Simulating Efficient MWMR Atomic Register Implementations
on the NS2 Network Simulator *

Chryssis Georgiou | Nicolas C. Nicolaou® ¥

Abstract

This work evaluates experimentally the performance of four multiple-writer/multiple-reader
(MWMR) read/write atomic register implementations, designed for the asynchronous, crash-prone,
message passing environment. The performance of atomic read/write register implementations is tra-
ditionally measured in terms of the latency of read and write operations due to (a) communication
delays and (b) local computation. For our experiments we implemented the four algorithms in the form
of protocols that are embedded and used through the NS2 network simulator. For our experiments we
consider the following algorithms: SFw from [7], APRX-SFW and CWFR from [10], and the generaliza-
tion of the traditional algorithm of [3] in the MWMR environment, which we call SIMPLE. APRX-SFW
is a polynomial approximation algorithm for SFw. So we first perform a proof-of-concept comparison
of the two algorithms. Then, we compare algorithms APRX-SFw, CWFR, and SIMPLE. Due to its
simplistic nature, SIMPLE requires two communication round-trips per read or write operation, but
almost no local computation. On the other hand, APRX-SFw and CWFR allow operations to complete
in a single round-trip, but they rely on computationally demanding predicates. Through our compar-
ison we attempt to identify the trade-offs between communication and computation burdens for these
three algorithms. We run our simulations under various scenarios that help us obtain a comprehensive
comparison for the tested algorithms.

Technical Report TR-11-06
Department of Computer Science
University of Cyprus
May 2011

*This work is supported by the Cyprus Research Promotion Foundation’s grant ITENEK/0609/31 and the European
Regional Development Fund.

TDepartment of Computer Science, University of Cyprus, Cyprus. Email: {chryssis,nicolasn } @cs.ucy.ac.cy.

fDepartment of Computer Science and Engineering, University of Connecticut, CT, USA.

1 Introduction

Emulating atomic registers in asynchronous, crash-prone, message-passing systems is one of the basic
problems in distributed computing. In such settings the register is replicated among a set of replica hosts
(or servers) to provide fault-tolerance and availability. Then read and write operations are implemented
as communication protocols that ensure atomic consistency.

Efficiency of register implementations is normally measured in terms of the latency of read and write
operations. Two factors affect operation latency: (a) computation, and (b) communication delays. An
operation communicates with servers to read or write the register value. This involves at least a single
communication round-trip, or round, i.e., messages from the invoking process to some servers and then the
replies from these servers to the invoking process. Previous works focused on minimizing the number of
rounds required by each operation. Dutta et al. [6] developed the first single-writer /multi-reader (SWMR)
algorithm, where all operations complete in a single round. Such operations are called fast. The authors
showed that fast operations are possible only if the number of readers in the system is constrained with
respect to the number of servers. They also showed that it is impossible to have multi-writer /multi-reader
(MWMR) implementations where all operations are fast. To remove the constraint on the number of
readers, Georgiou et al. [14] introduced semifast implementations where at most one complete two-round
read operation is allowed per write operation. They also showed that semifast MWMR implementations
are impossible.

Algorithm SFw, developed by Englert et al. [7], was the first to allow both reads and writes to be fast
in the MWMR setting. The algorithm used quorum systems, sets of intersecting subsets of servers, to
handle server failures. To decide whether an operation could terminate after its first round, the algorithm
employed two predicates, one for the write and one for read operations.

A later work by Georgiou et al. [10] identified two weaknesses of algorithm SFwW with respect to its
practicality: (1) the problem of computing the predicates used by the algorithm is NP-complete, and (2)
fast operations were possible only when every five or more quorums had a non-empty intersection. To
tackle these issues the authors introduced two new algorithms. The first algorithm, called APRX-SFW,
proposed a polynomial log-approximation solution for the computation of the predicates in SFw. This
would allow faster computation of the predicates while potentially increasing the number of two round
operations. However, algorithm APRX-SFW could not enable fast operations in any general quorum
construction. For this reason, they presented algorithm CwWFR that uses Quorum Views [13], client-side
decision tools, to allow some fast read operations without additional constraints on the quorum system.
Write operations in this implementation take two rounds.

In this work we evaluate the latency of the afforementioned algorithms, by simulating them in the
NS2 network simulator.

