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Abstract

Multiple-writer/multiple-reader (MWMR) read/write atomic register implementations provide pre-
cise consistency guarantees, in the asynchronous, crash-prone, message passing environment. Although
there exists a number of theoretical solutions, their practicality is not typically investigated in a prac-
tical setting. The performance of atomic read/write register implementations is traditionally measured
in terms of the latency of read and write operations due to (a) communication delays and (b) local
computation. In this work we examine the practicality of three, theoretically-efficient, MWMR atomic
register algorithms: Aprx-Sfw and CwFr from [10], and the generalization of the traditional al-
gorithm of [3] in the MWMR environment, which we call Simple. To test the performance of the
algorithms in a real-time environment we upload and run our implementations on the planetary net-
work platform called PlanetLab [1]. Due to its simplistic nature, Simple requires two communication
round-trips per read or write operation, but almost no local computation. The rest of the algorithms
are (to this writing) the only to allow single round read and write operations but require non-trivial
computation demands. Through our comparison we attempt to identify the trade-offs between the
communication and the computation burdens for MWMR atomic register implementations in a real-
time, adverse environment such as PlanetLab.
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1 Introduction

Emulating atomic registers in asynchronous, crash-prone, message-passing systems is one of the basic
problems in distributed computing. In such settings the register is replicated among a set of replica hosts
(or servers) to provide fault-tolerance and availability. Then read and write operations are implemented
as communication protocols that ensure atomic consistency.

Efficiency of register implementations is normally measured in terms of the latency of read and write
operations. Two factors affect operation latency: (a) computation, and (b) communication delays. An
operation communicates with servers to read or write the register value. This involves at least a single
communication round-trip, or round, i.e., messages from the invoking process to some servers and then the
replies from these servers to the invoking process. Previous works focused on minimizing the number of
rounds required by each operation. Dutta et al. [6] developed the first single-writer/multi-reader (SWMR)
algorithm, where all operations complete in a single round. Such operations are called fast. The authors
showed that fast operations are possible only if the number of readers in the system is constrained with
respect to the number of servers. They also showed that it is impossible to have multi-writer/multi-reader
(MWMR) implementations where all operations are fast. To remove the constraint on the number of
readers, Georgiou et al. [15] introduced semifast implementations where at most one complete two-round
read operation is allowed per write operation. They also showed that semifast MWMR implementations
are impossible.

Algorithm Sfw, developed by Englert et al. [7], was the first to allow both reads and writes to be fast
in the MWMR setting. The algorithm used quorum systems, sets of intersecting subsets of servers, to
handle server failures. To decide whether an operation could terminate after its first round, the algorithm
employed two predicates, one for the write and one for read operations.

A later work by Georgiou et al. [10] identified two weaknesses of algorithm Sfw with respect to
its practicality: (1) the predicates used by the algorithm were NP-complete, and (2) fast operations
were possible only when every five or more quorums had a non-empty intersection. To tackle these
issues the authors introduced two new algorithms. The first algorithm, called Aprx-Sfw, proposed a
polynomial log-approximation solution for the computation of the predicates in Sfw. This would allow
faster computation of the predicates while potentially increasing the number of two round operations.
However, algorithm Aprx-Sfw could not enable fast operations in any general quorum construction. For
this reason, they presented algorithm CwFr that uses Quorum Views [14], client-side decision tools, to
allow some fast read operations without additional constraints on the quorum system. Write operations
in this implementation take two rounds.

Preliminary results on the operation latency of Aprx-Sfw and CwFr were gathered by Georgiou
and Nicolaou in [13]. The authors simulated the two algorithms on the NS2 network simulator and
their results suggested that the computation burden needed by the two algorithms was lower than the
communication cost of a second communication round. The controlled variables of NS2 however cannot
precisely describe the adverse network conditions that exist in a real-time environment. So although we
may observe the trend of the algorithms we cannot make any claims on their practicality. In this work we
try to evaluate the practicality of the aforementioned algorithms, by implementing and deploying them
on a real-time planetary scale network platform, called PlanetLab [1].

Backround. Attiya et al. [3] developed a SWMR algorithm that achieves consistency by using in-
tersecting majorities of servers in combination with 〈timestamp, value〉 value tags. A write operation
increments the writer’s local timestamp and delivers the new tag-value pair to a majority of servers,
taking one round. A read operation obtains tag-value pairs from some majority, then propagates the pair
corresponding to the highest timestamp to some majority of servers, thus taking two rounds.

The majority-based approach in [3] is readily generalized to quorum-based approaches in the MWMR
setting (e.g., [19, 8, 18, 9, 16]). Such algorithms requires at least two communication rounds for each read
and write operation. Both write and read operations query the servers for the latest value of the replica
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during the first round. In the second round the write operation generates a new tag and propagates the
tag along with the new value to a quorum of servers. A read operation propagates to a quorum of servers
the largest value it discovers during its first round. This algorithm is what we call Simple in the rest of
this paper.

Dolev et al. [5] and Chockler et al. [4], provide MWMR implementations where some reads involve
a single communication round when it is confirmed that the value read was already propagated to some
quorum.

Dutta et al. [6] present the first fast atomic SWMR implementation where all operations take a
single communication round. They show that fast behavior is achievable only when the number of reader
processes R is inferior to S

t
− 2, where S the number of servers, t of whom may crash. They also showed

that fast MWMR implementations are impossible even in the presence of a single server failure. Georgiou
et al. [15] introduced the notion of virtual nodes that enables an unbounded number of readers. They
define the notion of semifast implementations where only a single read operation per write needs to be
“slow” (take two rounds). They also show the impossibility of semifast MWMR implementations.

Georgiou et al. [14] showed that fast and semifast quorum-based SWMR implementations are possible
if and only if a common intersection exists among all quorums. Hence a single point of failure exists in
such solutions (i.e., any server in the common intersection), making such implementations not fault-
tolerant. To trade efficiency for improved fault-tolerance, weak-semifast implementations in [14] require
at least one single slow read per write operation, and where all writes are fast. To obtain a weak-semifast
implementation they introduced a client-side decision tool called Quorum Views that enables fast read
operations under read/write concurrency when general quorum systems are used.

Recently, Englert et al. [7] developed an atomic MWMR register implementation, called algorithm
Sfw, that allows both reads and writes to complete in a single round. To handle server failures, their
algorithm uses n-wise quorum systems: a set of subsets of servers, such that each n of these subsets
intersect. The parameter n is called the intersection degree of the quorum system. The algorithm relies
on 〈tag, value〉 pairs to totally order write operations. In contrast with traditional approaches, the
algorithm uses the server side ordering (SSO) approach that transfers the responsibility of incrementing
the tag from the writers to the servers. This way, the query round of write operations is eliminated.
The authors proved that fast MWMR implementations are possible if and only if they allow not more
than n− 1 successive write operations, where n is the intersection degree of the quorum system. If read
operations are also allowed to modify the value of the register then from the provided bound it follows
that a fast implementation can accommodate up to n− 1 readers and writers.

