is ordered before

m(ρ′, z)r′,s, and∄rcv(m)w,s between actionrcv(m(ρ, k)r,s)r,s and actionrcv(m(ρ′, z)r′,s)r′,s

in ξ|SFs.

In general, we say that a setCM of read messages received by a servers is consecutive,

if s does not receive any write message between the first and the last read message of the set

CM . Note that, by algorithm SF the absence of a write message implies that theseen set ofs

is not reset. More formally:

Definition 4.2.19 (Consecutive Read Message Set)A set of ordered read messagesCM ⊆

M received at a servers is consecutive in an executionξ ∈ goodexecs(SF, f), if

∀m(ρ, k)r,s,m(ρ′, z)r′,s ∈ CM , m(ρ, k)r,s,m(ρ′, z)r′,s are consecutive read messages in

ξ|SFs.

Now we can compute the number of consecutive reads that are required to contact servers

so that every virtual nodeνi is included in theseen set ofs.

Lemma 4.2.20 For any executionξ ∈ goodexecs(SF, f), there exists constantµ s.t. if server

s receivesµ|V| log |R| consecutive read messages andσ the state of the system whens receives

the last of those messages, thenV ⊆ σ[s].seen whp.

Proof. Recall that we assume thatPr[ρ invoked by somer ∈ νi] = 1
|V| . Let k be the number

of reads. From Chernoff Bounds [74] we have

Pr

[

# of reads from readers of groupνi ≤ (1 − δ)
k

|V|

]

≤ e
−δ2·k
2·|V| (1)
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where0 < δ < 1. We computek, s.t. the probability in Equation (1) is negligible.

e
−δ2·k
2·|V| = |R|−γ ⇒

−δ2 · k

2 · |V|
= −γ · log |R| ⇒

⇒ k =
2 · γ · |V| · log |R|

δ2
(2)

Let δ = 0.5. From Equation (2) we havek = 8 · γ · |V| · log |R|. We setµ = 8 · γ and we have

thatk = µ · |V| · log |R|. If µ|V| log |R| consecutive reads contact a servers, at leastµ·log |R|2

reads will be performed by readers in groupνi whp, for any groupνi and thusνi ∈ σ[s].seen,

since theseen set ofs has not been reset. 2

Notice that the larger the constantµ in the above lemma, the smaller the probability of

having a server that did not receive a read message from a reader from every virtual node.

Lemma 4.2.21 If in a stateσ of some executionξ ∈ goodexecs(SF, f), there exists setS ′ ⊆ S

s.t |S ′| ≥ 4f and∀s ∈ S ′ σ[s].ts = y (from write ω(y)) andσ[s].seen = {w} ∪ V, then any

read operationρ with R(ρ)=ω(y) invoked afterσ is fast.

Proof. From predicateSF-RPof algorithm SF (see Section 4.2.3) and the fact that|V| < |S|
f
−2

(thus|V| ≤ |S|
f

− 3), it follows that if a read operationρ observes

|maxTsMsg(ρ)| ≥ |S| − |V|f ≥ (|V| + 3)f − |V|f ≥ 3f

thenβ ≤ |V|. Supposeρ observes|maxTsMsg(ρ)| ≥ 3f and every servers with message in

maxTsMsg(ρ) replied tor with m(ρ, 1)s,r.seen = {w} ∪ V. Then,SF-RPholds forρ for:
∣

∣

∣

∣

∣

∣

⋂

m∈maxTsMsg(ρ)

m.seen

∣

∣

∣

∣

∣

∣

= |V| + 1 > β.

So, for the read operationρ with R(ρ) = ω(y) invoked afterσ , there are two cases for

the maximum timestampmaxTSρ observed byρ: (a) maxTSρ = y, and (b)maxTSρ ≥
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y + 1. For case (a), since up tof servers may fail,ρ observed an|maxTsMsg(ρ)| ≥ 3f with
∣

∣

∣

⋂

m∈maxTsMsg(ρ) m.seen
∣

∣

∣
= |V| + 1. Thus the predicate holds forβ ≤ |V| andρ is fast. For

case (b) sinceR(ρ) = ω(y) from algorithm SF, ρ is fast. 2

Note that if less than4f servers containseen = {w} ∪ V, then a read operationρ may

observe|maxTsMsg(ρ)| = 3f or |maxTsMsg(ρ)| = 2f . If ρ observes|maxTsMsg(ρ)| =

2f messages withseen = {w} ∪ V, SF-RP for ρ holds for |
⋂

m∈maxTsMsg(ρ) m.seen| =

|V| + 1 = β andρ is slow.

From Lemma 4.2.21 it follows that predicateSF-RPnaturally yields two separate cases:

(a) 4f servers or more contain the maximum timestamp, and (b) less than4f servers contain

the maximum timestamp. In both cases we can use Lemma 4.2.20 to bound the number of read

operations needed untilseen = {w} ∪ V for all the servers with the maximum timestamp. To

obtain the worst case scenario we assume that there areO(|R|) reads concurrent with the first

slow read operation.

We now define formally the execution conditions that capturethe idea behind the afore-

mentioned cases.

Definition 4.2.22 (Succesive Operations)We say that two operationsπ, π′ aresuccessivein

an executionξ, if π and π′ are invoked by the same processp, andp does not invoke any

operationπ′′ betweenres(π) andinv(π′).

Next, we define the set of events that occur between two successive operations invoked by

a processp.
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Definition 4.2.23 (Idle Set) For any executionξ and for any pair of successive operationsπ, π′

invoked by a processp, we defineidle(π, π′) to be the set of all events that appear inξ and

succeedres(π) and precedeinv(π′).

Given the above definition we now define the contention conditions that affect our analysis.

These conditions characterize cases (a) and (b).

Definition 4.2.24 (Contention) Let ρ, ρ′ be any pair of successive read operations invoked by

a readerr. We say that an execution fragmentφ haslow contention if for every setidle(ρ, ρ′),

∃inv(ω) ∈ idle(ρ, ρ′) for some write operationω, and∃S ′ ⊆ S, s.t. |S ′| ≥ 4f and∀s ∈

S ′, rcv(m(ω, 1)w,s)w,s ∈ idle(ρ, ρ′). Otherwise we say thatφ hashigh contention.

Slow reads under low contention

We consider the case of low contention where a set of at least4f servers receive messages

from a write operationω, before the first slow read operationρ, with R(ρ)=ω. For an im-

plementation to be semifast, any read operationρ′ that precedes or succeedsρ, with R(ρ′)=

R(ρ)=ω, is fast. We now bound the number of slow read operations.

Theorem 4.2.25 If in an executionξ ∈ goodexecs(SF, f), ∃ stateσ and a set of servers

S ′ ⊆ S, such that

• |S ′| ≥ 4f ,

• ∀s ∈ S ′, σ[s].ts = m(ω, 1)w,s.ts andw ∈ σ[s].seen as a result of a write operationω,

and

• ∄ inv(ρ) beforeσ in ξ for any readρ such thatR(ρ) = ω,
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then there exists constantµ, s.t. whp at mostµ · |S| · |V| · log |R| readsρ′, such thatR(ρ′) = ω,

can be slow.

Proof. For eachs ∈ S ′, we examine two cases:

Case1: After s receives a write message fromω, s receives a setCM = {ρ1, . . . , ρℓ} of

consecutive read messages, s.t.|CM | = µ|V| log |R| andm(ρℓ, k)s,r.ts = m(ω, 1)w,s.ts,

wherem(ρℓ, k)s,r is ordered after every other message inCM . From Lemma 4.2.20 any read

ρ′ with messagem(ρ′, z)s,r′ received afterm(ρℓ, k)s,r, observesseen = {w} ∪ V from s if

m(ρ′, z)s,r′ .ts = m(ω, 1)w,s.ts.

Case2: After s receives a write message fromω, s receives messagem(π, 1)p,s from p for

an operationπ with m(π, 1)p,s.ts = y > m(ω, 1)w,s.ts, before it receivesµ|V| log |R| read

messages. It follows that a write operationω′ that propagates timestampy, has been invoked.

Any readρ′ that receivesy, will either returny − 1 or y. From the construction of SF, if ρ′

returnsy−1, ρ′ will be fast. Thus if a readρ′ contacts servers afterm(π, 1)p,s andR(ρ′) = ω,

thenρ′ is fast andm(ω, 1)w,s.ts = y − 1 .

From the above cases, we have a total ofµ · |S ′| · |V| · log |R| ≤ µ · |S| · |V| · log |R| read

messages for the servers inS ′. Let Π be the set of the read operations that correspond to these

read messages. Clearly|Π| ≤ µ · |S| · |V| · log |R| and any read operation inΠ can be slow.

For any readρ′ invoked afterρ, s.t.ρ′ /∈ Π we have the following cases:

Case (i): Readρ′ receives at least3f replies withmaxTSρ′ = m(ω, 1)w,s.ts and observes

from Case 1∩m∈maxTsMsg(ρ′)m.seen = {w} ∪ V. As discussed in Lemma 4.2.21β ≤ |V|

and thus bySF-RP, ρ′ is fast andR(ρ′) = ω.
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Case (ii): Readρ′ receivesmaxTSρ′ > m(ω, 1)w,s.ts. From algorithm SF and the discussion

in case2, if R(ρ′) = ω, thenρ′ is fast. 2

Theorem 4.2.25 proves that under low contention, a write canbe followed by at most

O(log |R|) slow reads whp.

Slow reads under high contention

Here we deal with the high contention case, where a set of lessthan4f servers receive

messages from a write operationω, before the first slow read operation operationρ is invoked,

with R(ρ)=ω. We examine the case where|V| = |S|
f

− 3, which is the maximum number of

virtual nodes allowed by algorithm SF. Recall that if a readρ receives replies from2f servers

with maxTSρ andseen = {w}∪V, thenρ is slow sincemaxTsMsg(ρ) = |S|−(|V|+1)f =

|S| −
(

|S|
f

− 2
)

f = 2f . In contrast with the low contention case, we show that in thehigh

contention case, the system reaches a state where all reads that receive themaxTS from less

than3f servers are slow.

Note that according to SF, any read operation that succeeds a slow read and returns the

same value is fast. Thus, any reader can perform at most one slow read that returns the value

and timestamp of the same writeω. This gives a bound of at most|R| slow reads per write

operation. We next prove that under high contention,µ · 4f · |V| · log |R| reads may lead the

system to a state where all reads concurrent with the first slow read can be slow if they receive

replies from less than3f updated servers.

Theorem 4.2.26 If in an executionξ ∈ goodexecs(SF, f), ∃ stateσ and a set of servers

S ′ ⊆ S, such that
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• |S ′| < 4f ,

• ∀s ∈ S ′, σ[s].ts = m(ω, 1)w,s.ts andw ∈ σ[s].seen as a result of a write operationω,

• ∀s ∈ S ′ receives a set|CM | ≤ µ · 4f · |V| · log |R| of consecutive read messages, and

• ∀s′ ∈ S − S ′, σ[s′].ts < m(ω, 1)w,s.ts,

then any readρ′ invoked afterσ will be slow if R(ρ′) = ω and|maxTsMsg(ρ′)| < 3f .

Proof. For any servers ∈ S ′ if µ · |V| · log |R| consecutive read messages are received bys

afterσ, whereµ is taken from Lemma 4.2.20, then whp theseen set ofs becomes{w} ∪ V

after the last message is received.

If we consider such reads for all servers inS ′, we have a total ofµ · |S ′| · |V| · log |R| <

µ · 4f · |V| · log |R| read messages. After these read messages, the system reaches a stateσ′

where∀s ∈ S ′. σ′[s].ts = m(ω, 1)w,s.ts andσ′[s].seen = {w} ∪ V. As discussed in Section

4.2.5.1, any read operation that contacts less than3f servers with the maximum timestamp, is

slow. This is possible, since up tof servers may fail. 2

From Theorem 4.2.26, observe that under high contention an execution relatively fast can

reach a state (afterΩ(log |R|) reads) that could lead toO(|R|) slow reads.

4.2.5.2 Empirical Evaluation ofSF

To evaluate our implementation in practice, we simulated algorithm SF using the NS2

network simulator ([2]). Our test environment consisted ofone writer, a variable set of reader

and server processes. We used bidirectional links between the communicating nodes, 1Mb

bandwidth, a latency of10ms, and a DropTail queue. To model asynchrony, the processes
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Figure 7: Scenarios (i)rInt = 2.3s, wInt = 4.3s, and (ii)rInt = 4.3s, wInt = 4.3s.

send messages after a random delay between 0 and 0.3sec. According to our setting, only

the messages from the invoking processes to the servers, andthe replies from the servers to

the processes are delivered (no messages are exchanged among the servers or the invoking

processes).
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We measured the percentage of two round read operations as a function of the number of

readers and the number of faulty servers. To measure the effectiveness of our approach we

manipulated three different environmental parameters:

(1) Number of Readers:Varying the number of readers allowed the evaluation of the scal-

ability of SF.

(2) Read and Write Frequency: This parameter controls the frequency in which reads and

writes are invoked. It comprise one of the most critical components since it defines the

traffic load and the concurrency scenarios between R/Woperations.

(3) Number of Replica Host Failures: This component examines the robustness of the

algorithms and the performance degradation during multiple failure scenarios. Although

any participant may fail in the system, more interesting scenarios are generated if we

allow the readers and writers to stay alive, and only permit server failures throughout the

execution of the simulation. Such rule will demonstrate theperformance of the algorithm

in the maximum traffic generation (by read and write operations); at the same time we

will examine the algorithm robustness on replica (server) failures.

Our simulations include 20 servers (|S| = 20). To guarantee liveness we need to constrain the

maximum number of server failuresf so that|V| < |S|
f
− 2 or |V| ≤ |S|

f
− 3. Thus,f ≤ |S|

|V|+3 .

In order to maintain at least one group (|V| = 1), f must not exceed|S|4 , or 5 failures. Thus,

in our simulations we allow up to 5 servers to fail at arbitrary times. We vary the number of

reader processes between 10 and 80. We use the positive time parametersrInt andwInt (both

greater than 1 sec) to model the time intervals between any two successive read operations and
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any two successive write operations respectively. For our expirements, we considered three

frequency simulation scenarios:

• (i) rInt < wInt: Frequent reads and infrequent writes,

• (ii) rInt = wInt: Evenly spaced reads and writes,

• (iii) rInt > wInt: Infrequent reads and frequent writes.

Each of the simulation scenarios (i), (ii), and (iii) was considered in two settings:

a. Stochastic simulations, where the invocation of the next read or write operation is cho-

sen randomly within certain bounds determined by the frequency of each operation.

b. Fixed simulations, where each read and write operation is invoked in a fixed timewith

respect to its frequency.

Stochastic scenarios better resemble realistic conditions while fixed scenarios represent fre-

quent and bursty conditions.

We now describe the simulation results for each of the two settings.

Setting a: Stochastic simulations.Here we consider a class of executions where each read

(resp. write) operation from an invoking process is scheduled at random time between 1 sec

andrInt (resp.wInt) after the last read (resp. write) operation. Introducing randomness in the

operation invocation intervals renders a more realistic scenario where processes are interacting

with the atomic object independently. Note that under this setting, for the three scenarios (i),

(ii), and (iii), the comparisons betweenrInt andwInt are satisfied stochastically. We present

the results for a single value ofwInt = 4.3 sec for write operations. For scenario (i) we

userInt = 2.3 sec, for scenario (ii) we userInt = 2.3 sec, and for scenario (iii) we use

102



Nicolas C. Nicolaou––University of Connecticut, 2011

rInt = 6.3 sec. The results are given in Figures 7 and 8, setting a. We observe that the results

in this setting are similar, with the percentage of two-round reads is mainly affected by the

number of faulty servers. In all cases the percentage of two-round reads is under 7.5%.

Setting b: Fixed interval simulations. In this setting the intervals between two read (or two

write) operations are fixed at the beginning of the simulation. All readers use the same interval

rInt, and the writer the interval wInt. This family of simulations represent conditions where

operations can be frequent and bursty. Figure 7b(i), illustrates the case ofrInt < wInt, where

rInt = 2.3sec. Here a read (write) operation is invoked by every reader (resp. writer) in the

system everyrInt = 2.3sec (resp. wInt = 4.3sec). Because of asynchrony not every read

operation completes before the invocation of the write operation and thus we observe that only

4.5% of the reads perform two communication rounds. Figure 7b(ii), illustrates the scenario

whererInt = wInt. This is the most bursty scenario since all operations, reador write, are

invoked at the same time, specifically the operations are invoked everyrInt = wInt = 4.3sec.

Although the conditions in this case are highly bursty (and unlikely to occur in practice), we

observe that only up to 60%of the read operations perform twocommunication rounds. Figure

8b(iii), illustrates the scenario wherewInt < rInt. In particular a read operation is invoked

everyrInt = 6.3sec by each reader and a write operation everywInt = 4.3sec. Given the

modeled channel latency and delays, notice that there is no concurrency between the read and

write operations in this scenario. So all the servers reply to any read operation with the latest

timestamp and thus no read operation needs to perform a second communication round.

Both scenarios shared a common trend: by increasing the number of readers and the num-

ber of faulty servers, the performance of the algorithm degraded. These findings agree with the

theoretical results presented in Section 4.2.5.1.
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4.3 Limitations of Semifast Read/Write Register Implementations

In this Section we present some restrictions that a semifastimplementation imposes on

our system. First, we show that in algorithms that assume grouping mechanisms like SF, a

bound on the number of groups (or in our case virtual nodes) isnecessary. Next, we specify

the number of servers that the second round of a read operation must communicate with to

ensure atomicity. Then, we investigate whether semifast implementations can be developed

for environments that support multiple writers and multiple readers. We show that such imple-

mentations are impossible.

4.3.1 Constraints on the Virtual Nodes and Second Round Communication

As it is shown in [30], no fast implementations exist if the number of readersR in the

system is such that|R| ≥ |S|
f

− 2. Our approach to semifast solutions is to trade fast imple-

mentation for increased number of readers, while enabling some (many) reads to be fast. Here

we show that semifast implementations are possible if and only if the number of virtual identi-

fiers (virtual nodes) in the system is less than|S|
f

− 2. We show that the bound on the virtual

identifiers is tight for algorithms that: (1) consider each node acting individually in the system

(as in [30]), and (2) consider weak grouping of the readers such that no reader is required to

maintain knowledge of the membership of its own or any other group. Throughout the section

we assume that the messages from the clients to the servers and from the servers to the clients

are delivered (see Section 3.3).
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Definitions and notation.

We consider a system with|V| node groups (virtual nodes), such thatf ≥ |S|
(|V|+2) (to derive

contradiction). We partition the set of serversS into |V|+2 subsets, calledblocks, each denoted

by Bi for 1 ≤ i ≤ |V| + 2, where each block contains no more thanf servers.

We say that anincomplete operationπ skipsa set of blocksBS in a finite execution frag-

ment, whereBS ⊆ {B1, . . . , B|V|+2}, if : (1) no server inBS receives anyREAD or WRITE

message fromπ, (2) all other servers receive messages and reply toπ, and (3) those replies

are in transit. Acomplete operationπ that is fast is said toskip a blockBi in a finite execu-

tion fragment, whereBi ∈ {B1, . . . , B|V|+2} if: (1) no server inBi receives aREAD or WRITE

messages fromπ, (2) all other servers receive the messages fromπ and reply, and (3) all replies

are received by the process performingπ. We say that an incomplete operationπ that performs

a second communication roundinformsa set of blocksBSI in a finite execution fragment,

whereBSI ⊆ {B1, . . . , B|V|+2} if: (1) all servers inBSI receive theINFORM message from

π and reply, (2) those replies are in transit, and (3) no servers in any blockBj /∈ BSI receive

any INFORM messages fromπ. A complete operationπ that performs a second communication

roundinformsa set of blocksBSI in an finite execution fragment,BSI ⊆ {B1, . . . , B|V|+2}

if: (1) all servers inBSI receive theINFORM messages fromπ and reply, (2) no servers in

any blockBj /∈ BSI receive anyINFORM messages fromπ, and (3) those replies are received

by the process performingπ. A complete operationπ is said to beskip-freein an execution

fragment if for every blockBi in the set{B1, . . . , B|V|+2}, all the servers inBi receive the

messages fromπ and reply to them.
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Figure 9: Left: Physical communication betweenw and the servers inφ(wr) andφ(wr4).
Right: Same communication using block diagrams.

Block Diagrams.

To facilitate the understanding of the proofs that follow, we provide schematic representa-

tions using block diagrams (e.g., Figure 9). We divide the diagram into columns each of them

representing an operation (possibly incomplete)π, and at the bottom of each column we place

an identifier of the invoking process in the form(r, νr), wherer the actual id andνr the virtual

id of the invoking process. Each column contains a set of rectangles. For an operationπ if

theith row of the column contains a rectangle it means that the servers in blockBi received a

READ, INFORM or WRITE messages fromπ and replied to those messages. In other words we

draw a rectangle in theith row of an operationπ if π does not skip or informs the blockBi. If

a rectangle is colored white, it means that blockBi received only aREAD or WRITE messages

from π. A two-color rectangle (black and white) in theith row of an operationπ declares

that the servers in blockBi receivedINFORM messages fromπ. If the operation identifier in a

column is in a circle it means the operation is complete. Otherwise the operation has not yet
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completed. If the operation identifier is in a rectangle means that the operation is invoking the

informative phase and has not yet received the required replies.

We now show that|V| cannot be greater or equal than|S|
f

− 2. The idea behind the proof

is to derive contradiction by assuming that semifast implementations exist for|V| ≥ |S|
f

−

2. We construct executions that violate atomicity and properties of the semifast definition.

In particular we first assume an executionξ which contains a skip-free write operation. We

construct executions that can be extended toξ, that contain fast read operations. We show

that in execution extensions where the value of the write operation is propagated to less than

f servers, some fast read operations return the value written, but others return an older value

(since they may skip the servers with the maximum timestamp). We emphasize that the first

part of the proof can use the proof of Proposition 1 in [30] as ablack box with the assumption

of the skip-free write operation and the association of a distinct group id to each reader used.

However we choose to present the proof here in its entirety for completeness. In the second

part of the proof we present executions that violate atomicity even in the presence of a slow

read operation.

Lemma 4.3.1 No semifast implementation exists if the number of node groups |V| in the sys-

tem is≥ |S|
f

− 2.

Proof. We proceed along the lines of Proposition 1 of [30]. We construct an execution of

a semifast implementationA that violates atomicity. Namely we show that there exists an

execution forA where some read returns1 (the defined new value) and some subsequent read

returns an older value, and in particular the initial value⊥. We consider two cases: (1)|V| >

|S|
f

− 2 and (2)|V| = |S|
f

− 2. In the first case we show impossibility of the fast behavior if
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|V| > |S|
f
−2, thus violating property 4 of Definition 4.1.1. In case (2) weshow that there exists

an execution where atomicity is violated even in the presence of a two-round read operation.

This violates property 3 of Definition 4.1.1.

Case 1:Since|V| > |S
f
− 2, it suffices to show that we derive contradiction in the case where

|V| ≥ |S
f
− 1. So we can partition the set of servers into|V| + 1 blocks{B1, . . . , B|V|+1}

where each block contains≤ f servers. We provide the constructions we use for the needs of

this proof in the write and read operation paragraphs and then we present an execution scenario

based on those constructions that violates atomicity.

Write Operations.Let φ(wr) be an execution fragment in which operationω(1) is completed

by w. Let the operation beskip-free; this is the best case for a write operation and thus our

lower bound applies to all other possible cases. We define a series of finite execution fragments

which can be extended toφ(wr). We say that in the finite execution fragmentφ(wr|V|+2) the

writer w invokesω(1), but all theWRITE messages are in transit. Then, for1 ≤ i ≤ |V| + 1,

we say thatφ(wri) is the finite execution fragment that contains an incompleteω(1) operation

that skips the set of blocks{Bj |1 ≤ j ≤ i − 1}. Observe that: (1) the finite execution

fragmentsφ(wri) andφ(wri+1) differ only on blockBi, (2) since inφ(wr1) we do not skip

any block but all the replies are in transit, thenφ(wr) is an extension ofφ(wr1) where all

those replies are received byw and (3) onlyw can distinguishφ(wr) from φ(wr1). Figure

9 illustrates the communication between the writerw and the groups of servers in the finite

execution fragmentsφ(wr) andφ(wr3). The figure shows both physical communication and

the corresponding block diagram representation.

Read Operations. We now construct finite execution fragments for read operations. We

assume that every reader processri, belongs in a different virtual identifierνri
, denoted by
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the pair〈ri, νri
〉. Let φ(1) be a finite execution fragment that extendsφ(wr) by containing a

complete read operation by a reader with id〈r1, νr1〉 that skipsB1. Consider nowφ′(1) that

extendsφ(wr2) by a complete read operation by the reader〈r1, νr1〉 that skipsB1. Notice that

reader〈r1, νr1〉 cannot distinguishφ(1) from φ′(1) becauseφ(wr) andφ(wr2) differ atw and

block B1 and read from〈r1, νr1〉 skips blockB1.

We continue in similar manner, starting fromφ′(1), and create execution fragments for

the rest of the readers in the system. In particular we define an execution fragmentφ(i),

for 2 ≤ i ≤ |V| to extendφ′(i − 1) by a complete read operation from〈ri, νri
〉 that skips

Bi. We then construct finite execution fragmentφ′(i) by deleting fromφ(i) all the rectangles

(steps) from the servers in blockBi. In particular, as previously mentioned, execution fragment

φ′(i) extendsφ(wri+1) by appending that withi reads such that for1 ≤ k ≤ i, 〈rk, νrk
〉

skips the blocks{Bj | k ≤ j ≤ i}. Observe that since〈r1, νr1〉 cannot distinguishφ(1) and

φ′(1), it returns1 in both executions. Furthermore, sinceφ(2) extendsφ′(1), by atomicity

〈r2, νr2〉 returns1. So〈r2, νr2〉 returns1 in φ′(2) since it cannot distinguishφ(2) andφ′(2).

By following inductive arguments we conclude that forφ′(i), reader〈ri, νri
〉 returns1. Thus,

for the execution fragmentφ′(|V|), 〈r|V|, νr|V|
〉 returns1. An illustration of the following

execution fragments can be seen in Figure 10.

Finite Execution fragmentφ(A). Here we consider the execution fragmentφ′(|V|). As de-

fined above,φ′(|V|) extendsφ(wr|V|+1) by appending|V| reads such that for1 ≤ k ≤ |V|,

〈rk, νrk
〉’s read skips the blocks{Bj | k ≤ j ≤ |V|}. Observe here that all the read oper-

ations are incomplete except for the read operation of reader 〈r|V|, νr|V|
〉. Moreover only the

servers in blockB|V|+1 receiveWRITE messages from theω1 operation ofw. Also, onlyB|V|+1

replies to the read operation of the reader〈r1, νr1〉, and those messages are in transit. All other
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Figure 10: Execution fragmentsφ(A), φ(B), φ(C), φ(D).

READ messages of〈r1, νr1〉 are in transit and are not yet received by any other server. Let

execution fragmentφ(A) extendφ′(|V|) as follows: (1) all the messages send by〈r1, νr1〉 and

were in transit, are received by the servers in blocksB1, . . . , B|V|, (2) reader〈r1, νr1〉 receives

the replies from serversB1, . . . , B|V|, and returns from the read operation. Notice that since

B|V|+1 contains no more thanf servers, it means that reader〈r1, νr1〉 received no less than

|S| − f replies and should not wait for any more replies to return.

Finite Execution fragmentφ(B). We consider as execution fragmentφ(B) with the same

communication pattern asφ(A) but with the difference that theω1 operation is not invoked

at all. Hence servers in blockB|V|+1 do not receive anyWRITE messages. Clearly only the
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servers in blockB|V|+1, the writer and the readers〈r2, νr2〉 to 〈r|V|, νr|V|
〉 are in position to

distinguishφ(A) from φ(B). The reader〈r1, νr1〉, since it does not receive any messages from

B|V|+1 cannot distinguishφ(A) from φ(B). So, since there is no write (ω∗) operation,〈r1, νr1〉

returns⊥ in φ(B) and therefore returns⊥ in φ(A) as well.

Finite Execution fragmentsφ(C) andφ(D). Observe that inφ(A), reader〈r1, νr1〉 does not

violate atomicity even though it returns⊥ and〈r|V|, νr|V|
〉 returns1 because the two operations

are concurrent. We construct now two more executions: execution fragmentφ(C) andφ(D)

which extend the execution fragmentsφ(A) andφ(B) respectively with a second complete read

operation from〈r1, νr1〉 that skipsB|V|+1. Since the servers inB|V|+1 are the only ones who

can distinguishφ(A) andφ(B) and since〈r1, νr1〉’s second read skipsB|V|+1 then〈r1, νr1〉

cannot distinguishφ(C) from φ(D) either. Sinceφ(C) is an extension ofφ(A) it follows that

the reader〈r|V|, νr|V|
〉 returns1 in φ(C). Moreover〈r1, νr1〉 returns⊥ since no write (ω∗)

operation is invoked inφ(D). So since〈r1, νr1〉 cannot distinguishφ(C) from φ(D), it returns

⊥ in φ(C) as well. However, the read operation by〈r1, νr1〉 succeeds the read operation by

〈r|V|, νr|V|
〉 that returns1 in φ(C) and thusviolates atomicity. This completes the proof of

Case (1).

Case 2:The next case that needs investigation is the equality|V| = |S|
f
−2. Since we are using

groups of nodes, it is possible that all the readers will be contained in a single group. Consider

this situation for the following proof. As before, since|V| = |S
f
− 2 we can divide the servers

into |V| + 2 blocks where each block containsf servers. Since we only assume one virtual

node (|V| = 1) then the total number of blocks is 3. We also consider the same construction for

the write operation with the difference that theω(1) is not skip-free but skips the blockB|V|+2.

In particularφ(wri) is the execution fragment that contains an incompleteω(1) operation and
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skips the set of blocks{B|V|+2} ∪ {Bj |1 ≤ j ≤ i − 1}. As before,φ(wr1) is the execution

where all the servers{Bj | 1 ≤ j ≤ |V|+ 1} replied toω(1) and all those replies are in transit.

Soφ(wr) is the extension ofφ(wr1) where all those replies are being received by the writer

w.

Let now describe a series of finite execution fragments that extendφ(wr). We say that

execution fragmentφ(e1) extendsφ(wr) by a complete read operation from the reader〈r1, νr1〉

that skips blockB1. To preserve atomicity,〈r1, νr1〉 returns1. Consider now another execution,

φ′(e1), that extendsφ(wr2) by the same read operation from〈r1, νr1〉 that again skipsB1.

Recall that only the writerw and the servers in blockB1 can distinguishφ(wr) from φ(wr2).

So since〈r1, νr1〉 skips the servers in the blockB1, it cannot distinguishφ(e1) from φ′(e1)

and thus returns1 in φ′(e1) as well. We now extendφ′(e1) by execution fragmentφ(e2) as

follows: (1) a complete inform(1) operation from〈r1, νr1〉 that skips the servers in the block

B|V|+2, and (2) a complete read operation from reader〈r2, νr1〉 that skips blockB1. The read

from 〈r2, νr1〉 returns1 to preserve atomicity. Further consider the execution fragmentφ(e3)

which is the same withφ(e2), but with the difference that the inform operation from〈r1, νr1〉 is

incomplete and also skips blockB1. Notice thatφ(e2) andφ(e3) differ at the reader〈r1, νr1〉

and the servers in blockB1 only. Since the reader〈r2, νr1〉 does not receive any messages from

B1, it cannot distinguish the two executions. Therefore〈r2, νr1〉 returns1 in φ(e3) as well.

It now remains to investigate two more execution fragments,φ(E) andφ(F ). Let φ(E)

extendφ(e3) with a complete read operation by〈r3, νr1〉. This read operation skips blockB2.

The read from〈r2, νr1〉 cannot distinguishφ(E) from φ(e3) and so it returns1 in φ(E) as well.

Executionφ(F ) has the same configuration asφ(E) with the difference that no write (ω∗) or

inform(*) operation is invoked by any process. So〈r1, νr1〉, 〈r2, νr1〉 and〈r3, νr1〉 return⊥ in
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φ(F ). However, sinceφ(E) andφ(F ) only differ at blockB2, and since〈r3, νr1〉 skipsB2,

it cannot differentiate the two executions fragments. Hence, 〈r3, νr1〉 returns⊥ in φ(E) as

well. Therefore,φ(E) violates atomicitysince〈r2, νr1〉 that succeeds〈r3, νr1〉 returns1 and

〈r3, νr1〉 returns an older value, namely⊥. This completes the proof. 2

Per Lemma 4.3.1 semifast implementation are possible only if |V| < |S|
f

− 2. In addition,

the following lemma shows that the existence of a semifast implementation also depends on

the number of messages sent by a process during its second communication round.

Lemma 4.3.2 There is no semifast implementation of an atomic register ifa read operation

informs3f or fewer servers during its second communication round.

Proof. Since|V| < |S|
f

− 2, we get that|S| > f(|V| + 2), and hence in order to maintain

at least one reader in the system,|S| > 3f . Suppose by contradiction that there exist a semi-

fast implementationA which requires a complete read operation to send equal to3f INFORM

messages during its second communication round. Recall that the reader that performs the in-

formative phase, in order to preserve the termination property, should expect2f replies (since

up tof servers might fail). We proceed by showing that there existsan execution ofA where

a read operation returns1 and performs a second communication round and a subsequent read

operation returns1 and again needs to perform a second communication round to complete,

violating the third property of the semifast implementation.

Consider a finite execution fragmentφ(1) where writerw invokes aω(k) write operation

and writes the valuevalk on the atomic register. We extendφ(1) by a read operationρ which

performs two communication rounds and returnsvalk. During the second communication

round,ρ sent messages to3f servers. Only|srvInf(ρ)| = 2f servers getINFORM messages
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from ρ and replied to those messages. Sincef of the servers might be faulty, in order to

preserve the termination property,ρ returns after the receipt of those replies. We further extend

φ(1) by a second read operationρ′, which receives messages from|srvAck(ρ′)| = |S| − f

servers and missesf of the servers insrvInf(ρ) such that|srvAck(ρ′) ∩ srvInf(ρ)| = f .

We now describe a second finite execution fragmentφ(2) which is similar toφ(1) but with

the difference thatρ is incomplete and only|srvInf(ρ)| = f servers received theINFORM

messages fromρ. In this execution,ρ′ receives replies from all the servers that have been

informed byρ, namely|srvAck(ρ′) ∩ srvInf(ρ)| = f . Note thatρ′ cannot distinguishφ(1)

andφ(2) in terms of the number of servers informed byρ. Sinceρ′ observed that onlyf servers

were informed byρ in φ(2) and sinceρ might crash before completing,ρ′ must perform a

second communication round to ensure that any read operation s.t. ρ′ → ρ′′ that receives

replies from|srvAck(i)| = |S| − f servers will not observe|srvAck(ρ′′) ∩ srvInf(ρ)| = 0

and thus return an older value violating atomicity. Obviously the fact thatρ′ proceeds to a

second communication round does not violate the third property of Definition 4.1.1 sinceρ

andρ′ in φ(2) are concurrent. Sinceρ′ cannot distinguishφ(1) andφ(2), ρ′ must perform a

second communication round inφ(1) as well. However, inφ(1), ρ → ρ′ and thus they are

not concurrent. Soφ(1) violates the third property, contradicting the assumption that there is

a semifast implementationA, where any read operation needs to inform≤ 3f servers. 2

We now state the main result of this section.

Theorem 4.3.3 No semifast implementationA exists if the number of virtual nodes in the

system is≥ |S|
f

− 2 and if 3f or fewer servers are informed during a second communication

round.
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Proof. It follows directly from Lemmas 4.3.1 and 4.3.2. 2

4.3.2 Impossibility of Semifast Implementations in MWMR environment

In this section we show that is not possible to obtain a semifast implementation of atomic

registers in the MWMR setting in the presence of server failures.

4.3.2.1 Preliminaries.

For the MWMR setting we relax the definition of a semifast implementation as presented

for the SWMR setting, by allowing read operations to performmore than two communication

rounds (i.e., instead of two rounds we allow multiple roundsin Definition 4.1.1).

As presented in Section 4.2.4 operations can be partially ordered with respect to the values

they write or return. A MWMR semifast implementation satisfies atomicity (Definition 3.2.5)

if any execution satisfies the following conditions:

MW1 : if there is a write operationω(k) that writes valuevalk and a read operationρ

such thatω(k) → ρ, and all other writes precedeω(k) thenρ returnsvalk.

MW2 : if the response steps of all write operations precede the invocation steps of the

read operationsρ andρ′, thenρ andρ′ must return the same value.

MW3 : If the response steps of all the write operations precede the invocation step of a

read operationρ thenρ returns a value written by some complete write.