Backround. Attiya et al. [3] developed a SWMR algorithm that achieves consistency by using in-
tersecting majorities of servers in combination with (timestamp, value) value tags. A write operation
increments the writer’s local timestamp and delivers the new tag-value pair to a majority of servers,
taking one round. A read operation obtains tag-value pairs from some majority, then propagates the pair
corresponding to the highest timestamp to some majority of servers, thus taking two rounds.

The majority-based approach in [3] is readily generalized to quorum-based approaches in the MWMR
setting (e.g., [18, 8, 17, 9, 15]). Such algorithms requires at least two communication rounds for each read
and write operation. Both write and read operations query the servers for the latest value of the replica
during the first round. In the second round the write operation generates a new tag and propagates the
tag along with the new value to a quorum of servers. A read operation propagates to a quorum of servers
the largest value it discovers during its first round. This algorithm is what we call SIMPLE in the rest of
this paper.

Dolev et al. [5] and Chockler et al. [4], providle MWMR implementations where some reads involve
a single communication round when it is confirmed that the value read was already propagated to some

quorum.

Dutta et al. [6] present the first fast atomic SWMR implementation where all operations take a
single communication round. They show that fast behavior is achievable only when the number of reader
processes R is inferior to % — 2, where S the number of servers, ¢t of whom may crash. They also showed
that fast MWMR implementations are impossible even in the presence of a single server failure. Georgiou
et al. [14] introduced the notion of wvirtual nodes that enables an unbounded number of readers. They
define the notion of semifast implementations where only a single read operation per write needs to be
“slow” (take two rounds). They also show the imposibility of semifast MWMR implementations.

Georgiou et al. [13] showed that fast and semifast quorum-based SWMR implementations are possible
if and only if a common intersection exists among all quorums. Hence a single point of failure exists in
such solutions (i.e., any server in the common intersection), making such implementations not fault-
tolerant. To trade efficiency for improved fault-tolerance, weak-semifast implementations in [13] require
at least one single slow read per write operation, and where all writes are fast. To obtain a weak-semifast
implementation they introduced a client-side decision tool called Quorum Views that enables fast read
operations under read/write concurrency when general quorum systems are used.

Recently, Englert et al. [7] developed an atomic MWMR register implementation, called algorithm
SFw, that allows both reads and writes to complete in a single round. To handle server failures, their
algorithm uses n-wise quorum systems: a set of subsets of servers, such that each n of these subsets
intersect. The parameter n is called the intersection degree of the quorum system. The algorithm relies
on (tag,value) pairs to totally order write operations. In contrast with traditional approaches, the
algorithm uses the server side ordering (SSO) approach that transfers the responsibility of incrementing
the tag from the writers to the servers. This way, the query round of write operations is eliminated.
The authors proved that fast MWMR, implementations are possible if and only if they allow not more
than n — 1 successive write operations, where n is the intersection degree of the quorum system. If read
operations are also allowed to modify the value of the register then from the provided bound it follows
that a fast implementation can accommodate up to n — 1 readers and writers.

Contributions. Our goal is to provide empirical evidence on the efficiency of MWMR, atomic register
implementations. We focus on a controlled simulation environment, provided by the NS2 [2] simulator,
and we implement and compare the following MWMR, atomic register algorithms: SFw, SIMPLE, APRX-
Srw, and CWFR. The operation latency of the algorithms is tested under different simulation scenarios:
(1) Variable number of readers/writers/servers, (2) Deployment of different quorum constructions, and
(3) Variable network delay.

A general conclusion from our findings is that algorithms CwFR and APRX-SFwW over-perform al-
gorithm SIMPLE in most of the scenarios. Also, increasing the number of participants has a negative
impact on the latency of the operations for all the algorithms but especially for APRX-SFW. Finally,
we observe that a long network delay promotes algorithms with high computational demands and fewer
communication rounds (such as algorithm APRX-SFW).

Paper organization. In Section 2 we briefly describe the model of computation that is assumed by the
implemented algorithms. In Section 3 we provide a high level description of the algorithms we examine.
In Section 4 we overview the NS2 simulator, we present our testbed and provide the scenarios we consider.
Simulation results and comparisons of the algorithms are given in Section 5. Finally, in Section 6 we
discuss our findings and our future research plans.