Contributions. Our goal is to provide empirical evidence on the practicality of MWMR atomic register
implementations. We implement and deploy our algorithms on Planetlab, an overlay network infrastruc-
ture composed of machines that are located throughout the globe. In particular we implement and
compare the following MWMR atomic register algorithms: Simple, Aprx-Sfw, and CwFr. Given
the adverse and unpredictable conditions of the real-time system, we measure and compare the oper-
ation latency of the algorithms under two different families of service scenarios: (1) Variable number
of readers/writers/servers, (2) Deployment of different quorum constructions. In our implementations
communication was established via TCP/IP and the C/C++ programming language and sockets were
used for interfacing with TCP/IP.

A general conclusion from our findings is that algorithms CwFr and Aprx-Sfw over-perform al-
gorithm Simple in most of the scenarios. Also, computation costs do not have a great impact on the
performance of read/write operations. This is partly due to the fact that in the tested real-time en-
vironment both CwFr and Aprx-Sfw may keep the percentage of slow operations under 20%. The
intersection degree of the quorum system can be a decisive factor as it affects in a large degree the
performance of Aprx-Sfw. Even though this is true, the average latency achieved by Aprx-Sfw in
environments with small intersection degree is not much higher than the latency of the competition.
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Paper organization. In Section 2 we briefly describe the model of computation that is assumed by the
implemented algorithms. In Section 3 we provide a high level description of the algorithms we examine.
In Section 4 we overview PlanetLab, we present our testbed we provide the scenarios we consider and
briefly mention the implementation difficulties we encountered. Empirical results and comparisons of the
algorithms are given in Section 5. We conclude in Section 6.

2 Model and Definitions

We consider the asynchronous message-passing model. There are three distinct finite sets of crash-
prone processors: a set of readers R, a set of writers W, and a set of servers S . The identifiers of all
processors are unique and comparable. Communication among the processors is accomplished via reliable
communication channels.

Servers and quorums. Servers are arranged into intersecting sets, or quorums, that together form
a quorum system Q. For a set of quorums A ⊆ Q we denote the intersection of the quorums in A by
IA =

⋂
Q∈AQ. A quorum system Q is called an n-wise quorum system if for any A ⊆ Q, s.t. |A| = n

we have IA 6= ∅. We call n the intersection degree of Q. Any quorum system is a 2-wise (pairwise)
quorum system because any two quorums intersect. At the other extreme, a |Q|-wise quorum system has
a common intersection among all quorums. From the definition it follows that an n-wise quorum system
is also a k-wise quorum system, for 2 ≤ k ≤ n.

Processes may fail by crashing. A process i is faulty in an execution if i crashes in the execution (once
a process crashes, it does not recover); otherwise i is correct. A quorum Q ∈ Q is non-faulty if ∀i ∈ Q, i
is correct; otherwise Q is faulty. We assume that at least one quorum in Q is non-faulty in any execution.

Atomicity. We study atomic read/write register implementations, where the register is replicated at
servers. Reader p requests a read operation ρ on the register using action readp. Similarly, a write
operation is requested using action write(∗)p at writer p. The steps corresponding to such actions are
called invocation steps. An operation terminates with the corresponding acknowledgment action; these
steps are called response steps. An operation π is incomplete in an execution when the invocation step
of π does not have the associated response step; otherwise π is complete. We assume that requests made
by read and write processes are well-formed: a process does not request a new operation until it receives
the response for a previously invoked operation.

In an execution, we say that an operation (read or write) π1 precedes another operation π2, or π2
succeeds π1, if the response step for π1 precedes in real time the invocation step of π2; this is denoted by
π1 → π2. Two operations are concurrent if neither precedes the other.

Correctness of an implementation of an atomic read/write object is defined in terms of the atomicity
and termination properties. Assuming the failure model discussed earlier, the termination property
requires that any operation invoked by a correct process eventually completes. Atomicity is defined as
follows [17]. For any execution if all read and write operations that are invoked complete, then the
operations can be partially ordered by an ordering ≺, so that the following properties are satisfied:

P1. The partial order is consistent with the external order of invocation and responses, that is, there
do not exist operations π1 and π2, such that π1 completes before π2 starts, yet π2 ≺ π1.

P2. All write operations are totally ordered and every read operation is ordered with respect to all the
writes.

P3. Every read operation ordered after any writes returns the value of the last write preceding it in
the partial order, and any read operation ordered before all writes returns the initial value of the
register.
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Efficiency and Fastness. We measure the efficiency of an atomic register implementation in terms of
computation and communication round-trips (or simply rounds). A round is defined as follows [6, 15, 14]:

Definition 2.1 Process p performs a communication round during operation π if all of the following
hold: 1. p sends request messages that are a part of π to a set of processes, 2. any process q that receives
a request message from p for operation π, replies without delay. 3. when process p receives enough replies
it terminates the round (either completing π or starting new round).

Operation π is fast [6] if it completes after its first communication round; an implementation is fast
if in each execution all operations are fast. We use quorum systems and tags to maintain, and impose
an ordering on, the values written to the register replicas. We say that a quorum Q ∈ Q, replies to a
process p for an operation π during a round, if ∀s ∈ Q, s receives a message during the round and replies
to this message, and p receives all such replies.

3 Algorithm Description

Before proceeding to the description of our experiments we first present a high level description of the three
algorithms we evaluate. To help the understanding of algorithm Aprx-Sfw we also describe algorithm
Sfw. We assume that the algorithms use quorum systems and follow the failure model presented in
Section 2. Thus, termination is guaranteed if any read and write operation waits from the servers of a
single quorum to reply. To order the written values the algorithms use (tag, value) pairs, where a tag
contains a timestamp and the writer’s identifier.

3.1 Algorithm Simple

Algorithm Simple is a generalization of the algorithm developed by Attiya et al. [3] for the MWMR
environment.

Server Protocol: Each replica receives read and write requests, and updates its local copy of the
replica if the tag enclosed in the received message is greater than its local tag before replying with an
acknowledgment and its local copy to the requester.

Write Protocol: The write operation performs two communication rounds. In the first round the writer
sends query messages to all the servers and waits for a quorum of servers to reply. During the second
round the writer performs the following three steps: (i) it discovers the pair with the maximum tag among
the replies received in the first round, (ii) it generates a new tag by incrementing the timestamp inside
the maximum discovered tag, and (iii) it propagates the new tag along with the value to be written to a
quorum of servers.

Read Protocol: Similarly to the write operation every read operation performs two rounds to complete.
The first round is identical as the first round of a write operation. During the second round the read
operation performs the following two steps: (i) it discovers the pair with the maximum tag among the
replies received in the first round, and (ii) it propagates the maximum tag-value pair to a quorum of
servers.