For the reasons discussed in Section 3.3, we assume the communication scheme where a server

replies to aREAD (or WRITE or INFORM) message without waiting to receive any otherREAD

(or WRITE or INFORM) messages. In this proof we say that an operation performs aread phase

115



Nicolas C. Nicolaou––University of Connecticut, 2011

during a communication round if it gathers information regarding the value of the object at

that round. We say that an operation performs awrite phaseduring a communication round if

it propagates information regarding the value of the objectto any subset of the servers at that

round. A read phase of an operation (read or write) does not modify the value of the atomic

object. On the other hand a write phase of an operationπ behaves as follows according to its

type: (1) a new, currently unknown value is written to the register, if π is a write operation (2)

only previously known values are written to the register ifπ is a read operation. Note that by

“value of the atomic object”we mean the set of parameters that together describe the state of

the atomic register. Any operation phase that modifies thoseparameters (and thus the state of

the atomic register) is considered to be a write phase.

We say that a complete operationπ skipsa servers if s does not receive any messages

from the processp that invokesπ and the processp does not receive any replies froms. All

other servers that receive theREAD, WRITE or INFORM messages fromp reply to these, andp

receives those replies. All other messages remain in transit. Since we assume thatf = 1, any

complete operation may skip at most one server. We say that anoperation isskip-freeif it does

not skip any server.

Since we consider read operations that might perform multiple communication rounds to

complete, we denote byρj
i the jth communication round (phase) of a read operationρi. In

order to distinguish between the read and write phases ofρi, let ωj
i denote that thejth phase

of the readρi is a write phase. An arbitrary delay may occur between two phasesρj
i and

ρj+1
i where other read (write) operations or read (write) phases might be executed. So we

define assri(j − 1) a set of operation phases (read or write) with the property that any phase
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ρ∗∗ ∈ sri(j − 1), ρ∗∗ → ρj
i . A setsri(j − 1) might be equal to the empty set containing no

operations.

Claim 4.3.4 A read operationρ that succeeds any write operationω(∗) and write phaseω∗∗

from an operationπ 6= ρ, returns the value decided by the read phase that precedes its last

write phase.

Proof. The claim follows from the fact that the read operation succeeds all the write operations

and from atomicity propertiesMW1 andMW2 . Let assume that readerr performs the read

operationρ which in turn requiresn communication rounds to complete. Furthermore let

assume thatωj is the lastwrite phaseof ρ and for simplicity of analysis we also assume

that this is the only write phase ofρ. The result is still valid when multiple write phases are

performed byρ.

Sinceρ succeeds all write operations then any read phaseρg, for 1 ≤ g ≤ n wheren the

total number of phases fromρ, will gather the same information about the value of the atomic

register. So according tor’s local policy and atomicity propertyMW3 every read phase that

precedesωj will decide the same value, sayval to be the latest value written on the register.

Let ρj−1 be the last read phase operation that precedesωj . According to the assumption, a

write phase of a read operation propagates the value gathered, to the system. Soωj propagates

valueval which was observed by the read phases. Sinceωj performs a write operation on the

register then any read phaseρℓ, j + 1 ≤ ℓ ≤ n, such thatωj → ρℓ must decideval to preserve

atomicity propertyMW1 . So the last read phaseρn of the read operation returnsval as well

and henceval is the value returned by operationρ. That completes the proof. 2
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4.3.2.2 Construction and Main Result.

We now present the construction we use to prove the main result. We show execution

constructions assuming that two writers (w andw′), and two readers (r andr′) participate in

the system. We assume skip-free operations since they comprise the best case scenario and

thus a lower bound for these is sufficient. Note here that the constructions of executions with

fast read operations are similar to constructions presented in [30]. We use this approach and we

present a generalization that contains read operations with single or multiple communication

rounds suitable for our exposition. The main idea of the proof exploits executions with certain

ordering assumptions which may violate atomicity. In particular we assume executions where

the two writers perform concurrent and interleaved write operations. Those write operations

are succeeded by a read operationρ1 invoked byr, and in turnρ1 is succeeded by a readρ2

invoked byr′. We analyze all the different cases in terms of communication rounds forρ1 and

ρ2. We show that in each case, a single server failure may cause violations of atomicity.

Let us first consider the finite execution fragmentφ, constructed from the following skip-

free, complete operations: (a) operationω(2) by w′, (b) operationω(1) by w, and (c) operation

ρ1 by r. These operations are not concurrent and they are executed in the orderω(2) →

ω(1) → ρ1. By propertyMW2 , operationρ1 returns1.

We now invert the write operations of the above execution andwe obtain executionφ′,

consisting of the following skip-free, complete operations in the following order: (a) operation

ω(1) by w, (b) operationω(2) by w′, and (c) operationρ1 by r. As before, these operations are

not concurrent. So in this case, by propertyMW2 , operationρ1 returns2.
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The generalizationφg of φ when the readerr performsn communication rounds is the

following, for 1 ≤ i ≤ n:

(a) operationω(2) by w′,

(b) operationω(1) by w,

(c) a set of read operationssr(i − 1) from reads different thanρ1, and

(d) a read or a write phase (ρi
1 or ωi

1 resp.) of theρ1 operation from readerr.

Notice that forn = 1 and forsr(0) = ∅ no process can distinguishφg from φ. Clearly at the

end of phaseρn
1 , by propertyMW2 , the operationρ1 from r returns1.

Similarly we define theφ′g to be the generalization ofφ′, where the write operations are

inversed:

(a) operationω(1) by w,

(b) operationω(2) by w′,

(c) a set of read operationssr(i − 1) from reads different thanρ1, and

(d) a read or a write phase (ρi
1 or ωi

1 resp.) of theρ1 operation from readerr.

In this case by the end of phaseρn
1 , and by propertyMW2 , theρ1 operation returns2.

If we assume now, without loss of generality, that the last communication roundρn
1 of r in

φg is a write phase, thusωn
1 , thenr should not be able to differentiateφg from the following

execution, for1 ≤ i ≤ n − 1:

(a) operationω(2) by w′,
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(b) operationω(1) by w,

(c) a set of read operationssr(i − 1) from reads different thanρ1,

(d) a read phaseρi
1 of theρ1 operation from readerr,

(e) a set of read operationssr(n − 1) from reads different thanρ1, and,

(f) operationω(1) by ωn
1 .

By operationω(1), the readerr tries to disseminate the information gathered from the previous

rounds regarding the value of the atomic object. Similarly we can defineφ′g with the difference

that readerr will perform aω(2) operations during its last communication round.

Obviously we have the same setting as in Claim 4.3.4 and so by the same claim the decision

for the return value must be made inρn−1
1 . Notice that the decision ofr taken inρn−1

1 is not

affected from the operations insr(n − 1). So we can assume thatφg andφ′g contain only read

phases byr. According now to propertyMW2 , r will decide1 by the end ofρn−1
1 in φg and

2 by the end ofρn−1
1 in φ′g. Since we assume that we only have2 readers in the systemr and

r′, and assuming thatr′ does not perform any read operation in eitherφg or φ′g, then the sets

sr(i − 1) = ∅ for 1 ≤ i ≤ n in both executionsφg andφ′g.

Theorem 4.3.5 If the number of writers in the system isW ≥ 2, the number of readers is

R ≥ 2, andf ≥ 1 servers may fail, then there is no semifast atomic register implementation.

Proof. It suffices to show that the theorem holds for the basic case whereW = 2, R = 2, and

f = 1. We assume that there exists a semifast implementation and we derive a contradiction.

Let w andw′ be the writers,r and r′ the readers, ands1, . . . , s|S| the servers participating

in the system. We show a series of executions and analyze the different cases of a semifast
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implementation where writers are fast and readers performn communication rounds. We show

that in all of these cases atomicity can be violated.

We now define a series of finite execution fragmentsφ(i), where1 ≤ i ≤ |S| + 1. We

assume that the two write operations fromw andw′ are concurrent. After the completion of

both write operations aρ1 read operation, which may involve multiple communication rounds

(phases), is invoked byr. For everyφ(i) the set of read operationssr(0) = ∅ and so theρ1

from r is the first read after the completion of the write operations. Defineφ(1) to be similar

to φg. Then we iteratively defineφ(i + 1) to be similar toφ(i) except that serversi receives

the message fromw before the message fromw′. In other words the arrival order of the write

messages are interchanged insi. Since the operations fromw, w′ and each communication

round byr are skip-free, they can differentiate betweenφ(i) andφ(i + 1). Also, si is the only

server that can distinguish the two executions since we assume no communication between the

servers. Obviously, by our construction, no server can distinguishφ(|S| + 1) from φ′g since

every server received theWRITE messages in the opposite order than inφg. Thus,r cannot

distinguish the two executions either, and so it returns2 in φ(|S| + 1) after the completion of

its last communication round. Therefore, executionsφ(|S| + 1) andφ′g differ only atw and

w′. Sinceρ1 returns1 in φ(1), 2 in φ(|S| + 1) and1 or 2 in φ(i) (2 ≤ i ≤ |S|), there are two

executionsφ(m) andφ(m + 1), for 1 ≤ m ≤ |S|, such that the readρ1 returns1 in φ(m) and

2 in φ(m + 1) at the end of the same communication round.

Consider now an execution fragmentφ(m)′ and an execution fragmentφ(m + 1)′′ that ex-

tendφ(m) andφ(m+1) respectively by a read operationρ2 from r′ that skipssm during all its

required communication rounds. On the constructed executions we analyze the cases of semi-

fast implementation. Recall that we investigate the case ofthe semifast implementation where
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we allow the readers to performn communication rounds and write operations are fast (only

one communication round). We examine the different possible scenarios during executions

φ(m)′ andφ(m + 1)′′:

(1) bothρ1 andρ2 are fast in both executions,

(2) ρ2 performsk communication rounds inφ(m)′ andφ(m + 1)′′ andρ1 is fast,

(3) ρ1 performsn communication rounds in both executions andρ2 is fast, and

(4) bothρ1 andρ2 performn andk communication rounds respectively.

We assume that the processes decide to perform a second communication round according to

their local policy.

Case 1: In this case both reads are fast and thus requiring only one communication round to

complete. The read operationρ2 cannot distinguish the two executionsφ(m)′ andφ(m + 1)′′

since it skips the only server (sm) that can differentiate them. So the readρ2 returns, according

to propertyMW2 , 1 in φ(m)′ and so it returns1 in φ(m + 1)′′ as well. However,ρ1 cannot

distinguish the executionsφ(m + 1) andφ(m + 1)′′, and so, since it returns2 in φ(m + 1), it

returns2 in φ(m + 1)′′ as well. Hence,φ(m + 1)′′ violates propertyMW2 .

Case 2:In this caseρ2 performsk phases in executionsφ(m)′ andφ(m + 1)′′. Since all read

phases byρ2 skip the serversm, then none of them is able to distinguish executionφ(m)′ from

φ(m + 1)′′ sincesm is the only server who can differentiate them. Thus,ρ2 retuns the same

value in both executions. Since, according again toMW2 , ρ2 returns1 in φ(m)′ then it returns

1 in φ(m + 1)′′ as well. Again,ρ1 cannot distinguishφ(m + 1) from φ(m + 1)′′ so it returns

2 in φ(m + 1)′′ as well. Thus, propertyMW2 is violated in this case too.
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Case 3:This is the case whereρ1 performsn phases to complete andρ2 is fast. Since all the

phases byρ1 are read phases, skip-free and precedeρ2, thenρ1 cannot distinguish execution

φ(m)′ from φ(m) andφ(m + 1)′′ from φ(m + 1). Therefore,ρ1 returns1 in φ(m)′ and2 in

φ(m+1)′′. On the other hand,ρ2 returns (according to propertyMW2 ) 1 duringφ(m)′. Since

all n phases ofr are read phases in both executionsφ(m)′ andφ(m+1)′′ , then no server, writer

or r′ can distinguish each phase and they only differ atr. So, onlysm differentiatesφ(m)′ from

φ(m + 1)′′. Since thoughρ2 skipssm, it cannot distinguishφ(m)′ from φ(m + 1)′′. Thus, it

returns1 in φ(m + 1)′′ as well violating propertyMW2 .

Case 4:Similarly to case 3,ρ1 returns1 duringφ(m)′ and2 duringφ(m+1)′′. With the same

reasoning as in case 3 and since all phases ofρ2 skip the serversm, no communication round

of ρ2 can distinguishφ(m)′ from φ(m + 1)′′. So,ρ2 returns1 in both executions violating

propertyMW2 . This completes the proof. 2
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Chapter 5

Trading Speed for Fault-Tolerance

In Chapter 4 we showed that by not restricting the number of reader participants does not

preclude fast operations in an atomic R/W register implementation. It is interesting to know

how the replica host access strategies affects the fastnessof the operations in the system. In

the sections that follow we provide an answer to this question. First, we revisit the assump-

tions made on replica organization by (semi)fast implementations. Then, we examine whether

(semi)fast implementations are feasible assuming replicas are organized in ageneralquorum

construction. We show that a common intersection among the quorums of the quorum system

is necessary. Such intersection implies that a single replica failure may collapse the underlying

quorum system. To increase fault-tolerance, we introduce anew family of implementations,

we callweak-semifast. We present a new weak-semifast algorithm that implements an atomic,

SWMR register and trades the speed of some operations for fault-tolerance of the service. We

prove the correctness of the proposed algorithm and we obtain empirical measurements of its

operation latency.
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5.1 Revisiting Replica Organization of (Semi)Fast Implementations

Operations in (semi)fast implementations of atomic R/W registers, as introduced in [30]

and Chapter 4, relied on voting techniques for accessing overlaping subsets of replica hosts.

For this reason, the participants of both algorithms neededto quantify and know in advance

the maximum number of failures they could tolerate. The authors in [30] claimed that their

algorithm tolerated up tof < |S|
2 server failures. By the constraint on the number of readers

however, we observe that:

|R| <
|S|

f
− 2 ⇒ f <

|S|

|R| + 2

Thus, in order for their algorithm to accommodate at least two reader participants, the number

of server failures had to be bounded byf < |S|
4 . In general, the fault-tolerance of the algorithm

in [30] was degrading proportionally to the number of readerparticipants in the system. A bet-

ter fault-tolerance was achieved in the semifast implementations of Chapter 4 since unbounded

number of readers were supported in just asinglevirtual node. Therefore, even if the number

of virtual nodes was bounded by|V| < |S|
f

− 2, the algorithm could toleratef < |S|
3 server

failures regardless of the number of readers in the system.

Despite this improvement, none of the two approaches achieved the optimal resilience

obtained by Attiya et al. [9] that toleratedf < |S|
2 failures. This fact demonstrates a possible

relation between the failure pattern and thus, replica hostorganization, with operation fastness.

Given that the approach of [9] was readily generalized from voting and majorities to quorum

systems (e.g., [66, 68]), and given that every voting schemeyields a quorum system [25], one

may ask: What is the fault-tolerance of fast implementations deploying a general quorum-

based framework?
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The work in [53] introduced the properties that a quorum construction must possess to

enable fast R/W operations in SWMR atomic register implementations. However, the tech-

niques they presented relied on synchronization assumptions and operation timeouts. So [53],

as well as [30] and Chapter 4 of this thesis, neglected to examine the specific properties of a

general quorum constructionthat may enable fast operations in atomic R/W register imple-

mentations. Answering this question may lead to more complex quorum system constructions

that may allow fast read and write operations in completely asynchronous and unconstrained

environments.

5.2 On the Fault-Tolerance of (Semi)Fast Implementations

In this section we investigate whether it is possible to obtain fast or semifast quorum-

based implementations of atomic read/write register. We focus in examining the fault-tolerance

of such implementations when we assume a general quorum construction and we allow un-

bounded reader participants.

Below we discuss our results regarding quorum-based fast and semifast implementations

that respect our failure model and the observations we made in Section 3.1.4. We assume,

w.l.o.g., that every quorum-based atomic register implementation utilizes a mechanism to es-

tablish when a valuev was written “later” than a valuev′ (or v′ is “older” thanv).

5.2.1 Fast Implementations are Not Fault Tolerant

We now state the quorum property that is both necessary and sufficient to obtain fast

quorum-based implementations.
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The first lemma shows that if there is a common intersection between the quorums of the

underlying quorum system then we can obtain quorum-based fast implementations.

Lemma 5.2.1 If for a quorum systemQ it holds that
⋂

Q∈Q Q 6= ∅, then any quorum-based

implementation of an atomic registerA that deploysQ can be fast.

Proof. The fact that the common intersection is sufficient for fast implementations follows

from a trivial implementation: each read/write operation contacts (only) the servers in the

common intersection and returns the latest value observed in the first communication round.

Notice here that according to our failure model, at least a single quorum is correct and thus all

the servers of the common intersection must remain alive during the execution. Atomicity is not

violated since every read/write operation will gather all the servers in the common intersection

and furthermore all operations complete in a single communication round. 2

Next we show that we cannot obtain fast quorum-based implementations if the underlying

quorum system does not have a common intersection.

Lemma 5.2.2 A quorum-based implementation of an atomic registerA that deploys a quorum

system|Q| = n and supports|R| ≥ n cannot be fast ifQ satisfies:
⋂

Q∈Q

Q = ∅.

Proof. Let |Q| = n and letQi, for 1 ≤ i ≤ n, be the identifiers of the quorums inQ. We are

going to proof by induction on the size of the quorum systemQ that we cannot obtain a fast

quorum-based implementation if the underlying quorum system Q does not have a common

intersection.

Induction Basis: By the definition of a quorum system, for any two quorumsQi, Qj ∈ Q :

Qi ∩ Qj 6= ∅. Thus, our inductive step examines whether all operations of a quorum-based

implementation when|R| = |Q| = 3 andQ1 ∩ Q2 ∩ Q3 = ∅ can be fast.
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Consider the following executions. Letξ0 be a finite execution of a fast quorum-based

implementationA. Let 〈σ,write(v)w, σ′〉 be the last step that appears inξ0, for some value

v. Thus, the last step ofξ0 is an invocation of a write operationω(v). Let ξ′0 be a fi-

nite execution fragment that starts with the last stateσ′ of ξ0 and ends with a state where

scnt(ω(v), Q1 ∩ Q2)w. That is, all the servers inQ1 ∩ Q2 receive messages fromω(v). Let

us assume w.l.o.g. that only the send and receive events fromthe writer to the servers appear

in ξ′0. The concatenation ofξ0 andξ′0 yields the executionξ1. SinceQ1 ∩ Q2 thenξ′0 is not

empty and hence,ξ0 is not the same asξ1. Similarly we assume thatξ′1 is a finite execution

fragment that starts with the last state ofξ1 and ends with a state wherescnt(ω(v), Q1)w. Let

ξ2 be equal to the concatenation ofξ1 andξ′1. Furthermore let〈σ′′,write-ackw, σ′′′〉 be the last

step ofξ2 whereσ′′ the last step ofξ′1. In other words the write operation completes by the end

of ξ2.

Consider now the extension of executionsξ1 andξ2 by a set of read operations. In particular

let executionξ2 be extended by an execution fragment that contains the following operations:

(1) a complete read operationρ1 from r1 thatscnt(ρ1, Q1)r1 , and

(2) a complete read operationρ2 from r2 thatscnt(ρ2, Q2)r2 .

We call the new execution∆(ξ2). Let ρ1 → ρ2. Sinceω(v) is completed inξ2 thenω(v) →

ρ1 → ρ2 in ∆(ξ2). Clearly by the definition of atomicityω(v) ≺ ρ0 andω(v) ≺ ρ1 and thus,

bothρ1 andρ2 have to return the valuev written byω(v). Notice thatρ1 observes this value in

all the servers ofQ1, whereasρ2 observes this value in the servers of the intersectionQ1 ∩Q2.

We now obtain execution∆(ξ1) by extendingξ1 with an execution fragment that contains

the following operations:

(1) a complete read operationρ1 from r1 thatscnt(ρ1, Q1)r1 ,
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(2) a complete read operationρ2 from r2 thatscnt(ρ2, Q2)r2 , and

(3) a complete read operationρ3 from r3 thatscnt(ρ3, Q3)r3 .

Let ρ1 → ρ2 → ρ3. Recall thatξ2 is the extension ofξ1 that includes send and receive

events for any servers ∈ Q1 − (Q1 ∩ Q2). Since the write operation is fast, any server in

Q1 ∩ Q2 receive a single write message from the write operation. Thus, the state of every

servers ∈ Q1 ∩ Q2 is the same by the end of bothξ2 andξ1. This is the same for every server

s ∈ Q2 − (Q1 ∩ Q2) that does not receive any message from the write operation. Hence, any

server inQ2 has the same state by the end of bothξ2 andξ1.

Let us now examine how the state of the servers changes after the invocation of the first

read operation. Since,r1 does not receive any messages from any process inξ2 andξ1 then the

state ofr1 is the same by the end of both executions. Thus, the same events from the invocation

to the end of the first communication round (including response since its fast) ofρ1 appear in

both ∆(ξ2) and∆(ξ1). So any server inQ1 ∩ Q2 receive the same messages forρ1 in both

executions. Thus, the state of all the servers inQ2 at the response step ofρ1 is also the same

in ∆(ξ2) and∆(ξ1). Henceρ2, since it strictly contactsQ2, cannot distinguish∆(ξ1) from

∆(ξ2). Thus, since it returnsv in ∆(ξ2), it returnsv in ∆(ξ1) as well. In order to preserve

atomicity ρ3 has to returnv in ∆(ξ1) as well, sinceρ2 → ρ3. According to our assumption

Q1 ∩Q2 ∩Q3 = ∅. Thus no server inQ3 received any messages fromω(v) in ∆(ξ1) but some

of them received messages fromρ1 andρ2.

Lastly, consider the executionξ which is similar toξ0 but it ends before the invocation

of ω(v). In other words, whileξ0 ends with the step〈σ,write(v)w, σ′〉, ξ ends with stateσ.

Observe that since no messages were delivered to the serversin neitherξ nor ξ0, then the state

of every servers ∈ S is σ[s] = σ′[s]. Let ∆(ξ) be the concatenation ofξ with the execution
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fragment that contains the operationsρ1, ρ2 andρ3 as in∆(ξ1). Since,Q1 ∩ Q2 ∩ Q3 = ∅

thenξ′0 contains no receive or send events for any servers ∈ Q3. So, the state of every server

s ∈ Q3 at the end ofξ1 is the same as the state ofs at the end ofξ0 and subsequently the same

as the state ofs at the end ofξ. Thus, with similar arguments as before, we can conclude that

the state of every servers ∈ Q3 is the same in both∆(ξ1) and∆(ξ) at the response step ofρ2.

Sinceρ3 strictly contactsQ3, it cannot distinguish the two executions. Hence, since it returned

v in ∆(ξ1) then it returnsv in ∆(ξ) as well. But according to our constructionω(v) is not

invoked inξ. So atomicity is violated because the read returns a value that was not written.

That contradicts our initial assumption that we can obtain fast quorum-based atomic register

implementations whenQ1 ∩ Q2 ∩ Q3 = ∅.

Inductive Hypothesis:For our induction hypothesis we assume that we cannot obtainfast

quorum based implementations when|Q| = |R| = n − 1 and
⋂

Q∈Q Q = ∅. From Lemma

5.2.1 it follows that ifQ satisfies
⋂

Q∈Q Q 6= ∅, then any algorithm that deploysQ can be fast.

Inductive Step:For our induction step we examine the case where|Q| = |R| = n. By our

induction hypothesis we know that we cannot obtain fast implementations if|Q| = n − 1 and

⋂n−1
i=1 Qi = ∅; otherwise, if

⋂n−1
i=1 Qi 6= ∅ and by Lemma 5.2.1, any algorithm can be fast.

So we assume that we can obtain fast quorum-based implementations when
⋂n−1

i=1 Qi 6= ∅ and

(
⋂n−1

i=1 Qi) ∩ Qn =
⋂n

i=1 Qi = ∅, for Qi ∈ Q.

We consider a generalization of the execution presented in the basic step. In particular, we

start fromξ0 that ends with the step〈σ,write(v)w, σ′〉. Let nowξ′0 be the finite execution frag-

ment that starts with the last stateσ′ of ξ0 and ends with a state wherescnt(ω(v),
⋂n−1

i=1 Qi)w.

That is, all the servers in
⋂n−1

i=1 Qi receive messages fromω(v). As before, only the send and
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receive events from the writer to the servers appear inξ′0. The concatenation ofξ0 andξ′0 yields

the executionξ1. If no servers exists in that intersection thenξ′0 contains no events but only

the stateσ′ and thusξ1 is equal toξ0. Similarly we construct a series of finite executions each

of which extendξ0. We say that executionξk, for 1 ≤ k ≤ n − 1, is the result of the con-

catenation of executionξk−1 and the execution fragmentξ′k−1, whereξ′k−1 starts with the last

state ofξk−1 and ends with a state wherescnt(ω(v),
⋂n−k

i=1 Qi)w. Let, ξn−1 end with a step

〈σ′′,write-ackw, σ′′′〉 andσ′′ is a state wherescnt(ω(v), Q1)w. Therefore, the write operation

ω(v) completes by the end ofξn−1. Note also that the write inξn−2 strictly contacts the servers

in Q1 ∩ Q2, the write inξn−3 the servers inQ1 ∩ Q2 ∩ Q3 and so on.

Let us extend each executionξk, for 1 ≤ k ≤ n − 1, by an execution fragment which

contains a set of complete read operationsρx, for 1 ≤ x ≤ n − k + 1, such thatρx → ρx+1

andscnt(ρx, Qx)rx , yielding execution∆(ξk). Notice that every execution∆(ξk) is similar

to ∆(ξk−1) except from the fact that only a subset of servers that received write messages for

operationω(v) in ∆(ξk) receives write messages in∆(ξk−1). Furthermore∆(ξk−1) contains

an additional read operationρn−k+2 that strictly contacts the quorumQn−k+2.

Let us examine what is the return value of the last read operation of an execution∆(ξk), for

1 ≤ k ≤ n − 1. For execution∆(ξn−1) atomicity is preserved if both read operationsρ1 and

ρ2 return the valuev written byω(v), since the write operation is completed and precedes both

operations. In execution∆(ξn−2) the write operationω(v) is incomplete andscnt(ω(v), Q1 ∩

Q2)w. Sinceρ1 is fast then every servers ∈ Q1 ∩Q2 and subsequent any servers ∈ Q2 reach

the same state in both∆(ξn−1) and∆(ξn−2). Thus, sincescnt(ρ2, Q2)r2 , the read operationρ2

cannot distinguish∆(ξn−2) from ∆(ξn−1) and thus, returnsv in ∆(ξn−2) as well. Atomicity

is preserved if the last read operation in∆(ξn−2), ρ3, returnsv as well. With a simple induction
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we can show that the last two read operationsρn−k andρn−k+1 of any execution∆(ξk), for

1 ≤ k ≤ n−1, return the valuev written byω(v). From this it follows that read operationρn−1

cannot distinguish executionsξ2 from ξ1 thus, returnsv in both executions. Hence, atomicity

is preserved if read operationρn returnsv in ∆(ξ1) as well.

Consider now the executionξ which is the same asξ0 with the difference that it ends before

the invocation step of the write operation. In other words, if 〈σ,write(v)w, σ′〉 is the last step

of ξ0, then the last state ofξ is σ. We extendξ by an execution fragment that contains a set

of complete read operationsρx, for 1 ≤ x ≤ n, such thatρx → ρx+1 andscnt(ρx, Qx)rx ,

yielding execution∆(ξ). So∆(ξ) is similar to∆(ξ1) with the only difference that the write

operationscnt(ω(v),
⋂n−1

i=1 Qi)w in ∆(ξ1) before the invocation of any read operation. By our

assumption,
⋂n−1

i=1 Qi 6= ∅. So it follows that the state of any servers ∈
⋂n−1

i=1 Qi in ∆(ξ) is

different from the state ofs in ∆(ξ1) sinces received messages from the write operation in

∆(ξ1). Thus, it follows that any read operationρi, for 1 ≤ i ≤ n − 1, can distinguish the two

executions sincescnt(ρi, Qi)ri
. So it remains to examine read operationρn.

We know thatρn strictly contactsQn. Since we assume that(
⋂n−1

i=1 Qi) ∩ Qn = ∅ then

no servers ∈ Qn received messages fromω(v) in neither executionξ1 nor ξ. Moreover, since

all the read operations are fast, then any servers ∈ Qn received the same messages from the

first round of any read operationρi, for 1 ≤ i ≤ n, in both∆(ξ1) and∆(ξ). Thus, any server

s ∈ Qn reaches the same state in both∆(ξ) and∆(ξ1). From this follows thatρn cannot

distinguish∆(ξ1) from ∆(ξ). Therefore, sinceρn returnsv in ∆(ξ1), it returnsv in ∆(ξ)

as well. This however, violates atomicity since∆(ξ) does not contain the invocation and any

messages from the write operationω(v). Hence, this contradicts our initial assumption and

thusρn can returnv and be fast only if
⋂n

i=1 Qi 6= ∅.
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2

The main results follows from the Lemmas 5.2.2 and 5.2.1.

Theorem 5.2.3 A quorum-based implementation of a SWMR atomic read/write registerA

that deploys a quorum system|Q| = n and supports|R| ≥ n readers can be fast iffQ satisfies:

⋂

Q∈Q

Q 6= ∅.

In other words, by Theorem 5.2.3, unconstrained fast implementations of atomic register

are possible if and only if all the quorums of the underlying quorum system have acommon

intersection. According to our failure model, a quorum is faulty if one of its members is faulty.

Hence, if any nodes ∈
⋂

Q∈Q Q fails, then all quorums become faulty since∀Q ∈ Q, s ∈ Q,

and the whole quorum systemQ fails. Therefore, such quorum construction suffers from a

single point of failure and as a result it is not fault-tolerant. In turn, any implementation that

relies on such quorum construction is not fault-tolerant either. So we derive the following

observation:

Observation 5.2.4 A fast quorum-based implementation of atomic register is not fault-

tolerant.

5.2.2 SemiFast Implementations are Not Fault Tolerant

Given that fast implementations are not possible if common intersection property is not

satisfied by the quorum system, the natural question arises whether fault-tolerantsemifastim-

plementations can be obtained. We show that fault-tolerantsemifast implementations are also

impossible in the absence of a common intersection among thequorums used by the imple-

mentations. We use the properties of Definition 4.1.1.
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The following lemma proves that if a read operation obtains the latest value from all servers

of a quorum intersection alone, it cannot be fast. The following lemma applies to all quorum-

based implementations that use a quorum system without a common intersection.

Lemma 5.2.5 Let Q be a quorum system without a common intersection that is usedby an

implementationA. A read operationρ1 by readerr1 thatscnt(ρ1, Q
′)r1 , for Q′ ∈ Q, cannot

be fast and return a valuev if ∃Φ ⊂ Q − {Q′}, such thatZ = Q′ ∩





⋂

Q∈Φ

Q



 6= ∅, and

∀s ∈ Z, s.val = v, and∀s′ ∈ Q′ − Z, s′.val = v′ for somev′ older thanv.

Proof. SinceQ has no common intersection, then for anyQ′ ∈ Q it follows that:

Q′ ∩





⋂

Q∈Q−{Q′}

Q



 = ∅

Since for anyQ′, Q′′ ∈ Q, Q′ ∩ Q′′ 6= ∅, there must exist two non empty sets of quorums

Φr,Φℓ ⊂ Q such thatΦr = Q − ({Q′} ∪ Φℓ) and:

Q′ ∩





⋂

Q∈Φr

Q



 6= ∅

Pick the largest setΦr that satisfies the above property. Then∀Q′′′ ∈ Φℓ the following is true:

Q′ ∩





⋂

Q∈Φr

Q



 ∩ Q′′′ = ∅ (3)

Consider now executionξ that contains an incomplete write operationω(v) that

scnt(ω(v),
⋂

Q∈Φr∪{Q′}Q)w. We extendξ by a read operationρ1 from readerr1 that

scnt(ρ1, Q
′)r1 . Every servers ∈

⋂

Q∈Φr∪{Q′}Q received the messages from the write op-

eration, and sets its value tos.val = v. Furthermore since we assume a single writer and

operationω(v) is incomplete,v is the latest value written in the system. Assume to derive

contradiction thatρ1 is fast and returnsv.
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Figure 11: Intersections of three quorumsQ′, Q′′, Q′′′.

Let us extendξ by a second read operationρ2 by a readerr2 thatscnt(ρ2, Q
′′′)r2 , Q

′′′ ∈ Φℓ.

Sinceρ1 is fast and it does not perform second communication round, then only the servers in

⋂

Q∈Φr∪{Q′}Q maintain the valuev. By equation (3) it follows thatρ2 observes and returns an

older valuev′ violating atomicity. So,ρ1 cannot be fast returningv. This completes our proof.

2

Using the above lemma we derive the following result.

Theorem 5.2.6 No quorum-based semifast implementation is possible with aquorum system

Q such that
⋂

Q∈Q Q = ∅.

Proof. The proof builds upon execution constructions that exploitquorum systemQ that con-

tain triples of quorums (similar to the one presented in Figure 11) without a common inter-

section. Assume that we can obtain a semifast quorum-based implementation exploiting such
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quorum system. Let the quorumsQ′, Q′′, Q′′′ ∈ Q be quorums that have no common intersec-

tion, i.e.,Q′ ∩ Q′′ ∩ Q′′′ = ∅.

Let, ρk
i denote thekth communication round of the read operationρi. Consider execution

ξ1 that contains the following operations:

1. a complete write operationω(v) thatscnt(ω(v), Q′′)w succeeded by,

2. a read operationρ1 from r1 thatscnt(ρ1
1, Q

′)r1 .

Hence,ω(v) → ρ1. In order to preserve atomicityρ1 has to return 1 inξ1 and according to

Lemma 5.2.5 has to perform a second communication round before it completes.

Consider now an executionξ′1 which is similar toξ1 but the write operation is incomplete.

In particularξ′1 consists of the following operations:

1. an incomplete write operationω(1) thatscnt(ω(v), Q′ ∩ Q′′)w succeeded by,

2. a read operationρ1 from r1 thatscnt(ρ1
1, Q

′)r1 .

Here,ρ1 is concurrent withω(v) but is invoked after the write operationscnt(ω(v), Q′∩Q′′)w.

Notice thatρ1 cannot distinguish between executionsξ1 andξ′1. Thus, it returnsv and performs

a second communication round before completing inξ′1 as well.

Let ξ′1 be extended by the second communication round ofρ1 and a second read operation

ρ2 thus containing the following operations:

1. an incomplete write operationω(v) thatscnt(ω(v), Q′ ∩ Q′′)w succeeded by,

2. a complete read operationρ1 from r1 thatscnt(ρ1
1, Q

′)r1 andscnt(ρ2
1, Q

′)r1 during its

first and second communication rounds respectively succeeded by,
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3. a complete read operationρ2 from r2 thatscnt(ρ1
2, Q

′′)r2

Here, bothρ1 andρ2 are concurrent with the write but they are invoked after the write operation

scnt(ω(v), Q′ ∩ Q′′)w. However, the reads are not concurrent withρ1 → ρ2. Observe that in

order to satisfy propertyS3of Definition 4.1.1,ρ2 has to befastsince it succeeds a slow read.

Moreover in order to preserve atomicity (and sinceρ1 returnsv), ρ2 must returnv as well.

Finally consider an executionξ2 which is similar toξ′1 with the difference that the second

communication of the read operationρ1 is not yet completed. So the operations contained in

ξ2 are the following:

1. an incomplete write operationω(v) thatscnt(ω(v), Q′ ∩ Q′′)w succeeded by,

2. an incomplete read operationρ1 from r1 that scnt(ρ1
1, Q

′)r1 andscnt(ρ2
1, Q

′ ∩ Q′′)r1

during its first and second communication rounds respectively succeeded by,

3. a complete read operationρ2 from r2 thatscnt(ρ1
2, Q

′′)r2

Here, all operations are concurrent between each other. Both reads however, are invoked after

the writescnt(ω(v), Q′ ∩Q′′)w, andρ2 is invoked afterscnt(ρ2
1, Q

′ ∩Q′′)r1 . Sinceρ2 receive

replies from the members of the quorumQ′′, as in executionξ′1 observes that the servers in

Q′′∩Q′ received messages fromω(v), and from the first and the second communication round

of ρ1. Thus, it cannot distinguish the executionsξ′1 from ξ2. Sinceρ2 is fast and returnsv in

ξ′1, then is fast and returnsv in ξ2 as well.