2 Model and Definitions

We consider the asynchronous message-passing model. There are three distinct finite sets of crash-
prone processors: a set of readers R, a set of writers W, and a set of servers § . The identifiers of all

processors are unique and comparable. Communication among the processors is accomplished via reliable
communication channels.

Servers and quorums. Servers are arranged into intersecting sets, or quorums, that together form
a quorum system Q. For a set of quorums A C Q we denote the intersection of the quorums in A by
I4= ﬂQeA Q. A quorum system Q is called an n-wise quorum system if for any A C Q, s.t. |A| =n
we have T4 # (). We call n the intersection degree of Q. Any quorum system is a 2-wise (pairwise)
quorum system because any two quorums intersect. At the other extreme, a |Q|-wise quorum system has
a common intersection among all quorums. From the definition it follows that an n-wise quorum system
is also a k-wise quorum system, for 2 < k < n.

Processes may fail by crashing. A process i is faulty in an execution if ¢ crashes in the execution (once
a process crashes, it does not recover); otherwise i is correct. A quorum @ € Q is non-faulty if Vi € @, i
is correct; otherwise @) is faulty. We assume that at least one quorum in Q is non-faulty in any execution.

Atomicity. We study atomic read/write register implementations, where the register is replicated at
servers. Reader p requests a read operation p on the register using action read,. Similarly, a write
operation is requested using action write(x), at writer p. The steps corresponding to such actions are
called invocation steps. An operation terminates with the corresponding acknowledgment action; these
steps are called response steps. An operation m is incomplete in an execution when the invocation step
of m does not have the associated response step; otherwise 7 is complete. We assume that requests made
by read and write processes are well-formed: a process does not request a new operation until it receives
the response for a previously invoked operation.

In an execution, we say that an operation (read or write) m; precedes another operation 7o, or my
succeeds w1, if the response step for m; precedes in real time the invocation step of me; this is denoted by
w1 — mo. Two operations are concurrent if neither precedes the other.

Correctness of an implementation of an atomic read/write object is defined in terms of the atomicity
and termination properties. Assuming the failure model discussed earlier, the termination property
requires that any operation invoked by a correct process eventually completes. Atomicity is defined as
follows [16]. For any execution if all read and write operations that are invoked complete, then the
operations can be partially ordered by an ordering <, so that the following properties are satisfied:

P1. The partial order is consistent with the external order of invocation and responses, that is, there
do not exist operations m; and sy, such that m; completes before my starts, yet mo < my.

P2. All write operations are totally ordered and every read operation is ordered with respect to all the
writes.

P3. Every read operation ordered after any writes returns the value of the last write preceding it in
the partial order, and any read operation ordered before all writes returns the initial value of the
register.

Efficiency and Fastness. We measure the efficiency of an atomic register implementation in terms of
computation and communication round-trips (or simply rounds). A round is defined as follows [6, 14, 13]:

Definition 2.1 Process p performs a communication round during operation w if all of the following
hold: 1. p sends request messages that are a part of ™ to a set of processes, 2. any process q that receives
a request message from p for operation m, replies without delay. 3. when process p receives enough replies
it terminates the round (either completing m or starting new round).

Operation 7 is fast [6] if it completes after its first communication round; an implementation is fast
if in each execution all operations are fast. We use quorum systems and tags to maintain, and impose
an ordering on, the values written to the register replicas. We say that a quorum @ € Q, replies to a
process p for an operation 7 during a round, if Vs € @), s receives a message during the round and replies
to this message, and p receives all such replies.

3 Algorithm Description

Before proceeding to the description of our experiments we first present a high level description of the
four algorithms we evaluate. We assume that the algorithms use quorum systems and follow the failure
model presented in Section 2. Thus, termination is guaranteed if any read and write operation waits from
the servers of a single quorum to reply. To order the written values the algorithms use htag, valuei pairs
where a tag contains a timestamp and the writers identifier.

3.1 Algorithm SIMPLE

Algorithm Simple is a generalization of the algorithm developed by Attiya et al. [3] for the MWMR
environment.

Server Protocol: Each replica receives read and write requests, and updates its local copy of the
replica if the tag enclosed in the received message is greater than its local tag before replying with an
acknowledgment and its local copy to the requester.