3.2 Algorithm Sfw

Algorithm Sfw assumes that the servers are arranged in an n-wise quorum system. To enable fast writes
the algorithm assigns partial responsibility to the servers for the ordering of the values written. Due to
concurrency and asynchrony, however, two servers may receive messages originating from two different
writers in different order. Thus, a read or write operation may witness different tags assigned to a single
write operation. To deal with this problem, algorithm Sfw uses two predicates to determine whether
“enough” servers in the replying quorum assigned the same tag to a particular write operation.
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Server Protocol: Servers wait for read and write requests. When a server receives a write request it
generates a new tag, larger than any of the tags it witnessed, and assigns it to the value enclosed in the
write message. The server records the generated tag, along with the write operation it was created for,
in a set called inprogress. The set holds only a single tag (the latest generated by the server) for each
writer.

Write Protocol: Each writer must communicate with a quorum of servers, say Q, during the first
round of each write operation.At the end of the first round the writer evaluates a predicate to determine
whether enough servers replied with the same tag. Let n be the intersection degree of the quorum system,
and inprogresss(ω) be the inprogress set that server s enclosed in the message it sent to the writer that
invoked ω. The write predicate is:

PW: Writer predicate for a write ω: ∃ τ, A,MS where: τ ∈ {〈., ω〉 : 〈., ω〉 ∈ inprogresss(ω) ∧ s ∈ Q},
A ⊆ Q, 0 ≤ |A| ≤ n

2
−1, and MS = {s : s ∈ Q ∧ τ ∈ inprogresss(ω)}, s.t. either |A| 6= 0 and IA∩Q ⊆ MS

or |A| = 0 and Q = MS.

The predicate examines whether the same tag for the ongoing write operation is contained in the replies
of all servers in the intersection among the replying quorum and n

2
− 1 other quorums. Satisfaction of

the predicate for a tag τ guarantees that any subsequent operation will also determine that the write
operation is assigned tag τ . If the predicate PW holds then the write operation is fast. Otherwise the
writer assigns the highest tag to the written value and proceeds to a second round to propagate the
highest discovered tag to a quorum of servers.

Read Protocol: Read operations take one or two rounds. During its first round the read collects replies
from a quorum of servers. Each of those servers reports a set of tags (one for each writer). The reader
needs to decide which of those tags is assigned to the latest potentially completed write operation. For
this purpose it uses a predicate similar to PW:
PR: Reader predicate for a read ρ: ∃ τ, B,MS, where: max(τ) ∈

⋃
s∈Q inprogresss(ρ), B ⊆ Q, 0 ≤

|B| ≤ n
2
− 2, and MS = {s : s ∈ Q ∧ τ ∈ inprogresss(ρ)}, s.t. either |B| 6= 0 and IB ∩ Q ⊆ MS or

|B| = 0 and Q = MS.

The predicate examines whether there is a tag for some write operation that is contained in the replies
of all servers in the intersection among the replying quorum n

2
− 2 other quorums. Satisfaction of the

predicates for a tag τ assigned to some write operation, guarantees that any subsequent operation will
also determine that the write operation is assigned tag τ . A read operations can be fast even if PR
does not hold, but the read observed enough confirmed tags with the same value. Confirmed tags are
maintained in the servers and they indicate that either the write of the value with that tag is complete,
or the tag was returned by some read operation.

The interested reader can see [7] for full details.

3.3 Algorithm Aprx-Sfw

The complexity of the predicates in Sfw raised the question whether they can be computed efficiently. In
a recent work [10] (see also [11]) we have shown that both predicates are NP-Complete. To prove the NP-
completeness of the predicates, we introduced a new combinatorial problem, called k-Set-Intersection,
which captured both PW and PR. An approximate solution to the new problem could be obtained
polynomially by using the approximation algorithm for the set cover. The steps of the approximation
algorithm are:

By setting U = S, M to contain all the servers that replied with a particular tag in the first round of
a read or write operation, and k to be n

2
−1 for PW and n

2
−2 for PR, we obtain an approximate solution

for Sfw. The new algorithm, called Aprx-Sfw, inherits the read, write, and serve protocols of Sfw and
uses the above approximation algorithm for the evaluation of the PW and PR predicates. Aprx-Sfw

promises to validate the predicates only when Sfw validates the predicates (preserving correctness), and
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Given (U,M,Q, k):
Step 1: ∀m ∈ M

let Tm = {(U −M)− (Qi −M) : m ∈ Qi}
Step 2: Run Set-Cover greedy algorithm on

the instance {U −M,Tm, k} for every m ∈ M :
Step 2a: Pick the set Ri ∈ Tm with

the maximum uncovered elements
Step 2b: Take the union of every R ∈ Tm

picked in Step 2a (incl. Ri)
Step 2c: If the union equals U −M go to Step 3;

else if there are more sets in Tm go to Step 2a
else repeat for another m ∈ M

Step 3: For any set (U −M)− (Qi −M) in the solution of set cover, add Qi in the intersecting set.

Figure 1: Polynomial approximation algorithm for the k-Set-Intersection.

yields a factor of log |S| increase on the number of second communication rounds. This is a modest price
to pay in exchange for substantial reduction in the computation overhead of algorithm Sfw.

3.4 Algorithm CwFr

A second limitation of Sfw is its reliance to specific constructions of quorums to enable fast read and write
operations. Algorithm CwFr, presented in [10] (see also [12]), is designed to overcome this limitation,
yet trying to allow single round read and write operations. While failing to enable single round writes,
CwFr enables fast read operations by adopting the general idea of Quorum Views [14]. The algorithm
employs two techniques:(i) the typical query and propagate approach (two rounds) for write operations,
and (ii) analysis of Quorum Views [14] for potentially fast (single round) read operations.

Quorum Views are client side tools that, based on the distribution of a tag in a quorum, may determine
the state of a write operation: completed or not. In particular, there are three different classes of quorum
views. qV iew(1) requires that all servers in some quorum reply with the same tag revealing that the
write operation propagating this tag has potentially completed. qV iew(3) requires that some servers in
the quorum contain an older value, but there exists an intersection where all of its servers contain the new
value. This creates uncertainty whether the write operation has completed in a neighboring quorum or
not. Finally qV iew(2) is the negation of the other two views and requires a quorum where the new value
is neither distributed to the full quorum nor distributed fully in any of its intersections. This reveals that
the write operation has certainly not completed.

Algorithm CwFr incorporates an iterative technique around quorum views that not only predicts
the completion status of a write operation, but also detects the last potentially complete write operation.
Below we provide a description of our algorithm and present the main idea behind our technique.