Finally we extendξ2 by a third read operationρ3 from r3 which scnt(ρ1
3, Q

′′′)r3 . Since

only the servers inQ′ ∩ Q′′ received valuev, and sinceQ′ ∩ Q′′ ∩ Q′′′ = ∅, thenρ3 observes

and returns an older valuev′. However this violates atomicity. Thus,ρ2 has to be slow inξ2
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in order to inform enough servers before completing. This action of ρ2 will preserve atomicity

and also does not violate propertyS3 of Definition 4.1.1 inξ2. Since however,ρ2 does not

distinguish betweenξ2 andξ′1, then if it is slow inξ2 it must be slow inξ′1 as well. But this will

violate propertyS3of Definition 4.1.1 inξ′1 since there will be a slow read (ρ2) succeeding a

completed slow read (ρ1) and both return the same value. That contradict our initialassumption

and completes our proof. 2

We similar reasoning as in Section 5.2.1 we derive the following observation:

Observation 5.2.7 Semifast quorum-based implementations of atomic registerare not fault-

tolerant.

5.2.3 Common Intersection in Fast and Semifast Implementations

As presented in Sections 5.2.1 and 5.2.2, a common intersection between all the quorums

of a given quorum system is necessary in order to obtain fast or semifast implementations. Our

findings raise the following question:Was a common intersection necessary for the fast and

semifast approaches proposed in [30] and Section 4.2 of thisthesis?

We construct a simple example which will help us visualize the intersection requirements

of a fast implementation as proposed by [30]. Assume the following setting under [30]: a set

of five servers with identifiersS = {1, 2, 3, 4, 5} one of which may fail by crashing (f =

1). According to [30] fast implementations are possible onlyif readers are constrained under

|R| < |S|
f

− 2. Therefore, this setting supports no more than|R| = 2 readers and one writer.

Let us assume that readers have identifiersR = {r, r′} and the writer has identifierw.

The algorithm presented in [30], relied on the number of replies received for the completion

of each read/write operation. In particular, any read/write operation was expecting|S| − f
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Figure 12: Graphical representation of quorumsQ3, Q4 andQ5.

servers to reply before completing. Thus, in our setting anyoperation had to wait for replies

from one of the following sets:Q1 = {1, 2, 3, 4}, Q2 = {1, 3, 4, 5} Q3 = {1, 2, 4, 5}, Q4 =

{1, 2, 3, 5}, Q5 = {2, 3, 4, 5}. Every two sets have a non-empty intersection and hence, those

sets compose a quorum systemQ = {Q1, Q2, Q3, Q4, Q5} where eachQi ∈ Q : |Qi| =

|S| − f . Figure 12 depicts the setsQ3, Q4 andQ5.

Let us now consider an execution of this algorithm that contains a write operationω from

w, followed by a read operationρ from r and a read operationρ′ from r′. Since the system

supports two readers and one writer, in the worst case each participant receives replies from a

different quorum for each operation. Let w.l.o.g.,w write a value inQ5 (scnt(ω,Q5)w), r to

scnt(ρ,Q3)r andr′ to scnt(ρ′, Q4)r′ . Observe that the intersectionQ3 ∩ Q4 ∩ Q5 = {2, 5}

and containsf + 1 (two) servers. Since bothr andr′ observed the value written byw, any

subsequent read operation (from eitherr or r′) will also be aware of the value written byω.

As a result, any subsequent read will return an equal or newervalue and violation of atomicity

is avoided. (Similar arguments can be made for the semifast algorithm presented in Section

4.2.) Hence, the restriction on the number of readers allowsthe concentration of the common
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intersection between a subset of quorum sets, which serves as a “hot spot” to ensure consistency

between the operations. This observation yields the following remark:

Remark 5.2.8 Fast or Semifast quorum-based implementations do not require a common in-

tersection in the quorum system they deploy if either:

• we relax the failure model and operations can wait to receivereplies from more than a

single quorum, or

• we impose restrictions on the participation and on the construction of the quorum system.

Such restrictions however, will negatively affect the performance of the quorum system and

will introduce strong assumptions for its maintenance, making eventually the use of quorums

impractical. Thus, in this work we avoid making such assumptions and we prefer to trade

operation latency for higher fault-tolerance and applicability.

5.3 Weak Semifast Implementations

Recall that fast implementations [30] require every read and write operation to complete

in a single round. Semifast implementations (see Chapter 4)on the other hand, allow a single

complete read operation to be slow per write operation. Since neither fast nor semifast imple-

mentations are fault-tolerant, one may ask whether we can relax some of their requirements and

allow at least some operations to be fast in an unconstrained, in terms of quorum construction

and participation, environment. As demonstrated by [22, 28], single round reads are possible

in quorum-based implementations in the MWMR environment, whenever it is confirmed that

a read operation is not concurrent with a write. Such strategy however, did not overcome the

observation of [9] that reads concurrent with a write must perform a second round.
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We show that one may obtainweak-semifastimplementations in these settings defined as

follows:

Definition 5.3.1 (Weak-Semifast Implementations)An implementation of an atomic

R/W register is calledweak-semifastif it satisfies propertiesS1, S2 andS4 (but notS3) of

Definition 4.1.1.

From the fact that a weak-semifast implementation does not satisfy S3of Definition 4.1.1,

it follows that it allows more than a single complete read operations to be slow for each write

operation. On the other hand, such implementations need to satisfy propertyS4 and thus,

should be capable to yield executions that contain read and write concurrency and all operations

are fast.

5.4 Weak-Semifast Implementation: Algorithm SLIQ

In previous sections we established that no fault-tolerantfast or semifast quorum-based

implementations are possible. We therefore now considerweak-semifastimplementations. We

develop a client-side decision tool, calledQuorum Views, and we devise an algorithm, called

SLIQ, for atomic registers. In SLIQ, writes are fast and read operations may perform one or

two rounds. We deviate from the restrictive common intersection presented in Section 5.2

and we allow our implementation to use anarbitrary quorum system. Our algorithm deploys

〈timestamp,value〉 pairs to order read and write operations. We first present theidea behind the

quorum views. In Section 5.4.2 we provide a compact description of the algorithm followed

by its formal specification in Section 5.4.3. Finally, we show that the algorithm is correct and

satisfies all the properties of the weak-semifast implementations in Section 5.4.4.
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5.4.1 Examining Value Distribution – Quorum Views

To facilitate the creation of weak-semifast implementations, we introduced a new client-

side decision tool, calledQuorum Views. A quorum view refers to the distribution of a register

value as it is witnessed by a read operation during a communication round. Our approach

inherits the〈timestamp, value〉 pair to impose partial ordering on the written values. As each

value is associated with a unique timestamp, we define quorumviews in terms of the timestamp

distribution instead of the actual written value. LetmaxTS denote the maximum timestamp

that a read discovers during some round. Also, letm(ρ, c)s,r.ts denote the timestamp that

servers sends during thecth round of the read operationρ to the invoking readerr. Given this

notation, quorum views are defined as follows:

Definition 5.4.1 (Quorum Views) Any read operationρ that receives replies from all the

members of a quorumQ ∈ Q in some round, witness one of the followingquorum views:

QV1. ∀s ∈ Q : m(ρ, c)s,r.ts = maxTS,

QV2. ∀Q′ ∈ Q, Q 6= Q′,∃A ⊆ Q ∩ Q′, s.t. A 6= ∅ and∀s ∈ A : m(ρ, c)s,r.ts < maxTS,

and

QV3. ∃s′ ∈ Q : m(ρ, c)s′,r.ts < maxTS and∃Q′ ∈ Q, Q 6= Q′ and∀s ∈ Q ∩ Q′ :

m(ρ, c)s,r.ts = maxTS

Under the assumption that servers always maintain the largest timestamp they receive, these

three types of quorum views may reveal the state of the write operation (complete or incom-

plete) which tries to write the value associated tomaxTS. Figure 13 illustrates those quorum

views assuming that the read operationρ, receives replies from the servers inQ. The dark
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Figure 13:(a)QV1, (b)QV2, (c)QV3 with incomplete write, (d)QV3 with complete write.

nodes maintain the maximum timestamp of the system and whitenodes or “empty” quorums

maintain an older timestamp.

Recall that by our failure model a single quorum of servers isguaranteed to be non-faulty.

Thus, any R/W operation is guaranteed to terminate as long asit waits for the servers of a

single quorum to reply.

By the first quorum view,QV1 (see Figure 13(a)), the read operationρ obtains the maxi-

mum timestamp-value pair from all servers of quorumQ. This implies the possible completion

of the write operationω that propagates the value associated withmaxTS: (1) The writer in-

vokedω to write 〈maxTS, v〉 pair, (2)∀s ∈ Q received the message forω and updated its

local register replica, and (3)∀s ∈ Q possibly replied toω. Since the write operation cannot

wait for more than a single quorum to reply, thenω completes when those replies are delivered

to the writer. Thus, we say thatQV1 implies a potentiallycomplete writeoperation.

By definition, every two quorumsQ,Q′ ∈ Q, Q ∩ Q′ 6= ∅. Therefore, if there exists

a quorumQ such that∀s ∈ Q, m(ρ, c)s,r.ts = maxTS, then it follows that∀Q′ ∈ Q,

s′ ∈ Q′ ∩ Q replies withm(ρ, c)s′,r.ts = maxTS to ρ. That is, all servers in any intersection

of Q must reply withmaxTS to a read operationρ. From this observation,QV2 reveals an

incomplete writeoperation. Recall that, byQV2, ρ witnesses a subset of servers that maintain
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a timestamp older thanmaxTS in each intersection ofQ (see Figure 13(b)). This implies

that the write operation (which propagatesmaxTS) has not yet received replies from any full

quorum and thus, has not yet completed.

Finally, QV3, provides insufficient information regarding the state of the write operation.

Specifically, if an operation receives replies from a quorumQ (that contains some servers with

timestamp less thanmaxTS) and witnesses some intersectionQ∩Q′ that containsmaxTS in

all of its servers, then a write operation might: (i) have been completed and contactedQ′ (see

Figure 13(d)) or (ii) be incomplete and contacted a subset ofserversB such thatQ ∩ Q′ ⊆ B

and∀Q′′ ∈ Q, Q′′ 6⊆ B (see Figure 13(c)).

5.4.2 High Level Description ofSLIQ

Using quorum views, we developed the first algorithm that allows fast operations and does

not depend on any service participation and quorum construction constraints. In particular, the

algorithm allows: (i) more than a single slow reads per writeoperation and (ii) read operations

to be fast even in cases they are concurrent with a write operation. Below we provide a brief

description of the protocol of each participant of the service. This algorithm utilizes timestamp-

value pairs where the value is a tuple〈v, vp〉 that contains both the new value to be writtenv

and the previous value writtenvp.

Writer. The write protocol involves the propagation of a write message to all the servers. Once

the writer receives replies from a full quorum it incrementsits timestamp and the operation

completes.
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Readers.The read protocol requires that a reader propagates a read message to all the servers.

Once the reader receives replies from a full quorum, it examines the distribution of the maxi-

mum timestamp-value pair (〈maxTS, v, vp〉) within that quorum. This distribution character-

izes a quorum view.

If the view is eitherQV1 or QV2 then the reader terminates in the first communica-

tion round. IfQV1 is observed, then the write operation that propagates〈maxTS, v, vp〉 is

potentially completed and thus, the read operation returnsv. If QV2 is observed, then the

write operation that propagates〈maxTS, v, vp〉 is not yet completed. Since we have a single

well-formed writer, the detection ofmaxTS implies the completion of the write operation

that propagated the previous valuevp (associated withmaxTS − 1). Thus, in case the reader

observesQV2 it returns the valuevp in a single round.

If QV3 is observed, then the reader cannot determine the status of the write opera-

tion and thus, proceeds to a second communication. During this round, the reader sends

〈maxTS, v, vp〉 to all servers. Once the reader gets replies from a full quorum, the read oper-

ation completes and returnsv.

Servers.The servers maintain a passive role; they just receive read and write messages, update

their replica value if the timestamp included in a message ishigher than their local timestamp,

and reply to those messages.

5.4.3 Formal Specification ofSLIQ

We now present the formal specification of SLIQ using Input/Output Automata [67] nota-

tion. Our implementation includes four automata: (i) automaton SLIQw that handles the write

operations for the writer processw, (ii) automaton SLIQr that handles the reading for each
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r ∈ R, (iii) automaton SLIQs that handles the read and write requests on the atomic register for

eachs ∈ S, and (iv)Channelp,p′ that establish the reliable asynchronous process-to-process

communication channels (see Section 3.1.2).

Automaton SLIQw.

The state variables, the signature and the transitions of the SLIQw can be depicted in Figure

14. The state of the SLIQw automaton includes the following variables:

• 〈ts, v, vp〉 ∈ N×V ×V : writer’s local timestamp along with the latest and the previous

value written by the writer.

• wCounter ∈ N: the number of write requests performed by the writer. Is used by the

servers to distinguish fresh from stale messages.

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an

operation (status = active) or it is done with any requests (status = idle). When

status = done, it indicates that the writer received all the necessary replies to complete

its write operation and is ready to respond to the client.

• srvAck ⊆ S: a set that contains the servers that reply to the write messages as a result of

a write request. The set is reinitialized to∅ at the response step of every write operation.

• failed ∈ {true, false}: indicates whether the process associated with the automaton

has failed.
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Signature:

Input:
write(val)w , v ∈ V

rcv(m)s,w , m ∈M , s ∈ S
failw

Output:
send(m)w,s , m ∈M , s ∈ S
write-ackw

Internal:
write-fixw

State:
ts ∈ N, initially 0
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
wCounter ∈ N+, initially 0

srvAck ⊆ S, initially ∅
status ∈ {idle, active, done}, initially idle

failed, a Boolean initiallyfalse

Transitions:
Input write(val)w

Effect:
if ¬failed then
if status = idle then
status← active

srvAck← ∅
vp← v

(v, ts)← (val, ts + 1)
wCounter← wCounter + 1

Input rcv(〈msgT, t, C〉)s,w

Effect:
if ¬failed then
if status = active andwCounter = C then
srvAck← srvAck ∪ {s}

Internal write-fixw

Precondition:
¬failed

status = active

∃Q ∈ Q : Q ⊆ srvAck

Effect:
status← done

Output send(〈msgT, t, C〉)w,s

Precondition:
status = active

¬failed

s ∈ S
〈msgT, t, C〉 =

〈WRITE, 〈ts, v, vp〉, wCounter〉
Effect:

none

Output write-ackw

Precondition:
status = done

¬failed

Effect:
status← idle

Input failw
Effect:

failed← true

Figure 14: SLIQw Automaton: Signature, State and Transitions

The automaton completes a write operation in a single phase.When awrite(val)w request

is received from the automaton’s environment, thestatus variable becomesactive, the previ-

ous valuevp gets the current value, the variablev gets the requested valueval to be written,

andts is incremented. As long as thestatus remains active the automaton sends messages to

all server processes and collects the identifiers of the servers that reply to those messages in

thesrvAck set. The operation is done when the process receives repliesfrom the members of
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a full quorum, i.e.,∃Q ∈ Q : Q ⊆ srvAck. Thestatus of the automaton becomesidle when

the writer responds to the environment and thewrite-ackw event occurs.

Automaton SLIQr.

The state variables, the signature and the transitions of the SLIQr can be depicted in Figure

15. The state of the SLIQr automaton includes the following variables:

• 〈ts, v, vp〉 ∈ N × V × V : the maximum timestamp discovered duringr’s last read

operation along with its associated value and previous value.

• maxTS ∈ N, maxPS ∈ N, andretvalue ∈ V : the maximum timestamp and postit

discovered, and the value that was returned during the last read operation.

• rCounter ∈ N: read request counter. Used by the servers to distinguish fresh from stale

messages.

• phase ∈ {1, 2}: indicates the active communication round of the read operation.

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an

operation (status = active) or it is done with any requests (status = idle). When

status = done, it indicates that the reader decided on the value to be returned and is

ready to respond to the client.

• srvAck ⊆ M ×S: a set that contains the servers and their replies to the readoperation.

The set is reinitialized to∅ at the response step of every read operation.
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• maxTsAck ⊆ M × S andmaxPsAck ⊆ M × S: these sets contain the servers that

replied with the maximum timestamp and maximum postit respectively to the last read

request. The sets also contain the messages sent by those servers.

• maxTsSrv ⊆ S: The servers that replied with themaxTS.

• failed ∈ {true, false}: indicates whether the process associated with the automaton

has failed.

Any read operation requires one or two phases to complete (fast or slow). The decision

on the number of communication rounds is based on the quorum views that the reader obtains

during its first communication round.

A read operation is invoked when the SLIQr automaton receives areadr request from its

environment. The status of the automaton becomesactive. As long as the reader is active, the

automaton sends messages to each servers ∈ S to obtain the value of the register replicas.

Thercv(m)s,r action is triggered when a reply from a servers is received. The reader collects

the identifiers of servers that replied to the current operation and their messages, by adding

a pair (s,m) in the srvAck set. When the setsrvAck contains the members of at least a

single quorumQ of the quorum systemQ, the set of messages is filtered to find the messages

that contain the maximum timestamp. Those messages are placed in maxTsAck set. The

servers that belong into the collected quorum and have messages inmaxTsAck they are placed

separately in themaxTsSrv set.

From the newly formed sets the reader extracts the information regarding the quorum view

of Q. Based on the quorum view the reader decides to complete the operation or proceed to a

second communication round. In particular, the reader is fast and completes in one round trip
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Signature:

Input:
readr , r ∈ R
rcv(m)s,r , m ∈M , r ∈ R, s ∈ S
failr, r ∈ R

Output:
send-read(m)r,s , m ∈M , r ∈ R, s ∈ S
send-info(m)r,s , m ∈M , r ∈ R, s ∈ S
read-ack(val)r , val ∈ V , r ∈ R

Internal:
read-phase1-fixr

read-phase2-fixr

State:
ts ∈ N, initially 0
maxTS ∈ N, initially 0
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
retvalue ∈ V , initially ⊥
rCounter ∈ N+, initially 0

phase ∈ {1, 2}, initially 1
status ∈ {idle, active, done}, initially idle

srvAck ⊆M × S, initially ∅
maxAck ⊆M × S, initially ∅
maxTsSrv ⊆ S, initially ∅
failed, a Boolean initiallyfalse

Transitions:
Input readr

Effect:
if ¬failed then
if status = idle then
status← active

rCounter← rCounter + 1

Input rcv(〈msgT, t, C〉)s,r

Effect:
if ¬failed then
if status = active andrCounter = C then
srvAck← srvAck ∪ {(s, 〈msgT, t, C〉)}

Output send(〈msgT, t, C〉)r,s

Precondition:
status = active

¬failed
ˆ

(phase = 1 ∧ 〈msgT, t, C〉 =
〈READ, 〈maxTS, v, vp〉, rCounter〉)∨

(phase = 2 ∧ 〈msgT, t, C〉 =
〈INFORM, 〈maxTS, v, vp〉, rCounter〉)

˜

Effect:
none

Output read-ack(val)r

Precondition:
¬failed

status = done

val = retvalue

Effect:
status← idle

Input failr
Effect:

failed← true

Internal read-phase1-fixr

Precondition:
¬failed

status = active

phase = 1
∃Q ∈ Q : Q ⊆ srvAck

Effect:
maxTS ← {max(m.t.ts) : (s, m) ∈ srvAck ∧ s ∈ Q}
maxAck ←
{(s, m) : (s, m) ∈ srvAck ∧ m.t.ts = maxTS}

(v, vp)← {(m.t.v, m.t.vp) : (s, m) ∈ maxAck}
maxTsSrv ←
{s : s ∈ Q, (s, m) ∈ maxAck}

if Q ⊆ maxTsSrv then
ts ← maxTS

retvalue ← v

status← done

else
if ∃Q′ ∈ Q, Q′ 6= Q s.t.Q ∩Q′ ⊆ maxTsSrv then
ts ← maxTS

retvalue ← v

phase← 2
srvAck← ∅
rCounter← rCounter + 1

else
ts ← maxTS − 1
retvalue ← vp

status← done

Internal read-phase2-fixr

Precondition:
¬failed

status = active

phase = 2
∃Q ∈ Q : Q ⊆ srvAck

Effect:
status← done

phase← 1

Figure 15: SLIQr Automaton: Signature, State and Transitions
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when it observes aQV1 or QV2. As described in Section 5.4.1,QV1 denotes a complete

write operation andQV2 an incomplete write operation. So the read operation returns the

valuev associated withmaxTS if QV1 is observed; otherwise, ifQV2 is retrieved, it returns

the valuevp which was associated withmaxTS − 1. In the case whereQV3 is witnessed

the read operation proceeds to a second round and after its completion returnsmaxTS. As

shown in the algorithm the decision of the fast or slow behavior is determined in the internal

actionread-phase1-fix. If a second communication round is not necessary the read operation

completes and sets thestatus variable todone. Otherwise the phase number increases declar-

ing that a second communication round is necessary and the operation is terminated when the

precondition ofread-phase2-fix is reached.

Automaton SLIQs.

The server automaton has relatively simple actions. The signature, state and transitions of

the SLIQs can be depicted in Figure 16. The state of the SLIQs contains the following variables:

• 〈ts, v, vp〉 ∈ N×V ×V : the maximum timestamp reported tos by an invoked operation

along with its associated value and previous value. This is the value of the register

replica.

• Counter(p) ∈ N: this array maintains the latest request index of each client (reader or

writer). It helpss to distinguish fresh from stale messages.

• status ∈ {idle, active}: specifies whether the automaton is processing a request re-

ceived (status = active) or it can accept new requests (status = idle).
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Signature:

Input:
rcv(m)p,s, m ∈M , s ∈ S, p ∈ R∪W
fails

Output:
send(m)s,p , m ∈M , s ∈ S, p ∈ R ∪W

State:
ts ∈ N, initially 0
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
Counter(pi) ∈ N+, pi ∈ R ∪ {w}, initially 0

msgType ∈ {WRITEACK,READACK,INFOACK}
status ∈ {idle, active}, initially idle

failed, a Boolean initiallyfalse

Transitions:
Input rcv(〈msgT, t, C〉)p,s

Effect:
if ¬failed then
if status = idle andC > Counter(p) then
status← active

Counter(p)← C

if t.ts > ts then
(ts, v, vp)←

(t.ts, t.v, t.vp)
if msgT = WRITE then
msgType← WRITEACK

if msgT = READ then
msgType← READACK

if msgT = INFORM then
msgType← INFOACK

Output send(〈msgT, t, C〉)s,p

Precondition:
¬failed

status = active

p ∈ R ∪ {w}
〈msgT, t, C〉 =

〈msgType, 〈ts, v, vp〉, Counter(p)〉
Effect:

status← idle

Input fails
Effect:

failed← true

Figure 16: SLIQs Automaton: Signature, State and Transitions

• msgType ∈ {WRITEACK,READACK,INFOACK}: Type of the acknowledgment depend-

ing on the type of the received message.

• failed ∈ {true, false}: indicates whether the server associated with the automaton has

failed.

Each server replies to a message without waiting to receive any other messages from any

process. Thus, the status of the server automaton determines whether the server is busy pro-

cessing a message (status = active) or if it is able to accept new messages (status = idle).

When a new message arrives, thercv(m)p,s event is responsible to process the incoming mes-

sage. If thestatus is equal to idle and this is a fresh message from processp then thestatus
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becomes active. TheCounter(p) for the specific process becomes equal to the counter in-

cluded in the message. If the timestamp included in the received message is greater than its

local timestamp. the server updates its timestamp and valuevariables to be equal to the ones

included in the received message. The type of the received message specifies the type of the

acknowledgment.

While the server is active, thesend(m)s,p event may be triggered. When this event occurs,

the servers sends its local replica value, to a processp. The execution of the action results

in modifying thestatus variable toidle and thus setting the server enable to receive new

messages.

5.4.4 Correctness ofSLIQ

To prove the correctness of our algorithm we need to show thatit satisfies both Definition

3.2.4 (termination) and Definition 3.2.5 (atomicity).

Termination

According to our algorithm an operation terminates whenever awrite-ack or read-ack event

appears in our execution. Moreover, by the assumed failure model the adversary may fail all

but one quorums in our quorum system. Recall, that every correct processp terminates once it

receives replies from a single full quorumQ. Thus, it is easy to see that every correct process

terminates if the assumed failure model is satisfied.
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Atomicity

We proceed to show that algorithm SLIQ satisfies all the properties presented in Definition

3.2.5. We adopt the notation presented in Chapter 3. For completeness we restate the notation

here as well. We usevarp to refer to the variablevar of the automatonAp. To access the value

of a variablevar of Ap in a stateσ of an executionξ, we useσ[p].var (see Section 3.1.1).

Also, letm(π, c)p,p′ to denote the message sent fromp to p′ during thecth round of operation

π. Any variablevar enclosed in a message is denoted bym(π, c)p,p′ .var (see Section 3.1.2).

We refer to a step〈σ, read-phase1-fixr, σ
′〉 as theread-fix stepof a read operationρ invoked by

readerr. Similarly we refer to a step〈σ,write-fixw, σ′〉 as thewrite-fix stepof a write operation

ω invoked byw. We use the notationσfix(π), to capture the final state of a read or write fix

step (i.e.,σ′ in the previous examples) for an operationπ. Finally, for an operationπ, σinv(π)

andσres(π) denote the system state before the invocation and after the response of operation

π respectively (as presented in Section 3.2). The timestampσres(π)[p].ts denotes the value of

the variablets of the automatonAp at the response step of operationπ. This is the timestamp

returned ifπ is a read operation.

Given this notation, the value of the maximum timestamp observed during a read operation

ρ from a readerr is σfix(ρ)[r].maxTS. As a shorthand we usemaxTSρ = σfix(ρ)[r].maxTS

to denote the maximum timestamp witnessed byρ.

We adopt the definition of Atomicity as presented in Section 4.2.4 to express the atomicity

properties using timestamps in the SWMR environment. The first lemma ensures that any pro-

cess in the system maintains only positive and monotonically increasing timestamps. Hence,

once some processp sets itsσ[p].ts variable to a valuek at a stateσ of an executionξ, then it
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cannot be the case thatp sets its timestamp to a valueℓ ≤ k at a stateσ′ such thatσ′ appears

afterσ in ξ.

Lemma 5.4.2 In any executionξ ∈ goodexecs(SLIQ , Q), σ[p].ts ≤ σ′[p].ts for some process

p ∈ I, if σ appears beforeσ′ in ξ.

Proof. It is easy to see the monotonic increment of the timestamps inall the processes.

Writer: For every write operationω from the sole writerw, it holds thatσres(ω)[w].ts =

σinv(ω)[w].ts + 1 astsw is modified only in thewrite(val)w event of the SLIQw (see Figure

14). Thus,tsw is incremented monotonically.

Server: A server processs modifies the value of its variable during arcv(m)p,s event, if

the timestamp enclosed in the received message is greater than the localtss variable of SLIQs.

Thus, when thercv(m)p,s event happens for an operationπ the server replies in thesend(m′)s,p

event with a timestampm′.ts ≥ m.ts.

Reader: A reader processr modifies itstsr variable in theread-phase1-fixr event of

a read operationρ and can either take the value of the maximum timestamp it witnesses,

σres(ρ)[r].ts = maxTSρ, orσres(ρ)[r].ts = maxTSρ−1. To prove incremental monotonicity

of thetsr variable of the automaton SLIQr we need to show thatσres(ρ)[r].ts ≥ σinv(ρ)[r].ts.

In other words we need to show that the timestamp decided by the read operation is geater

or equal to thetsr variable at the invocation ofρ. There exists 3 cases to investigate: (1)

σinv(ρ)[r].ts < maxTSρ, (2) σinv(ρ)[r].ts = maxTSρ and, (3)σinv(ρ)[r].ts > maxTSρ.

Consider the first case, whereσinv(ρ)[r].ts < maxTSρ. Since σres(ρ)[r].ts equals

maxTSρ or maxTSρ − 1, then in both casesσres(ρ)[r].ts ≥ σinv(ρ)[r].ts.
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In the algorithm every message sent by thesend(m)r,s event ofρ, includes a timestamp

m(ρ, 1)r,s.ts = σinv(ρ)[r].maxTS. Let ρ′ → ρ be the last read operation invoked byr be-

fore ρ. By the read-phase1-fixr of the SLIQr, it holds thatσinv(ρ)[r].maxTS = maxTSρ′ .

Also, σinv(ρ)[r].ts = σfix(ρ′)[r].ts sinceread-phase1-fixr is the last event that modifiestsr

in ρ′. Since,σfix(ρ′)[r].ts = maxTSρ′ or σfix(ρ′)[r].ts = maxTSρ′ − 1, it follows that

σinv(ρ)[r].ts ≤ σinv(ρ)[r].maxTS. As shown earlier, any servers that receives a message

from r for ρ, replies with a timestampm(ρ, 1)s,r.ts ≥ m(ρ, 1)r,s.ts and thusm(ρ, 1)s,r.ts ≥

σinv(ρ)[r].maxTS. Thus, the third case cannot arise since every message received by any

read operation contains a timestamp greater or equal to theσinv(ρ)[r].maxTS ≥ σinv(ρ)[r].ts

variable.

So it remains to examine the second case whereσinv(ρ)[r].ts = maxTSρ. Observe that

the case is possible only ifσinv(ρ)[r].ts = σinv(ρ)[r].maxTS in the send(m)r,s event of

ρ. Thus, r sends a messagem(ρ, 1)r,s.ts = σinv(ρ)[r].ts to every servers ∈ S. Since

maxTSρ = σinv(ρ)[r].ts, everys replies toρ with m(ρ, 1)s,r.ts = σinv(ρ)[r].ts. Thus, all

the members of the quorum from whichρ receives messages, reply withmaxTSρ and thus

the read operation observes the quorum viewQV1. According to that view the read operation

decidesσres(ρ)[r].ts = maxTSρ and thereforeσres(ρ)[r].ts = σinv(ρ)[r].ts. This completes

the proof. 2

The following lemma shows that every read operation returnsa timestamp greater or equal

to the timestamp written by its last preceding write operation.
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Lemma 5.4.3 In any executionξ ∈ goodexecs(SLIQ , Q), if the readr event of a read op-

eration ρ from readerr succeeds thewrite-fixw event of a write operationω in ξ then,

σres(ρ)[r].ts ≥ σres(ω)[w].ts.

Proof. A write operationω proceeds to a response step and thewrite-ackw event only if the

writer receives replies from the members of a complete quorum. Let assume that every server

in the quorumQi ∈ Q receives the messages for the write operationω. According to Lemma

5.4.2 thetss variable of every server automaton SLIQs, for s ∈ Qi, will be greater or equal

to σres(ω)[w].ts. It follows that any messagem(π, 1)s,p sent by any servers ∈ Qi to any

succeeding operationπ from p, contains a timestampm(π, 1)s,p.ts ≥ σres(ω)[w].ts.

Suppose now that the read operationρ from r receives replies from the members of a

quorumQj ∈ Q, not necessarily different fromQi. By Lemma 5.4.2 every servers′ ∈ Qj∩Qi

replies toρ with a timestampm(ρ, 1)s′,r.ts ≥ m(ω, 1)s′,w.ts ≥ σres(ω)[w].ts. It follows

that, in theread-phase1-fixr event ofρ, the maximum timestamp witnessed ismaxTSρ ≥

m(ρ, 1)s′,r.ts ≥ σres(ω)[w].ts. According to the same event ofρ, σres(ρ)[r].ts = maxTSρ or

σres(ρ)[r].ts = maxTSρ − 1. If maxTSρ > σres(ω)[w].ts thenσres(ρ)[r].ts ≥ σres(ω)[w].ts.

Let us now assume thatmaxTSρ = σres(ω)[w].ts. Since, every servers′ ∈ Qi∩Qj replies

toρ with m(ρ, 1)s′,r.ts ≤ maxTSρ andm(ρ, 1)s′,r.ts ≥ m(ω, 1)s′,w.ts ≥ σres(ω)[w].ts, then

m(ρ, 1)s′,r.ts = maxTSρ = σres(ω)[w].ts. So during theread-phase1-fixr event ofρ, there

are two cases to examine: (1)Qi = Qj and (2)Qi 6= Qj. If case 1 is true thenQi ∩ Qj =

Qi and thus the read operation observes the quorum viewQV1 and returnsσres(ρ)[r].ts =

maxTSρ in one communication round. If case 2 is valid andQi 6= Qj, then the read operation

observes the quorum viewQV3 since all the members of the intersectionQi ∩ Qj reply with
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the maximum timestamp. In this case the read also returns themaximum timestamp after it

performs a second communication round. Thus in both casesσres(ρ)[r].ts = maxTSρ =

σres(ω)[w].ts and that completes our proof. 2

The final lemma examines the consistency between two read operations. We show that a

read operation always returns a greater or equal timestamp than the one returned by its preced-

ing read operations.

Lemma 5.4.4 In any executionξ ∈ goodexecs(SLIQ , Q), if ρ andρ′ are two read operations

from the readersr andr′ respectively, such thatρ → ρ′ in ξ, thenσres(ρ′)[r
′].ts ≥ σres(r)[ρ].ts.

Proof. Sinceρ → ρ′ in ξ, then theread-ack(val)r event ofρ occurs before theread′r event

of ρ′. Let us consider that both read operations are invoked from the same readerr = r′.

It follows from Lemma 5.4.2 thatσres(ρ)[r].ts ≤ σres(ρ′)[r].ts because thetsr variable is

incrementing monotonically. So it remains to investigate what happens when the two read

operations are invoked by two different processes,r andr′ respectively. Suppose that every

servers in a quorumQi receives the messages of operationρ with an eventrcv(m)r,s, and

replies with a timestampm(ρ, 1)s,r.ts with an eventsend(m)s,r to r. Notice that every server

replies, by Lemma 5.4.2, withm(ρ, 1)s′,r.ts ≥ σinv(ρ)[r].maxTS. Let the members of the

quorumQj (not necessarily different thanQi) receive messages and reply toρ′. Again for

everys′ ∈ Qj, m(ρ′, 1)s′,r′ .ts ≥ σinv(ρ′)[r
′].maxTS. We know that the timestamp of the read

operationρ after theread-phase1-fixr event ofρ may take the valueσres(ρ)[r].ts = maxTSρ

or σres(ρ)[r].ts = maxTSρ − 1. We examine those two cases separately and for each case we

show thatσres(ρ′)[r
′].ts ≥ σres(ρ)[r].ts.
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Case 1:Consider the case whereσres(ρ)[r].ts = maxTSρ − 1. Since some servers ∈ Qi

replies with a valuem(ρ, 1)s,r.ts = maxTSρ and since we assume a single writer then it

follows that a write operationω′ with a timestampσres(ω′)[w].ts = maxTSρ is invoked by the

writer. So thewrite-fixw event of the write operationω, whoseσres(ω)[w].ts = σres(ρ)[r].ts =

maxTSρ−1, occurs before theread-phase1-fixr event ofρ. Since theread′r event ofρ′ occurs

after theread-phase1-fixr of ρ, then it also occurs after thewrite-fixw event ofω. Hence, by

Lemma 4.2.7,σres(ρ′)[r
′].ts ≥ σres(ω)[w].ts and thusσres(ρ′)[r

′].ts ≥ σres(ρ)[r].ts.

Case 2:Here we examine the case whereσres(ρ)[r].ts = maxTSρ. We know by definition

that in any quorum constructionQj ∩ Qi 6= ∅. Moreover, by Lemma 5.4.2 any servers ∈

Qj ∩Qi, s replies with a timestampm(ρ, 1)s,r.ts for ρ and with a timestampm(ρ′, 1)s,r′ .ts ≥

m(ρ, 1)s,r.ts for ρ′. So the maximum timestamp witnessed byρ′ is

maxTSρ′ ≥ m(ρ′, 1)s,r′ .ts ≥ m(ρ, 1)s,r.ts,∀s ∈ Qj ∩ Qi (4)

Sinceσres(ρ)[r].ts = maxTSρ it means thatρ either observes a quorum viewQV1 or a

quorum viewQV3. Let us examine the two cases separately.

Case 2a:In this caseρ witnessed aQV1. Therefore it must be the case that∀s ∈ Qi, s replies

with m(ρ, 1)s,r.ts = maxTSρ = σres(ρ)[r].ts. Thus∀s ∈ Qi∩Qj, s replies with a timestamp

m(ρ′, 1)s,r′ .ts ≥ m(ρ, 1)s,r.ts to ρ′, and hence,ρ′ witnesses a maximum timestamp

maxTSρ′ ≥ maxTSρ ⇒ maxTSρ′ ≥ σres(ρ)[r].ts (5)

Recall thatρ′ returns eitherσres(ρ′)[r
′].ts = maxTSρ′ or σres(ρ′)[r

′].ts = maxTSρ′ − 1.