Write Protocol: The write operation performs two communication rounds. In the first round the writer
sends query messages to all the servers and waits for a quorum of servers to reply. During the second
round the writer performs the following three steps: (i) it discovers the pair with the maximum tag among
the replies received in the first round, (ii) it generates a new tag by incrementing the timestamp inside
the maximum discovered tag, and (iii) it propagates the new tag along with the value to be written to a
quorum of servers.

Read Protocol: Similarly to the write operation every read operation performs two rounds to complete.
The first round is identical as the first round of a write operation. During the second round the read
operation performs the following two steps: (i) it discovers the pair with the maximum tag among the
replies received in the first round, and (ii) it propagates the maximum tag-value pair to a quorum of
servers.

3.2 Algorithm Srw

Algorithm SFw assumes that the servers are arranged in an n-wise quorum system. To enable fast writes
the algorithm assigns partial responsibility to the servers for the ordering of the values written. Due to
concurrency and asynchrony, however, two servers may receive messages originating from two different
writers in different order. Thus, a read or write operation may witness different tags assigned to a single
write operation. To deal with this problem, algorithm SFw uses two predicates to determine whether
“enough” servers in the replying quorum assigned the same tag to a particular write operation.

Server Protocol: Servers wait for read and write requests. When a server receives a write request it
generates a new tag, larger than any of the tags it witnessed, and assigns it to the value enclosed in the
write message. The server records the generated tag, along with the write operation it was created for,
in a set called inprogress. The set holds only a single tag (the latest generated by the server) for each
writer.

Write Protocol: Each writer must communicate with a quorum of servers, say @, during the first
round of each write operation.At the end of the first round the writer evaluates a predicate to determine
whether enough servers replied with the same tag. Let n be the intersection degree of the quorum system,
and inprogress (w) be the inprogress set that server s enclosed in the message it sent to the writer that
invoked w. The write predicate is:

PW: Writer predicate for a write w: 37, A, MS where: 7 € {{.,w) : (.,w) € inprogress,(w) A s € Q},

ACQ0<L A< S —1,and MS = {s:s5€ Q AT E inprogress,(w)}, s.t. either [A| # 0and [xNQ € MS
or |[Al|=0and Q = MS.

The predicate examines whether the same tag for the ongoing write operation is contained in the replies
of all servers in the intersection among the replying quorum and 5 — 1 other quorums. Satisfaction of
the predicate for a tag 7 guarantees that any subsequent operation will also determine that the write
operation is assigned tag 7. If the predicate PW holds then the write operation is fast. Otherwise the
writer assigns the highest tag to the written value and proceeds to a second round to propagate the
highest discovered tag to a quorum of servers.

Read Protocol: Read operations take one or two rounds. During its first round the read collects replies
from a quorum of servers. Each of those servers reports a set of tags (one for each writer). The reader
needs to decide which of those tags is assigned to the latest potentially completed write operation. For
this purpose it uses a predicate similar to PW:

PR: Reader predicate for a read p: 3 7, B, M.S, where: max(1) € USeQ inprogressg(p), B C Q,0 <
|B| < 5 —2,and MS = {s:5€ Q A T € inprogress,(p)}, s.t. either |[B| # 0 and IpNQ € MS or
|B| =0and Q = MS.

The predicate examines whether there is a tag for some write operation that is contained in the replies
of all servers in the intersection among the replying quorum % — 2 other quorums. Satisfaction of the
predicates for a tag 7 assigned to some write operation, guarantees that any subsequent operation will
also determine that the write operation is assigned tag 7. A read operations can be fast even if PR
does not hold, but the read observed enough con firmed tags with the same value. Confirmed tags are
maintained in the servers and they indicate that either the write of the value with that tag is complete,

or the tag was returned by some read operation.

The interested reader can see [7] for full details.