Write Protocol: The write protocol has two rounds. During the first round the writer discovers the
maximum tag among the servers: it sends read messages to all servers and waits for replies from all
members of some quorum. It then discovers the maximum tag among the replies and generates a new
tag in which it encloses the incremented timestamp of the maximum tag, and the writer’s identifier. In
the second round, the writer associates the value to be written with the new tag, it propagates the pair
to some quorum, and completes the write.

Read Protocol: The read protocol is more involved. The reader sends a read message to all servers and
waits for some quorum to reply. Once a quorum replies, the reader determines maxTag. Then the reader
analyzes the distribution of the tag within the responding quorum Q in an attempt to determine the latest,
potentially complete, write operation. This is accomplished by determining the quorum view conditions.
Detecting conditions of qV iew(1) and qV iew(3) are straightforward. When condition for qV iew(1) is
detected, the read completes and the value associated with the discovered maxTag is returned. In the

6



case of qV iew(3) the reader continues to the second round, advertising the latest tag (maxTag) and its
associated value. When a full quorum replies in the second round, the read returns the value associated
with maxTag. Analysis of qV iew(2) involves the discovery of the earliest completed write operation.
This is done iteratively by (locally) removing the servers from Q that replied with the largest tags. After
each iteration the reader determines the next largest tag in the remaining server set, and then re-examines
the quorum views in the next iteration. This process eventually leads to either qV iew(1) or qV iew(3)
being observed. If qV iew(1) is observed, then the read completes in a single round by returning the value
associated with the maximum tag among the servers that remain in Q. If qV iew(3) is observed, then
the reader proceeds to the second round as above, and upon completion it returns the value associated
with the maximum tag maxTag discovered among the original respondents in Q.

Server Protocol: The servers play a passive role. They receive read or write requests, update their
object replica accordingly, and reply to the process that invoked the operation. Upon receipt of any
message, the server compares its local tag with the tag included in the message. If the tag of the message
is higher than its local tag, the server adopts the higher tag along with its corresponding value. Once
this is done the server replies to the invoking process.

3.5 Algorithm Overview

Table 1 accumulates the theoretical communication and computation burdens of the four algorithms
presented above. The name of the algorithm appears in the first column of the table. The second and
third columns of the table shows how many rounds are required per write and read operation respectively.
The next two columns present the computation required by each algorithm and the last column the
technique the algorithm incorporates to decide on the values read/written on the atomic register.

7 Algorithm WR RR RC WC Decision Tool

Simple 2 2 O(|S|) O(|S|) Highest Tag

Sfw 1 or 2 1 or 2 O(2|Q|−1) O(2|Q|−1) Predicates

Aprx-Sfw 1 or 2 1 or 2 O(|W||S|2|Q|) O(|S|2|Q|) Predicate Approximation

CwFr 2 1 or 2 O(|S||Q|) O(|S|) Quorum Views / Highest Tag

Table 1: Theoretical comparison of the four algorithms.

4 PlanetLab Implementation

In this section we present the construction details of our experiment. First we provide a description of
the PlanetLab platform and then we present the parameters we considered and the scenarios we run for
our implementations.

4.1 The PlanetLab Platform

PlanetLab is an overlay network infrastructure which is available as a testbed for computer networking and
distributed systems research. As of September 2011, PlanetLab is composed of 1075 machines, provided
by academic and industry institutions, at 525 locations worldwide. Malicious and buggy services can affect
the communication infrastructure and the nodes performance; therefore, strict terms and conditions for
providing security and stability in the PlanetLab are enforced. Nodes may be installed or rebooted at
any time, turning their disk into a temporary form of storage, providing no guarantee regarding their
reliability.

As oppose to NS2 simulator [2], there is almost no control over the components and execution sequence
of the algorithms on PlanetLab, as it overheres the communication delays and congestion conditions of
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Machine name Country # Cores CPU Rate (Ghz) RAM (GB)

nis-planet2.doshisha.ac.jp Japan 2 2.9 4

chronos.disy.inf.uni-konstanz.de Germany 2 2.4 4

planetlab2.cs.unc.edu United States 4 2.6 4

peeramidion.irisa.fr France 2 2.9 4

pl2.eng.monash.edu.au Australia 4 2.6 4

planetlab2.ceid.upatras.gr Greece 2 2.6 4

planetlab-01.bu.edu United States 8 2.4 4

planetlab3.informatik.uni-erlangen.de Germany n/a n/a n/a

planetlab1.cs.uit.no Norway 2 2.6 4

ple2.cesnet.cz Czech Republic 4 2.8 8

planetlab01.tkn.tu-berlin.de Germany 4 2.4 4

planetlab1.unineuchatel.ch Switzerland 2 2.6 4

evghu14.colbud.hu Hungary n/a n/a n/a

zoi.di.uoa.gr Greece 4 2.4 8

planetlab1.cs.vu.nl Netherlands 8 2.3 4

pli1-pa-4.hpl.hp.com United States 8 2.5 6

plab3.ple.silweb.pl Poland 4 2.4 4

planetlab-2.imperial.ac.uk United Kingdom 2 2.9 1

planet1.unipr.it Italy 2 2.6 4

planetlab2.rd.tut.fi Finland 8 2.4 16

Table 2: List of machines that hosted our experimet.

wide area networks (e.g. Internet cloud). Hence, some of the execution scenarios and environmental
settings used for the simulation environment do not apply in this adverse and unpredictable, large-scale,
real-time environment. Furthermore, since no global snapshot of the system may be acquired, the we
relied on local decisions and readings of each individual participant in the system.

4.2 Experimentation Platform

Our test environment consists of a set of writers, readers, and servers. Communication between the nodes
is established via TCP/IP. For our experiments we used the machines that appear in Table 2. Those were
in total 20 machines. Our implementations were written in C++ programming language and C sockets
were used for interfacing with TCP/IP.

Each of those machines was used to host one or more processes. The servers were hosted on the first
10 machines. If the number of servers exceeded the number of hosts then each host was running more
then one server instance in a round robin fashion. For instance, if the number of servers were 15 then two
servers were running in each of the first 5 machines, and one server instance on each of the remaining 5
machines. In other words the 1st and 11th servers were running on the first machine, the 2nd and 12th

servers on the second machine and so on. Note that the choice of the first 10 machines was such as to split
our servers throughout the world. The readers and the writers were started on all 20 machines starting
from the 10th machine and following a round robin technique. Thus, some of the first 10 machines could
run a server and a client at the same time.

We have evaluated the algorithms with majority quorums. As discussed in [7], assuming |S| servers

out of which f can crash, we can construct an ( |S|
f
− 1)-wise quorum system Q. Each quorum Q of Q has

size |Q| = |S| − f . The processes are not aware of f . The quorum system is generated a priori and is
distributed to each machine as a file. So each participant can obtain the quorum construction be reading
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the appropriate file from the host machine.
We use the positive time parameters rInt = 10sec and wInt = 10sec to model operation frequency.