If maxTSρ′ > σres(ρ)[r].ts then it follows thatσres(ρ′)[r
′].ts ≥ σres(ρ)[r].ts. If maxTSρ′ =

σres(ρ)[r].ts thenr′ witnesses aQV3 since there exists at least one intersection (Qi∩Qj) such
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that∀s ∈ Qi ∩ Qj ,m(ρ′, 1)s,r′ .ts = maxTSρ′ . Hence in this case

σres(ρ′)[r
′].ts = maxTSρ′ ⇒ σres(ρ′)[r

′].ts = σres(ρ)[r].ts

By this we show that, ifρ witnesses aQV1, thenσres(ρ′)[r
′].ts ≥ σres(ρ)[r].ts.

Case 2b:This is the case whereσres(ρ)[r].ts = maxTSρ, becauser witnessed a quorum view

QV3. Hence it follows that∃Qz ∈ Q s.t. ∀s ∈ Qz ∩ Qi,m(ρ, 1)s,r.ts = maxTSρ. In

this caseρ proceeds in phase 2 before completing. Sinceρ → ρ′ theninv(ρ′) happens after

the read-ackr in ξ. That means thatinv(ρ′) happens after theread-phase2-fixr action ofρ as

well. Howeverρ proceeds to phase 2 only after theread-phase1-fixr. From the latter action

we get thatσfix(ρ)[r].maxTS = maxTSρ. Once in phase 2,ρ sends inform messages with its

σfix(ρ)[r].maxTS = maxTSρ to a complete quorum, sayQk. By Lemma 5.4.2, every server

s′ ∈ Qk replies with a timestamp

m(ρ, 2)s′,r.ts ≥ maxTSρ (6)

There are two subcases to consider: (i)Qk = Qj and (ii)Qj 6= Qk.

Case 2b(i): Assume thatQk = Qj . Then ∀s ∈ Qj , s replies toρ′ with a timestamp

m(ρ′, 1)s,r′ .ts ≥ m(ρ, 2)s,r.ts (by Lemma 5.4.2). Therefore it follows that

maxTSρ′ ≥ m(ρ, 2)s,r.ts ⇒ maxTSρ′ ≥ maxTSρ (7)

from equation (6). IfmaxTSρ′ > maxTSρ then σres(ρ′)[r
′].ts ≥ σres(ρ)[r].ts since

σres(ρ)[r].ts = maxTSρ andσres(ρ′)[r
′].ts = maxTSρ′ or σres(ρ′)[r

′].ts = maxTSρ′ − 1. If

maxTSρ′ = maxTSρ then∀s ∈ Qj,m(ρ′, 1)s,r′ .ts = maxTSρ′ and thusρ′ observesQV1

and returnsσres(ρ′)[r
′].ts = maxTSρ′ = maxTSρ = σres(ρ)[r].ts.
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Case 2b(ii):It remains to examine what happens ifQk 6= Qj . As in case 2b(i),∀s ∈ Qk ∩Qj,

s replies toρ′ with m(ρ′, 1)s,r′ .ts ≥ m(ρ, 1)s,r.ts. It follows from equations (6) and (7) that

maxTSρ′ ≥ maxTSρ. As shown in case 2b(i), ifmaxTSρ′ > maxTSρ thenσres(ρ′)[r
′].ts ≥

σres(ρ)[r].ts.

If now maxTSρ′ = maxTSρ, thenρ′ observes every servers ∈ Qk ∩ Qj to reply with

m(ρ′, 1)s,r′ .ts = maxTSρ′ . But this is exactly the definition ofQV3. So,ρ′ proceeds to a

second communication round (phase 2) and returns a timestamp σres(ρ′)[r
′].ts = maxTSρ′ =

maxTSρ = σres(ρ)[r].ts. 2

Using the above lemmas we can obtain the main result of this section:

Theorem 5.4.5 Algorithm SLIQ implements a weak-semifast SWMR atomic read/write reg-

ister.

Proof. The atomicity requirement of the theorem follows from Lemmas 5.4.2-5.4.4. We now

argue that SLIQ belongs in the class of weak-semifast implementations. By the construction of

SLIQ, writes are fast and reads require at most two communicationrounds satisfying properties

S1, S2of Definition 4.1.1. To see that SLIQ also satisfiesS4assume the following execution:

(i) a write operationω sends messages to all the servers, (ii) the servers in a quorum Qi receive

the messages and reply toω, and (iii) any read that returnsσres(ω)[w].ts strictly contactsQi

after the servers inQi replied toω. Observe that every such read operation witnessesQV1 if

σres(ω)[w].ts is the maximum, and thus is fast. If a bigger timestampσres(ω′)[w].ts is observed

then a read returnsσres(ω)[w].ts only if σres(ω)[w].ts = σres(ω′)[w].ts − 1. In such a case

the read returns the previous timestamp and by constructionthis is done in a single round.

Therefore, all the reads that returnσres(ω)[w].ts are fast and propertyS4of Definition 4.1.1 is
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satisfied. Note that the messages from the servers ofQi for ω may be in-transit and thus all the

reads may be concurrent with the write operation. This completes the proof. 2

5.4.5 Empirical Evaluation of SLIQ

To practically evaluate our findings, we simulate our algorithm using the the NS-2 network

simulator. We use the same test environment as in Section 4.2.5.2 in order to be able to extract

meaningful comparison results between the performance of the two algorithms. In particular,

our test environment consists of one writer, a variable set of reader and server processes. We

use bidirectional links between the communicating nodes, 1Mb bandwidth, a latency of10ms,

and a DropTail queue. To model asynchrony, the processes send messages after a random

delay between 0 and 0.3sec. According to our setting, only the messages from the invoking

processes to the servers, and the replies from the servers tothe processes are delivered (no

messages are exchanged among the servers or the invoking processes).

We evaluate our approach over three types of quorum systems:majorities (Qm), matrix

quorums (Qx), and crumbling walls (Qc). (A description of these quorum systems can be

found in [81].) In this section we present some of the plots weobtained exploiting crumbling

walls; all plots depicting the results of all the experiments we have conducted appear in the

Appendix A. The quorum system is generated apriori and is distributed to each participant

node via an external service (out of the scope of this work). No dynamic quorums are assumed,

so the configuration of the quorum system remains the same throughout the execution of the

simulation. We model server failures by choosing the non-faulty quorum and allowing any

server that is not a member of that quorum to fail by crashing.Note that the non-faulty quorum
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is not known to any of the participants. The positive time parametercInt is used, to model the

failure frequency or reliability of every servers.

We use the positive time parametersrInt andwInt (both greater than 1sec) to model

the time intervals between any two successive read operations and any two successive write

operations respectively. We consider three simulation scenarios corresponding to the following

parameters:(i) rInt < wInt: this models frequent reads and infrequent writes,(ii) rInt =

wInt: this models evenly spaced reads and writes,(iii) rInt > wInt: this models infrequent

reads and frequent writes.

Furthermore for each one of the above scenarios we consider two settings:

(a) Stochastic setting: the read/write intervals vary randomly within[0 . . . rInt] and

[0 . . . wInt] respectively.

(b) Fixed setting: the read/write intervals are fixed to the value ofrInt andwInt respec-

tively.

We can summarize our simulations testbed for each class of quorums and for the settings

presented above, as follows:

(1) Simple Runs: (Qc, Qx, Qm) |S| = 25 (Qc, Qx) or |S| = 10 (Qm), cInt = 0 (fail-

ure check for every reply) and|R| ∈ [10, 20, 40, 80]. Here we want to demonstrate

the performance of the algorithm under similar environments (quorum,failures) but with

different read load.

(2) Quorum Diversity Runs: (Qc, Qx) |S| ∈ [11, 25, 49] (Qc) and|S| ∈ [11, 25, 49] (Qx),

cInt = 0 and |R| ∈ [10, 20, 40, 80]. These runs demonstrate the performance of the
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Figure 17: Simple runs using Crumbling Walls

algorithm in different quorum systems with varying quorum membership. Each quorum

is tested in variable read load.

(3) Failure Diversity Runs: (Qc, Qx) |S| = 25, cInt ∈ [10 . . . 50] with steps of10 and

|R| ∈ [10, 20, 40, 80]. These runs test the durability of the algorithm to failures. Notice

that the smaller the crash interval the faster we diverge to the non-faulty quorum. As the

crash interval becomes bigger, less servers fail and thus more quorums “survive” in the

quorum system. For this class of runs we test both the cases when the servers get the

crash interval randomly from[0 . . . cInt] and[10 . . . 10 + cInt].

Figure 17 illustrates the results obtained when we assume simple runs and exploiting crum-

bling walls quorum. The Z axis presents the percentage of theread operations that perform two

communication rounds, the X axis corresponds to the number of reader participants and the Y

axis represents time and in particular therInt interval. In the stochastic environment (Figure

17.a) we observe that the percentage of slow reads drops as the number of readers increases,
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regardless of the value ofrInt. This behavior can be explained from the fact that the concur-

rency between the operations is minimized and thus the maximum timestamp is propagated (by

both the writer and the readers) to enough servers that favorthe fast behavior. Since the conver-

gence point is similar regardless the number of readers, then increasing the readers, increases

the number of fast reads and decreases the percentage of slowreads. Similar behavior is ob-

served in the fixed interval environment (Figure 17.b) whenever there is no strict concurrency

between the reads and the writes. The worst case is observed at the point where all operations

are invoked concurrently.

We conduct similar experiments for the rest of the cases and our results appear in the

Appendix. Our results (including the ones given in the Appendix A) suggest that in realistic

cases (i.e. stochastic settings), the percentage of two communication round reads does not

exceed13%. The only case that requires more than85% of the reads to be slow is the worst

case scenario were the read and write intervals are fixed to the same value. Notice however that

this scenario is unlikely to appear in practical settings. Comparing our results with the ones

obtained in Section 4.2.5.2, one can observe that the difference in the random scenarios does

not exceed6%.
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Chapter 6

Trade-offs for Multiple Writers

So far we have examined the fastness of implementations thatallow unbounded number of

readers and utilize general quorum constructions. In this chapter we investigate the existence

of implementations with executions that contain fast operations when multiple writers partici-

pate in the service. First, we present the unique characteristics of multiple-writer (MW) over

single-writer (SW) environments (Section 6.1). Next, we provide generic limitations that the

MW environment imposes on any R/W atomic register implementation (Section 6.2). Then,

we present two separate algorithms that allow fast read and/or write operations in the MWMR

environment (Sections 6.3 and 6.4). We first generalize the idea ofQuorum Views(see Sec-

tion 5.4.1), that allows the introduction of fast read operations in the MWMR environment. To

improve write operation latency, we then introduced a new technique, calledServer Side Order-

ing, that allows both read and write operations to complete in a single round. Our algorithms

are thefirst to allow single round read and write operations in the MWMR environment without

making any assumptions on synchrony or the precedence relation of read/write operations.
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6.1 Introducing Fastness in MWMR model

One of the main challenges in atomic R/W register implementations is to provide atotal

ordering among the write operations.

In algorithms designed for the SWMR setting the sole writer may order locally the write

operations. This enables the introduction of single round write operations: the writer deter-

mines locally the order of a write operation, and propagatesthat ordering with the new value

to the replica hosts.

The existence of multiple writers prevents writers from ordering a write operation locally.

To overcome this problem, implementations presented in theMWMR setting [6, 22, 28, 36, 49,

34, 68, 66] suggested that every write operation should “learn” about the latest value written

(and thus latest write operation), before propagating a newvalue to the register. For this pur-

pose, a two round write protocol was proposed where the first round queries the replica hosts

for the latest value of the register. Following these works,a belief was shaped that “writes must

read” before writing a new value to the register in multi writer environments.

Dutta et al. [30] explored the possibility offast implementations in the MWMR envi-

ronment. They showed that such implementations are impossible assuming two readers, two

writers and a single server failure exist in the system. In Chapter 4 we showed that MWMR

are not possible insemifastimplementations either.

Consequently, MWMR implementations are impossible ifall the write operations are fast

or at most a single complete slow read per write is allowed. Considering that traditional algo-

rithms for the MWMR environment require two round write operations, devising algorithms

that allowany fast write operations are interesting in their own right.
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This stage of the thesis presents thefirst algorithms that allow fast write and/or read op-

erations in the MWMR environment. We show that one of the algorithms developed is near

optimal with respect to the number of fast operations allowed in a MWMR environment. We

proceed by presenting the implications and inherent limitations that the use of multiple writers

imposes in the system. Then we present algorithm CWFR that adopts and generalizes the idea

of quorum views in the multiple writer environment. The algorithm is the first to allow some

fast read operations when those are invoked concurrently with write operations. The drawback

of CWFR is the adoption of the two round write operations. To overcome this problem we

introduce a new technique, calledServer Side Ordering, and we develop algorithm SFW. The

new algorithm is the first to allowboth fast write and read operations.

6.2 Inherent Limitations of the MWMR Environment

In this Section we investigate the implications and restrictions that the MW setting may

impose on any execution of a R/W atomic register implementation. We study generaln-wise

quorum constructions and we rely on the following definitions on any two R/W operations:

Definition 6.2.1 (Consecutive Operations)Two operationsπ, π′ areconsecutivein an exe-

cution ξ if: (i) they are invoked from processesp andp′, s.t. p 6= p′, (ii) they complete inξ,

and (iii) π → π′ or π′ → π (they are not concurrent).

Definition 6.2.2 (Quorum Shifting Operations) Two operationsπ andπ′ that contact quo-

rumsQ′, Q′′ ∈ Q respectively, are calledquorum shifting if π andπ′ are consecutive and

Q′ 6= Q′′.
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Definition 6.2.3 (Quorum Shifting Set) A set of operationsΠ is calledquorum shifting if

∀π, π′ ∈ Π, π andπ′ are quorum shifting operations.

Recall that we seek write operations that complete in a single round. It is thus necessary for

a write operation to propagate and write its indented value during its first and only round. Since

we assume server failures, the writer may complete before communicating with all servers.

Moreover, by well-formedness (Definition 3.2.2), each process invokes a single operation at a

time. Thus, in the SW setting the invocation of a write operation from the sole writer implies

the completion of any previous write operation. This is not the case for the MW setting as

multiple writers may invoke write operations concurrently. Following this observation we

show that a read operation may retrieve the latest written value (and thus write operation) only

from the servers that receive messages fromall the write operations that preceded that read.

This is captured by the following lemma:

Lemma 6.2.4 Let ξ be an execution of an atomic read/write register implementation A, andΠ

be a set of consecutive write operations inξ. If ρ a read operation inξ s.t. ω → ρ for every

ω ∈ Π, thenρ receives the latest valueval if it communicates with a a servers s.t. rcv(m)w,s

appears inξ for all write operationsω ∈ Π.

Proof. The proof follows from the fact that a server is not aware of a written valueval unless:

1) it receives messages from the writer that propagates value val, or 2) it receives messages

from a process that already observed valueval in the system. Moreover a server may infer the

latest value at timet in any execution if: 1) it receives messages from all the write operations

invoked by timet′ < t (and thus contains all the values written), or 2) it receiveda message
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that contained the value history at timet′ < t and received messages from all write operations

thereafter.

It is easy to see that a server may not be aware of the latest value even ifΠ is a set of

consecutive write operations. Assume, to derive contradiction that a server may return the latest

value to a read operation even if it does not receive messagesfrom all the write operations. Let

us consider a servers at timet of an executionξ. Suppose thats received all the messages from

every write operation invoked by timet′ < t. Also, suppose w.l.o.g. that the latest value that

s received wasval. Since the write operations are consecutive, thenval is the latest written

value in the system. We extend nowξ by a write operationω that writes valueval′. Let the

resulting execution beξ′. Assume thats does not receive messages fromω in ξ′. Thus,s

cannot distinguishξ from ξ′. Hence, it replies with a latest valueval to any read operation.

Since however the write operations are consecutive (and thus, totally ordered), the latest value

in the system isval′. Thus, contradiction. 2

Given this finding and ann-wisequorum system we show that it ispossibleto obtainsafe

register implementations if any execution containsn − 1 consecutive, quorum shifting fast

write operations. We useω(val) to denote the write operation that writes valueval. Also,

recall that asafe registerconstitutes the weakest consistency guarantee and is defined [62] as

propertySR1: Any read operation that is not concurrent to any write operation returns the

value written by the last preceding write operation.

Lemma 6.2.5 Any execution fragmentφ of a safe register implementation that uses an n-wise

quorum systemQ s.t. 2 ≤ n < |Q|, contains at mostn − 1 consecutive, quorum shifting, fast

write operations for any number of writers|W| ≥ 2.
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Proof. Let Q be somen-wisequorum system, where2 ≤ n < |Q| its intersection degree. We

provide a series of execution constructions that depend on the intersection degreen. If n = 2

thenξ0 is the execution that consists of a single (n − 1 = 1) complete fast write operation

ω(val1) invoked byw1 whichscnt(ω(val1), Q1)w1. If n = 3 then we extendξ0 by a complete

fast write operation,ω(val2), from w2 with scnt(ω(val2), Q2)w2 , to obtain executionξ1.

In general, ifn = i+2, we construct executionξi by extending executionξi−1 with a com-

plete fast write operation,ω(i + 1), from w(i mod 2)+1 with scnt(ω(i + 1), Qi+1)w(i mod 2)+1
.

By this construction any executionξi containsi + 1 (or n − 1) consecutive, quorum shifting

fast write operations.

We proceed by induction on the intersection degreen, to show that extending any of the

above executions with a read operationρ from readerr preserves propertySR1. In other words

the read operation is able to discern the latest write operation and return its value.

Induction base:We assume thatn = 2 and hence, pairwise intersection between the quorums

of Q. In this case we extend executionξ0 by a read operationρ from r to obtain the following

executionξ′0:

a) a complete fast write operationω(val1) by w1 which scnt(ω(val1), Q1)w1 , and

b) a complete read operationρ by r with scnt(ρ,Qj)r.

It is easy to see that the read operationρ, for anyQj ∈ Q, observes the valueval1 written by

ω(val1) in Q1 ∩ Qj (6= ∅). Sinceω(val1) is the only write operation thenρ will return the

value written byω(val1) and preserve propertySR1.

Inductive hypothesis:Assume thatn = k+2 and that extending execution constructionξk with

a read operationρ preserves propertySR1. It follows thatρ returns the value written by the last

proceeding write operation which inξk is ω(valk+1) thatscnt(ω(valk+1), Qk+1)w(k mod 2)+1
.
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Induction step:We now investigate the case whereQ is a (k + 3)-wisequorum system. We

need to verify if executionξk+1 preserves propertySR1. Recall thatξk+1 is constructed by

extendingξk with a fast complete write operationω(valk+2). We further extendξk by a read

operationρ by r to obtainξ′k+1. The last three operations ofξ′k+1 are the following:

a) a complete fast write operationω(valk+1) by w(k mod 2)+1 that

scnt(ω(valk+1), Qk+1)w(k mod 2)+1

b) a complete fast write operationω(valk+2) by w(k+1 mod 2)+1 that

scnt(ω(valk+2), Qk+2)w(k+1 mod 2)+1
, and

c) a complete read operationρ by r thatscnt(ρ,Qj)r.

By the inductive hypothesis we know that the execution fragment of ξk preserves property

SR1. Furthermore anyk + 3-wisequorum system is also ak + 2-wisequorum system. So, it

follows that if ξk is extended by a read operation then that read operation returns, by induction

hypothesis,valk+1 or valk+2. If valk+1 is returned then it follows thatρ cannot distinguish

ξ′k+1 from ξ′k and hence does not observevalk+2 and violates propertySR1. SinceQ is also a

k + 2-wisesystem then it must be true that underQ,
⋂k+2

i=1 Qi 6= ∅. Hence, the two writersw1

andw2 and the servers in
⋂k+2

i=1 Qi 6= ∅ can distinguish betweenξ′k andξ′k+1 since those are the

only servers that receive messages from all write operations. From the quorum construction

however we know thatQ has an intersection degree ofk + 3 and thus
⋂k+3

i=1 Qi 6= ∅. So,

for any quorumQj that replies toρ it must hold that
(

⋂k+2
i=1 Qi

)

∩ Qj 6= ∅. Thus,∃s ∈

(

⋂k+2
i=1 Qi

)

∩ Qj such thats receives messages from every write operation ands replies toρ.

Hence,ρ also distinguishesξ′k+1 from ξ′k and returnsvalk+2 preserving propertySR1. 2

We now show that safe register implementations arenot possibleif we extend any execution

that containsn − 1 consecutive writes, with one more consecutive, quorum shifting write
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operation. It suffices to assume a very basic system consisting of two writersw1 andw2, and

one readerr. Thus, our results hold for at least two writers.

Theorem 6.2.6 No execution fragmentφ of a safe register implementation that uses an n-wise

quorum systemQ s.t.2 ≤ n < |Q|, can contain more thann−1 consecutive, quorum shifting,

fast write operations for any number of writers|W| ≥ 2.

Proof. Let Q be ann-wisequorum system, where2 ≤ n < |Q| it intersection degree. From

Lemma 6.2.5 we obtain that an implementation exploiting ann-wisequorum system may con-

tain n − 1 consecutive, quorum shifting fast write operations and still preserve propertySR1.

Thesis of this proof follows from the contradiction, where we assume that an implementation

can includen consecutive fast writes and still satisfy propertySR1.

Let Q be an (k + 2)-wise system and letξk be an execution of the safe register imple-

mentation that exploitsQ. Suppose the execution follows the construction in Lemma 6.2.5.

Thus,ξk containsk + 1 consecutive, quorum shifting, fast writes. Moreover by theinduction

we know thatξk satisfiesSR1 if extended by a read operation. Let us now extendξk with

a write ω(valk+2) from writer w(k+1 mod 2)+1 which scnt(ω(valk+2), Qk+2)w(k+1 mod 2)+1
,

and a read operationρ from r with scnt(ρ,Qj)r. Notice that sincen < |Q| thenk + 2 < |Q|

and thus there exists a quorumQ ∈ Q such that
(

⋂k+2
i=1 Qi

)

∩ Q = ∅. Let Qj ∈ Q be such

quorum and w.l.o.g let us assume thatQj = Qk+3. We denote the obtained execution by

∆(ξk). Below we can see the last three operations in the execution sequence of∆(ξk):

a) a complete fast write operationω(valk+1) by w(k mod 2)+1 which

scnt(ωvalk+1
, Qk+1)w(k mod 2)+1

,
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b) a complete fast write operationω(valk+2) by w(k+1 mod 2)+1 which

scnt(ω(valk+2), Qk+2)w(k+1 mod 2)+1
,

c) and a complete read operationρ by r with scnt(ρ,Qk+3)r.

Notice that by the above construction readerr has to returnvalk+2 to preserve propertySR1.

Since we assumed a(k + 2)-wise quorum then, according to Lemma 6.2.4,ρ observes the

valuevalk+1 as the latest written value from the servers in
(

⋂k
i=1 Qi

)

∩ Qk+1 ∩ Qk+3 and

the valuevalk+2 as the latest written value from the servers in
(

⋂k
i=1 Qi

)

∩ Qk+2 ∩ Qk+3.

We should note here that the servers in both sets receive messages from all write operations

{ω(val1), . . . , ω(valk)}. The servers in the first set however receive messages fromω(valk+1)

but not fromω(valk+2) and vice versa.

Consider now the execution fragment∆(ξ′k) where the two write operations are switched.

More precisely we obtainξ′k by extendingξk−1 with the write operationω(valk+2) by

w(k+2 mod 2)+1. Then, we obtain∆(ξ′k) by extendingξ′k with the write operationω(valk+1)

by w(k+1 mod 2)+1, and the read operationρ from r. In more detail, the last three operations

that appear, and the quorums they contact are as follows:

a) a complete fast write operationω(valk+2) by w(k+1 mod 2)+1 which

scnt(ω(valk+2), Qk + 2)w(k+1 mod 2)+1,

b) a complete fast write operationω(valk+1) by w(k mod 2)+1 which

scnt(ω(valk+1), Qk+1)w(k mod 2)+1
,

c) and a complete read operationρ by ρ with scnt(ρ,Qk+3)ρ.

Observe that executions∆(ξk) and∆(ξ′k) differ only at the writers and the servers in
⋂k+2

i=1 Qi.

Any other server and the reader cannot distinguish between the two executions. In particular,

the reader does not receive any messages from any server in
⋂k+2

i=1 Qi, since
(

⋂k+2
i=1 Qi

)

∩
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Qk+3 = ∅. Moreover, the reader observes the valuesvalk+1 andvalk+2 as the latest values

from the servers in
(

⋂k
i=1 Qi

)

∩ Qk+1 ∩ Qk+3 and
(

⋂k
i=1 Qi

)

∩ Qk+2 ∩ Qk+3 respectively.

Since those are the same servers that replied with the same values toρ in ∆(ξk) thenr cannot

distinguish∆(ξ′k) from ∆(ξk) and thus, has to returnvalk+2 in ∆(ξ′k) as well. This however

violates propertySR1since in∆(ξ′k) the two write operations are consecutive and the latest

completed write operation isω(valk+1). Hence the read operation had to returnvalk+1 in

∆(ξ′k) to preserve propertySR1, contradicting our findings. 2

Note that Theorem 6.2.6 also applies to both regular and atomic R/W register implemen-

tations, as safety needs to be satisfied by both regular and atomic semantics [62]. The theorem

is exempt in two cases: (i) a single writer exists in the system, and (ii) there is a common inter-

section among all the quorums in the quorum system. In the first case the sole writer imposes

the ordering of the written values and in the second case thatordering is imposed by the servers

of the common intersection that are accessed by every operation.

An immediate implication derived from Theorem 6.2.6 is the impossibility of having more

thann − 1 concurrentfast write operations. Since no communication between the writers is

assumed and since achieving agreement on the set of concurrent writes is impossible (as shown

in [38]), that led us to the following corollary:

Corollary 6.2.7 No MWMR implementation of a safe register, that exploits ann-wise quorum

systemQ s.t.2 ≤ n < |Q| and contains only fast writes is possible, if|W| > n − 1.

Moreover assuming that readers also may alter the value of the register replica, and thus

write, then the following theorem holds:
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Theorem 6.2.8 No MWMR implementation of a safe register, that exploits ann-wise quorum

systemQ s.t.2 ≤ n < |Q| and contains only fast operations is possible, if|W ∪R| > n − 1.

This theorem shows that fast implementations are possible only if the number of reader and

writer participants is bounded with respect to the intersection degree of the quorum system that

the algorithm uses. If readers do not modify the value of the register then the theorem applies

on the number of writer participants. To our knowledge, Theorem 6.2.8 is the first to provide

a general result on the relation of fast implementations andthe construction of the underlying

quorum system.

We demonstrate that the result holds for algorithms that usevoting techniques to construct

the underlying quorum system. Let us assume a model identical to the one used in [30]. By

their algorithm each operation was waiting for|S| − f replica hosts to reply. Such voting

strategy implied a quorum system that contains quorums of size|S|− f , and in extend implied

an( |S|
f

− 1)-wise quorum system as depicted by the following lemma:

Lemma 6.2.9 The intersection degree of a quorum systemQ where∀Q ∈ Q, |Q| = |S| − f

is equal to|S|
f

− 1.

Proof. Since anyQ ∈ Q , |Q| = |S|−f then forQ,Q′ ∈ Q it follows that|Q∩Q′| ≥ |S|−2f .

For three quorumsQ,Q′, Q′′ ∈ Q it then follows that|Q∩Q′ ∩Q′′| ≥ |S|− 3f . Generalizing

for n quorums we get:
∣

∣

∣

∣

∣

n
⋂

i=0

Qi

∣

∣

∣

∣

∣

≥ |S| − nf

Since we want to find the biggestn such that the intersection is not empty, then it should be

the case that
n
⋂

i=0

Qi 6= ∅ ⇒ |
n
⋂

i=0

Qi| > 0
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So, it follows that in the worst case|S| − nf > 0 and thusn ≥ |S|
f

− 1. And that completes

the proof. 2

Note that by Lemma 6.2.9 and Theorem 6.2.8, the system in [30]could only accommodate:

|W ∪R| ≤ (
|S|

f
− 1) − 1 ⇒ 1 + |W ∪R| ≤

|S|

f
− 2

Since only a single writer exist in their system, then it follows that|R| + 1 ≤ (S
f
− 2) and

hence,|R| < (S
f
−2) which is the bound derived in [30]. This leads us to the following remark.

Remark 6.2.10 Fast implementations, such as the one presented in [30], follow our proved

restrictions on the number of participants in the service.

6.3 Enabling Fast Read Operations - AlgorithmCWFR

We explored the possibility to introduce fast operations inthe MWMR environment by ex-

ploiting techniques presented in the SWMR environment. Thedevelopments of [28, 22], made

an effort to introduce fast read operations in the MWMR environment, but their techniques did

not convince that such fast behavior is possible under read and write concurrency.

In this section we introduce a new algorithm, we call CWFR, which enables fast read

operations by adopting the general idea of Quorum Views (Section 5.4.1). The algorithm

employs two techniques:

(i) the classic query and propagate technique (two round) for write operations, and

(ii) analysis of Quorum Views for potentially fast (single round) read operations.

Read operations can be fast in CWFR even when they are invoked concurrently with one or

multiple write operations. This distinguishes CWFR from previous approaches. To impose a
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total ordering on the written values, CWFR exploits 〈tag, value〉 pairs as also used in prior

papers (e.g., [22, 28, 66]). Atag is a tuple of the form〈ts, w〉 ∈ N × W, wherets is the

timestamp andw is a writer identifier. Two tags are ordered lexicographically, first by the

timestamp, and then by the writer identifier.

6.3.1 Incorporating Prior Techniques – Quorum Views

To comply with the ordering scheme of CWFR we revised the definition of quorum views

as presented in Section 5.4.1, to examine tags instead of timestamps. The revised definition is

the following:

Definition 6.3.1 Let processp, receive replies from every servers in some quorumQ ∈ Q for

a read or write operationπ. Let a reply froms include a tagm(π, c)s,p.tag and letmaxTag =

maxs∈Q(m(π, c)s,p.tag). We say thatp observes one of the followingquorum views for Q:

QV1: ∀s ∈ Q : m(π, c)s,p.tag = maxTag,

QV2: ∀Q′ ∈ Q : Q 6= Q′∧∃A ⊆ Q∩Q′, s.t.A 6= ∅ and∀s ∈ A : m(π, c)s,p.tag < maxTag,

QV3: ∃s′ ∈ Q : m(π, c)s′,p.tag < maxTag and∃Q′ ∈ Q s.t. Q 6= Q′ ∧ ∀s ∈ Q ∩ Q′ :

m(π, c)s,p.tag = maxTag

With similar reasoning as presented in Section 5.4.1,QV1 implies the potential comple-

tion of the write operation that wrote a value associated with maxTag. QV2 imposes its

non-completion andQV3 does not reveal any information about the write completion.
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6.3.2 High Level Description ofCWFR

The original quorum views algorithm as presented in Section5.4 relies on the fact that

a single writer is participating in the system. If a quorum view is able to predict the

non-completeness of the latest write operation, is immediately understood that – by well-

formedness of the single writer – any previous write operation is already completed. Mul-

tiple writer participants in the system prohibit such assumption: different values (or tags) may

be written concurrently. Hence, the discovery of a write operation that propagates some tag

does not imply the completion of the write operations that propagate a smaller tag. So, al-

gorithm CWFR incorporates an iterative examination of quorum views thatnot only predicts

the completion status of a write operation, but also detectsthe last potentially completed write

operation. Below we provide a high level description of our algorithm and present the main

idea behind our technique.

Writers. The write protocol has two rounds. During the first round the writer discovers the

maximum tag among the servers: it sends read messages to all servers and waits for replies

from all the members of a single quorum. It then discovers themaximum tag among the replies

and generates a new tag in which it encloses the incremented timestamp of the maximum tag,

and the writer’s identifier. In the second round, the writer associates the value to be written

with the new tag, it propagates the pair to a complete quorum,and completes the write.

Readers.The read protocol is more involved. When a reader invokes a read operation, it sends

a read message to all servers and waits for some quorum to reply. Once a quorum replies, the

reader determines themaxTag. Then the reader analyzes the distribution of the tag within

the responding quorumQ in an attempt to determine the latest, potentially complete, write
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operation. Detecting that the tag distribution satisfiesQV1 andQV3 is straightforward. When

QV1 is detected, the read completes and the value associated with the discoveredmaxTag is

returned. In the case ofQV3 the reader continues into the second round, advertising thelatest

tag (maxTag) and its associated value. When a full quorum replies to the second round, the

read returns the value associated withmaxTag.

Detection ofQV2 involves discovery of the latest potentially completed write operation.

This is done iteratively by (locally) removing the servers from Q that replied with the largest

tags. After each iteration the reader determines the next largest tag in the remaining server

set, and re-examines the quorum views on the distribution ofthe tag in the remaining servers.

This process eventually leads to eitherQV1 or QV3 being observed. IfQV1 is observed,

then the read completes in a single round by returning the value associated with the maximum

tag among the servers thatremain in Q. If QV3 is observed, then the reader proceeds to the

second round as above, and upon completion it returns the value associated with the maximum

tagmaxTag discovered among the original respondents inQ.

Servers. The servers play a passive role. They receive read or write requests, update their

object replica accordingly, and reply to the process that invoked the request. Upon receipt of

any message, the server compares its local tag with the tag included in the message. If the

tag of the message is higher than its local tag, the server adopts the higher tag along with its

corresponding value. Once this is done the server replies tothe invoking process.

6.3.3 Formal Specification ofCWFR

We now present the formal specification of CWFR using Input/Output Automata [67] no-

tation. Our implementation includes four automata: (i) automaton CWFRw that handles the
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write operations for each writerw ∈ W, (ii) automaton CWFRr that handles the reading for

eachr ∈ R, (iii) automaton CWFRs that handles the read and write requests on the atomic

register for eachs ∈ S, and (iv)Channelp,p′ that establish the reliable asynchronous process-

to-process communication channels (see Section 3.1.2).

Automaton CWFRw.

The state variables, the signature and the transitions of the CWFRw can be depicted in

Figure 18. The state of the CWFRw automaton includes the following variables:

• 〈〈ts, wid〉, v〉 ∈ N×W×V : writer’s local tag along with the latest value written by the

writer. The tag is composed of a timestamp and the identifier of the writer.

• vp ∈ V : this variable is used to hold the previous value written.

• maxTS ∈ N: the maximum timestamp discovered during the last write operation.

• wCounter ∈ N: the number of write requests performed by the writer. Is used by the

servers to distinguish fresh from stale messages.

• phase ∈ {1, 2}: indicates the active communication round of the write operation.

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an

operation (status = active) or it is done with any requests (status = idle). When

status = done, it indicates that the writer received all the necessary replies to complete

its write operation and is ready to respond to the client.

• srvAck ⊆ S: a set that contains the servers that reply to the write messages as a result of

a write request. The set is reinitialized to∅ at the response step of every write operation.
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Signature:

Input:
write(val)w , val ∈ V , w ∈ W
rcv(m)s,w , m ∈M , s ∈ S, w ∈ W
failw, w ∈ W

Output:
send(m)w,s , m ∈M , s ∈ S, w ∈ W
write-ackw, w ∈ W

Internal:
write-phase1-fixw, w ∈ W
write-phase2-fixw, w ∈ W

State:
tag = 〈ts, w〉 ∈ N×W , initially {0, w}
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
maxTS ∈ N, initially 0
wCounter ∈ N+, initially 0

phase ∈ {1, 2}, initially 1
status ∈ {idle, active, done}, initially idle

srvAck ⊆M × S, initially ∅
failed, a Boolean initiallyfalse

Transitions:
Input write(val)w

Effect:
if ¬failed then
if status = idle then
status← active

srvAck← ∅
phase← 1
vp← v

v ← val

wCounter← wCounter + 1

Input rcv(〈msgT, t, C〉)s,w

Effect:
if ¬failed then
if status = active andwCounter = C then
if (phase = 1 ∧msgT = READ-ACK )∨

(phase = 2 ∧msgT = WRITE-ACK ) then
srvAck ← srvAck ∪ {s, 〈msgT, t, C〉}

Output send(〈msgT, t, C〉)w,s

Precondition:
status = active

¬failed
ˆ

(phase = 1 ∧ 〈msgT, t, C〉 =
〈READ, 〈tag, vp〉, wCounter〉)∨

(phase = 2 ∧ 〈msgT, t, C〉 =
〈WRITE, 〈tag, v〉, wCounter〉)

˜

Effect:
none

Output write-ackw

Precondition:
status = done

¬failed

Effect:
status← idle

Internal write-phase1-fixw

Precondition:
¬failed

status = active

phase = 1
∃Q ∈ Q : Q ⊆ {s : (s, m) ∈ srvAck}

Effect:
maxTS ← maxs∈Q∧(s,m)∈srvAck(m.t.tag.ts)
tag = 〈maxTs + 1, w〉
phase← 2
srvAck← ∅
wCounter← wCounter + 1

Internal write-phase2-fixw

Precondition:
¬failed

status = active

phase = 2
∃Q ∈ Q : Q ⊆ {s : (s, m) ∈ srvAck}

Effect:
status← done

Input failw
Effect:

failed← true

Figure 18: CWFRw Automaton: Signature, State and Transitions
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• failed ∈ {true, false}: indicates whether the process associated with the automaton

has failed.