3.3 Algorithm APRX-SFwW

The complexity of the predicates in SFw raised the question whether they can be computed efficiently. In
a recent work [10] (see also [11]) we have shown that both predicates are NP-Complete. To prove the NP-
completeness of the predicates, we introduced a new combinatorial problem, called k-SET-INTERSECTION,
which captured both PW and PR. An approximate solution to the new problem could be obtained
polynomially by using the approximation algorithm for the set cover. The steps of the approximation
algorithm are:

Given (U, M,Q, k):
Step 1: Ym e M
let T, ={(U-M)—(Q;— M) :meQ;}
Step 2: Run SET-COVER greedy algorithm on
the instance {U — M, T,,, k} for every m € M:
Step 2a: Pick the set R; € T, with
the maximum uncovered elements
Step 2b: Take the union of every R € T,,
picked in Step 2a (incl. R;)
Step 2c: If the union equals U — M go to Step 3;
else if there are more sets in T, go to Step 2a
else repeat for another m € M

Step 3: For any set (U — M) — (Q; — M) in the solution of set cover, add @; in the intersecting set.

Figure 1: Polynomial approximation algorithm for the k-SET-INTERSECTION.

By setting U = S, M to contain all the servers that replied with a particular tag in the first round of
a read or write operation, and k to be § —1 for PW and 5 —2 for PR, we obtain an approximate solution
for SFw. The new algorithm, called APRX-SFW, inherits the read, write, and serve protocols of SFw and
uses the above approximation algorithm for the evaluation of the PW and PR predicates. APRX-SFW

promises to validate the predicates only when SFw validates the predicates (preserving correctness), and
yields a factor of log |S| increase on the number of second communication rounds. This is a modest price
to pay in exchange for substantial reduction in the computation overhead of algorithm SrFw.

3.4 Algorithm CwFR

A second limitation of SFWw is its reliance to specific constructions of quorums to enable fast read and write
operations. Algorithm CWwFR, presented in [10] (see also [12]), is designed to overcome this limitation,
yet trying to allow single round read and write operations. While failing to enable single round writes,
CWwWFR enables fast read operations by adopting the general idea of Quorum Views [13]. The algorithm
employs two techniques:(i) the typical query and propagate approach (two rounds) for write operations,
and (ii) analysis of Quorum Views [13] for potentially fast (single round) read operations.

Quorum Views are client side tools that, based on the distribution of a tag in a quorum, may determine
the state of a write operation: completed or not. In particular, there are three different classes of quorum
views. ¢View(1) requires that all servers in some quorum reply with the same tag revealing that the
write operation propagating this tag has potentially completed. ¢View(3) requires that some servers in
the quorum contain an older value, but there exists an intersection where all of its servers contain the new
value. This creates uncertainty whether the write operation has completed in a neighboring quorum or
not. Finally gView(2) is the negation of the other two views and requires a quorum where the new value
is neither distributed to the full quorum nor distributed fully in any of its intersections. This reveals that
the write operation has certainly not completed.

Algorithm CwFR incorporates an iterative technique around quorum views that not only predicts
the completion status of a write operation, but also detects the last potentially complete write operation.
Below we provide a description of our algorithm and present the main idea behind our technique.

Write Protocol: The write protocol has two rounds. During the first round the writer discovers the
maximum tag among the servers: it sends read messages to all servers and waits for replies from all
members of some quorum. It then discovers the maximum tag among the replies and generates a new
tag in which it encloses the incremented timestamp of the maximum tag, and the writer’s identifier. In
the second round, the writer associates the value to be written with the new tag, it propagates the pair
to some quorum, and completes the write.

Read Protocol: The read protocol is more involved. The reader sends a read message to all servers and
waits for some quorum to reply. Once a quorum replies, the reader determines maxT ag. Then the reader
analyzes the distribution of the tag within the responding quorum @) in an attempt to determine the latest,
potentially complete, write operation. This is accomplished by determining the quorum view conditions.
Detecting conditions of ¢View(1) and ¢View(3) are straightforward. When condition for ¢qView(1) is
detected, the read completes and the value associated with the discovered mazTag is returned. In the
case of ¢View(3) the reader continues to the second round, advertising the latest tag (maxTag) and its
associated value. When a full quorum replies in the second round, the read returns the value associated
with maxTag. Analysis of gView(2) involves the discovery of the earliest completed write operation.
This is done iteratively by (locally) removing the servers from) that replied with the largest tags. After
each iteration the reader determines the next largest tag in the remaining server set, and then re-examines
the quorum views in the next iteration. This process eventually leads to either ¢View(1) or ¢View(3)
being observed. If ¢View(1) is observed, then the read completes in a single round by returning the value
associated with the maximum tag among the servers that remain in Q. If ¢View(3) is observed, then
the reader proceeds to the second round as above, and upon completion it returns the value associated
with the maximum tag maxTag discovered among the original respondents in Q).