Readers and writers pick a uniformly at random time between [0 . . . rInt] and [0 . . . wInt], respectively, to
invoke their next read (resp. write) operation. Each reader and writer chooses a new timeout every time
their latest operation is completed. This preserves the property of well-formedness discussed in Section 2.

Finally we specify the number of operations each participant should invoke. For our experiments we
allow participants to perform up to 20 operations (this totals to 400-3000 operations).

4.3 Difficulties

Consistent storage protocols are not readily designed for the network infrastructure. For this reason
our algorithms need to utilize the existing communication protocols like TCP/IP to achieve process
communication. So we need to be especially careful that the use of these protocols does not affect the
correctness of our algorithms. Below we present some hurdles we faced during the development of our
implementations along with the workarounds we used to ensure the correctness of the algorithms.

Multiplexing. Client-Server architecture proved to be more challenging than expected for the imple-
mentations of consistent implementations. In traditional techniques the server listens for an incoming
connection and spawns a child or a thread process to handle an incoming request from a client. By doing
so, each client is being served independently from the rest of the clients, and thus does not have to wait
for the other clients to terminate. At the same time each client gets the illusion that it communicates
with a different server. This is acceptable if clients do not modify the local information of the server. It
creates serious synchronization issues however when the two clients try to update the server’s state.

To overcome this problem we chose not to use forking or threads to establish the communication
between the server with the clients. Rather, we used multiplexing. This is a non-blocking technique
were the server does not block to wait for incoming connections. Instead, the server allows the clients
to connect to it and periodically checks of any new connection request. Once a new connection is
established the server generates a new file descriptor and places the descriptor in a pool of connections.
In a continuous loop the server checks if a client wants to transmit a message by checking the state of
the descriptor associated with the connection of the particular client. When a message is received the
server communicates with the sending process to satisfy its request. This is an explicit communication
between the server and the client and circumvents any synchronization issues. On the other hand, the
use of non-blocking communication protocols allows different clients to be connected at the same time
with a particular server and wait their turn until they get served.

Resource Limits. Each slice on PlanetLab offers limited resources for each experiment. Furthermore
the master machine that starts the experiments has limitations on the number of processes that can be
initiated concurrently. For these reasons we bounded the number of readers and writes to 40. We still
obtained four points by running our implementations with 10,20,30 and 40 read and write processes. We
believe that this is an adequately large sample fro the extraction of consistent results.

Sampling. The PlanetLab environment is extremely adverse. Machines may go down at any time
in the execution, the network latency may increase without notice and participant communication may
be interrupted. Thus, to obtain some reasonable results we had to run our algorithms alternatively to
maintain short time intervals between the algorithm’s runs. Our first try was to run all the scenarios on
a single algorithm and then move on the next algorithm. This technique produced large time intervals
between the execution of two consecutive algorithms. The problem of that method was that the conditions
(network delay, node failures etc.) of the network at the time of the run of one algorithm were changing
dramatically by the time the next algorithm was running. Algorithm alternation proved to provide a
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solution to this problem. Even though we still observe network changes the plotting of the results provide
less “noise” on the latency of the operations due to network delay differences.

Weighted Average Time. The last issue we faced during our development had to do with the hectic
participation of the nodes in PlanetLab. Since the nodes in PlanetLab may be interrupted at any time
during the execution of any algorithm, we observed that in most of the runs not all the readers were
terminating. This is because the readers or writers hosted in a failed PlanetLab node were not able to
complete all the necessary operations. As the operations completed by those failed readers and writers
were not counted, getting the average of the read/write latency by dividing the total latency over the
total number of terminated readers/writers per run did not produce a consistent result. So we decided
to obtain the weighted average of the read/write latency by dividing the total operation latency over the
total number of terminated processes. For example, assume a scenario were we initiated 20 readers out
of which 10 terminated in the first run and 15 terminated in the second run. Lets assume for example
that the total read latency of the first run was 100s and the total latency of the second run was 120s.
With the non-weigthed method the average latency was

nonWeightedAvg = (
100

10
+

120

15
)/2 = 9s

With the weigthed average we obtain the following:

WeightedAvg =
100 + 120

10 + 15
= 8s

The weighted average is the average latency we use for our plots.

4.4 Scenarios

The scenarios were designed to test (i) scalability of the algorithms as the number of readers, writers
and servers increases, and (ii) the relation between quorum system deployment and operation latency. In
particular we consider the following parameters:

1. Number of Participants: We run every test with 10, 20, 30, and 40 readers and writers. To
test the scalability of the algorithms with respect to the number of replicas in the system we run
all of the above tests with 10, 15, 20, and 25 servers. Such tests highlight whether an algorithm is
affected by the number of participants in the system. Changing the number of readers and writers
help us investigate how each algorithm handles an increasing number of concurrent read and write
operations. The more the servers on the other hand, the more concurrent values may coexist in the
service. So, algorithms like Aprx-Sfw and CwFr, who examine all the discovered values and do
not rely on the maximum value, may suffer from local computation delays.

2. Quorum System Construction: As mentioned in Section 4.2 we use majority quorums as they
can provide quorum systems with high intersection degree. So, assuming that f servers may crash
we construct quorums of size |S|− f . As the number of servers |S| varies between 10,15,20, and 25,
we run the tests for two different failure values, i.e. f = 1 and f = 2. This affects our environment
in two ways:

(i) We get quorum systems with different quorum intersection degrees. According to [7] for every

given S and f we obtain a ( |S|
f

− 1)-wise quorum system.

(ii) We obtain quorum systems with different number of quorum members. For example assuming
15 servers and 1 failure we construct 15 quorums, whereas assuming 15 servers and 2 failures
we construct 105 different quorums.
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Changes on the quorum constructions help us evaluate how the algorithms handle various intersec-
tion degrees and quorum systems of various memberships.

Another parameter we considered was operation frequency. Due to the invocation of operations in
random times between the read and write intervals as explained in Section 4.2, operation frequency varies
between each and every participant. Thus, fixing different initial operation frequencies does not have an
impact of the overall performance of the algorithms. For this reason we avoided running our experiments
over different operation frequencies.

5 Empirical Results

In this section we discuss our findings. We compare algorithms CwFr, Aprx-Sfw, and Simple to
establish conclusions on the overall performance (including computation and communication) of the
algorithms. All the plots of our experiments appear in the Appendix. Below we make clear references to
those plots and we present parts of those plots where necessary.

To examine the impact of computation on the operation latency, we compare the performance of
algorithms Aprx-Sfw and CwFr to the performance of algorithm Simple. Recall that algorithm
Simple requires insignificant computation. Thus, the latency of an operation in Simple directly reflects
four communication delays (i.e., two rounds).