The automaton completes a write operation in two phases. A write operationω is invoked

when thewrite(val)w request is received from the automaton’s environment. Thestatus vari-

able becomesactive, the previous valuevp gets the current value and the variablev gets the

requested valueval to be written. As long as thestatus = active andphase = 1 the automa-

ton sends messages to all server processes and collects the identifiers of the servers that reply

to those messages in thesrvAck set. To avoid adding any delayed message from a previous

phase, the writer examines the type of the acknowledgment and the message counter. The ac-

tion write-phase1-fix occurs when the replies from the members of a full quorum are received

by the writer, i.e.,∃Q ∈ Q : Q ⊆ srvAck. In the same action the writer discovers the maxi-

mum timestampmaxTS among the replies and generates the new tag. In particular, it assigns

tag = 〈maxTS + 1, w〉. Once the new tag is generated, the writer changes thephase variable

to 2, to indicate the start of its second round, and reinitializes thesrvAck to accept the replies

to its new round. When a full quorum replies tow, thestatus of the automaton becomesdone.

This change, and assuming that the writer does not fail, enables thewrite-ackw. Finally, when

the actionwrite-ackw occurs, the writer responds to the environment and thestatus variable

becomesidle.

Automaton CWFRρ.

The state variables, the signature and the transitions of the CWFRr can be depicted in

Figures 19 and 20. The state of the CWFRr automaton includes the following variables:
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• 〈〈ts, wid〉, v〉 ∈ N × W × V : the maximum tag (timestamp and writer identifier pair)

discovered duringr’s last read operation along with its associated value.

• maxTag ∈ N ×W, andretvalue ∈ V : the maximum tag discovered and the value that

was returned during the last read operation.

• rCounter ∈ N: read request counter. Used by the servers to distinguish fresh from stale

messages.

• phase ∈ {1, 2}: indicates the active communication round of the read operation.

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an

operation (status = active) or it is done with any requests (status = idle). When

status = done, it indicates that the reader decided on the value to be returned and is

ready to respond to the client.

• srvAck ⊆ M ×S: a set that contains the servers and their replies to the readoperation.

The set is reinitialized to∅ at the response step of every read operation.

• maxAck ⊆ M × S: this set contains the messages (and the servers senders) that con-

tained the maximum tag duringr’s last read request.

• maxTagSrv ⊆ S: The servers that replied with themaxTag.

• replyQ ⊆ S: The quorum of servers that replied tor during the last read operation.

• failed ∈ {true, false}: indicates whether the process associated with the automaton

has failed.
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Signature:

Input:
readr , r ∈ R
rcv(m)s,r , m ∈M , r ∈ R, s ∈ S
failr , r ∈ R

Output:
send(m)r,s , m ∈M , r ∈ R, s ∈ S
read-ack(val)r , val ∈ V , r ∈ R

Internal:
read-phase1-fixr

read-phase2-fixr

State:
tag = 〈ts, wid〉 ∈ N×W , initially {0, min(W)}
maxTag = 〈ts, wid〉 ∈ N×W , initially {0, min(W)}
v ∈ V , initially ⊥
retvalue ∈ V , initially ⊥
phase ∈ {1, 2}, initially 1
rCounter ∈ N+, initially 0

status ∈ {idle, active, done}, initially idle

srvAck ⊆M × S, initially ∅
maxAck ⊆M × S, initially ∅
maxTagSrv ⊆ S, initially ∅
replyQ ⊆ S, initially ∅
failed, a Boolean initiallyfalse

Figure 19: CWFRr Automaton: Signature and State

Any read operation requires one or two phases to complete (fast or slow). The decision on

the number of communication rounds is based on the quorum views that the reader establishes

during its first communication round.

The readerr invokes a read operation when the CWFRr automaton receives areadr request

from its environment. Thestatus of the automaton becomesactive and the reader sends mes-

sages to each servers ∈ S to obtain the value of the atomic register. Thercv(m)s,r action is

triggered when readerr receives a reply from servers. The reader collects the identifiers of the

servers and their replies by adding a pair(s,m) in thesrvAck set. Whenr receives messages

from a single quorumQ it detects the the maximum tag (maxTag) among the messages re-

ceived from the servers inQ. Those messages are placed inmaxTagAck set. The servers that

belong into the collected quorum and have messages inmaxTagAck, are placed separately

in themaxTagSrv set. Lastly, thereplyQ variable becomes equal to the quorumQ and the

valuev becomes equal to the value assigned tomaxTag.

From the newly formed sets the reader iteratively analyzes the distribution of the maximum

tag on the members ofreplyQ, in an attempt to determine the latest write operation that has
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Transitions:
Input readr

Effect:
if ¬failed then
if status = idle then
status← active

rCounter← rCounter + 1

Input rcv(〈msgT, t, C〉)s,r

Effect:
if ¬failed then
if status = active andrCounter = C then
srvAck← srvAck ∪ {(s, 〈msgT, t, C〉)}

Output send(〈msgT, t, C〉)r,s

Precondition:
status = active

¬failed
ˆ

(phase = 1 ∧ 〈msgT, t, C〉 =
〈READ, 〈maxTag, v〉, rCounter〉)∨

(phase = 2 ∧ 〈msgT, t, C〉 =
〈INFORM, 〈maxTag, v〉, rCounter〉)

˜

Effect:
none

Output read-ack(val)r

Precondition:
¬failed

status = done

val=retvalue

Effect:
replyQ← ∅
srvAck ← ∅
status← idle

Internal read-phase2-fixr

Precondition:
¬failed

status = active

phase = 2
∃Q ∈ Q : Q ⊆ {s : (s, m) ∈ srvAck}

Effect:
status← done

phase← 1

Internal read-phase1-fixr

Precondition:
¬failed

status = active

phase = 1
∃Q ∈ Q : Q ⊆ {s : (s, m) ∈ srvAck}

Effect:
replyQ← Q

maxTag ← maxs∈replyQ∧(s,m)∈srvAck(m.t.tag)
maxAck ← {(s, m) : (s, m) ∈ srvAck ∧m.t.tag = maxTag}
maxTagSrv ← {s : s ∈ replyQ ∧ (s, m) ∈ maxAck}
v ← {m.t.val : (s, m) ∈ maxAck}

Internal read-qview-evalr
Precondition:
¬failed

replyQ 6= ∅
Effect:

tag ← maxs∈replyQ∧(s,m)∈srvAck(m.t.tag)
maxAck ← {(s, m) : (s, m) ∈ srvAck ∧m.t.tag = maxTag}
maxTagSrv ← {s : s ∈ replyQ ∧ (s, m) ∈ maxAck}
retvalue← {m.t.val : (s, m) ∈ maxAck}
if replyQ = maxTagSrv then
status ← done

else
if ∃Q′ ∈ Q, Q′ 6= replyQ s.t.replyQ ∩Q′ ⊆ maxTagSrv then
tag ← maxTag

retvalue← v

phase← 2
srvAck← ∅
rCounter← rCounter + 1

else
replyQ← replyQ− {s : s ∈ maxTagSrv}

Input failr
Effect:

failed← true

Figure 20: CWFRr Automaton: Transitions
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potentially completed. This is done by theread-qview-evalr action. In particular, the iterative

approach works as follows. LetmaxTagℓ denote the maximum tag inreplyQ at iterationℓ,

with maxTag0 = maxTag. Also let replyQℓ be the set of servers that the read operation

examines during iterationℓ, with replyQ0 = replyQ = Q. During every iterationℓ, the

readerr proceeds as follows (locally) depending on the quorum view it observes duringρ in

replyQℓ:

Setℓ = 0 andreplyQ0 = replyQ

Repeat until return :

QV1: Return the value associated withmaxTagℓ = maxs∈replyQℓ
(m(ρ)s,r.t.tag)

QV3: Proceed to a second round, and propagate messages that contain maxTag0 =

maxTag to all servers. Once theread-phase2-fixr event occurs, return the value associ-

ated withmaxTag.

QV2: SetreplyQℓ+1 = replyQℓ−{s : (s ∈ replyQℓ)∧(m(ρ)s,r.t.tag = maxTagℓ)}

and proceed to iterationℓ + 1.

Let us discuss the idea behind our proposed technique. Observe that under our failure

model, any write operation can expect a response from at least one full quorum. Moreover a

write ω distributes its tagtagω to some quorum, sayQ′, before completing.Thus when a read

operationρ, s.t. ω → ρ, receive replies from some quorumQ, then it will observe one of the

following tag distributions: (a) ifQ = Q′ , then∀s ∈ Q,m(ρ)s,r = tagω (QV1), or (b) if

Q 6= Q′ , then∀s ∈ Q ∩ Q′,m(ρ)s,r = tagω (QV3). Hence, ifρ observes a distribution as

in QV1 then it follows that a write operation completed and received replies from the same
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quorum that replied toρ. Alternatively, if only an intersection contains a uniformtag (i.e., the

case ofQV3) then there is a possibility that some write completed in an intersecting quorum

(in this exampleQ′). The read operation is fast inQV1 since it is determinable that the write

potentially completed. The read proceeds to the second round inQV3, since the completion of

the write is indeterminable and it is necessary to ensure that any subsequent operation observes

that tag. If none of the previous quorum views hold (and thusQV2 holds), then it must be the

case that the write that yielded the maximum tag is not yet completed. Hence we try to discover

the latest potentially completed write by removing all the servers with the highest tag fromQ

and repeating the analysis. If at some iteration,QV1 holds on the remaining tag values, then a

potentially completed write – that was overwritten by greater values in the rest of the servers –

is discovered and that tag is returned (in a single round). Ifno iteration is interrupted because

of QV1, then eventuallyQV3 is observed in the worst case, when a single server will remain

in some intersection ofQ. Since a second round cannot be avoided in this case, we take the

opportunity to propagate the largest tag observed inQ. At the end of the second round that tag

is written to at least a single complete quorum and thus the reader can safely return it.

Automaton CWFRs.

The server automaton has relatively simple actions. The signature, state and transitions

of the CWFRs can be depicted in Figure 21. The state of the CWFRs contains the following

variables:

• 〈〈ts, wid〉, v〉 ∈ N × W × V : the maximum tag (timestamp, writer identifier pair)

reported tos along with its associated value. This is the value of the register replica ofs.
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Signature:

Input:
rcv(m)p,s, m ∈M , s ∈ S, p ∈ R∪W
fails

Output:
send(m)s,p , m ∈M , s ∈ S, p ∈ R ∪W

State:
tag = 〈ts, wid〉 ∈ N×W , initially {0, min(W)}
v ∈ V , initially ⊥
Counter(p) ∈ N+, p ∈ R ∪W , initially 0

msgType ∈ {WRITEACK,READACK,INFOACK}
status ∈ {idle, active}, initially idle

failed, a Boolean initiallyfalse

Transitions:
Input rcv(〈msgT, t, C〉)p,s

Effect:
if ¬failed then
if status = idle andC > Counter(p) then
status← active

Counter(p)← C

if tag < t.tag then
(tag.ts, tag.wid, v)← (t.tag.ts, t.tag.wid, t.val)

Output send(〈msgT, t, C〉)s,p

Precondition:
¬failed

status = active

p ∈ R ∪W
〈msgT, t, C〉 =

〈msgType, 〈tag, v〉, Counter(p)〉
Effect:

status ← idle

Input fails
Effect:

failed← true

Figure 21: CWFRs Automaton: Signature, State and Transitions

• Counter(p) ∈ N: this array maintains the latest request index of each client (reader or

writer). It helpss to distinguish fresh from stale messages.

• status ∈ {idle, active}: specifies whether the automaton is processing a request re-

ceived (status = active) or it can accept new requests (status = idle).

• msgType ∈ {WRITEACK,READACK,INFOACK}: Type of the acknowledgment depend-

ing on the type of the received message.

• failed ∈ {true, false}: indicates whether the server associated with the automaton has

failed.
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Each server replies to a message without waiting to receive any other messages from any

process. Thus, the status of the server automaton determines whether the server is busy pro-

cessing a message (status = active) or if it is able to accept new messages (status = idle).

When a new message arrives, thercv(m)p,s event is responsible to process the incoming mes-

sage. If thestatus is equal to idle and this is a fresh message from processp then thestatus

becomes active. TheCounter(p) for the specific process becomes equal to the counter in-

cluded in the message. Then the server checks ifm(π, ∗)p,s.t.tag > tags. The comparison is

validated if either:

• the timestamp of the received tag is greater than the timestamp in the local tag of the

server (i.e.,m(π, ∗)p,s.t.tag.ts > tags.ts), or

• m(π, ∗)p,s.t.tag.ts = tags.ts and the writer identifier included in the tag of the received

message is greater than the writer identified included in thelocal tag of the server (i.e.,

m(π, ∗)p,s.t.tag.wid > tags.wid).

If any of the above cases hold, the server updates itstag andv variables to be equal to the

ones included in the received message. The type of the received message specifies the type of

the acknowledgment.

While the server is active, thesend(m)s,p event may be triggered. When this event occurs,

the servers sends its local replica value, to the processp. The action results in modifying the

status variable toidle and thus setting the server enable to receive new messages.
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6.3.4 Correctness ofCWFR

We show that algorithm CWFR, satisfies both termination and atomicity properties pre-

sented in Definitions 3.2.4 and 3.2.5 respectively.

Termination

Each phase of any read or write operation terminates when theinvoking process receives

replies from at least a single quorum. According to our failure model, all but one quorums may

fail (see Section 3.1.4). Thus, any correct process receives replies from at least the correct quo-

rum. Thus, every operation from a correct process eventually terminates and hence, Definition

3.2.4 is satisfied.

Atomicity

We now show that algorithm CWFR satisfies the properties of Definition 3.2.5. We adopt

the notation presented in Chapter 3. In particular, we usevarp to refer to the variablevar of

the automaton CWFRp. To access the value of a variablevar of CWFRp in a stateσ of an

executionξ, we useσ[p].var (see Section 3.1.1). Also, letm(π, c)p,p′ to denote the message

sent fromp to p′ during thecth round of operationπ. Any variablevar enclosed in a message

is denoted bym(π, c)p,p′ .var (see Section 3.1.2). We refer to a step〈σ, read-qview-evalr, σ
′〉,

whereσ′[r].status = done or σ′[r].phase = 2, as theread-fix stepof a read operationρ

invoked by readerr. Similarly we refer to a step〈σ,write-phase2-fixw, σ′〉 as thewrite-fix step

of a write operationω invoked byw. We use the notationσfix(π), to capture the final state

of a read or write fix step (i.e.,σ′ in the previous examples) for an operationπ. Finally, for
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an operationπ, σinv(π) andσres(π) denote the system state before the invocation and after the

response of operationπ respectively (as presented in Section 3.2).

Given this notation, the value of the maximum tag observed during a read operationρ from

a readerr is σfix(ρ)[r].maxTag. As a shorthand we usemaxTagρ = σfix(ρ)[r].maxTag to

denote the maximum tag witnessed byρ. Similarly, we useminTagρ to denote the minimum

tag witnessed byρ. For a write operation we usemaxTagω = σrfix(ω)[w].maxTag to denote

the maximum tag witnessed during the read phase. The stateσrfix(ω) is the state of the system

after thewrite-phase1-fixw event occurs during operationω. Note thatσres(π)[p].tag is the tag

returned ifπ is a read operation. Lastly giventag′ and a set of serversQ that replied to some

operationπ from p, let (Q)>tag′ = {s : s ∈ Q ∧ m(π)s,p.tag > tag′} be the set of servers in

Q that replied with a tag greater thantag′.

Similar to Section 4.2.4, we can express the ordering of read/write operations with respect

to the tags they return/write. For the operation ordering tosatisfy the atomicity conditions of

Definition 3.2.5, the tags written and returned must satisfythe following properties for every

finite or infinite executionξ of CWFR:

TG1. For each processp the tagp variable is alphanumerically monotonically nondecreasing

and it contains a non-negative timestamp.

TG2. If the readr event of a read operationρ from readerr succeeds the write-fix step of a

write operationω in ξ then,σres(ρ)[r].tag ≥ σres(ω)[w].tag.

TG3. If ω andω′ are two write operations from the writersw andw′ respectively, such that

ω → ω′ in ξ, thenσres(ω′)[w
′].tag > σres(ω)[w].tag.
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TG4. If ρ and ρ′ are two read operations from the readersr and r′ respectively, such that

ρ → ρ′ in ξ, thenσres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag.

First we need to ensure that any process in the system maintains only monotonically non-

decreasing tags. In other words, if some processp sets itstagp variable to a valuek at a state

σ in an executionξ, thentagp 6= ℓ such thatℓ ≤ k at a stateσ′ that appears afterσ in ξ.

Lemma 6.3.2 In any executionξ ∈ goodexecs(CWFR, Q), σ′[s].tag ≥ σ[s].tag for any

servers ∈ S and anyσ, σ′ in ξ, such thatσ appears beforeσ′ in ξ.

Proof. It is easy to see that a servers modifies itstag variable when the step〈σ, rcv(m)p,s, σ
′〉.

From that step,σ[s].tag 6= σ′[s].tag only if s receives a message duringrcvp,s such that

m(π, 1)p,s.tag > σ[s].tag. This means that either: a)m(π, 1)p,s.tag.ts > σ[s].tag.ts

or b) m(π, 1)p,s.tag.ts = σ[s].tag.ts and m(π, 1)p,s.tag.wid > σ[s].tag.wid. So, if

σ[s].tag 6= σ′[s].tag, thenσ[s].tag < σ′[s].tag and the tag is monotonically incrementing.

Furthermore, since the initial tag of the server is set to〈0,min(wid)〉 and the tag is updated

only if m(π, 1)p,s.tag.ts ≥ σ[s].tag.ts, then for any stateσ′′, it holds thatσ′′[s].tag.ts is

always greater than 0. 2

We can also show that a server replies with a higher tag than the one it receives in a re-

questing message.

Lemma 6.3.3 In any executionξ ∈ goodexecs(CWFR, Q), if a servers receives a mes-

sagem(π, 1)p,s from a processp, for operationπ, thens replies top with m(π, 1)s,p.tag ≥

m(π, 1)p,s.tag.

Proof. When the server receives the message from processorp it first comparesm(π, 1)p,s.tag

with its local tagtags. If m(π, 1)p,s.tag > tags then the server setstags = m(π, 1)p,s.tag.
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From this it follows that the tag of the server at the stateσ′ after rcvp,s is σ′[s].tag ≥

m(π, 1)p,s.tag. Since by Lemma 6.3.2 the tag of the server is monotonically nondecreas-

ing, then when thesends,p event occurs, the server replies top with a tagm(π, 1)s,p.tag ≥

σ′[s].tag ≥ m(π, 1)p,s.tag. Hence, the lemma follows. 2

The next lemma shows the monotonicity of tags in every writerprocess.

Lemma 6.3.4 In any executionξ ∈ goodexecs(CWFR, Q), σ′[w].tag ≥ σ[w].tag for any

writer w ∈ W and anyσ, σ′ in ξ, such thatσ appears beforeσ′ in ξ. Also, for any stateσ in ξ,

σ[w].tag.ts ≥ 0.

Proof. Each writer processw modifies its local tag during its first communication

round. In particular when thewrite-phase1-fixw event happens for a write opera-

tion ω, then the tag of the writer becomes equal totagw = 〈maxTagω.ts + 1, w〉.

So, it suffice to show thatσinv(ω)[w].maxTS ≤ maxTagω. Suppose that all the

servers of a quorumQ ∈ Q, received messages and replied tow, for ω. Every

message sent fromw to any servers ∈ Qj (when sendw,s occurs), contains a tag

m(ω, 1)w,s.tag = σinv(ω)[w].maxTS. By Lemma 6.3.3, anys ∈ Q replies with a tag

m(ω, 1)s,w.tag ≥ m(ω, 1)w,s.tag ≥ σinv(ω)[w].maxTS. Thus,∀s ∈ Q, m(ω, 1)s,w.tag ≥

σinv(ω)[w].maxTS and it follows thatm(ω, 1)s,w.tag.ts ≥ σinv(ω)[w].maxTS.tag.ts. Since

maxTagω.ts = max(m(ω, 1)s,w.tag.ts) then maxTagω.ts ≥ σinv(ω)[w].maxTS.tag.ts

and hence,σres(ω)[w].tag = 〈maxTagω.ts+1, w〉 > σinv(ω)[w].maxTS. Therefore not only

the tag of a writer is nondecreasing but we show explicitly that the writer’s tag is monotonically

increasing. Furthermore since the writer adopts the maximum tag sent from the servers, and
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since by Lemma 6.3.2 the servers tags contain non-negative timestamps, then it follows that

the writer contains non-negative timestamps as well. 2

The next lemma shows the monotonicity of the tags in every reader.

Lemma 6.3.5 In any executionξ ∈ goodexecs(CWFR, Q), σ′[r].tag ≥ σ[r].tag for any

readerr ∈ R and anyσ, σ′ in ξ, such thatσ appears beforeσ′ in ξ. Also, for any stateσ

in ξ, σ[r].tag.ts ≥ 0.

Proof. Notice that the tag variable of a reader isσinv(ρ)[r].tag ≤ σinv(ρ)[r].maxTS when the

readr event occurs. So, it suffices to show thatσres(ρ)[r].tag ≥ σinv(ρ)[r].maxTS. With simi-

lar arguments to Lemma 6.3.4 it can be shown that for everys ∈ Q that replies to an operationρ

invoked byr, m(ρ, 1)s,r.tag ≥ σinv(ρ)[r].maxTS. SincemaxTagρ = max(m(ρ, 1)s,r.tag)

and minTagρ = min(m(ρ, 1)s,r.tag) then it follows that bothmaxTagρ,minTagρ ≥

σinv(ρ)[r].maxTS. By the algorithm the tag returned by the read operation isminTagρ ≤

σres(ρ)[r].tag ≤ maxTagρ. Hence,σres(ρ)[r].tag ≥ σinv(ρ)[r].maxTS. Thus, no matter

which of the tags is chosen to be returned at the end of the readoperation nondecreasing

monotonicity is preserved. Also since by Lemma 6.3.2 all theservers reply with a non nega-

tive timestamp, then it follows thatr contains non-negative timestamps as well. 2

Lemma 6.3.6 For each processp ∈ R∪W∪S thetag variable is monotonically nondecreas-

ing and contains a non-negative timestamp.

Proof. Follows from Lemmas 6.3.2, 6.3.4 and 6.3.5 2

The following lemma states that if a read operation returns atag τ < maxTag it must

be the case that any pairwise intersection of the replied quorum contains a servers such that

tags ≤ τ .
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Lemma 6.3.7 In any executionξ ∈ goodexecs(CWFR, Q), if a read operationρ from r re-

ceives replies from the members of quorumQ and returns a tagσres(ρ)[r].tag < maxTagρ,

then∀Q′ ∈ Q, Q′ 6= Q, (Q ∩ Q′) − (Q)>σres(ρ)[r].tag 6= ∅.

Proof. By definition the intersection of two quorumsQ,Q′ ∈ Q is not empty. Let us assume

to derive contradiction that a read operationρ may return a tagσres(ρ)[r].tag < maxTagρ and

may exist(Q∩Q′)−(Q)>σres(ρ)[r].tag = ∅. According to our algorithm, whenread-qview-eval

event occurs, we first check if eitherQV1 orQV3 is observed inQ. If neither of those quorum

views is observed then we remove all the servers with the current maximum tag fromQ and

we repeat the check on the remaining servers. It follows thatsince all the serverss′ ∈ Q ∩ Q′

were removed fromQ then it must be the case thatm(ρ, 1)s′,r.tag > σres(ρ)[r].tag. So there

must be a tagτ ′ > σres(ρ)[r].tag s.t. A = (Q ∩ Q′) − (Q)>τ ′
6= ∅ and all serverss′ ∈ A

replied withm(ρ, 1)s′,r.tag = τ ′. If this happens there are two cases for the reader:

a) ∀s′ ∈ (Q) − (Q)>τ ′
,m(ρ, 1)s′,r.tag = τ ′ and thusQV1 is observed and the reader

returnsσres(ρ)[r].tag′ = τ ′, or

b) ∀s′ ∈ A,m(ρ, 1)s′,r.tag = τ ′ and thus,QV3 is observed and the reader returns

σres(ρ)[r].tag′ = maxTagρ.

SincemaxTagρ ≥ τ ′, then in any case the read operationρ would return a tagσres(ρ)[r].tag′ >

σres(ρ)[r].tag and that contradicts our assumption. 2

Derived from the above lemma, the next lemma states that a read operation returns either

themaxTag or the maximum of the smaller tags from the pairwise intersections of the replied

quorum.
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Lemma 6.3.8 In any executionξ ∈ goodexecs(CWFR, Q), if a read operationρ from r re-

ceives replies from a quorumQ, then∀Q′ ∈ Q, Q′ 6= Q, σres(ρ)[r].tag ≥ min(m(ρ, 1)s,r) for

s ∈ Q ∩ Q′.

Proof. This lemma follows directly from Lemma 6.3.7. Let a subset ofservers inQ ∩ Q′

replied toρ with the minimum tag among all the servers of that intersection, sayτ . If the

iteration of theread-eval-qviewr event ofρ reaches tagτ then eitherρ observesQV1 and

returnsσres(ρ)[r].tag = τ or it observesQV3 and returnsσres(ρ)[r].tag = maxTagρ ≥ τ .

This is true for all the intersectionsQ ∩ Q′, for Q 6= Q′. And the lemma follows. 2

Next we show that a read returns a higher tag than the one written by a preceding write.

Lemma 6.3.9 If in an executionξ ∈ goodexecs(CWFR, Q), the invocation step of a read

operationρ from readerr succeeds the write-fix step of a write operationω from w then,

σres(ρ)[r].tag ≥ σres(ω)[w].tag.

Proof. Assume w.l.o.g. that the write operation receives messagesfrom two, not necessarily

different, quorumsQ andQ′ during its first and second communication rounds respectively.

Furthermore, let us assume that the read operation receivesreplies from a quorumQ′′, not nec-

essarily different fromQ or Q′, during its first communication round. According to the algo-

rithm the write operationω detects the maximum tag fromQ, increments that and propagates

the new tag toQ′. Since∀s ∈ Q,maxTagω ≥ m(ω, 1)s,w.tag then from the intersection

property of a quorum system it follows that∀s′ ∈ (Q ∩ Q′) ∪ (Q ∩ Q′′), σres(ω)[w].tag >

maxTagω ≥ m(ω, 1)s′,w.tag. From the fact thatw propagatesσres(ω)[w].tag in ω’s second

communication round and from Lemma 6.3.3 it follows that every s ∈ (Q′ ∩ Q′′) replies with

a tagm(ω, 2)s,w.tag ≥ σres(ω)[w].tag during the second round ofω.
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Since thereadr operation succeeds the write-fix step ofω, then from Lemma 6.3.3 the

read operation will obtain a tagm(ρ, 1)s,r.tag ≥ m(ω, 2)s,w.tag ≥ σres(ω)[w].tag, from

every servers ∈ Q′ ∩ Q′′. So,min(m(ρ, 1)s,r.tag) ≥ σres(ω)[w].tag. Thus from Lemma

6.3.8σres(ρ)[r].tag ≥ m(ρ, 1)s,r for s ∈ Q′ ∩ Q′′ and henceσres(ρ)[r].tag ≥ σres(ω)[w].tag

completing the proof. 2

The next lemma shows that CWFR satisfiesTG3.

Lemma 6.3.10 In any executionξ ∈ goodexecs(CWFR, Q), if ω andω′ are two write oper-

ations from the writersw andw′ respectively, such thatω → ω′ in ξ, thenσres(ω′)[w
′].tag >

σres(ω′)[w].tag

Proof. From the precedence relation of the two write operations it follows that the write-fix step

of ω occurs before thewritew′ event ofω′. Recall that for a write operationω, σres(ω)[w].tag =

〈maxTagω.ts+1, w〉. So, it suffices to show here thatmaxTagω′ > maxTagω. This however

is straightforward from Lemma 6.3.3 and the value propagated during the second communi-

cation round ofω. In particular letω propagateσres(ω)[w].tag > maxTagω to a quorumQ.

Notice that everys ∈ Q replies withm(ω, 2)s,w.tag ≥ σres(ω)[w].tag to the second commu-

nication round ofω. Furthermore, let the write operationω′ receive replies from a quorumQ′,

not necessarily different thanQ, during its first communication round. Since the write-fix step

of ω occurs before thewritew′ event ofω′ then, by Lemmas 6.3.2 and 6.3.3,∀s′ ∈ Q ∩ Q′

m(ω′, 1)s′,w′ ≥ m(ω, 2)s,w ≥ σres(ω)[w].tag. Thus, maxTagω′ ≥ m(ω′, 1)s′,w′ ≥

σres(ω)[w].tag and hence, sinceσres(ω)[w].tag = 〈maxTagω′ .ts + 1, w′〉 > maxTagω′ ,

thenσres(ω′)[w
′].tag > σres(ω)[w].tag. 2
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The following two lemmas show that the tags returned by read operations in CWFR satisfy

propertyTG4.

Lemma 6.3.11 In any executionξ ∈ goodexecs(CWFR, Q), if ρ andρ′ are two read oper-

ations from the readersr andr′ respectively, such thatρ → ρ′ in ξ, thenσres(ρ′)[r
′].tag ≥

σres(ρ)[r].tag.

Proof. Sinceρ → ρ′ in ξ, then theread-ackr event ofρ occurs before thereadr′ event of

ρ′. Lets consider that both read operations are invoked from the same readerr = r′. It

follows from Lemma 6.3.5 thatσres(ρ)[r].tag ≤ σres(ρ′)[r].tag because thetag variable is

monotonically non-decrementing. So it remains to investigate what happens when the two read

operations are invoked by two different processes,r andr′ respectively. Suppose that every

servers ∈ Q receives the messages of operationρ with an eventrcv(m)r,s, and replies with

a tagm(ρ, 1)s,r.tag with an eventsend(m)s,r to r. Notice that for every server that replies,

as mentioned in Lemma 6.3.3,m(ρ, 1)s,r.tag ≥ σinv(ρ)[r].maxTS. Let the members of the

quorumQ′ (not necessarily different thanQ) receive messages and reply toρ′. Again for every

s′ ∈ Q′, m(ρ′, 1)s′,r′ ≥ σinv(ρ′)[r
′].maxTS. We know that the tag of the read operationρ

after theread-qview-evalr event ofρ may take a value betweenmaxTagρ ≥ σres(ρ)[r].tag ≥

minTagρ. It suffice to examine the two extreme cases and every intermediate value can be

proved similarly. So we have two cases to examine: 1)σres(ρ)[r].tag = minTagρ, and 2)

σres(ρ)[r].tag = maxTagρ.

Case 1: Consider the case whereσres(ρ)[r].tag = minTagρ, including the case where

minTagρ = maxTagρ. This may happen only if theread-qview-evalr event reaches

an iteration with tagτ = minTagρ and observesQV1. In other words all servers
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s ∈ Q − (Q)>τ reply with m(ρ, 1)s,r.tag = minTagρ. By Lemma 6.3.7 it follows that

(Q ∩ Q′) − (Q ∩ Q′)>τ 6= ∅ and thus every servers′ ∈ Q ∩ Q′ replies toρ with a tag

m(ρ, 1)s,r.tag ≥ minTagρ. By Lemma 6.3.2 it follows that every servers′ ∈ Q ∩ Q,

replies with a tagm(ρ′, 1)s′,r′ .tag ≥ m(ρ, 1)s′,r.tag ≥ minTagρ. The read operationρ′

may return a value within the intervalminTagρ ≤ σres(ρ′)[r
′].tag ≤ maxTagρ. Since for ev-

ery servers′ ∈ Q ∩ Q′, m(ρ′, 1)s′,r′ .tag ≥ minTagρ = σres(ρ)[r].tag thenmaxTagρ′ ≥

m(ρ′, 1)s′,r′ .tag ≥ σres(ρ)[r].tag. Hence, ifσres(ρ)[r
′].tag = maxTagρ′ it follows that

σres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag. On the other hand, ifσres(ρ′)[r

′].tag = minTagρ′ we

need to consider two cases: a)minTagρ′ ≥ minTagρ and b)minTagρ′ < minTagρ.

If the first case is valid then it follows immediately thatσres(ρ′)[r
′].tag ≥ minTagρ and

thus σres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag. If case b) is valid then it follows that the iteration

reaches a tag equal tominTagρ′ . Since however every servers′ ∈ Q ∩ Q′, replies with

m(ρ′, 1)s′,r′ .tag ≥ minTagρ, then m(ρ′, 1)s′,r′ .tag ≥ minTagρ′ as well and thus all

these servers are removed by iteration where tag is equal tominTagρ′ . So it follows that

(Q ∩ Q′) − (Q′)>minTagρ′ = ∅ and that contradicts Lemma 6.3.7. So the case is impossible.

Case 2:Here we examine the case whereσres(ρ)[r].tag = maxTagρ. This may happen after

theread-qview-evalr of ρ if either observes a quorum viewQV1 or a quorum viewQV3. Let

us examine the two cases separately.

Case 2a:In this caseρ witnessed aQV1.

Therefore it must be the case that∀s ∈ Q, s replied withm(ρ, 1)s,r.tag = maxTagρ =

minTagρ = σres(ρ)[r].tag. Thus by Lemma 6.3.2∀s ∈ Q ∩ Q′, s replies with a tag
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m(ρ′, 1)s,r′ .tag ≥ m(ρ, 1)s,r.tag to ρ′, and hence,ρ′ witnesses a maximum tag

maxTagρ′ ≥ maxTagρ ⇒ maxTagρ′ ≥ σres(ρ)[r].tag (8)

Recall thatminTagρ′ ≤ σres(ρ′)[r
′].tag ≤ maxTagρ′ . Clearly if σres(ρ′)[r

′].tag =

maxTagρ′ thenσres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag. So it remains to examine the case where

σres(ρ′)[r
′].tag < maxTagρ′ . By Lemma 6.3.8,σres(ρ′)[r

′].tag must be greater or equal to

the minimum tag of any intersection ofQ′. Sincemin(m(ρ′, 1)s′,r′ .tag) ≥ σres(ρ)[r].tag, for

everys′ ∈ Q ∩ Q′, then by that lemmaσres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag.

Case 2b:This is the case whereσres(ρ)[r].tag = maxTagρ, becauser witnessed a quorum

view QV3. In this caseρ proceeds in phase 2 before completing. Sinceρ → ρ′ and sinceρ′

happens after theread-ackr
1 action ofρ, it means thatρ′ happens after theread-phase2-fixr

action of ρ as well. Howeverρ proceeds to phase 2 only after theread-phase1-fixr and

read-qview-evalr actions. In the latter actionρ fixes themaxTag variable to be equal to the

maxTagρ. Once in phase 2,ρ sends inform messages withmaxTagρ to a complete quorum,

sayQ′′. By Lemma 6.3.6, every servers ∈ Q′′ replies with a tag

m(ρ, 2)s,r.tag ≥ maxTagρ ⇒ m(ρ, 2)s,r.tag ≥ σres(ρ)[r].tag (9)

So ρ′ will observe (by Lemma 6.3.2) that at least∀s′ ∈ Q′ ∩ Q′′, m(ρ′, 1)s′,r′ .tag ≥

σres(ρ)[r].tag. Hence by Lemma 6.3.8ρ′ returns a tagσres(ρ′)[r
′].tag ≥ min(m(ρ′, 1)s′,r′ .tag)

and thus,σres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag and this completes our proof. 2

Lastly the following lemma states that if two read operations return two different tags then

the values that correspond to these tags are also different.

1
read-ackr occurs only if all phases reach a fix point and thestatus variable becomes equal todone
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Lemma 6.3.12 In any executionξ ∈ goodexecs(CWFR, Q), if ρ andρ′ two read operations

from readersr andr′ respectively, such thatρ (resp.ρ′) returns the value written byω (resp.

ω′), then if σres(ρ)[r].tag 6= σres(ρ′)[r
′].tag thenω is different thanω′ otherwise they are the

same write.

Proof. This lemma is ensured because a unique tag is associated to each written value by the

writers. So it cannot be the case that two readers such thatσres(ρ)[r].tag 6= σres(ρ′)[r
′].tag

returned the same value. 2

Using the above lemmas we can obtain:

Theorem 6.3.13Algorithm CWFR implements a MWMR atomic read/write register.