Server Protocol: The servers play a passive role. They receive read or write requests, update their
object replica accordingly, and reply to the process that invoked the operation. Upon receipt of any
message, the server compares its local tag with the tag included in the message. If the tag of the message

is higher than its local tag, the server adopts the higher tag along with its corresponding value. Once
this is done the server replies to the invoking process.

3.5 Algorithm Overview

Table 1 accumulates the communication and computation burdens of the four algorithms we consider.
The name of the algorithm appears in the first column of the table. The second and third columns
of the table shows how many rounds are required per write and read operation respectively. The next
two columns present the computation required by each algorithm and the last column the technique the
algorithm incorporates to decide on the values read/written on the atomic register.

’ 7 Algorithm ‘ WR ‘ RR ‘ RC ‘ WC ‘ Decision Tool
SIMPLE 2 2 O(|S)) O(|S)) Highest Tag
SFwW lor2|1lor2 o201y o(21%-1) Predicates
APRX-SFW lor2 | 1or2 | O(W|S]?IQ]) | O(S|?IQ]) Predicate Approximation
CwFRr 2 1or2 O(|S1]1Q)) O(|S)) Quorum Views / Highest Tag

Table 1: Comparison of the four algorithms.

4 NS2-Simulation

In this section we describe in detail our NS2 simulations. We provide some basic details about the
NS2 simulator and then we present our testbed. Following our testbed, we present the parameters we
considered and the scenarios we run for our simulations.

4.1 The NS2 Network Simulator

NS2 is a discrete event network simulator [2]. It is an open-source project built in C++ that allows
users to extend its core code by adding new protocols. Because of its extensibility and plentiful online
documentation, NS2 is very popular in academic research. Customization of the NS2 simulator allows
the researcher to obtain full control over the event scheduler and the deployment environment. Complete
control over the simulation environment and its components will help us investigate the exact parameters
that are affected by the implementation of the developed algorithms. Performance of the algorithms
is measured in terms of the ratio of the number of fast over slow R/W operations (communication
burden), and the total time it takes for an operation to complete (communication + computation =
operation latency). Measurements of the performance involves multiple execution scenarios; each scenario
is dedicated in investigating the behavior of the system affected by a particular system characteristic.
The following system components will be used to generate a variety of simulation executions and enable
a more comprehensive evaluation of the developed algorithms. Notice that each component affects a
different aspect of the modeled environment. Thus, studying executions affected by the variation of a
single or multiple components are both of great importance.

4.2 Experimentation Platform

Our test environment consists of a set of writers, readers, and servers. Communication between the nodes
is established via bidirectional links, with:

e 1Mb bandwidth,

e latency of 10ms, and

e DropTail queue.

To model local asynchrony, the processes send messages after a random delay between 0 and 0.3 sec. We
ran NS2 in Ubuntu, on a Centrino 1.8GHz processor. The average of 5 samples per scenario provided
the stated operation latencies.

We have evaluated the algorithms with majority quorums. As discussed in [7], assuming |S| servers
out of which f can crash, we can construct an (% — 1)-wise quorum system Q. Each quorum @ of Q has
size |Q| = |S| — f. The processes are not aware of f. The quorum system is generated a priori and is
distributed to each participant node via an external service (out of the scope of this work).

We model server failures by selecting some quorum of servers (unknown to the participants) to be
correct and allowing any other server to crash. The positive time parameter cInt is used to model the
failure frequency or reliability of every server s. For our simulations we initialize cInt to be equal to the
one third of the total simulation time. Each time a server checks for failure, it cuts cInt in half until
it becomes less than one. A failure is generated as following. First, the server determines whether it
belongs in the correct quorum. If not the server sets its crash timeout to cInt. Once cInt time is passed,
the server picks a random number between 0 and 100. If the number is higher than 95 then the server
stops. In other words a servers has 5% chance to crash every time the timer expires.

We use the positive time parameters rint = 4sec and wint = 4sec to model operation frequency.
Readers and writers pick a uniformly at random time between [0...rInt] and [0...wInt], respectively,
to invoke their next read (resp. write) operation.