In the next paragraphs we present how the read and write operation latency is affected by the scenarios
we discussed in Section 4.4. A general conclusion that can be extracted from the experiments is that
in most of the runs, algorithms Aprx-Sfw and CwFr perform better than algorithm Simple. This
suggests that the additional computation incurred in these two algorithms does not exceed the delay
associated with a second communication round.

As mentioned before, in general, PlanetLab machines often go offline unexpectedly preventing some
scenarios to finish. Due to this fact, there are some cases in the plots where we do not obtain any data
for a particular scenario. As those cases are not frequent we ignore them in our conclusions below.

5.1 Variable Participation

For this family of scenarios we tested the scalability of the algorithms when the number of readers, writers,
and servers changes. The plots that appear in the Appendices A and B present the results for the read
and write latency respectively.

The plots in Appendix A present how the performance of read operations is affected as we change the
number of readers. To obtain a figure we fix the number of servers and server failures, and we vary the
number of readers and writers. So, for instance, Figure 2 fixes the number of servers to |S| = 10, and
f = 1. Each row of the figure fixes the number of writers and varies the number of readers. Therefore
we obtain four rows corresponding to |W| ∈ [10, 20, 30, 40]. Each row in a figure contains a pair of plots
that presents the percentage of slow reads (on the left) and the latency of each read (on the right) as we
increase the number of readers.

From the plots we observe that, unlike the results we obtained on the controlled environment of NS2
in [13], Aprx-Sfw overperforms CwFrin most of the cases. This makes evident that the adverse envi-
ronment of a real-time system diminishes the high concurrency between read and write operations. Notice
that Aprx-Sfw and CwFr require higher computation demands when multiple writers try concurrently
to change the value of the register. Computation is decreased when writes are consecutive. Thus, low
concurrency favors algorithms with high computation and low communication demands.

The read performance of both Aprx-Sfw and CwFr is affected slightly by the number of readers
in the system. On the other hand we observe that the number of writers seem to have a greater impact
on the performance of algorithm CwFr. As the number of writers grows, both the number of slow read
operations and the latency of read operations for CwFr increase. Unlike our findings in [13], the number
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Figure 2: Plots from Figure 8 - 19-wise quorum system (|S = 20, f = 1): Left Column: Percentage of
slow reads, Right Column: Latency of read operations

of writers does not have a great impact on the performance of Aprx-Sfw. This is another evidence
that write operations do not overlap due to the adverse environment, and thus Aprx-Sfw can discover
quickly a valid tag without the need of examining all the candidate tags. Both CwFr and Aprx-Sfw

require fewer than 20% of reads to be slow in all scenarios. The only scenario where the percentage of
slow reads for Aprx-Sfw rise above 50% is when we deploy a 4-wise quorum system. This demonstrates
the dependence of the predicates on the intersection degree of the underlying quorum system. We discuss
this relation in the next section. The large percentage of fast read operations, keeps the overall latency
of read operations for the two algorithms below the latency of read operations in Simple. That suggests
that the computation burden does not exceed the latency added by a second communication round.

Our outcomes can be seen in Figure 2. The 20-wise intersection allows Aprx-Sfw to enable more
single round read operations than CwFr even if there are 40 writers in the service. The 4-wise intersec-
tion, of the plots on the second row of Figure 2, on the other hand causes the Aprx-Sfw to introduce
a higher percentage of slow reads. In this case the predicates could not get validated and thus many
reads needed to perform two communication rounds. CwFr allows fewer slow reads than Aprx-Sfw. As
expected, the read latency of CwFr in this scenario is less than the read latency of Aprx-Sfw. Despite
the higher percentage of slow reads however, the read latency of both algorithms remains below the read
latency of Simple.
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Figure 3: 9-wise and 4-wise quorum systems (|S| = 10, f = 1, 2): Left Column: Percentage of slow
writes, Right Column: Latency of write operations

Similar to the read operations, the performance of write operations is not affected by the number
of reader participants. It is affected however by both the number of writers and servers in the system.
The only algorithm that allows single round write operations is Aprx-Sfw. This is very distinct in our
experiments and can be also seen in the first row of Figure 3 (part of Figure 14). When deploying a 9-wise
quorum system Aprx-Sfw allows more than 60% of the writes to be fast. We observe that the percentage
of slow writes increases as the number of writers grows. This is expected as more write operations may
collide and thus more tags are going to be propagated in the system. It is a pleasant surprise that the
latency of write operations of Aprx-Sfw is below the write latency of the algorithms that require two
communication rounds. It can be taken as an evidence that the computation burden of Aprx-Sfw does
not exceed the time of the second communication round. Note here that unlike the read operations,
writes can be fast in Aprx-Sfw only when the write predicate holds. This characteristic can be depicted
from the second row of Figure 3 (part of Figure 18) where the 4-wise intersection does not allow for the
write predicate to hold. Thus, every write operation in Aprx-Sfw performs two communication rounds
in this case. It is of great importance that the write latency of Aprx-Sfw is almost identical to the delay
of the other two algorithms. That shows once more that the computation burden of Aprx-Sfw does not
affect the latency of writes by a high margin. The spikes on the latency of the write operations in the
same figure appear due to the small range of the values and the small time inconsistency that may be
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Servers Server Failures Int. Degree Quorums
|S| f n |Q|

10 1 9 10

15 1 14 15

20 1 19 20

25 1 24 25

10 2 4 45

15 2 6 105

20 2 9 190

25 2 11 300

Figure 4: Quorum system parameters.

caused by the variable delays of the network.

5.2 Quorum Construction

We consider majority quorums due to the property they offer on their intersection degree [7]: if |S| the
number of servers and up to f of them may crash then if every quorum has size |S|−f we can construct a

quorum system with intersection degree n = |S|
f

− 1. Using that property we obtain the quorum systems
presented on Table 4 by modifying the number of servers and the maximum number of server failures.

In Appendix C we plot the performance of read and write operations (communication rounds and
latency) with respect to the number of quorum members in the quorum system. Each figure contains
four pairs of plots. The first two pairs correspond to the quorum system that allows a single server failure
whereas the bottom two pairs correspond to the quorum system that allows up to two server failures. For
each type of quorum system the top pair describes the performance of read operations while the bottom
pair the performance of write operations. Lastly, the left plot in each pair presents the percentage of slow
read/write operations, and the right plot the latency of each operation respectively.