Proof. This theorem follows from Lemmas 6.3.6, 6.3.9, 6.3.10, and 6.3.11. Moreover Lemma

6.3.12 shows that each value is associated with a unique tag,and thus operations can be ordered

with respect to the tags they write or return. 2

6.4 Server Side Ordering - Algorithm SFW

In traditional MWMR atomic register implementations, [68,34, 66, 36] (including algo-

rithm CWFR) the writer is solely responsible for incrementing the tag that imposes the ordering

on the values of the register. With the new technique, and ourhybrid approach, this task is now

also assigned to the servers, hence the nameServer Side Ordering(SSO). Figure 22 presents a

data flow of the two techniques.

At a first glance, SSO appears to be an intuitive and straightforward approach: servers

are responsible to increment the timestamp associated withtheir local replica whenever they

receive a write request. Yet, this technique proved to be extremely challenging. Traditionally,
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w s

writer server

P1: read()

P2: write(tw,v)

Find max (ts)

tw = inc(ts)

reply(ts)

reply(max(tw,ts))

Return(OK)Return(OK)

w s

writer server

P1: write(tw,v)

P2: write(tw,v)

reply(ts,v)

reply(max(tw,ts))

Return(OK)

ts=inc(max(ts,tw))

Is ts
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for v?

Yes

No

tw = max(ts)

Return(OK)

Figure 22: Traditional Writer Side Ordering Vs Server Side Ordering

two phase write operations were querying the register replicas for the latest timestamp, then

they were incrementing that timestamp and finally they were assigning the new timestamp to

the value to be written. Such methodology established that each individual writer was respon-

sible to decide asingleanduniquetimestamp to be assigned to a written value. Following this

technique a belief was shaped that “writes must read”.

The new technique promises to allow the writer avoid the query phase during a write opera-

tion. However, allowing the servers to increment the timestamps introduces new complexity to

the problem:multipleanddifferenttimestamps may now be assigned to the same write request

(and thus the same written value). Since timestamps are usedto order the write operations, then

multiple timestamps for a single write imply the appearanceof the same operation in different

points in the execution timeline. Hence the great challengeis to provide clients with enough

information so that they decide a unique ordering for each written value to avoid violation of

atomicity. For this purpose we combine the server generatedtimestamps (global ordering)

with writer generated operation counters (local ordering).
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In this Section we present algorithm SFW which adopts SSO to allow fast readandwrite

operations. To our knowledge, this is thefirst algorithm that allows fast write operations in the

MWMR environment.

6.4.1 New Way of Tagging the Values

Algorithm SFW uses〈tag, val〉 pairs, to impose ordering on the values written to the

register. In contrast to traditional approaches where the tag is a two field tuple, this algorithm

requires the tag to be a triple. In particular, thetag is of the form〈ts, wid,wc〉 ∈ N×W ×N.

The fieldsts and wid are used as in common tags and represent the timestamp and writer

identifier respectively. Fieldwc represents the write operation counter and is used to distinguish

between write operations originating from the writer with identifierwid. In other wordsts

represent theglobal andwc the local value orderings, and are incremented by the servers and

writers respectively (as required by SSO).

The necessity of the third field in a tag lies on the following observation: if a tag is a

tuple of the form〈ts, wid〉, then two server processess ands′ may associate two different tags

〈tss, w〉 and〈tss′ , w〉 respectively to a single write operationω. Any operation however that

witnesses such tags is not able to distinguish whether the tags refer to a single or different write

operations fromw. By including the writer’s local orderingwc in each tag, the tags will become

〈tss, w,wc〉 and 〈tss′ , w,wc〉. From the new tags it becomes apparent that the same write

operation was assigned two different timestamps. The triples are compared lexicographically.

In particular, we say thattag1 > tag2 if one of the following holds:

1. tag1.ts > tag2.ts, or

204



Nicolas C. Nicolaou––University of Connecticut, 2011

2. (tag1.ts = tag2.ts) ∧ (tag1.wid > tag2.wid), or

3. (tag1.ts = tag2.ts) ∧ (tag1.wid = tag2.wid) ∧ (tag1.wc > tag2.wc).

Notice that in traditional approaches, where the writer increments the timestamp each

writer generates auniquetimestamp for each of its writes. The writer identifier in that case

is included in the tag to distinguish two write operations invoked bydifferentwriters that gen-

erated thesametimestamp.

6.4.2 High Level Description ofSFW

Below we present a high level description of the algorithm SFW. The algorithm deploys

quorum systems and relies on the assumption that a single quorum is non-faulty throughout the

algorithm’s execution. To enable fast operations, algorithm SFW involves two predicates: one

for the read protocol and one for the write protocol. Both predicates reveal the latest written

value by evaluating the distribution of a tag within the quorum that replies to the read or write

operation. The description that follows focus on tags written and returned. The association of

values to those tags is straightforward.

Server. We begin with the description of the server as it plays a significant role in the system.

In SFW, each server maintains the value of the replica and generates the tags associated with

each value. As in the previous algorithms, the server waits for read/write requests. If a read

request is received, the server updates its local information (〈tag, val〉 pair) if the tag enclosed

in the request is greater than the local tag of the server. Also, it marks the enclosed tag as

confirmed, since a read/write requests contain the last tag-value pair returned by the invoking
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process. In addition to the local information updates, the server generates a new tag when it

receives a write request from some writerw. The elements of the new tag are:

(i) the incremented timestamp of the local tag of the server,

(ii) the identifier of the sender of the request (w), and

(iii) the new value enclosed in the request.

The new tag is inserted in a set, calledinprogress, that stores all the tags generated by the

particular server. Only a singe tag per writer is kept in the set. Thus, the server removes all the

tags ofw from the set before adding the new tag. Once the tag is added the server replies tow

with the generated tag.

Writer. The write operation requires one or two rounds. To perform a write operationω, a

writer w sends messages to all of the servers and waits for a quorum of these,Q, to reply. Once

w receives replies from all the servers of some quorumQ, w collects all of the tags assigned to

ω from theinprogress set of each of those servers. Then it applies a predicate on the collected

tags. That predicate checks if any of the collected tags appear in some intersection ofQ with

at mostn2 − 1 other quorums, wheren the intersection degree of the deployed quorum system.

If there exists such a tagτ then the writer adoptsτ as the tag of the value it tried to write;

otherwise the writer adopts the maximum among the collectedtags in the replied quorum. The

writer proceeds in a second round to propagate the tag assigned to the written value if:

(a) the predicate holds but the tag is only propagated in an intersection ofQ with more than

n
2 − 2 other quorums, or

(b) the predicate does not hold.
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In any other case the write operation is fast and completes ina single communication round.

In short, the key idea of the predicate depends on the observation that if τ is observed in the

intersection defined by the predicate then no other tag inQ will be observed in an equal or

bigger intersection by any subsequent operation. Thus,ω will be uniquely associated withτ

by any operation since no other tag will satisfy the predicate of any subsequent operation that

returns the value written byω.

Reader. The reader protocol is similar to the writer protocol in the sense that it uses a predi-

cate to decide the latest tag written on the register. When the reader wants to perform a read

operationρ, it sends messages to all the servers and waits for all the servers in some quorum

Q to reply. As soon as those replies arrive, the reader discovers the maximum confirmed tag

(maxCT ) among the received messages. In addition it collects all the tags contained in every

inprogress set received in a setinP . Then the reader discovers and returns the largest tag

maxTag ∈ inP that:

(i) maxTag>maxCT , and

(ii) maxTag satisfies the reader predicate (defined below).

According to the read predicate,ρ must discovermaxTag in an intersection betweenQ and

at mostn2 − 2 other quorums, wheren the intersection degree of the quorum system. As we

discuss in later sections, this ensures that any subsequentoperation will at least observe the

maxTag returned byρ. If there exists no such tag ininP , thenmaxCT is returned. Notice

that a read operationρ cannot return any tag smaller thanmaxCT , as it denotes a tag already

decided by an operationπ that precedes or is concurrent withρ. A read operation is slow and

performs a second communication round if one of the following cases hold:
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(a) the predicate holds but the tag is propagated in an intersection betweenQ and exactly

n
2 − 2 other quorums, or

(b) the predicate does not hold andmaxCT is not propagated in an intersection betweenQ

and at mostn − 1 other quorums.

During the second round, the reader propagates the tag decided during the first round to some

quorum of servers.

6.4.3 Formal Specification ofSFW

In this section we provide the formal description of SFW using Input/Output Automata

[67]. The algorithm is composed of four automata: (i) SFWw automaton for everyw ∈ W, (ii)

SFWr automaton for everyr ∈ R, (iii) SFWs automaton for everys ∈ S to handle the read and

write requests on the atomic register, and (iv)Channelp,s andChannels,p that establish the

reliable asynchronous process-to-process communicationchannels (see Section 3.1.2). Unlike

previous algorithms we first present the formal specification of the SFWs automaton. This will

help us present important data types that are used later by the reader and writer automata.

Automaton SFWs.

The state variables, the signature and the transitions of the SFWs automaton are given in

Figure 23. The local state of a server processs, is defined by the following local variables:

• 〈〈ts, wid,wc〉, v〉 ∈ N ×W × N × V : the local tag stored in the server along with its

associated value. This is the latest tag-value pair received or generated at servers.
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• confirmed s ∈ N ×W × N: the largest tag known bys that has been returned by some

reader or writer process.

• inprogresss ⊆ N ×W × N: set which includes all the latest tags assigned bys to write

requests. The set includes one tag per writer.

• Counter(p) ∈ N: this array maintains the latest request index of each client (reader or

writer). It helpss to distinguish fresh from stale messages.

• status ∈ {idle, active}: specifies whether the automaton is processing a request re-

ceived (status = active) or it can accept new requests (status = idle).

• msgType ∈ {WRITEACK,READACK,PROPACK}: Type of the acknowledgment depend-

ing on the type of the received message.

• failed ∈ {true, false}: indicates whether the server associated with the automaton has

failed.

Each servers waits to receive read or write messages originated from someprocessp that

invokeds a read or write operation respectively. Each message received bys contains:

(a) mType ∈ {W,R,RP}: the type of the messageW :write, R:read,P :propagation,

(b) t ∈ N ×W × N: the local tag ofp,

(c) val ∈ V : the value to be written ifp invokes a write operation or the latest value returned

by p if p invokes a read operation,

(c) opCount ∈ N: the sequence number of the operation ifp invokes a write ort .tag.wc if

p invokes a read, and
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Signature:

Input:
rcv(m)p,s, m ∈M , s ∈ S, p ∈ R∪W
fails

Output:
send(m)s,p, m ∈M , s ∈ S, p ∈ R ∪W

State:
tag ∈ N×W × N, initially {0, min(W), 0}
v ∈ V , initially ⊥
inprogress ⊆ N×W × N+ × V , initially ∅
confirmed ∈ N×W × N+ × V , initially {0, min(W), 0}

Counter(p) ∈ N+, p ∈ R∪W , initially 0
msgType ∈ {WRITEACK,READACK,PROPACK}
status ∈ {idle, active}, initially idle

failed , a Boolean initiallyfalse

Transitions:
Input rcv(〈msgT , t , val, opCount , C 〉)p,s

Effect:
if ¬failed then
if status = idle andC > pCount(p) then
status← active

Counter(p)← count

if tag < t.tag then
(〈tag.ts, tag.wid , tag.wc〉, v)←

(〈t .tag.ts, t .tag.wid , t .tag.wc〉, t .val)
if msgType = W then
(tag.ts, tag.wid , tag.wc)←

(tag.ts + 1 , p, opCount )
inprogress ←

(inprogress − 〈〈∗, p, ∗〉, ∗〉) ∪ 〈tag, val〉
if confirmed < t .tag then
confirmed ← t .tag

Output send(〈msgT , inprog , conf , C 〉)s,p

Precondition:
¬failed
〈msgT , inprog , conf , C 〉 =
〈msgType, inprogress, confirmed , Counter(p)〉

Effect:
status = idle

Input fails
Effect:

failed ← true

Figure 23: SFWs Automaton: Signature, State and Transitions

(d) C ∈ N: a counter that distinguishes new from stale messages fromp.

Upon receipt of any type of message,s updates its local information as needed. In particular,

if t.tag > tags thens assignstags = t.tag and its valuev = t.val. Similarly if t .tag >

confirmed s.tag, thens setsconfirmed s = t . Once those updates are completed, the server

replies back to processp if mType ∈ {R,RP}. If mType = W , s needs to take additional

actions to record the value to be written. First,s generates and assigns to its localtag a new

tag (newTag) that contains the following fields:

• tag.ts + 1: the timestamp of the local tag incremented by 1,

• t.tag.wid: the identifier of the requesting writer, and

• opCount: the sequence number of the write operation at the requesting writer.
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Note, that the new tag is greater than both thetags andt.tag, the tag included in the message.

Once the new tag is generated,s updates itsinprogress s set. Constructed to hold one entry

per writer, the server removes any entry of a write operationfrom p from theinprogresss set,

before adding the new tag-value pair in it. As a result, theinprogresss contains the latest tags

assigned bys to any write operations that requested the server’s replicavalue. Thus, in the

worst case theinprogresss contains a single tag for each writer. The importance of using the

inprogresss is twofold:

1. Each write operation witnesses the tag assignments to thevalue to be written from all

servers in the replying quorum (since even a concurrent write will not overwrite the tag

of the specific write). Thus, the writer can establish if any of the tags was adopted by

enough servers in the replying quorum or if it needs to proceed to a second round.

2. Each read operation obtains full knowledge on the tags reported to each writer, and is

able to predict which tag each writer adopts for its latest write operation. By ordering

the tags the reader is able to establish the write operation with the largest tag and hence,

the latest written value.

The read and write predicates, utilize the above observations to allow fast read and write op-

erations. Once a servers completes all the necessary actions, it acknowledges everymessage

received by sending itsinprogresss set andconfirmed s variable to the requesting processp.

Automaton SFWw.

The state, signature and transitions of the SFWw automaton are given in Figure 24. The

variables that define the state of the SFWw are the following:
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• 〈〈ts, w,wc〉, v〉 ∈ N×{w}×N×V : writer’s local tag along with the latest value written

by the writer. The tag is composed of a timestamp, the identifier of the writer, and the

sequence number of the last write operation.

• vp ∈ V : this variable is used to hold the previous value written.

• wc ∈ N: the sequence number of the last write operation or 0 if the writer did not

perfrom any writes.

• wCounter ∈ N: the number of write requests performed by the writer. Is used by the

servers to distinguish fresh from stale messages.

• phase ∈ {W,RP}: indicates whether the write operation is in the write or propagation

phase (first or second round respectively).

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an

operation (status = active) or it is done with any requests (status = idle). When

status = done, it indicates that the writer received all the necessary replies to complete

its write operation and is ready to respond to the client.

• srvAck ⊆ S × M2: a set that contains the servers and their replies to the write request.

The set is reinitialized to∅ at the response step of every write operation.

• failed ∈ {true, false}: indicates whether the process associated with the automaton

has failed.

To uniquely identify all write operations, a writerw maintains a local variablewc that

is incremented each timew invokes a write operation. That variable denotesw’s local or-

dering on the write operations it performs. Any other process in the system may identify a
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Signature:

Input:
write(val)w , val ∈ V , w ∈ W
rcv(m)s,w , m ∈M1, s ∈ S, w ∈ W
failw, w ∈ W

Output:
send(m)w,s , m ∈M2, s ∈ S, w ∈ W
write-ackw, w ∈ W

Internal:
write-phase1-fixw, w ∈ W
write-phase2-fixw, w ∈ W

State:
tag = 〈ts, w, wc〉 ∈ N× {w} × N, initially {0, w, 0}
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
wc ∈ N+, initially 0

phase ∈ {W,RP}, initially W

wCounter ∈ N+, initially 0
status ∈ {idle, active, done}, initially idle

srvAck ⊆ S ×M2, initially ∅
failed , a Boolean initiallyfalse

Transitions:
Input write(val)w

Effect:
if ¬failed ∧ status = idle then
status ← active

srvAck ← ∅
phase ←W

vp← v

v ← val

wCounter ← wCounter + 1
wc ← wc + 1

Input rcv(〈inprogress , confirmed, C〉)s,w

Effect:
if ¬failed then
if status = active andwCounter = C then
srvAck ←

srvAck ∪ {〈s, m〉}

Output send(〈msgT, t, val, wc,C〉)w,s

Precondition:
status = active

¬failed

〈msgT, t, val, wc,C〉 =
〈phase , 〈tag, vp〉, v, wc, wCounter〉

Effect:
none

Output write-ackw

Precondition:
status = done

¬failed
Effect:

status ← idle

Input failw
Effect:

failed← true

Internal write-phase1-fixw

Precondition:
¬failed
status = active

phase = W

∃Q ∈ Q : Q ⊆ {s : (s, m) ∈ srvAck}
Effect:

T ← {〈ts, w, ∗〉 : 〈ts, w, ∗〉 ∈
S

(s,m)∈srvAck m.inprogress }

if ∃ τ, MS, Qi :
τ ∈ T

∧MS = {s : s ∈ Q ∧ (s, m) ∈ srvAck ∧ τ ∈ m.inprogress }
∧ Qi ⊆ Q s.t.0 ≤ i ≤

¨

n
2
− 1

˝

∧ (
T

Q′∈(Qi∪{Q}) Q′) ⊆MS

then
〈tag.ts, tag.wid , tag.wc〉 ← 〈τ.ts, w, wc〉
if i ≥ max(0, n

2
− 2) then

phase ← RP

wCounter ← wCounter + 1
else
status ← done

else
〈tag.ts, tag.wid , tag.wc〉 ← maxτ∈T (〈τ.ts, w,wc〉)
wCounter ← wCounter + 1
phase ← RP

srvAck ← ∅

Internal write-phase2-fixw

Precondition:
status = active

¬failed
phase = RP

∃Q ∈ Q : Q ⊆ {s : (s, ., .) ∈ srvAck}
Effect:

status← done

Figure 24: SFWw Automaton: Signature, State and Transitions
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write operationω by the tuple〈w,wc〉: ω was invoked by writerw, and it was thewc write

from w. When thewrite(val)w occurs, then the writer sends messages to any servers ∈ S

by actionsend(m)w,s. Each message tos includes the type of the message (W or RP), the

last written value along with the tag that the writer associated to that value (〈tag, vp〉), the

new value (v), the sequence counter (wc), and the counter that helps the detection of delayed

messages (wCounter). Each time the actionrcv(m)s,w occurs, the writer receives a reply

from s. As noted in the server protocol, each servers replies with a message that contains

m(ω)s,w.inprogress set andm(ω)s,w.confirmed variable. Once the writer receives mes-

sages from the servers of a full quorumQ, it collects the tags generated from eachs ∈ Q

for ω. A predicate is then applied to every tag in the collection. According to the predicate,

we want to know for a tagtag if there is any subset of the servers of the replied quorum s.t.

they that generatedtag and cover the intersection between the replied quorum andn
2 − 1 other

quorums inQ. If tag satisfies the predicate, the writer’stagw variable becomes equal totag.

More formally the writer predicate is the following:

Writer predicate for a write ω (PW): ∃ τ, Qi,MS where: τ ∈ {〈., ω〉 : 〈., ω〉 ∈

m(ω, 1)s,w.inprogress ∧ s ∈ Q}, MS = {s : s ∈ Q ∧ τ ∈ m(ω, 1)s,w.inprogress },

andQi ⊆ Q, 0 ≤ i ≤
⌊

n
2 − 1

⌋

, s.t. (
⋂

Q∈Qi∪{Q}Q) ⊆ MS.

In case the predicate is true fori ≥ max(0, n
2 − 2), the writer changes itsphase = RP

variable and reinitializes thesrvAck set. This leads the writer to a second round. As soon as the

writer receives replies from the servers of a full quorum during its second round, it terminates

the operation by setting thestatus variable toidle. The idea behind the predicate is quite

intuitive: since we assume ann-wise quorum system, if all of the servers in the intersection of
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theminority (< n
2 ) of anyn quorums observe a particular tag then the intersection of any other

minority of quorums has at least one server in common with thefirst intersection (since we

assume that evern quorums intersect). If the predicate does not hold for any ofthe collected

tags then the writer assigns the maximum of the collected tags to the value to be written, and

proceeds to a second round to propagate the particular tag toa full quorum.

Automaton SFWr.

The state, signature and transitions of the SFWr automaton are given in Figure 25. The

variables that define the state of the SFWr are the following:

• 〈〈ts, wid,wc〉, v〉 ∈ N × {w} × N × V : the latest tag-value pair returned by the reader

r. The tag is composed of a timestamp, a writer identifier, and the sequence number of

the write operation from that writer.

• rCounter ∈ N: the number of read requests performed byrdr. Is used by the servers

to distinguish fresh from stale messages.

• phase ∈ {R,RP}: indicates whether the read operation is in the read or propagation

phase (first or second round respectively).

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an

operation (status = active) or it is done with any requests (status = idle). When

status = done, it indicates that the writer received all the necessary replies to complete

its write operation and is ready to respond to the client.

• maxCT ∈ N ×W × N × V : the maximum confirmed tag-value pair discovered during

the last read operation fromr.
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Signature:

Input:
readr , r ∈ R
rcv(m)s,r , m ∈M1, r ∈ R, s ∈ S
failr, r ∈ R

Output:
send(m)r,s , m ∈M2, r ∈ R, s ∈ S
read-ack(val)r , val ∈ V , r ∈ R

Internal:
read-phase1-fixr, r ∈ R
read-phase2-fixr, r ∈ R

State:
tag = 〈ts, wid, wc〉 ∈ N×W×N, initially {0, min(W), 0}
v ∈ V , initially ⊥
phase ∈ {R,RP}, initially R

rCounter ∈ N+, initially 0

status ∈ {idle, active, done}, initially idle

srvAck ⊆ S ×M1, initially ∅
maxCT ∈ N×W ×N×V , initially {〈0, min(W), 0〉,⊥}
inPtag ⊆ N×W × N× V , initially ∅
failed , a Boolean initiallyfalse

Transitions:
Input readr

Effect:
if ¬failed ∧ status = idle then
phase ← R

status ← active

rCounter ← rCounter + 1

Input rcv(〈inprogress , confirmed,C 〉)s,r

Effect:
if ¬failed ∧ status = active then
if rCounter = C then
srvAck ←

srvAck ∪ {〈s, m〉}

Output send(〈msgT, t, val, wc, C〉)r,s

Precondition:
status = active

¬failed
〈msgT, t, val, wc, C〉 =
〈phase, 〈tag, v〉, v , tag.wc, rCounter〉)

Effect:
none

Output read-ack(val)r

Precondition:
¬failed
status = done

val = retvalue

Effect:
replyQ← ∅
srvAck ← ∅
status← idle

Input failr
Effect:

failed← true

Internal read-phase1-fixr

Precondition:
¬failed

status = active

phase = R

∃Q ∈ Q : Q ⊆ {s : (s, m) ∈ srvAck}
Effect:

maxCT ← {max(m.confirmed) : (s, m) ∈ srvAck ∧ s ∈ Q}
inPtag = {τ : τ ∈

S

(s,m)∈srvAck∧s∈Q m.inprogress }

if ∃ τ, MS, Qj :
τ = maxτ ′∈inPtag(τ ′) s.t.
τ > maxCT

∧MS = {s : s ∈ Q ∧ (s, m) ∈ srvAck ∧ τ ∈ m.inprogress }
∧ Qj ⊆ Q s.t.0 ≤ j ≤

¨

n
2
− 2

˝

∧ (
T

Q′∈(Qj∪{Q}) Q′) ⊆MS

then
〈〈tag.ts, tag.wid , tag.wc〉, v〉 ← 〈〈τ.ts, τ.w, τ.wc〉, τ.val〉
if j = max(0, n

2
− 2) then

phase ← RP

else
status ← done

else
MC ← {s :

s ∈ Q ∧ (s, m) ∈ srvAck ∧m.confirmed = maxCT}
〈tag.ts, tag.wid , tag.wc〉 ←

〈maxCT .ts,maxCT .w,maxCT .wc〉
v ← maxCT .val

if ∃C : C ⊆ Q ∧ |C| ≤ n− 2 ∧ (
T

Q′∈C Q′) ∩Q ⊆MC then
status ← done

else
phase ← RP

Internal read-phase2-fixr

Precondition:
¬failed

status = active

phase = 2
∃Q ∈ Q : Q ⊆ {s : (s, ., .) ∈ srvAck}

Effect:
status← done

phase← 1

Figure 25: SFWr Automaton: Signature, State, and Transitions
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• inPtag ⊆ N × W × N × V : a set that contains all the tags discovered during a read

operation fromr.

• srvAck ⊆ S × M2: a set that contains the servers and their replies to the write request.

The set is reinitialized to∅ at the response step of every write operation.

• failed ∈ {true, false}: indicates whether the process associated with the automaton

has failed.

The reader protocol is similar to the writer protocol in the sense that it uses a predicate to

decide the latest tag written on the register. When the reader performs a read operationρ, it

sends messages to all servers and waits for all servers in some quorumQ to reply. A message is

sent when thesend(m)r,s occurs and a message is received when thercv(m)s,r action occurs.

When those replies are received, the actionread-phase1-fixr is enabled. If that action occurs,

the reader discovers the maximum confirmed tag (maxCT ) among the received message. In

addition, it collects all the tags contained in everym(ρ)s,r.inprogress set received ininPtag .

Then the reader examines the tags ininP tag to find the largest tag, saymaxTag, that is greater

thanmaxCT and also satisfies the reader predicate. Notice, that there may be larger tags than

maxTag in inP tag. Although those tags are greater thanmaxCT , they do not satisfy the

predicate. The reader predicate for a read operationρ from r that receives messages from a

quorumQ, is the following:

Reader predicate for a read ρ (PR): ∃ τ, Qj ,MS, where: max(τ) ∈

⋃

s∈Q m(ρ, 1)s,r.inprogress , MS = {s : s ∈ Q ∧ τ ∈ m(ρ, 1)s,r.inprogress },

andQj ⊆ Q, 0 ≤ j ≤
⌊

n
2 − 2

⌋

, s.t.(
⋂

Q∈Qj∪{Q}Q) ⊆ MS.
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The reader predicate shares a similar idea as the writer predicate. To ensure that subsequent

operations do not return a smaller tag – and hence an older value – the reader must discover

maxTag in an intersection betweenQ and at mostn2 −2 other quorums, wheren the intersec-

tion degree of the quorum system. If there exists no tag ininPtag that is greater thanmaxCT

and satisfies the predicate, thenmaxCT is returned. Notice that a read operationρ cannot

return any tag smaller thanmaxCT . Recall from the server description thatmaxCT denotes

a tag already decided by an operationπ that precedes or is concurrent withρ.

A read operation is slow and performs a second round if thephase variable becomes equal

to RP . This happens in two cases according toread-phase1-fixr:

(a) the predicate holds with|Qj | = max(0, n
2 − 2), or

(b) maxCT is not propagated in an(n − 1)-wise intersection.

During the second round, the reader reinitializes the set ofrepliessrvAck, propagates the tag

decided during the first round of the read operation, and waits to receive replies from the servers

of some quorumQ. Once those replies are received the actionread-phase2-fixr may occur, and

thestatus becomesdone. Oncestatus = done the actionread-ack(val)r returns the value to

the environment. Notice that if a second round is not necessary thenstatus becomes equal to

done in theread-phase1-fixr action.

Remark 6.4.1 By close investigation of the predicates of Algorithm SFW, one can see that

SFW approaches the bound of Theorem 6.2.6, as it produces executions that contain up ton/2

fast consecutive write operations, while maintaining atomic consistency. Obtaining a tighter

upper bound is subject of future work.
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6.4.4 Correctness ofSFW

We proceed to show the correctness of algorithm SFW, that is, to show that the algorithm

satisfies the termination and atomicity properties presented in Definitions 3.2.4 and 3.2.5.

Termination

Termination can be shown similar to Section 6.3.4. Each phase of any read or write op-

eration terminates when the invoking process receives replies from at least a single quorum.

According to our failure model, all but one quorums may fail (see Section 3.1.4). Thus, any

correct process receives replies from at least the correct quorum. Thus, every operation from a

correct process eventually terminates and hence, Definition 3.2.4 is satisfied.

Atomicity

For the rest of the section we use part of the notation introduced in Chapter 3 and Section

6.3.4. We denote byinprogress [ω].tag the tag of the write operationω in an inprogress set.

Analogously,σ[s].inprogress [ω].tag andm(π, c)p,p′ .inprogress [ω].tag, are used to denote the

tag of the writeω in the inprogresss set at a stateσ and in them(π, c)p,p′ .inprogress set in

the message sent fromp to p′ during thecth round of operationπ. By well-formedness, it

follows that a write operationω = 〈w,wc〉 precedes a write operationω′ = 〈w,wc′〉, both

invoked by the same writerw ∈ W, if and only if wc < wc′. For a read/write operation

π invoked from a reader/writer processp, we denote byσinv(π)[p].tag the value of thetag

variable at theread/write event ofπ. The tag assigned to a writeω = 〈w,wc〉 can be obtained

byσres(ω)[w].tag = 〈ts, ω〉, wherets ∈ N the timestamp included in the tag. Similarly, the tag
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returned by a read operationρ is denoted byσres(ρ)[r].tag. Also, letm(π, c)s,p.confirmed

andm(π, c)s,p.inprogress denote theconfirmed variable andinprogress set thats sends to

p during thecth round ofπ. Finally, letQi ⊆ Q be a set of quorums with cardinality|Qi| = i

(see Section 3.1.4).

Recall that the two predicates used in the algorithm are the following assuming that an

operation received messages from a quorumQ:

Writer predicate for a write ω (PW): ∃ τ, Qi,MS where: τ ∈ {〈∗, ω〉 : 〈∗, ω〉 ∈

m(ω, 1)s,w.inprogress ∧ s ∈ Q}, MS = {s : s ∈ Q ∧ τ ∈ m(ω, 1)s,w.inprogress },

andQi ⊆ Q, 0 ≤ i ≤
⌊

n
2 − 1

⌋

, s.t. (
⋂

Q∈Qi∪{Q}Q) ⊆ MS.

Reader predicate for a read ρ (PR): ∃ τ, Qj ,MS, where: max(τ) ∈

⋃

s∈Q m(ρ, 1)s,r.inprogress , MS = {s : s ∈ Q ∧ τ ∈ m(ρ, 1)s,r.inprogress }, and

Qj ⊆ Q, 0 ≤ j ≤ max(0,
⌊

n
2 − 2

⌋

), s.t.(
⋂

Q∈Qj∪{Q}Q) ⊆ MS.

The writer predicate is located inwrite-phase1-fix of Figure 24 and the reader predicate

is located inread-phase1-fix of Figure 25. We adopt the definition of atomicity presented in

Section 6.3.4, that expresses the three properties of Definition 3.2.5 based on the tags returned

from the read/write operations.

First, we show that each process maintains monotonically nondecreasing tags.

Lemma 6.4.2 In any executionξ ∈ goodexecs(SFW, Q), σ′[s].tag ≥ σ[s].tag for any server

s ∈ S and anyσ, σ′ in ξ, such thatσ appears beforeσ′ in ξ.

Proof. It is easy to see that a servers modifies itstags variable only if the tag in a received mes-

sage from a processp during an operationπ is such thatm(π, ∗)p,s.tag > tags. In addition, if
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m(π, 1)p,s.mType = W is a write message,tags.ts = max(tags.ts,m(π, 1)p,s.tag.ts) + 1.

Since from a stateσ to a stateσ′ only these these modifications can be applied on the

server’s tag thenσ′[s].tag ≥ σ[s].tag, and hence the server’s tag is monotonically increas-

ing. Furthermore, since the initial tag of the server is set to 〈0,min(wid), 0〉 and since

m(π, ∗)p,s.tag > tags only if m(π, ∗)p,s.tag.ts ≥ tags.ts, then tags.ts is always greater

than 0. 2

The next lemma shows the monotonicity of the confirmed variable of each server.

Lemma 6.4.3 In any execution ξ ∈ goodexecs(SFW, Q), σ′[s].confirmed ≥

σ[s].confirmed for any servers ∈ S and anyσ, σ′ in ξ, such thatσ appears beforeσ′ in

ξ.

Proof. From the algorithm it follows that the servers modifies the value of itsconfirmeds

variable only if the tagm(π, ∗)p,s.tag in a message received bys from p for operationπ, is

such thatm(π, ∗)p,s.tag > confirmeds. Thus, the lemma follows. 2

The following lemma examines the monotonicity of the tag of each writer as this is kept in

the inprogress set of each server.

Lemma 6.4.4 In any executionξ ∈ goodexecs(SFW, Q), σ′[s].inprogress [〈w,wc′〉].tag ≥

σ[s].inprogress [〈w,wc〉].tag for any servers ∈ S, any writerw ∈ W, and anyσ, σ′ in ξ, such

thatσ appears beforeσ′ in ξ.

Proof. Notice that the servers maintains just a single record for a writerw in its inprogresss

set. Each time the servers receives a new writem(ω, 1)w,s message from a write opera-

tion ω = 〈w,wc〉 from w, it first updates its local tag iftags < m(ω, 1)w,s.tag and then
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generates a new tag. The generated tag and, hence the tag inserted in theinprogresss is

σ[s].inprogress [ω].tag > m(ω, 1)w,s.tag, sinceσ[s].inprogress [ω].tag = 〈tags.ts + 1, ω〉.

The local tag of the server becomes equal to the generated tag, and thusσ[s].tag >

m(ω, 1)w,s.tag at stateσ. By Lemma 6.4.2 the local tag of the servers is non decreasing. So, if

σ′′ is the state right beforeσ′ (possiblyσ′′ = σ) in ξ, it must be true thatσ′′[s].tag ≥ σ[s].tag.

Since, s adds the new write operationω′ = 〈w,wc′〉 it follows that it generates a tag

σ′[s].inprogress [ω′].tag > σ′′[s].tag. Therefore,σ′[s].inprogress [ω′].tag > σ[s].tag, and

henceσ′[s].inprogress [ω′].tag > σ[s].inprogress [ω].tag and the lemma follows. 2

Lemma 6.4.5 In any executionξ ∈ goodexecs(SFW, Q), if a server s ∈ S receives

a tag m(π, ∗)p,s.tag from a processp for an operationπ, then s replies to p with a

m(π, ∗)s,p.confirmed ≥ m(π, ∗)p,s.tag.

Proof. It follows by Lemma 6.4.3 thats upgrades theconfirmeds variable only if

the tag enclosed in the messagem(π, ∗)p,s.tag > confirmeds. If so, s replies with

m(π, ∗)s,p.confirmed = m(π, ∗)p,s.tag; otherwise it replies withm(π, ∗)s,p.confirmed ≥

m(π, ∗)p,s.tag to operationπ. 2

The next lemma shows that when a server receives a write message it generates a tag greater

than the tag enclosed in the received message and any other tag the server has generated.

Lemma 6.4.6 In any executionξ ∈ goodexecs(SFW, Q), if a server s ∈ S receives

a tag m(ω, 1)w,s.tag from a processw ∈ W, for the first communication round of a

write operationω (i.e. type W ), then s replies with anm(ω, 1)s,w.inprogress that con-

tainsm(ω, 1)s,w.inprogress [ω].tag > m(ω, 1)w,s.tag andm(ω, 1)s,w.inprogress [ω].tag =

maxτ ′∈m(ω)s,w .inprogress (τ
′).
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Proof. When s receivesW message from the write operationω, it checks if the tag

m(ω, 1)w,s.tag is greater than its local tag. If so it updates its tag to be equal tom(ω, 1)w,s.tag.

Thus, after this update it is true that the tag ofs, tags ≥ m(ω, 1)w,s.tag. If W message is re-

ceived fromω, thens generates a new tagτ ′ = 〈tags.ts + 1, w,m(ω, 1)w,s.wc〉. Thus, the

new tag is greater than the local tag of the serverτ ′ > tags and thusτ ′ > m(ω, 1)w,s.tag

as well. Then,s replaces any previous operations fromw in its inprogresss set and in-

serts the new tag. Sinceω = 〈w,m(ω, 1)w,s.tag〉 then τ ′ is the unique value ofω in

server inprogresss. Thus it follows thatm(ω, 1)s,w.inprogress [ω].tag = τ ′ and hence

m(ω, 1)s,w.inprogress [ω].tag > tags.