From the plots it is clear that Aprx-Sfw is affected by the number of quorums and in extent by the
intersection degree of the quorum system. On the other hand CwFr does not show a clear affect. In
particular we observe that the cardinality of the quorum system, reduces the percentage of slow reads
for Aprx-Sfw. The distinction between Aprx-Sfw and CwFr is depicted nicely from the upper row
of Figure 5. The line of the slow read percentage of Aprx-Sfw crosses below the line of CwFr when
the intersection degree grows to 20

2
− 1 = 9, and remains lower for larger values of the intersection

degree. Operation latency on the other hand is not proportional to the reduction on the amount of slow
operations. Both algorithms Aprx-Sfw and CwFr experience an incrementing trend on the latency
of the read operations as the number of servers and the quorum members increases. It is worth noting
that the latency of read operations in Simple also follows an increasing trend even though every read
operation requires two communication rounds to complete. This is evidence that the increase on the
latency is partially caused by the communication between the readers and the servers: as the servers
increase in number the readers need to send and wait for more messages. The latency of read operations
in CwFr is not affected greatly as the number of servers changes. As a result, CwFr appears to maintain
a read latency close to 0.4 sec in every scenario. With this read latency CwFr over-performs algorithm
Simple in every scenario as the latter maintains a read latency between 0.6 and 1 sec. Algorithm
Aprx-Sfw also experiences an increasing change on the latency of read operations. The read latency in
Aprx-Sfw is affected by both the number of quorums in the system, and the number of writers in the
system. As a result the latency of read operations in Aprx-Sfw in conditions with a large number of
quorum members and writers may exceed the read latency of Simple up to 5 times. The reason for such
performance is that every read operation in Aprx-Sfw the reader examines the tags assigned to every
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writer and for every tag runs the approximation algorithm on a number of quorums in the system. The
more the writers and the quorums in the system, the more time the read operation takes to complete.

20 Readers, 30 Writers, f=2:
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Figure 5: Left Column: Percentage of slow operations, Right Column: Latency of operations

Similar observations can be made for the write operations. Observe that although both CwFr and
Simple require two communication rounds per write operation, the write latency in these algorithms is
affected negatively by the increase of the number of quorums in the system. As we said before this is
evidence of the higher communication demands when we increase the number of servers. We also note
that the latency of the write operations in Simple is almost identical to the latency of the read operations
of the same algorithm. This proves the fact that the computation demands in either operation is also
identical. As for Aprx-Sfw we observe that the increase on the number of servers reduces the amount of
slow write operations (similar finding is noted in [13]). Also we observe that the average write latency of
Aprx-Sfw increases as the number of quorums increases in the system. Interestingly however, unlike the
findings in [13], the latency of writes does remain in most cases below the competition. Comparing with
the latency of read operations it appears that although Aprx-Sfw may allow more fast read operations
than writes under the same conditions, the average latency of each read is almost the same as the latency
of write operations. An example of this behavior can be seen in Figure 5 (part of Figure 31). In this
example slow reads can drop as low as 10% and the average read latency climbs to an average of 0.5
seconds (the 0.7 sec point appears to be an outlier). On the other no less than 20% slow writes are
allowed and the average write latency climbs just above 0.5 seconds. The simple explanation for this
behavior lies on the evaluation of the read and write predicates: each reader needs to examine the latest
tags assigned to every writer in the system whereas each writer only examines the tags assigns to its own
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write operation.

6 Conclusions

This work investigates the practicality of three MWMR atomic register algorithms designed for the asyn-
chronous, failure prone, message passing environment. The experiments involved the implementation
and evaluation of the algorithms on the planetary-scale PlanetLab platform. We compared the perfor-
mance of algorithms CwFr,Aprx-Sfw and Simple. Under the adverse real time environment offered
by Planetlab we were able to observer the behavior of the algorithms in real-time network conditions. We
studied the relative scalability of the algorithms using variable number of participants and the impact
that the deployed quorum system may have on each algorithm’s performance. In particular, we tested
the scalability of the algorithms by varying the number of readers, writers and servers in the system. To
introduce various types of quorum systems we manipulated the number of servers along with the number
of maximum server failures in the system.

The results for algorithms CwFr, Aprx-Sfw and Simple suggest that both algorithms CwFr and
Aprx-Sfw over-perform Simple. Unlike the simulation results performed in [13], we observed that in a
real-time environment Aprx-Sfw overperforms CwFr in most scenarios were the intersection degree is
higher than 6. That is, both the percentage of slow reads along with the average read latency is lower
than the read performance of CwFr. So we observed that the quorum intersection degree plays a major
role for the performance of Aprx-Sfw over the rest of the algorithms. However, it appears that a high
intersection degree is not necessary for Aprx-Sfw since in cases with small intersection degree less than
50% of reads needed to be slow and the latency of both the write and read operations was almost identical
or better than the latency of the competition. We also observed that the number of writers, servers and
quorums in the system can have a negative impact on both the number of slow operations, and the
operation latency for all three algorithms. This behavior agrees with our theoretical bounds presented
in Table 1. Furthermore our results suggest that the computation burden placed on each participant by
Aprx-Sfw and CwFr is less than the cost of a second communication round. The computation cost
is not negligible, however, since we observe cases where the percentage of slow reads decreases when the
average read latency increases. Thus, the example reveals that although we need less communication,
the computation costs keeps an incrementing trend to the operation latency. Algorithm CwFr does
not seem to be affected much by the number of servers and quorums in the underlying quorum system.
The percentage of slow reads remains in the same levels while the latency increases due mainly to the
increasing communication.

Overall it is safe to claim that algorithms CwFr and Aprx-Sfw should be preferable by applications
in a real-time setting. The choice of the algorithm (CwFr or Aprx-Sfw) essentially depends on the
environment in which the application is to be deployed. If quorum systems with large intersection degrees
are possible/available then Aprx-Sfw is a clear winner. If a general quorum construction is to be used
then CwFr should be considered.
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Appendix: Figures

A Read Performance

Below we present the plots regarding the read performance under variable number of writers and quorum
constructions. In particular, we run the Simple, CwFr, and Aprx-Sfw algorithms using quorum
constructions with eight different intersection degrees by setting the number of servers to 10, 15, 20, and
25, and by tolerating 1 and 2 server failures. We assume majority quorums, where each quorum Qi has
size |Qi| = |S| − f , where f the maximum number of server failures. We test each quorum system, using
10,20, 40, and 80 readers and writers. By fixing the intersection degree and the number of writers a plot
depicts the performance of read operations as we increase the number of readers in the system. Such
plots help us determine the scalability of the algorithms in terms of reader participants.
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Figure 6: 9-wise quorum system (|S| = 10, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 7: 14-wise quorum system (|S| = 15, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 8: 19-wise quorum system (|S| = 20, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 9: 24-wise quorum system (|S| = 25, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 10: 4-wise quorum system (|S| = 10, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 11: 6-wise quorum system (|S| = 15, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 12: 9-wise quorum system (|S| = 20, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 13: 11-wise quorum system (|S| = 25, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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B Write Performance

Below we present the plots regarding the write performance under variable number of readers and quorum
constructions. In particular, we run the Simple, CwFr, and Aprx-Sfw algorithms using quorum
constructions with eight different intersection degrees by setting the number of servers to 10, 15, 20, and
25, and by tolerating 1 and 2 server failures. We assume majority quorums, where each quorum Qi has
size |Qi| = |S| − f , where f the maximum number of server failures. We test each quorum system, using
10,20, 30, and 40 readers and Readers. By fixing the intersection degree and the number of readers a plot
depicts the performance of write operations as we increase the number of Readers in the system. Such
plots help us determine the scalability of the algorithms in terms of writer participation.
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Figure 14: 9-wise quorum system (|S| = 10, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 15: 14-wise quorum system (|S| = 15, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 16: 19-wise quorum system (|S| = 20, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 17: 24-wise quorum system (|S| = 25, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 18: 4-wise quorum system (|S| = 10, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 19: 6-wise quorum system (|S| = 15, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 20: 9-wise quorum system (|S| = 20, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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Figure 21: 11-wise quorum system (|S| = 25, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations
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C Operation Performance Relative to Quorum Construction

The plots below illustrate the performance of read operations over the number of quorums in the system.
For the following graphs we fix the number of reader and writer participants and we change the number
of servers in the system. The quorum membership is also changed when we modify the maximum number
of server failures in the service. The left column of each figure presents how the percentage of slow reads
is affected whereas the right column illustrates the impact of the quorum membership on read latency.
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Figure 22: Left Column: Percentage of slow operations, Right Column: Latency of operations
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20 Readers, 10 Writers, f=1:
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Figure 23: Left Column: Percentage of slow operations, Right Column: Latency of operations
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30 Readers, 10 Writers, f=1:

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  12  14  16  18  20  22  24  26

%
2c

om
m

-r
ea

ds

#Servers

% of Slow Reads vs # of Servers: SR.nr30.nw10.f1.2D plot

SIMPLE
CWFR

APRX-SFW

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 10  12  14  16  18  20  22  24  26

R
ea

dL
at

en
cy

#Servers

Read Latency vs # of Servers: SL.nr30.nw10.f1.2D plot

SIMPLE
CWFR

APRX-SFW

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  12  14  16  18  20  22  24  26

%
2c

om
m

-w
rit

es

#Servers

% of Slow Writes vs # of Servers: SR.nr30.nw10.f1.2D plot

SIMPLE
CWFR

APRX-SFW

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 10  12  14  16  18  20  22  24  26

W
rit

eL
at

en
cy

#Servers

Write Latency vs # of Servers: SL.nr30.nw10.f1.2D plot

SIMPLE
CWFR

APRX-SFW

30 Readers, 10 Writers, f=2:

 0

 20

 40

 60

 80

 100

 10  12  14  16  18  20  22  24  26

%
2c

om
m

-r
ea

ds

#Servers

% of Slow Reads vs # of Servers: SR.nr30.nw10.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10  12  14  16  18  20  22  24  26

R
ea

dL
at

en
cy

#Servers

Read Latency vs # of Servers: SL.nr30.nw10.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  12  14  16  18  20  22  24  26

%
2c

om
m

-w
rit

es

#Servers

% of Slow Writes vs # of Servers: SR.nr30.nw10.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 10  12  14  16  18  20  22  24  26

W
rit

eL
at

en
cy

#Servers

Write Latency vs # of Servers: SL.nr30.nw10.f2.2D plot

SIMPLE
CWFR

APRX-SFW

Figure 24: Left Column: Percentage of slow operations, Right Column: Latency of operations
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40 Readers, 10 Writers, f=1:
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Figure 25: Left Column: Percentage of slow operations, Right Column: Latency of operations

41



10 Readers, 20 Writers, f=1:
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10 Readers, 20 Writers, f=2:

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  12  14  16  18  20  22  24  26

%
2c

om
m

-r
ea

ds

#Servers

% of Slow Reads vs # of Servers: SR.nr10.nw20.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10  12  14  16  18  20  22  24  26

R
ea

dL
at

en
cy

#Servers

Read Latency vs # of Servers: SL.nr10.nw20.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  12  14  16  18  20  22  24  26

%
2c

om
m

-w
rit

es

#Servers

% of Slow Writes vs # of Servers: SR.nr10.nw20.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  12  14  16  18  20  22  24  26

W
rit

eL
at

en
cy

#Servers

Write Latency vs # of Servers: SL.nr10.nw20.f2.2D plot

SIMPLE
CWFR

APRX-SFW

Figure 26: Left Column: Percentage of slow operations, Right Column: Latency of operations
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20 Readers, 20 Writers, f=1:
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Figure 27: Left Column: Percentage of slow operations, Right Column: Latency of operations
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30 Readers, 20 Writers, f=1:
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Figure 28: Left Column: Percentage of slow operations, Right Column: Latency of operations
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40 Readers, 20 Writers, f=1:
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Figure 29: Left Column: Percentage of slow operations, Right Column: Latency of operations
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10 Readers, 30 Writers, f=1:
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Figure 30: Left Column: Percentage of slow operations, Right Column: Latency of operations
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20 Readers, 30 Writers, f=1:
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20 Readers, 30 Writers, f=2:
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Figure 31: Left Column: Percentage of slow operations, Right Column: Latency of operations
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30 Readers, 30 Writers, f=1:
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30 Readers, 30 Writers, f=2:
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Figure 32: Left Column: Percentage of slow operations, Right Column: Latency of operations
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40 Readers, 30 Writers, f=1:
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40 Readers, 30 Writers, f=2:

 0

 20

 40

 60

 80

 100

 10  12  14  16  18  20  22  24  26

%
2c

om
m

-r
ea

ds

#Servers

% of Slow Reads vs # of Servers: SR.nr40.nw30.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 10  12  14  16  18  20  22  24  26

R
ea

dL
at

en
cy

#Servers

Read Latency vs # of Servers: SL.nr40.nw30.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  12  14  16  18  20

%
2c

om
m

-w
rit

es

#Servers

% of Slow Writes vs # of Servers: SR.nr40.nw30.f2.2D plot

SIMPLE
CWFR

APRX-SFW

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10  12  14  16  18  20

W
rit

eL
at

en
cy

#Servers

Write Latency vs # of Servers: SL.nr40.nw30.f2.2D plot

SIMPLE
CWFR

APRX-SFW

Figure 33: Left Column: Percentage of slow operations, Right Column: Latency of operations
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10 Readers, 40 Writers, f=1:
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Figure 34: Left Column: Percentage of slow operations, Right Column: Latency of operations
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20 Readers, 40 Writers, f=1:
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20 Readers, 40 Writers, f=2:
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Figure 35: Left Column: Percentage of slow operations, Right Column: Latency of operations
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30 Readers, 40 Writers, f=1:
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Figure 36: Left Column: Percentage of slow operations, Right Column: Latency of operations
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40 Readers, 40 Writers, f=1:
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Figure 37: Left Column: Percentage of slow operations, Right Column: Latency of operations
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