For the second part of the proof notice that any tag added in the inprogresss

set of s contains the timestamp of the local tag ofs along with the id of the

writer and the writer’s operation counter. Furthermore, since by Lemma 6.4.2 the

tag of a server is monotonically incremented then, when thercv(m)w,s event hap-

pens, say at stateσ, σ[s].tag ≥ maxτ∈σ[s].inprogress (τ). Since the new tag entered

in the set ism(ω, 1)s,w.inprogress [ω].tag = 〈σ[s].tag.ts + 1, ω〉 then it follows that

m(ω, 1)s,w.inprogress [ω].tag > σ[s].tag and hencem(ω, 1)s,w.inprogress [ω].tag >

maxτ∈σ[s].inprogress (τ). Thereforem(ω, 1)s,w.inprogress [ω].tag is the maximum tag in the

set. That completes the proof. 2

The following lemma shows the uniqueness of each tag in theinprogresss set of any server

s ∈ S.
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Lemma 6.4.7 In any executionξ ∈ goodexecs(SFW, Q), if a servers ∈ S maintains two tags

τ1, τ2 ∈ inprogresss, such thatτ1 = 〈ts1, w1, wc1〉 andτ2 = 〈ts2, w2, wc2〉, thenw1 6= w2

andts1 6= ts2.

Proof. The first part of the lemma, namely thatw1 6= w2, follows from the fact that the server

s adds a new tag for a write operation fromw1 by removing any previous tag ininprogresss

associated with a previous write fromw1. Hence only a single write operation is recorded in

theinprogresss for every writer processw ∈ W, and thus our claim follows.

Let us assume, for the second part of the lemma, that w.l.o.g servers receives the message

from ω1 before receiving the message fromω2. Before replying toω1, s adds in theinprogresss

set the tagτ1 = 〈tags.ts + 1, w1, wc1〉, and setstags = τ1. The servers repeats the same

process forω2. Since by Lemma 6.4.2 the local tagtags of the server in monotonically non-

decreasing, then it follows thattags ≥ τ1 when s receives the message fromω2. Thus, if

τ2 = 〈tags.ts + 1, w2, wc2〉, thenτ2 ≥ 〈τ1.ts + 1, w2, wc2〉, and henceτ2.ts ≥ τ1.ts + 1. So

τ2.ts > τ1.ts and the lemma follows. 2

The following lemma proves the monotonicity of the tag variable at any writer.

Lemma 6.4.8 In any executionξ ∈ goodexecs(SFW, Q), σ′[w].tag ≥ σ[w].tag for any

writer w ∈ W and anyσ, σ′ in ξ, such thatσ appears beforeσ′ in ξ.

Proof. Each writer processw modifies its local tag during its first communication round.

When thewrite-phase1-fixw event happens for a write operationω, tagw becomes equal

to either the tag that satisfies the predicate or the maximum tag, both derived from the

m(ω, 1)s,w.inprogress sets found in the reply of every servers to w for ω. So it suf-

fices to show thatσinv(ω)[w].tag < mins∈Q(m(ω, 1)s,w.inprogress [ω].tag), assuming that
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all the servers of a quorumQ ∈ Q, receive messages and reply tow, for ω. Notice that

every message sent fromw to any servers ∈ Q (when send(m)w,s occurs), contains a

tag m(ω, 1)w,s.tag = σinv(ω)[w].tag. Since by Lemma 6.4.6, every servers ∈ Q replies

with m(ω, 1)s,w.inprogress [ω].tag > m(ω, 1)w,s.tag (to any communication round ofω),

thenm(ω, 1)s,w.inprogress [ω].tag > σinv(ω)[w].tag and the claim follows. Furthermore by

Lemma 6.4.2 and Lemma 6.4.6 it follows thatw contains non-negative timestamps as well.2

Next we show the monotonicity of the tag at each reader process.

Lemma 6.4.9 In any executionξ ∈ goodexecs(SFW, Q), σ′[r].tag ≥ σ[r].tag for any reader

r ∈ R and anyσ, σ′ in ξ, such thatσ appears beforeσ′ in ξ.

Proof. The tagr variable atr is modified only if r invokes some read operationρ and be-

comes equal to either the maximum tag in them(ρ, 1)s,r.inprogress set that satisfies the read

predicate or the maximumm(ρ, 1)s,r.confirmed tag obtained from some servers that reply

to r for ρ. Notice however thatσres(ρ)[r].tag is equal to somem(ρ, 1)s,r.inprogress [ω].tag

of some writeω, only if m(ρ, 1)s,r.inprogress [ω].tag > max(m(ρ, 1)s,r.confirmed). So

it suffices to show thatmax(m(ρ, 1)s,r.confirmed) ≥ σinv(ρ)[r].tag. Assume that all

the servers in a quorumQ ∈ Q reply to ρ. Since ρ includes itsσinv(ρ)[r].tag in ev-

ery message sent during the eventsend(m)r,s to any servers ∈ Q, then by Lemma

6.4.5, s replies with am(ρ, 1)s,r.confirmed ≥ σinv(ρ)[r].tag. Hence it follows that

max(m(ρ, 1)s,r.confirmed) ≥ σinv(ρ)[r].tag as well and our claim holds. Also since by

Lemma 6.4.2 all the servers reply with a non negative timestamp, then it follows thatrdr

contains non-negative timestamps as well. 2
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Lemma 6.4.10 For each processp ∈ R ∪ W ∪ S, tagp is monotonically nondecreasing and

contains a non-negative timestamp.

Proof. Follows from Lemmas 6.4.2, 6.4.8 and 6.4.9 2

One of the most important lemmas is presented next. The lemmashows that two tags can

be found in the servers of an intersection amongk quorums only ifk > n+1
2 .

Lemma 6.4.11 In any executionξ ∈ goodexecs(SFW, Q), if a read/write operationπ invoked

by p receives replies from a quorumQ ∈ Q and observes two tagsτ1 and τ2 for a write

operationω = 〈w,wc〉, s.t. τ1 = 〈ts1, w,wc〉, τ2 = 〈ts2, w,wc〉, ts1 6= ts2 and τ1 is

propagated in ak-wise intersection, thenτ2 is propagated in at leastk-wise intersection as well

iff k > n+1
2 .

Proof. Let Sτ1 ⊆ Q be a set of servers such that∀s ∈ Sτ1 replies with

m(π, 1)s,p.inprogress [ω].tag = τ1 to π andSτ2 ⊆ Q the set of servers such that∀s′ ∈ Sτ2

replies withm(π, 1)s′,p.inprogress [ω].tag = τ2 to π. Since bothτ1 and τ2 are propagated

in a k-wise intersection and since every server maintains just a single copy in itsinprogress

set forω, then there exists two sets of quorumsQk
1 andQk

2 such that(
⋂

Q∈Qk
1
Q) ⊆ Sτ1 and

(
⋂

Q∈Qk
2
Q) ⊆ Sτ2 and(

⋂

Q∈Qk
1
Q) ∩ (

⋂

Q∈Qk
2
Q) = ∅. From the fact thatSτ1 ,Sτ2 ⊆ Q, it

follows thatQ ∈ Qk
1 andQ ∈ Qk

2 . So,(
⋂

Q∈Qk
1
Q) = (

⋂

Q∈Q
k−1
1

Q) ∩ Q and(
⋂

Q∈Qk
2
Q) =

(
⋂

Q∈Q
k−1
2

Q) ∩ Q, and hence(
⋂

Q∈Qk
1
Q) ∩ (

⋂

Q∈Qk
2
Q) = (

⋂

Q∈Q
k−1
1

Q) ∩ (
⋂

Q∈Q
k−1
2

Q) ∩

Q = ∅. By definition we know thatQi is the quorum set that containsi quorums. So the

intersection contains at mostk−1+k−1+1 = 2k−1 quorums. Since we assume ann-wise

intersection then the two sets of quorums maintain an empty intersection only if they consist
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of more thann quorums. Hence it follows that the intersection is empty if and only if:

2k − 1 > n ⇔ k >
n + 1

2

This completes the proof. 2

From the previous lemma we can derive that if the predicate ofthe writer holds for some

tag then this is the only tag that may satisfy the writer’s predicate.

Lemma 6.4.12 In any executionξ ∈ goodexecs(SFW, Q), if T is the set of tags witnessed

by a write operationω from a writerw, during its first communication round, andτ ∈ T a tag

that satisfies the writer predicate, then∄τ ′ ∈ T such thatτ ′ 6= τ satisfies the writer predicate.

Proof. Let us assume to derive contradiction that there exist a pairof tagsτ, τ ′ ∈ T that

both satisfy the writer predicate. Furthermore assume thatthe write operationcnt(ω,Q)w.

According to the predicate a write operation accepts a tag only if ∃Qi ⊂ Q such that

i ∈ [0 . . . n
2 − 1] and the tag is contained in all the serverss ∈ (

⋂

Q∈Qi∪{Q}Q). If

the predicate is valid forτ with i = 0 then clearly all the serverss ∈ Q reply with

m(ω, 1)s,w.inprogress [ω].tag = τ . Thus, the write operation does not observe any server

s′ ∈ Q that replies withm(ω, 1)s′,w.inprogress [ω].tag = τ ′ and henceτ ′ cannot satisfy the

predicate, contradicting our assumption.

Note that since we assumen-wise intersections anyk-wise intersection (k < n − 1) con-

tains an(k + 1)-wise intersection. So ifτ satisfies the predicate withi < n
2 − 1 it also satisfies

it with i = n
2 − 1. If now τ satisfies the predicate with|Qi| = n

2 − 1 then it follows that

there exists an intersection(
⋂

Q∈Qi∪{Q}Q) such that everys ∈ (
⋂

Q∈Qi∪{Q}Q) reply tow

with m(ω, 1)s,w.inprogress [ω].tag = τ . SinceQi is a set of quorums that containsn2 − 1

members then|Qi ∪ {Q}| = n
2 and thusτ is propagated in ann2 -wise intersection. Sincen2
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is smaller thann+1
2 then by Lemma 6.4.11,τ ′ cannot be propagated inn2 -wise intersection

and thus can only be propagated in at least(n
2 + 1)-wise intersection. That however means

that ∃Qz such that|Qz ∪ {Q}| = n
2 + 1, and hencez = n

2 , and∀s′ ∈ (
⋂

Q∈Qz∪{Q}Q),

m(ω, 1)s′,w.inprogress [ω].tag = τ ′. Since the predicate is only satisfied ifz ∈ [0 . . . n
2 − 1]

then it follows thatQz does not satisfy the predicate. That contradicts our assumption and

completes our proof. 2

Given that a writer will decide on a single tag per write operation we show that each reader

associates the same tag as the writer with each written value.

Lemma 6.4.13 In any executionξ ∈ goodexecs(SFW, Q), if a write operationω from w

witnesses multiple tags and setsσres(ω)[w].tag = τ , then any read operationρ from r that

returns the value written byω decides a tagσres(ρ)[r].tag = τ = σres(ω)[w].tag.

Proof. We proceed in cases and we show that either the read operationreturns the value written

by ω andσres(ρ)[r].tag = σres(ω)[w].tag or the case is impossible and thusρ does not return

the value written byω. Let us assume w.l.o.g. thatcnt(ω,Q′)w andcnt(ρ,Q)r, during their

first communication round. There are two cases to consider for the write operation: (1)ω is fast

and completes in one communication round, or (2)ω is slow and performs two communication

rounds. Let us examine the two cases separately.

Case 1: Here the write operationω is fast and thus its predicate is valid and completes

in a single communication round. Sinceω is fast then there is a setMS = {s : s ∈

Q′ ∧ σres(ω)[w].tag = m(ω, 1)s,w.inprogress [ω].tag} and a set of quorumsQi with

0 < i ≤ n
2 − 3, s.t. (

⋂

Q∈Qi∪{Q′}Q) ⊆ MS. Every servers ∈ (
⋂

Q∈Qi∪{Q′,Q}Q) replies

with a m(ρ, 1)s,r.inprogress [ω].tag = σres(ω)[w].tag to r for ρ, if s receives messages from
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ω beforeρ. Otherwises replies with a tag for an older write operation ofw. Since according

to the predicate|Qi| ≤ n
2 − 3 then the union of the set|Qi ∪ {Q′, Q}| ≤ n

2 − 1 (strictly less if

Q = Q′ or Q ∈ Qi). Thus, the intersection(
⋂

Q∈Qi∪{Q′,Q}Q) involves at mosti + 2 ≤ n
2 − 1

quorums and hence by Lemma 6.4.11 every tagτ ′ 6= σres(ω)[w].tag is observed byρ in a

k-wise intersection, such thatk > n
2 − 1. Thus,ρ either observes aQj ⊆ Qi ∪ Q′, such that

∀s ∈ (
⋂

Q∈Qj∪{Q}Q) reply with m(ρ, 1)s′,r.inprogress [ω].tag = σres(ω)[w].tag, and hence

the predicate is valid forj ≤ i + 1 ≤ n
2 − 2 and returnsσres(ρ)[r].tag = σres(ω)[w].tag,

or since no other tag satisfies its predicate it returns a value of a writeω′ 6= ω. Notice that

since the predicate is false for any read operationρ′ preceding or concurrent withρ then no

tag other thanσres(ω)[w].tag is propagated in the confirmed variable of any server associated

with the write operationω. Hence, ifρ returns the value written byω, then it returns a tag

σres(ρ)[r].tag = σres(ω)[w].tag.

Case 2:Here the write operationω is slow. This may happen in three cases: (a) either the pred-

icate was true with|Qi| = n
2 −2 or |Qi| = n

2 −1, or (b) the predicate was false and thus no tag

τ ∈ T received from a set of serversMS = {s : s ∈ Q′ ∧ τ = m(ω, 1)s,w.inprogress [ω].tag}

such that∃|Qi| ≤ n
2 − 1 and(

⋂

Q∈Qi∪{Q′}Q) ⊆ MS.

Case 2a:Here the predicate is true with|Qi| = n
2 − 2 or |Qi| = n

2 − 1. Notice that the read

operationρ may observe the tagσres(ω)[w].tag in the intersection(
⋂

Q∈Qi∪{Q′,Q}Q). Thus

the set|Qj | ≤ |Qi ∪ {Q′}| which in the first case it would bej ≤ n
2 − 1 and in the second

casej ≤ n
2 . We should consider the two cases forQi separately. Notice that sinceω does not

modify the inprogress set during its second communication round then the readρ observes the
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same values in that set no matter if it succeeds the first or second communication round ofω.

So our claims are valid for both cases.

Case 2a(i): Hereσres(ω)[w].tag is propagated in the serverss ∈ (
⋂

Q∈Qi∪{Q′}Q), for i =

n
2 − 2. Since the valueσres(ω)[w].tag is sent by any servers ∈ (

⋂

Q∈Qi∪{Q′,Q}Q) to ρ, then

there are three possible cases forQ andQj :

1) Q = Q′ ⇒ j = i = n
2 − 2,

2) Q ∈ Qi ⇒ j = |Qi − Q| = n
2 − 3,

3) Q /∈ Qi ∪ {Q′} ⇒ j = |Qi ∪ {Q′}| = n
2 − 1

By Lemma 6.4.11 it follows that for any of the above cases, anytagτ ′ 6= σres(ω)[w].tag may

be propagated in ak-wise intersection, such thatk > n
2 + 1 and thusj > n

2 for such a tag.

In the first two cases the predicate ofρ holds sincej ≤ n
2 − 2, and thusρ returns

σres(ρ)[r].tag = σres(ω)[w].tag for ω. It remains to examine the third case wherej =

|Qi ∪ {Q′}| = n
2 − 1. In this case,|Qj ∪ {Q}| = j + 1 = n

2 , and thus by Lemma 6.4.11, none

of the tags assigned toω will satisfy the predicate. Soρ returns the value ofω if it observers

maxs∈Q(m(ρ, 1)s,r.confirmed) = 〈maxTS, ω〉, and hence〈maxTS, ω〉 = σres(ω)[w].tag.

Let s ∈ Q be the server that replied toρ with m(ρ, 1)s,r.confirmed = 〈maxTS, ω〉. Server

s sets its confirmed tag to〈maxTS, ω〉 if it receives one of the following messages: (a) a

W message for a writeω′ such thatω → ω′, (b) aRP from a second communication round

of ω, (c) a RP from the second communication round of a read operationρ′ that returns a

tag 〈maxTS, ω〉, or (d) aR from a read operationρ′′ that already returned〈maxTS, ω〉. If

(a) or (b) is true, and since the writer propagates the tag it returns in any of those messages,
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then〈maxTS, ω〉 = σres(ω)[w].tag. Thus, we are down to the case that some reads propa-

gated the tag in the confirmed variable. Since bothρ′ andρ′′ should precede or be concurrent

to ρ then they are also concurrent or succeed the first communication round ofω. So, ei-

ther they observed (asρ) the tagσres(ω)[w].tag in a set of quorums|Qj| ≤ n
2 − 1, or no

tag forω satisfies their predicate. Since,σres(ω)[w].tag is the only tag that may satisfy their

predicate, then both reads must propagate〈maxTS, ω〉 = σres(ω)[w].tag. So, it follows that

σres(ρ)[r].tag = σres(ω)[w].tag in this case as well.

Case 2a(ii): Let us assume in this case that the write operation receivedσres(ω)[w].tag from

every servers ∈ (
⋂

Q∈Qi∪{Q′}Q), andi = n
2 − 1. With similar reasoning as in Case 2a(i) we

have the following cases forQ andQj for ρ:

1) Q = Q′ ⇒ j = i = n
2 − 1,

2) Q ∈ Qi ⇒ j = |Qi − Q| = n
2 − 2,

3) Q /∈ Qi ∪ {Q′} ⇒ j = |Qi ∪ {Q′}| = n
2

Observe again that in the first two cases and by Lemma 6.4.11 noother tagτ ′ 6= σres(ω)[w].tag

for ω is propagated in less thann2 -wise intersection, and thusτ ′ does not satisfy the predicate

for ρ.

If Q ∈ Qi, then the predicate is satisfied withj = n
2 − 2 for ρ and thus it returns

σres(ω)[w].tag. Also if Q = Q′ andj = n
2 − 1 then as showed in case 2a(i)ρ also returns

σres(ρ)[r].tag = σres(ω)[w].tag.

So it remains to examine the case whereQ /∈ Qi ∪ {Q′} and j = n
2 . It follows that

|Qj ∪ {Q}| = j + 1 = n
2 + 1 and∀s ∈ (

⋂

Q∈Qj∪{Q}Q), m(ρ, 1)s,r.inprogress [ω].tag =
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σres(ω)[w].tag. The read operationρ may decide to return a tagτ ′ different from

σres(ω)[w].tag, if there are serverss′ ∈ (
⋂

Q∈Qz∪{Q}Q) such thatτ ′ ∈ m(ρ, 1)s′,r.inprogress

andz ≤ n
2 − 2. Furthermore, it must be true that(

⋂

Q∈Qj∪{Q}Q) ∩ (
⋂

Q∈Qz∪{Q}Q) = ∅

otherwise a server in that intersection would reply either with m(ρ, 1)s,r.inprogress [ω].tag =

σres(ω)[w].tag or m(ρ, 1)s,r.inprogress [ω].tag = τ ′. It suffices then to show that the afore-

mentioned intersection is impossible. Since we know thatz = n
2 − 2 andj = n

2 then the

intersection(
⋂

Q∈Qj Q) ∩ (
⋂

Q∈Qz Q) ∩ Q containsj + z + 1 = n
2 + n

2 − 2 + 1 = n − 1

quorums. Since we assumedn-wise quorum system then the intersection(
⋂

Q∈Qj Q) ∩

(
⋂

Q∈Qz Q) ∩ Q 6= ∅. That will be true even if we assume a smallerQz. So, no tag in

this case satisfies the predicate ofρ, and thusρ returns the value written byω only if it ob-

serversmaxs∈Q(m(ρ, 1)s,r.confirmed) = 〈maxTS, ω〉. With similar arguments as in Case

2a(i), we can show that no read or the write operation will propagate a tag different than

σres(ω)[w].tag for ω and thus no server replies with a tagm(ρ, 1)s,r.inprogress [ω].tag 6=

σres(ω)[w].tag. Thus ifρ returnsω, thenσres(ρ)[r].tag = σres(ω)[w].tag in this case as well.

Case 2b:In this case the predicate does not hold for the write operationω. So any tag received

from ω was observed in a set|(
⋂

Q∈Qi∪{Q′}Q)| such thati ≥ n
2 . Let us split this case in two

subcases:(i)i = n
2 , and (ii) i > n

2 .

Case 2b(i): Based on the three cases presented in case 2a forQ andQj thenρ may observe

one of the following distributions forσres(ω)[w].tag:

1) Q = Q′ ⇒ j = i = n
2 ,

2) Q ∈ Qi ⇒ j = |Qi − Q| = n
2 − 1,
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3) Q /∈ Qi ∪ {Q′} ⇒ j = |Qi ∪ {Q′}| = n
2 + 1

Observe that neither of the cases satisfies the predicate forρ. Furthermore in the first two cases

ρ observesσres(ω)[w].tag in the intersection(
⋂

Q∈Qj∪{Q}Q) and|Qj ∪Q| = j + 1 ≤ n
2 + 1.

So according to Lemma 6.4.11 no tagτ ′ 6= σres(ω)[w].tag will be propagated in ak-wise

intersection, such thatk < n
2 + 1 and henceτ ′ will not satisfy the predicate forρ either.

It remains to examine the third case whereσres(ω)[w].tag is received from every server

s ∈ (
⋂

Q∈Qj∪{Q}Q), and|Qj ∪ Q| = j + 1 = n
2 + 2. We need to examine if there could be

set of quorumsQz such thatz ≤ n
2 − 2 and every servers′ ∈ (

⋂

Q∈Qz∪{Q}Q) replies toρ

with a tagm(ρ, 1)s′,r.inprogress [ω].tag 6= σres(ω)[w].tag for ω. Such a set would satisfy the

predicate forρ and thusρ would returnm(ρ, 1)s′,r.inprogress [ω].tag. This is only possible if

(
⋂

Q∈Qj Q) ∩ (
⋂

Q∈Qz Q) ∩ Q = ∅. Sincej = n
2 + 1 andz = n

2 − 2 then the intersection

consists ofj + z + 1 = n
2 + 1 + n

2 − 2 + 1 = n quorums. Since we assume ann-wise

quorum system then it follows that the intersection is not empty. Thus, there exist no tag equal

to m(ρ, 1)s′,r.inprogress [ω].tag and hence no tag will satisfy the predicate ofρ in this case.

So, ρ will return the value written byω only if it observes a maximum confirmed tag such

that maxs∈Q(m(ρ, 1)s,r.confirmed) = 〈maxTS, ω〉. But since the predicate will be false

for every read operation, then the first to confirm a tag forω is the writerw in the second

communication round ofω. Since thoughω returnsσres(ω)[w].tag then it propagates that tag

during its second round to a full quorum. Thus, any read operation that returns the value ofω

must observemaxs∈Q(m(ρ, 1)s,r.confirmed) = 〈maxTS, ω〉 = σres(ω)[w].tag and hence

returnsσres(ρ)[r].tag = σres(ω)[w].tag.
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Case 2b(ii): Suppose now that the predicate does not hold for the writer because it observed

every tag to be distributed in at least some intersection(
⋂

Q∈Qi∪{Q′}Q), wherei > n
2 . Let us

assume thati = n
2 + 1. By that it follows that the read operationρ would observe the writer

tag inQj in one of the following distributions:

1) Q = Q′ ⇒ j = i = n
2 + 1,

2) Q ∈ Qi ⇒ j = |Qi − Q| = n
2 ,

3) Q /∈ Qi ∪ {Q′} ⇒ j = |Qi ∪ {Q′}| = n
2 + 2

Obviously none of the cases satisfy the predicate ofρ. Furthermore, in the first two cases, by

Lemma 6.4.11 and as shown in case 2b(i), no tag assigned toω satisfies the predicate forρ and

so if ρ returns the value written byω, it returns the value propagated duringω’s second round.

Finally we need to explore what happens in the case wherej = n
2 + 2. So we should

examine if we can devise a tag forω such that is distributed in some set of quorumsQz,

such thatz ≤ n
2 − 2 and every servers′ ∈ (

⋂

Q∈Qz∪{Q}Q) replies toρ with a tagτ ′ =

m(ρ, 1)s′,r.inprogress [ω].tag such thatτ ′ 6= σres(ω)[w].tag. Such a set would satisfy the

predicate forρ and thusρ would returnτ ′. This is only possible if(
⋂

Q∈Qj Q)∩ (
⋂

Q∈Qz Q)∩

Q = ∅. Sincej = n
2 + 2 and z = n

2 − 2 then the intersection consists ofj + z + 1 =

n
2 +2+ n

2 −2+1 = n+1 quorums. Thus, such intersection is possible. If howeverρ receives

τ ′ from every servers′ ∈ (
⋂

Q∈Qz∪{Q}Q) and since every servers ∈ (
⋂

Q∈Qz∪{Q,Q′}Q)

replies toω with a tagm(ω, 1)s,w.inprogress [ω].tag = τ ′ before replying toρ, then there are

three possible distributions for the write operationω for τ ′ as observed in the replying quorum

Qi:

1) Q′ = Q ⇒ i = z = n
2 − 2,
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2) Q′ ∈ Qz ⇒ i = |Qz − Q′| = n
2 − 3,

3) Q′ /∈ Qz ∪ {Q} ⇒ i = |Qz ∪ {Q}| = n
2 − 1

This however shows that in any case the predicate forω should have been true for the tagτ ′.

But this contradicts our initial assumption that the predicate forω is false and hence such a case

is impossible. Thus, no read operation observes a differenttagτ ′ that satisfies its predicate and

so every readρ that returns the value ofω must observemaxs∈Q(m(ρ, 1)s,r.confirmed) =

〈maxTS, ω〉 = σres(ω)[w].tag. As shown in case 2b(i)σres(ρ)[r].tag = σres(ω)[w].tag. 2

Since Lemma 6.4.13 shows that every read operation returns the same tag for the same

write operation then from this point onwards we can say that different tags represent different

write operations. This is presented formally by the following corollary:

Corollary 6.4.14 In any executionξ ∈ goodexecs(SFW, Q), if two read operationsρ andρ′

return tagsσres(ρ)[∗].tag = σres(ω)[∗].tag andσres(ρ′)[∗].tag = σres(ω′)[∗].tag respectively,

then eitherσres(ρ)[∗].tag = σres(ρ′)[∗].tag andω = ω′ or σres(ρ)[∗].tag 6= σres(ρ′)[∗].tag and

ω 6= ω′.

Lemma 6.4.15 In any executionξ ∈ goodexecs(SFW, Q), if a server s ∈ S replies

with a m(ω, 1)s,w.inprogress [ω].tag to the write operationω from w, then s replies

to any subsequent message from an operationπ from p with m(π)s,p.inprogress ,

s.t. maxτ∈m(π)s,p .inprogress (τ) ≥ m(ω, 1)s,w.inprogress [ω].tag if π is a read and

maxτ∈m(π)s,p .inprogress (τ) > m(ω, 1)s,w.inprogress [ω].tag if π is a write.

Proof. If π is a write operation from a processw′ then by Lemma 6.4.6s

replies to π with m(π, 1)s,w′ .inprogress [π].tag = maxτ∈m(π)s,w′ .inprogress (τ).
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But before s adds m(π, 1)s,w′ .inprogress [π].tag in inprogresss, according again

to Lemma 6.4.6, m(π, 1)s,w′ .inprogress [π].tag was greater than any tag in that

set. Since s also addedm(ω, 1)s,w.inprogress [ω].tag before replying to ω then

it follows that m(π, 1)s,w′ .inprogress [π].tag = maxτ∈m(π)s,w′ .inprogress (τ) >

m(ω, 1)s,w.inprogress [ω].tag.

If π is a read operation fromr then by algorithm SFW servers receives either aR

or RP message. In none of those casess updates itsinprogress s set. By Lemma 6.4.6

when servers replied to ω, m(ω, 1)s,w.inprogress [ω].tag = maxτ∈m(ω)s,w .inprogress (τ).

Thus if s did not receive any write message between the message fromω and π then the

operation observesmaxτ∈m(π)s,r .inprogress (τ) = m(π, 1)s,r.inprogress [ω].tag. Otherwise,

with the combination of the first part of this proof,π observesmaxτ∈m(π)s,r .inprogress (τ) >

m(ω, 1)s,w.inprogress [ω].tag. Hence our claim follows. 2

The next lemma shows that the tag returned by a read operationis larger than the maximum

confirmed tag received by the read.

Lemma 6.4.16 In any executionξ ∈ goodexecs(SFW, Q), if a read operationρ from

r receives a confirmed tagm(ρ, 1)s,r.confirmed from a servers, then σres(ρ)[r].tag ≥

m(ρ, 1)s,r.confirmed.

Proof. Let the read operationρ receive replies from the servers inQ. By the algo-

rithm a read operation returns either themaxs′∈Q(m(ρ, 1)s′,r.confirmed) or the maxi-

mum tagτ that satisfies predicatePR. Notice that ifmaxs′∈Q(m(ρ, 1)s′,r.confirmed) ≥

τ then the reader does not evaluate the predicate but rather returns σres(ρ)[r].tag =

maxs′∈Q(m(ρ, 1)s,r.confirmed) in one or two communication rounds. Sinceρ returns
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either σres(ρ)[r].tag = maxs′∈Q(m(ρ, 1)s′,r.confirmed) ≥ m(ρ, 1)s,r.confirmed or

σres(ρ)[r].tag = τ > maxs′∈Q(m(ρ, 1)s′,r.confirmed, then in either caseσres(ρ)[r].tag ≥

m(ρ, 1)s,r.confirmed. 2

Next we show that SFW satisfies propertyTG2.

Lemma 6.4.17 In any executionξ ∈ goodexecs(SFW, Q), if the readr event of a read opera-

tion ρ from readerr ∈ R succeeds thewritew event of a write operationω from w ∈ W in an

executionξ then,σres(ρ)[r].tag ≥ σres(ω)[w].tag.

Proof. Let assume that every server in the quorumsQ′, Q′′ ∈ Q (not necessarilyQ′ 6= Q′′)

receives the messages for the first and the second (if any) communication rounds of the

write operationω respectively and reply to those messages. Also let the servers in Q re-

ply to the first communication round ofρ operation, not necessarily different thanQ′ or

Q′′. Moreover letT = {〈∗, ω〉 : s ∈ Q′ ∧ 〈∗, ω〉 ∈ m(ω)s,w.inprogress } be the

set of tags witnessed byω during its first communication round. Notice that either: (1)

σres(ω)[w].tag = τ such thatτ ∈ T and its distribution satisfies the predicatePW, or (2)

σres(ω)[w].tag = maxs∈Q′(m(ω, 1)s,w.inprogress [ω].tag), otherwise. We should investi-

gate these two cases separately. The read operation returnsa tagσres(ρ)[r].tag equal to ei-

ther themaxs∈Q(m(ρ, 1)s,r.confirmed) or the maximum tag in
⋃

s∈Q m(ρ)s,r.inprogress

that satisfies predicatePR. Therefore ifmaxs∈Q(m(ρ, 1)s,r.confirmed) ≥ σres(ω)[w].tag

or ∃τ ∈
⋃

s∈Q m(ρ)s,r.inprogress s.t. τ > σres(ω)[w].tag that satisfiesPR thenρ returns

σres(ρ)[r].tag ≥ σres(ω)[w].tag. Also notice that ifw invokes a write operationω′ such that

ω → ω′ then by Lemmas 6.4.4, 6.4.6 and 6.4.5 it follows that every server receiving messages

from ω′ will reply to ρ with m(ρ, 1)s,r.confirmed ≥ σres(ω)[w].tag sincew will include
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σres(ω)[w].tag in its next write operation. Thusρ returnsσres(ρ)[r].tag ≥ σres(ω)[w].tag in

this case as well. So it suffices to examine the case where there is no writeω′ s.t. ω → ω′ and

noτ ′ ∈
⋃

s∈Q m(ρ)s,r.inprogress s.t. τ ′ ≥ σres(ω)[w].tag andτ ′ satisfies the predicate for the

read operationρ.

Case 1:Observe that by Lemma 6.4.12,σres(ω)[w].tag is the only tag that satisfies the writer

predicate for the write operationω = 〈w,wc〉. In this case we need to consider the following

subcases for the set of quorumsQi that satisfies the predicatePW: (a) i < n
2 − 2 and thus the

write operation is fast, or (b)i ∈ [n2 − 2, n
2 − 1] and thus the write operation is slow. Notice

that by Lemma 6.4.15 it follows that every servers ∈ (
⋂

Q∈Qi∪{Q′,Q}Q) replies toρ with

m(ρ)s,r.inprogress that contains a tagτ ≥ σres(ω)[w].tag. Since we only examine the cases

where nos receives messages from a writeω′ from w s.t. ω → ω′, thus it must hold that

m(ρ)s,r.inprogress = σres(ω)[w].tag.

Case 1a: This is the case where the write operation is fast and hencei < n
2 − 2 and every

servers ∈ (
⋂

Q∈Qi∪{Q′}Q) replies withσres(ω)[w].tag ∈ m(ω)s,w.inprogress to ω. The read

operationρ will witness the tagσres(ω)[w].tag from the servers in(
⋂

Q∈Qj∪{Q}Q) whereQ

andQj may be as follows:

1) Q = Q′ ⇒ j = i < n
2 − 2,

2) Q ∈ Qi ⇒ j = |Qi − Q′| ≤ n
2 − 3,

3) Q /∈ Qi ∪ {Q′} ⇒ j = |Qi ∪ {Q′}| ≤ n
2 − 2

In any casej ≤ n
2 − 2 and thus the predicatePR is valid for theρ for σres(ω)[w].tag. Hence,

ρ returnsσres(ρ)[r].tag = σres(ω)[w].tag in one or two communication rounds.
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Case 1b: This is the case wherei ∈ [n2 − 2, n
2 − 1] and thus the predicate holds forω, but

ω proceeds to a second communication round before completing. During its second round,ω

propagates the tagσres(ω)[w].tag to a complete quorum sayQ′′. Sinceω → ρ and by Lemma

6.4.5, then any servers ∈ Q∩Q′′ replies toρ with am(ρ, 1)s,r.confirmed ≥ σres(ω)[w].tag.

Thus by Lemma 6.4.16σres(ρ)[r].tag ≥ m(ρ, 1)s,r.confirmed, and henceσres(ρ)[r].tag ≥

σres(ω)[w].tag.

Case 2: In this case the predicate does not hold forω. Thus the writer discovers the maxi-

mum tag among the ones it receives from the servers and propagates that to a full quorum say

Q′′, not necessarily different fromQ or Q′. It follows that by Lemma 6.4.3ρ will receive a

m(ρ, 1)s,r.confirmed ≥ σres(ω)[w].tag from any servers ∈ Q′∩Q′′. Thus by Lemma 6.4.16

ρ returnsσres(ρ)[r].tag ≥ σres(ω)[w].tag in this case as well. 2

The remaining Lemmas shows that SFW satisfiesTG3 andTG4.

Lemma 6.4.18 In any executionξ ∈ goodexecs(SFW, Q), if ω andω′ are two write opera-

tions from the writersw andw′ respectively, such thatω → ω′ in ξ, thenσres(ω′)[w
′].tag >

σres(ω)[w].tag.

Proof. First consider the case wherew = w′ and thusω andω′ are two subsequent writes of the

same writer. It is easy to see by Lemmas 6.4.8 and 6.4.4 thatσres(ω)[w].tag > σres(ω′)[w].tag

since the tag of the writer is monotonically increasing. So for the rest of the proof we focus on

the case whereω andω′ are invoked from two different writersw 6= w′. Let us assume that ev-

ery server in the quorumsQ′, Q′′ ∈ Q (not necessarilyQ′ 6= Q′′) receives the messages for first

and the second (if any) communication rounds of the write operationω respectively and reply

to those messages, and letQ be the quorum that replies to the first communication round ofω′’s
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operation, not necessarily different thanQ′ or Q′′. Notice here that sinceω′ decides about the

tagσres(ω′)[w
′].tag in its first communication round, then it suffices to examineω′’s first com-

munication round alone. Moreover letT1 = {〈∗, ω〉 : s ∈ Q′ ∧ 〈∗, ω〉 ∈ m(ω)s,w.inprogress }

be the set of tags witnessed byω during its first communication round andT2 the respective set

of tags forω′. Notice that either: (1)σres(ω)[w].tag = τ such thatτ ∈ T1 and its distribution

satisfies the predicatePW, or (2) σres(ω)[w].tag = maxs∈Q′(m(ω, 1)s,w.inprogress [ω].tag),

otherwise. We now study these two cases individually.

Case 1: This is the case where the predicatePW holds forω. Thus according to the pred-

icate there exists some set of quorums|Qi| ≤ n
2 − 1 such that∀s ∈ (

⋂

Q∈Qi∪{Q′}Q),

m(ω, 1)s,w.inprogress [ω].tag = σres(ω)[w].tag. From the predicate we can see that ifn ≤ 4

theni ∈ [0, 1]. So we can split this case into two subcases: (a)n > 4, and (b)n ≤ 4.

Case 1a: Here we assume thatn > 4 and thus the predicate may be satisfied with

i ≤ n
2 − 1 and n

2 − 1 > 0. From the monotonicity of the servers (Lemma 6.4.2)

and from Lemmas 6.4.6 and 6.4.7, it follows that every servers′ ∈ (
⋂

Q∈Qi∪{Q′,Q}Q)

replies with am(ω′, 1)s′,w′.inprogress [ω′].tag > m(ω, 1)s′,w.inprogress [ω].tag and thus

m(ω′, 1)s′,w′.inprogress [ω′].tag > σres(ω)[w].tag. There are three subcases forQ: (i)

Q = Q′, (ii) Q ∈ Qi, or (iii) Q /∈ Qi∪{Q′}. If one of the first two cases is true thenω′ observes

a set of quorums|Qz| ≤ n
2 − 1 such that every servers′ ∈ (

⋂

Q∈Qz∪{Q}Q) replies with a tag

greater thanσres(ω)[w].tag. Since|Qz ∪ {Q}| = z + 1 ≥ n
2 , then according to Lemma 6.4.11

no tagτ ′ < σres(ω)[w].tag is propagated in an intersection(
⋂

Q∈Qd∪{Q}Q) such thatd ≤ n
2 .

Thus, no such tag satisfies predicatePW for ω′. It follows thatω′ returns a tagσres(ω′)[w
′].tag

either becauseσres(ω′)[w
′].tag ∈ m(ω′)s,w′ .inprogress , ands ∈ (

⋂

Q∈C∪{Q}Q) and PR
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is satisfied orσres(ω′)[w
′].tag = maxs∈Q(m(ω′, 1)s,w′ .inprogress [ω′].tag). In both cases

σres(ω′)[w
′].tag > σres(ω)[w].tag.

It remains to investigate the subcase (iii) whereQ /∈ Qi ∪ {Q′}. If i ≤ n
2 − 2 thenω′

observes a set of quorumsQz ≤ n
2 −1 and the proof is similar as in cases (i) and (ii). If however

i = n
2 − 1 then beforeω completes it performs a second communication round and propagates

σres(ω)[w].tag to a full quorumQ′′. But every servers ∈ Q′′ that receives this message sets its

local tag totags = σres(ω)[w].tag if σres(ω)[w].tag > tags; otherwise they do not update their

tag. Thus, every servers ∈ Q′′ contains a tagtags ≥ σres(ω)[w].tag whenω completes. Since

by Lemma 6.4.2 the local tag of a server is monotonically increasing, then by Lemmas 6.4.6 and

6.4.7, every servers ∈ Q ∩ Q′′ reply with m(ω′, 1)s,w′ .inprogress [ω′].tag > σres(ω)[w].tag

to ω′. So,|Qz| = |{Q′′}| = 1. Since we assume thatn > 4 thenz ≤ n
2 −1 and hence as before

and by Lemma 6.4.11 there cannot exist tagτ ′ < σres(ω)[w].tag that satisfies the predicate for

ω′. Thus in this caseσres(ω′)[w
′].tag = m(ω′, 1)s,w′ .inprogress [ω′].tag for somes ∈ Q ∩Q′′

and henceσres(ω′)[w
′].tag > σres(ω)[w].tag.

Case 1b:Heren ≤ 4. In this case it follows that the predicate is valid forω with i ∈ [0, 1].

If the predicate is valid fori = 0 then it follows thatω receivesσres(ω)[w].tag from all the

servers inQ′ while if i = 1 it receives that tag from a pairwise intersection. Notice that the

predicate forω holds for|Qi| = 1 only in the case wheren = 4 and with|Qi| = 0 for n ≤ 3.

Thus in any case(
⋂

Q∈Qi∪{Q,Q′}Q) 6= ∅. Hence in case the predicate does not hold forω′ and

returns themaxs∈Q(m(ω′, 1)s,w′ .inprogress [ω′].tag) thenσres(ω′)[w
′].tag > σres(ω)[w].tag.

So it remains to explore the two cases where the predicate holds forω′.
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If the predicate forω holds with |Qi| = 0 then it follows that all the serverss ∈

Q ∩ Q′ reply, by Lemmas 6.4.6 and 6.4.7, toω′ with m(ω′, 1)s,w′ .inprogress [ω′].tag >

m(ω, 1)s,w.inprogress [ω].tag and thus greater thanσres(ω)[w].tag. Notice that for ω′

the predicate may also hold for a quorum set|Qz| ∈ [0, 1]. If the predicate for

ω′ holds with z = 0, then it follows that every servers ∈ Q replies with

m(ω′, 1)s,w′ .inprogress [ω′].tag = σres(ω′)[w
′].tag. Since every serverss ∈ Q ∩ Q′ replies

with m(ω′, 1)s,w′ .inprogress [ω′].tag > σres(ω)[w].tag, then it follows that every servers ∈ Q

replies with that same tag, and henceσres(ω′)[w
′].tag > σres(ω)[w].tag. Otherwise, if

z = 1, let us assume to derive contradiction thatQz = {Q′′′} for Q′′′ 6= Q′, Q, and ev-

ery servers ∈ (
⋂

Q∈Qz∪{Q}Q) = Q′′′ ∩ Q reply to ω′ with a τ ′ < σres(ω)[w].tag. Since

τ ′ < σres(ω)[w].tag, then it must be the case that(Q′′′ ∩ Q) ∩ (Q′ ∩ Q) = ∅. Since we

assumez = 1 it follows thatn = 4 and hence this is impossible. Thus the predicate may only

hold in this case forQz = {Q′} and for a tag obtained by the servers inQ′ ∩ Q and hence

σres(ω′)[w
′].tag > σres(ω)[w].tag.

If the predicate forω holds with |Qi| = 1 then ω performs a second communication

round propagatingσres(ω)[w].tag to a full quorum, sayQ′′. Thus every servers ∈ Q ∩ Q′′

replies by Lemma 6.4.6 with a tagm(ω′, 1)s,w′ .inprogress [ω′].tag > σres(ω)[w].tag. Since

a full intersection replies toω′ with m(ω′, 1)s,w′ .inprogress [ω′].tag > σres(ω)[w].tag then

following similar analysis as in the previous case (and by Lemma 6.4.11) we can show

that there cannot exist tagτ ′ < σres(ω)[w].tag to satisfyω′’s predicate. Thusω′ retruns

σres(ω′)[w
′].tag > σres(ω)[w].tag.
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Case 2:In this case the predicate does not hold forω and thus proceeds to a second communi-

cation round propagating a tagσres(ω)[w].tag = max s ∈ Q(m(ω, 1)s,w.inprogress [ω].tag)

to a full quorum, sayQ′′. Since every servers ∈ Q ∩ Q′′ replies by Lemma 6.4.6 with a

tag m(ω′, 1)s,w′ .inprogress [ω′].tag > σres(ω)[w].tag then by Lemma 6.4.11 and following

similar analysis as in Case 1b, we can show that there cannot exist tagτ ′ < σres(ω)[w].tag to

satisfyω′’s predicate. Thusω′ retrunsσres(ω′)[w
′].tag > σres(ω)[w].tag in this case as well.2

Lemma 6.4.19 In any executionξ ∈ goodexecs(SFW, Q), if ρ andρ′ are two read opera-

tions from the readersr and r′ respectively, such thatρ → ρ′ in ξ, thenσres(ρ′)[r].tag ≥

σres(ρ)[r
′].tag.

Proof. Let us assume w.lo.g. thatρ to scnt(Q′, ρ)r andscnt(Q′′, ρ)r (not necessarily different

than Q′) during its first and second communication round respectively. Moreover letρ′ to

scnt(Q, ρ′)r′ during its first communication round. Notice here that sincea read operation

decides on the tag that it returns whenread-phase1-fix happens then we only need to investigate

the first communication round ofρ′. Let us first consider the case where the two read operations

are performed by the same reader, i.e.r = r′. In this caser will enclose in every message sent

out a tag greater or equal toσres(ρ)[r].tag Thus every servers ∈ Q, by Lemma 6.4.5, replies

to ρ′ with m(ρ′, 1)s,r′ .confirmed ≥ σres(ρ)[r].tag. Thus by Lemma 6.4.16ρ′ returns a tag

σres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag.

So it remains to investigate the case wherer 6= r′. Notice that ifρ proceeds to a second

communication round, either because the predicate holds for |Qj | = n
2 − 2 or not enough

confirmed tags where received, thenρ propagatesσres(ρ)[r].tag in Q′′ before completing.

By Lemmas 6.4.5 and 6.4.16 it follows that every servers ∈ Q′′ ∩ Q replies toρ′ with a
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m(ρ′, 1)s,r′ .confirmed ≥ σres(ρ)[r1].tag and thusρ′ returnsσres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag

in one or two communication rounds. Thus we left to explore the case whereρ is fast and

returns in a single communication round. This may happen in two cases: (1) predicatePR

holds forρ with j ≤ n
2 − 3 or (2)ρ returns the maximum confirmed tag which he observed in

ak-intersection withk ≤ n − 1. Let us examine those two cases.

Case 1: In this caseρ returnsσres(ρ)[r].tag because it receives that tag from every server

s ∈ (
⋂

Q∈Qj∪{Q′}Q), s.t. j ≤ n
2 − 3 and σres(ρ)[r].tag = m(ρ, 1)s,r.inprogress [ω].tag

for some write operationω = 〈w,wc〉 from writer w. Thus by Lemma 6.4.15 ev-

ery servers ∈ (
⋂

Q∈Qj∪{Q′,Q}Q), replies toρ′ with a m(ρ′, 1)s,r′ .inprogress [ω′].tag ≥

σres(ρ)[r].tag as the tag for a writeω′ from the writer w. So there are two sub-

cases to consider: (a) there exists servers ∈ (
⋂

Q∈Qj∪{Q′,Q}Q) such that replies with

m(ρ′, 1)s,r′ .inprogress [ω′].tag > σres(ρ)[r].tag, and (b) all servers in(
⋂

Q∈Qj Q) ∩ Q′ ∩ Q

reply withm(ρ′, 1)s,r′ .inprogress [ω′].tag = σres(ρ)[r].tag.

Case 1a: If there existss ∈ (
⋂

Q∈Qj∪{Q′,Q}Q) such thatm(ρ′, 1)s,r′ .inprogress [ω′].tag >

σres(ρ)[r].tag, then it follows that the m(ρ′, 1)s,r′ .inprogress [ω′].tag >

m(ρ, 1)s,r.inprogress [ω].tag and thus writerw performed a writeω′ such thatω → ω′.

But according to the algorithm the message thatw sent to s for ω′ contains a tag

τ ≥ σres(ω)[w].tag. Hence by Lemma 6.4.5s replies withm(ω, 1)s,w.confirmed ≥ τ

to ω and thus, by monotonicity of the confirmed tag (Lemma 6.4.3),s replies with

m(ρ′, 1)s,r′ .confirmed ≥ τ ≥ σres(ω)[w].tag to ρ′ as well. Therefore from Lemma 6.4.16ρ′

returns a tagσres(ρ′)[r
′].tag ≥ σres(ω)[w].tag and thusσres(ρ′)[r

′].tag ≥ σres(ρ)[r].tag.

244



Nicolas C. Nicolaou––University of Connecticut, 2011

Case 1b: If all the servers in s ∈ (
⋂

Q∈Qj∪{Q′,Q}Q) reply with

m(ρ′, 1)s,r′ .inprogress [ω′].tag = σres(ρ)[r].tag then there are three different val-

ues for Q to consider: (i) Q = Q′, (ii) Q ∈ Qj, and (iii) Q /∈ Qj ∪ Q′.

Since j ≤ n
2 − 3 then in all three cases the predicatePR holds for ρ′ for at

least tag m(ρ′, 1)s,r′ .inprogress [ω′].tag and with a quorum set|Qz| ≤ n
2 − 2.

Thus ρ′ either returns am(ρ′, 1)∗,r′ .confirmed ≥ m(ρ′, 1)s,r′ .inprogress [ω′].tag,

a tag m(ρ′, 1)s,r′ .inprogress [∗].tag > m(ρ′, 1)s,r′ .inprogress [ω′].tag or

m(ρ′, 1)s,r′ .inprogress [ω′].tag. Hence, σres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag in this case as

well.

Case 2: In this caseρ is fast and returns in one communication round since he observed

a σres(ρ)[r].tag = m(ρ, 1)s,r.confirmed tag from every servers ∈ (
⋂

Q∈Qj∪{Q′}Q) such

that j = n − 2. Since we assume thatQ is ann-wise quorum system then it follows that

(
⋂

Q∈Qj∪{Q′,Q}Q) 6= ∅ (since |Qj ∪ {Q′, Q}| ≤ j + 2 = n), and henceρ′ receives a

m(ρ′, 1)s,r′ .confirmed ≥ σres(ρ)[r].tag from at least a single server in(
⋂

Q∈Qj∪{Q′,Q}Q).

Thus by Lemma 6.4.16,ρ′ returnsσres(ρ′)[r
′].tag ≥ σres(ρ)[r].tag and that completes the

proof. 2

Theorem 6.4.20SFW implements a near optimal MWMR atomic read/write register.

Proof. It follows from Lemmas 6.3.6, 6.4.17, 6.4.19, 6.4.18 and 6.4.13. 2
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Chapter 7

Summary and Future Directions

This dissertation examined the operation latency of atomicread/write memory implemen-

tations in failure prone, asynchronous, message passing environments. We researched the ex-

istence of such implementations under process crashes in SWMR and MWMR environments.

We developed algorithmic solutions that utilize new techniques to provide an efficient solution

to this problem. In addition, we studied the implications ofthe environmental parameters on

the operation latency of read and write operations, and examined the conditions that improve

the operation latency of those operations. We now provide a summary of the contributions of

this thesis and we identify future directions in this research area.

7.1 Summary

This thesis presents results in three topic areas. Based on the results presented in [30],

we first examine whether implementations of a SWMR atomic register can support unbounded

number of readers while allowing some operations to complete in a single communication

round. We definesemifastimplementations that allow writes and all, but asingle complete
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read operation per write, to be fast. By introducing the notion of Virtual Nodes, we present

the semifast algorithm SF that implements a SWMR atomic register. We show that semifast

implementations are possible only if the number of virtual nodes is bounded under|V| <

|S|
f

− 2, and the second round of a read operation communicates with at least3f + 1 servers.

Furthermore, we investigate whether semifast MWMR atomic register implementations are

possible and we obtain a negative answer.

Next, we examine the relation between the latency of read andwrite operations and the

organization of the replica hosts. We show that (semi)fast implementations can be obtained

when organizing the replica hosts in arbitrary intersecting sets (i.e.,general quorum systems),

only if there exists a common intersection among those sets.However, this implies that if

a replica host in the common intersection fails then no operation will obtain replies from a

complete set and thus, no operation will terminate. This violates the termination condition and

makes such implementations non-fault-tolerant since theysuffer from asingle point of failure.

This finding led to the introduction ofweak-semifastimplementations that allow more than a

single slow read per write. To devise a weak-semifast algorithm, we developed a client side

decision tool, calledQuorum Views. The idea of the tool is to examine the distribution of a

value in the replies from a specific quorum. Utilizing the tool we obtain algorithm SLIQ that

allows some read operations to be fast. SLIQ allows arbitrarily many readers to participate

in the service and does not impose any restrictions on the quorum construction of the replica

hosts.

The examination of the efficiency of R/W atomic register implementations in the MWMR

setting was our third goal. First, we investigate the impactof MWMR setting on the fastness

of read and write operations. We discovered that, in a systemthat deploys ann-wise quorum
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system, at mostn − 1 consecutiveandquorum shiftingreplica modifications can be fast. This

includes both read and write operations when they modify thevalue of the register replicas.

Therefore, if both reads and writes modify the register replica value, no more than|W ∪R| >

n − 1 clients may participate in a fast implementation. Next, we present two algorithms that

enable fast read and write operations in the MWMR setting. First, we generalized the Quorum

Views idea to be used in the MWMR setting. The generalized definition was used by algorithm

CWFR, to allow slow (or classic) writes and some fast read operations. The algorithm uses

quorum views toiteratively analyze the value distribution in the replies of a specific quorum,

to detect the latest potentially completed write operation. Unlike previous algorithms (i.e.,

[28, 22]), CWFR allows read operations to be fast even when they are concurrent with write

operations and before the value they return is propagated ina complete quorum. Next, to enable

fast write operations in the MWMR setting, we proposed theserver side orderingapproach

which transfers partial responsibility of the ordering of the values to the servers. Using this

technique we managed to obtain algorithm SFW. This algorithm is near optimal in terms of

the number of successive fast write operations it allows. Inparticular, SFW uses ann-wise

quorum system and allowsn2 −1 consecutive, quorum shifting write operations to be fast. This

is thefirst atomic register implementation that allows both write and read operations to be fast

in the MWMR setting.

7.2 Future Directions

The thesis focused on the study of the operation latency of read/write atomic register imple-

mentations in systems that tolerate benigncrashfailures and assumefix participationand re-

liable communication. However, real systems may experience variable participation (dynamic
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participation), link failures that may lead to the division of the network (network partitions),

and message alterations and arbitrary process failures (byzantine failures). These environmen-

tal parameters introduce new challenges in devising efficient, in terms of operation latency,

atomic R/W register implementations. We present possible research directions that utilize the

results presented in this thesis as the basis for the development of efficient atomic memory

implementations in more hostile environments. In particular, Section 7.2.1 deals with environ-

ments where system participation may change during the execution of the service and Section

7.2.2 considers systems that cope with byzantine failures.Finally, Section 7.2.3 examines the

application of distributed storage in specialized environments.

7.2.1 Dynamism

System participation may change dynamically during the execution of a service if: (i) par-

ticipants are allowed to join, fail and voluntarily leave the service, and/or (ii) unreliable chan-

nels cause network partitions. In this section, we study theimplications of dynamic systems

on atomic register implementations and propose possible techniques to obtain lower bounds on

the operation latency of such implementations.

7.2.1.1 Fast Operations in Dynamic Systems

Dynamic service participation improves the scalability and longevity of the service, as it

allows participants to join and fail/leave the service at any point in the execution. As discussed

in Chapter 2, solutions designed to handle dynamic participation require high communica-

tion demands: participant additions and removals lead eventually to the need to reorganize

(reconfigure) the set of replica hosts to include or exclude the new or departed participants.
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Algorithms like the ones presented in [34, 68, 66], separatethe join/depart and reconfiguration

protocols. More recently, [6] combined the two protocols and suggested the tracing of the new

system view (service participation) whenever an addition or removal occurred in the system.

This categorization boils down to the replica organizationthat each algorithm utilizes:

(i) Voting: participants need to know the replica hosts, and

(ii) Quorums: participants need to know the replica hostsand the replica organization.

Voting techniques eliminate the necessity of having a dedicated entity to decide and prop-

agate the next replica configuration as long as the service participants know the set of replica

hosts. However, knowledge of the replica hosts when quorumsare used does not imply the

knowledge of the next configuration. For this reason, algorithms that use quorums need to in-

troduce a separate service to reorganize the replica hosts into quorums, and propagate the new

configuration to the service participants.

We suggest investigation of both directions. On one hand, voting allows reconfiguration-

free approaches, but it requires propagation of the set of replica hosts at each node addition or

removal. On the other hand quorums will allow inexpensive joins and trade operation-latency

during periodic reconfigurations.

Utilizing Voting Strategies.

We will first examine the incorporation of voting strategiesto obtain an atomic register

implementation. The main research questions we need to examine are:

(a) How fast a join/remove operation can be?, and

(b) How fast a read or write operation can be that is concurrent with a join/removal?
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Note that any read and write operation that detects it is not concurrent with a join/removal may

follow the algorithmic approaches proposed for the static environment.

The adoption and combination of techniques presented in both [6] and static environments

may help us to answer the above questions. The first goal can beto improve the operation la-

tency of join and departure protocols. Intuitively a join protocol needs at least three rounds: (i)

the new participant (joinee) sends join request to an existing service participant (joiner), (ii) the

joiner propagates the new system view (known locally and including the joinee) and gathers

the latest system view in the same round, and (iii) the joinersends the join acknowledgment

and the system view to the joinee. Merging rounds (i) and (ii)by forcing the joinee to commu-

nicate with a set of participants (say a majority) may decrease the latency of the join protocol.

Departures on the other hand (assuming that a participant can depart on its own) should include

at least a single round similar to round (ii) of the join protocol.

As the second step we need to focus on read and write operations. Each operation may

witness (from the received replies) that a join or departureof a participant is in progress. As

joins/departures may alter the set of replica hosts, each operation is responsible for discov-

ering the latest replica host membership and communicate with a sufficient number of recent

replica hosts. This will guarantee that the operation observes the latest written value. An op-

eration may need to perform multiple rounds to “catch up” with the new joins/departures. The

challenge is to reduce the amount of rounds needed for “catching up”. It appears that such

procedure is affected by the setting we assume: SWMR or MWMR.By well formedness, only

a single write operation (and thus, a single value) may be in progress by the sole writer, in

the SWMR setting. Older values have been propagated by a completed write operation. Since

the sole writer is the only one who modifies the value of the replica, it may propagate some
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“traces/clues” on how many new configurations it encounter along with the value to be written.

This could potentially help read operations to discover thelatest configuration in fewer rounds.

In the MWMR setting multiple writers may perform concurrentwrite operations. Thus, discov-

ery of the latest replica host configuration becomes even more challenging. Operation latency

of such implementations can benefit from: (i) relaxing the failure model (e.g.,f < |S|
c

, for

c > 2 a constant) and allowing the operations to contact more replica hosts, and/or (ii) restrict-

ing the number of participants.

Utilizing Quorum Systems.

The fastness of reconfiguring the replica hosts and propagating the new organization to

the service participants is the main concern when using quorums. Also, every read and write

operation that is concurrent with a reconfiguration needs toensure that old and new configu-

ration maintain the latest replica information. Thus, fastness of read/write operations is also

affected as an operation may need to perform additional rounds to contact the servers of the

latest configuration. Thus, the main challenges we need to address are:

(a) How fast a quorum system can be reconfigured?, and

(b) How fast read/write operation can be during a reconfiguration process?

Things are simpler when we assume a single reconfigurer. The single reconfigurer imposes

a total ordering on the series of configurations (its local ordering). Thus, it may locally obtain

the next configuration. To preserve atomicity, a reconfiguration needs to ensure that the latest

replica information will be propagated to enough replicas of the new configuration. For this

purpose we propose enhancing the role of every reader and writer to assist the reconfigurer
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in this task. This will allow a reconfiguration to be faster, but it may require extra rounds

from each read or write operation that is concurrent with a reconfiguration. It is essential to

expedite the reconfiguration process, since this may allow more reads and writes to be faster.

Here techniques from [34, 66], along with those proposed to achieve fast operation in the static

environment with quorums may be utilized. Moreover, havingaccess to the order of recon-

figurations from the single reconfigurer, may help read/write operations to utilized techniques

similar to the ones proposed earlier in this section to predict the latest configuration.

The introduction of multiple reconfigurers improves fault-tolerance but introduces the need

of achieving agreement between the reconfigurers on the nextconfiguration to be deployed.

This will affect negatively the fastness of a reconfiguration process, since extra rounds will be

needed for the agreement protocol. Thus, it is important to diverge from traditional solutions

(i.e., [66]) that use consensus to decide on the next configuration. This may affect the flexibility

of the system. For instance, the works in [28, 6] assumed afiniteset of configurations and thus,

each read/write was communicating with a single quorum fromeach possible configuration.

So, a challenging task is to design a protocol that will impose a total ordering on the config-

uration sequence, without utilizing strong primitives like consensus and failure detection. It

will be interesting to analyze the latency of such protocolsand its effect on the latency of read

and write operations. The utilization of some techniques presented for the single reconfigurer

may also find application in the multiple reconfigurer setting. Finally, it will be important to

examine if restricting the number of participants and the organization of the replica host allows

expediting some of the read, write, or reconfiguration operations.
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7.2.1.2 Fast Operations in Partitionable Networks

Connectivity failures can split the network into non-communicating groups, calledparti-

tions. In this section we consider another aspect of dynamic systems that does not depend on

the join/departure of network participants, but rather involves channel inability to deliver mes-

sages. Let us first provide a formal definition of an unreliable channel similar to the Definition

3.1.1 of reliable channels presented in Section 3.1.2.

Definition 7.2.1 (Unreliable Channel) A channel betweenp, p′ ∈ I is unreliable in an exe-

cutionφ ∈ execs(A), if for any execution fragmentφ′ of A that extendsφ one of the following

holds:

• ∃send(m)p,p′ event inφ and∄ succeedingrcv(m)p,p′ in φ ◦ φ′ (message loss), or

• ∃rcv(m)p,p′ event inφ and∄ precedingsend(m)p,p′ in φ (message forging).

The main results related to information dissemination and consistency in partitionable net-

works was presented in Section 2.7. Karumanchi et al. [58] focused in implementing a regular

register using synchronized clocks to expedite write operations. On the other hand, Dolev et al.

[28] demonstrated that it is possible to obtain atomic register implementations in a partitionable

ad-hoc mobile network by utilizing a connected focal point infrastructure.

The above results, either focused on weaker consistency semantics or relied on practically

expensive broadcasting primitives. So, one may ask:Is it possible to obtain latency efficient

atomicR/W register implementations in partitionable networks?

There is a thin line that divides an environment with dynamicparticipation – where indi-

vidual nodes are added and removed – and an environment that allows network partitions –
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where groups of nodes are detached. The main difference liesin the perception of the nodes in

the group once they are detached from the rest of the network.Individual nodes stop partici-

pating in the service because either: (i) they departed voluntarily, or (ii) they do not receive any

messages – replies or requests – from any other process in thesystem, or (iii) they failed. In

all three cases the node stops participating in the service.On the other hand when the network

is split into some partitions, the nodes within a partition may continue to communicate. There-

fore – because of asynchrony and failures – they may assume that they are the only correct

processes in the system. So they may take measures – similar to those proposed by [66] – to

reorganize the register replica within their partition andrecover the execution of the service.

Such an approach, however, would affect the consistency of the register replica among the dif-

ferent partitions. So can we preserve consistency among thereplicas of the different network

partitions?

Consistency between network partitions (or participant groups) was studied in the context

of group communication services. Birman and Joseph in [13] suggested the Isis system which

designated one of the partitions to beprimary. Operations are performed on the primary par-

tition while any non-primary partition was “shut-down”. Chandra et al. [19] showed that it

is impossible for the participants to agree on a primary partition in an asynchronous message

passing system. To overcome this problem Dolev and Malki in [27] introduced Transis which

did not rely on a single primary component but rather allowedoperations to be performed on

all partitions.

Transis seems to be applicable in additive applications. Anexample given in [27] is a

tabulation service. During a merge, lost messages were communicated and the vote tally could

be recovered. The order of the messages in such applicationsis not important as long as we
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ensure that all of them are delivered. In contrast, atomic register implementations require

operations to be ordered sequentially. Totally-ordered broadcast among all the groups was

presented in [37]. This approach allowed the clients to perform an operation in any existing

group and held the broadcast service responsible to deliverthe message in the same order to all

the groups. Atomicity is derived by allowing each participant to apply each ordered request to

its local replica copy.

It would be interesting to investigate the number of rounds needed to establish a totally-

ordered message broadcast service as suggested in [37]. We also want to examine hybrid

approaches that combine techniques presented in the GCSs for consistent message delivery

within the groups, and techniques presented to establish atomic consistency among individual

processes. Our approaches should utilize methodologies presented in [15, 27, 37] to ensure the

reliable delivery of the messages despite participant failures. During merging, reliable delivery

of messages will ensure that all the messages exchanged willbe propagated to the merged

network. Techniques like timestamping (e.g., [9]) can be used to allow participants to order the

messages they witness, and impose consistency between the operations in the merged group.

Operation latency needs to be measured over a larger set of operations: (i) Reads and

Writes, (ii) Message Broadcasting, and (iii) Group Merging. We may need to study the opera-

tion latency of each service individually and then investigate the implications their combination

will impose on operation latency.

7.2.2 Byzantine Failures

The thesis focused on systems with crash-prone processes that provide the assurance that

every process does not deviate from its program specifications as long as it remains active in
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the system. In this section we present possible future directions that consider failures where

the processes may exhibit arbitrary behavior. These failures are widely known asByzantine

Failures [64]. Our goal will be to study the operation latency of atomic R/W register imple-

mentations where the participants may exhibit byzantine behavior. Similar to Definition 3.1.2

for crash failures, byzantine failures can be defined formally as follows:

Definition 7.2.2 (Byzantine Failures) For an algorithmA we define the set of executions

FB(A) to be a subset ofexecs(A), such that in any executionξ ∈ FB(A), for all p ∈ I, there

are zero or more steps〈σk, failp, σk+1〉 that are transitions from a stateσk[p] ∈ states(Ap) to

any arbitrary stateσk+1[p] ∈ states(Ap).

A processp is byzantinein an executionξ ∈ FB(A), if ξ contains a byzantine step forp. A

byzantine step〈σb−1, failp, σb〉 of a processp may be the same as a crash step〈σc−1, failp, σc〉

of p, if σb[p] = σc[p]. If an executionξ ∈ FB(A) contains only crash steps, thenξ ∈ FC(A)

as well and thus,FC(A) ⊂ FB(A). Due to the severity of this type of failures, early papers

investigated tight lower bounds and introduced algorithmsfor safeandregular semantics (e.g.,

[3, 52, 70]).

Abraham et al. [3] showed a tight lower bound on the communication efficiency ofwrite

operations. In particular, they showed that in the SWMR model, a write operation needs two

rounds when at most2f + 2b register replicas are used; otherwise a single round is sufficient.

The work consideredf to be the total number of replica host failures, out of whichb may be

byzantine and the rest may crash. Additionally, this work showed that2f + b + 1 register

replicas are needed in order to establish asafe storageunder byzantine failures.
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Extending upon this work, Guerraoui and Vucolić [52] studied the operation latency of

readoperations in the SWMR environment under byzantine failures. The authors showed that

two rounds for every read operation are necessary for the implementation ofsafe storage, when

at most2f + 2b register replicas are used. Interestingly, they showed that when both reads and

writes perform two rounds, aregular register is possible even underoptimal resiliencewhere

2f + b + 1 register replicas are used.

Guerraoui, Levi and Vucolić [51], showed that “lucky” R/W operations of anatomicstor-

age implementation may be fast when2f + b + 1 register replicas are used. For them, lucky

operations are the ones that are not concurrent with any other operation.

Another direction to the solution of the problem was presented by Gerraoui and Vukolić

[53]. In this work, the authors introduce a new family of quorum systems, calledRefined

Quorum Systems, that allow somefast operations in atomic register implementations under

byzantine failures. To achieve fastness, they rely on a synchronization assumption that required

each operation to wait for a predefinedtimeout interval.

The results presented by previous works show that it is deifficult to implementanyconsis-

tent semantic under the assumption of byzantine replica hosts. However prior results do not

adequately answer the question:How fast read and write operations of an atomicR/W register

implementation can be under asynchrony and byzantine failures?

Byzantine processes may reply withsomevalue from the set of values allowed to be written

on the register. Adoption of that value by a reader may lead toviolations of consistency. To

avoid this problem, each correct process needs to collect replies from at least a subset of correct

processes. Two strategies are utilized:

1. Detect the byzantine failures, or
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2. Collect replies from a set of processes that strictly contains any possible set of byzantine

failures

Byzantine failure detection allows correct processes to discard the replies originating from

byzantine processes. Authentication is commonly used to facilitate the detection of erroneous

behavior. Processes use cryptographic primitives to prevent information forging. However,

authentication is computationally expensive. The second strategy collects a set of processes,

large enough to contain all byzantine and at least a single correct process. This strategy does

not depend on any computational load but it requires knowledge of either of the following

parameters: (i) the number of byzantine processes, or (ii) aset of subsets of processes, such

that only the processes of a single subset can be byzantine. In the first case a correct process

will collect more replies than the number of byzantine processes. On the second case a strict

superset of a subset of those sets need to be collected.

To conclude, the regular and safe implementations presented in previous works (e.g.,

[3, 51, 52, 53, 70]) can provide a basis for the development ofatomic register implementa-

tions. Allowing operations to perform extra rounds in implementations that guarantee safe

and regular semantics, like [52], may lead to atomic consistency. As shown by [3], relaxing

fault-tolerance and allowing2b + 2f + 1 replica hosts immediately enables single round write

operations. Quorums may also be used to improve operation latency, by adopting techniques as

the ones presented in [53, 70] or techniques similar to Quorum Views in Section 5.4.1. Obvi-

ously direct application of quorum views in an environment that suffers from byzantine failures

is impossible: every server in a single intersection may report a faulty value and thus, two dif-

ferent read operations may witness different values in the same set of replica hosts. Finally,
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assuming byzantine clients (readers and writers) requiresthe adoption of authentication tech-

niques (see [73, 70]). Gossip among the servers may allow bypassing the client authentication

and preserve value confidence among the servers.

7.2.3 Other Environments

Partially synchronous environments [31] maintain interesting properties and pose a good

candidate for a latency-efficient atomic register implementation. Operations may take advan-

tage of the periods of synchrony to collect more informationabout the replicated register. Such

information may allow operations to complete in a single communication round, even when

such performance is impossible in the asynchronous model.
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Appendix A

SLIQ Simulation: Plots

In this section we present all graphs obtained during the simulation of the algorithm in
different scenarios. In the figures,Qm denotes the use of majority quorums,Qc the use of
crumbling walls, andQx the use of matrix quorums. Figure 26 demonstrates how the algorithm
performs in the simple run scenario, exploiting different quorum systems. In the experiment
illustrated by Figures 27 and 28 we consider runs with variable quorum membership. We ran
those simulations on the most efficient quorum constructions (i.e., crumbling walls and matrix
quorums). Lastly, Figures 29-32 examine the performance ofthe algorithm under executions
with variable failure scenarios.
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Figure 26: Simple runs
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Figure 27: Crumbling Walls - Quorum Diversity Runs
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Figure 28: Matrix - Quorum Diversity Runs
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Figure 29: Crumbling Walls - Failure Diversity Runs (cInt ∈ [0 . . . 50])
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Figure 30: Matrix - Failure Diversity Runs (cInt ∈ [0 . . . 50])

273



Nicolas C. Nicolaou––University of Connecticut, 2011

 10
 20

 30
 40

 50
 60

 70
 80 10

 15
 20

 25
 30

 35
 40

 45
 50

 9
 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

%-2comm

randInt varCint10 plot

"randInt.all.crumpling.varCint_10..cint_.data.2.3" using 3:8:13

#Readers

CInt

%-2comm

 10
 20

 30
 40

 50
 60

 70
 80 10

 15
 20

 25
 30

 35
 40

 45
 50

 3.6
 3.8

 4
 4.2
 4.4
 4.6
 4.8

 5
 5.2

%-2comm

fixInt varCint10 plot

"fixInt.all.crumpling.varCint_10..cint_.data.2.3" using 3:8:13

#Readers

CInt

%-2comm

31.a(3)(i) - Qc 31.b(3)(i) - Qc

 10
 20

 30
 40

 50
 60

 70
 80 10

 15
 20

 25
 30

 35
 40

 45
 50

 9

 9.5

 10

 10.5

 11

 11.5

%-2comm

randInt varCint10 plot

"randInt.all.crumpling.varCint_10..cint_.data.4.3" using 3:8:13

#Readers

CInt

%-2comm

 10
 20

 30
 40

 50
 60

 70
 80 10

 15
 20

 25
 30

 35
 40

 45
 50

 83
 84
 85
 86
 87
 88
 89
 90
 91

%-2comm

fixInt varCint10 plot

"fixInt.all.crumpling.varCint_10..cint_.data.4.3" using 3:8:13

#Readers

CInt

%-2comm

31.a(3)(ii) - Qc 31.b(3)(ii) - Qc

 10
 20

 30
 40

 50
 60

 70
 80 10

 15
 20

 25
 30

 35
 40

 45
 50

 9.5

 10

 10.5

 11

 11.5

 12

%-2comm

randInt varCint10 plot

"randInt.all.crumpling.varCint_10..cint_.data.6.3" using 3:8:13

#Readers

CInt

%-2comm

 10
 20

 30
 40

 50
 60

 70
 80 10

 15
 20

 25
 30

 35
 40

 45
 50

-1

-0.5

 0

 0.5

 1

%-2comm

fixInt varCint10 plot

"fixInt.all.crumpling.varCint_10..cint_.data.6.3" using 3:8:13

#Readers

CInt

%-2comm

31.a(3)(iii) - Qc 31.b(3)(iii) - Qc

Setting a: Stochastic simulations Setting b: Fixed interval simulations

Figure 31: Crumbling Walls - Failure Diversity Runs (cInt ∈ [10 . . . 60])
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Figure 32: Matrix - Failure Diversity Runs (cInt ∈ [10 . . . 60])
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