Finally we specify the number of operations each participant should invoke. For our experiments we
allow participants to perform up to 25 operations (this totals to 500-4000 operations in the system).

4.3 Scenarios

The scenarios were designed to test (i) scalability of the algorithms as the number of readers, writers and
servers increases, (ii) the relation between quorum system deployment and operation latency, and (iii)
whether network delays may favor the algorithms that minimize the communication rounds. In particular
we consider the following parameters:

1. Number of Participants: We run every test with 10, 20, 40, and 80 readers and writers. To
test the scalability of the algorithms with respect to the number of replicas in the system we run
all of the above tests with 10, 15, 20, and 25 servers. Such tests highlight whether an algorithm is
affected by the number of participants in the system. Changing the number of readers and writers
help us investigate how each algorithm handles an increasing number of concurrent read and write
operations. The more the servers on the other hand, the more concurrent values may coexist in the
service. So, algorithms like APRX-SFwW and CWFR, who examine all the discovered values and do
not rely on the maximum value, may suffer from local computation delays.

2. Quorum System Construction: As mentioned in Section 4.2 we use majority quorums as they
can provide quorum systems with high intersection degree. So, assuming that f servers may crash
we construct quorums of size |S| — f. As the number of servers |S| varies between 10,15,20, and 25,
we run the tests for two different failure values, i.e. f =1 and f = 2. This affects our environment
in two ways:

(i) We get quorum systems with different quorum intersection degrees. According to [7] for every
given § and f we obtain a (% — 1)-wise quorum system.
(ii) We obtain quorum systems with different number of quorum members. For example assuming

15 servers and 1 failure we construct 15 quorums, whereas assuming 15 servers and 2 failures
we construct 105 different quorums.

Changes on the quorum constructions help us evaluate how the algorithms handle various intersec-
tion degrees and quorum systems of various memberships.

3. Network Latency: Operation latency is affected by local computation and communication delays.
As the speed of the nodes is the same, it is interesting to examine what is the impact of the network
latency on the overall performance of the algorithms. In this scenario we examine whether higher
network latencies may favor algorithms (like CWFR and APRX-SFW) that, although they have high
computation demands, they allow single round operations. For this scenario we change the latency
of the network from 10ms to 500ms and we deploy a 6-wise quorum construction.

Another parameter we experimented with was operation frequency. Due to the invocation of op-
erations in random times between the read and write intervals as explained in Section 4.2, operation
frequency varies between each and every participant. Thus, fixing different initial operation frequencies
does not have an impact of the overall performance of the algorithms. For this reason we avoided running
our experiments over different operation frequencies.

5 Simulation Results

In this section we discuss our findings. First we compare the operation latency in algorithms SFw with
APRX-SFW to examine our theoretical claims about the computational hardness of the two algorithms.
Then we compare algorithms CWFR, APRX-SFW, and SIMPLE to establish conclusions on the overall per-
formance (including computation and communication) of the algorithms. All the plots of our simulations
appear in the Appendix. In the following sections we make clear references to those plots.

5.1 Algorithm SFwW vs. APRX-SFW

In [10] the authors showed that the predicates used by SFw were NP-complete. That motivated the intro-
duction of the APRX-SFW approximation algorithm, that could provide a polynomial, log approximation
solution to the computation of the read and write predicates used in SFw. To provide an experimental
proof of the results presented in [10] we implemented both algorithms in NS2. We run the two algorithms
using different environmental parameters and we observed the latency of read and write operations in any
of those cases. In particular we run scenarios with |R| € [10, 20, 40, 80] readers, with |[W| = [10, 20, 40]
writers, and with |S| = [10, 15, 20] servers where f = 1 may crash. The exceedingly large delay of SFw
in scenarios with many servers and writers prevented us from obtaining results for bigger S and W. The
results we managed to obtain however were enough to reveal the difference between the two approaches.
The plots of our results appear in Appendix A.

Figure 2 presents a specific scenario where |R| = |W| = 20. Examining the latency of the two
algorithms, including both communication and computation costs, provides evidence of the heavy com-
putational burden of algorithm SFw. It appears that the average latency of the read operations (Figure 2
right column) in algorithm SFw grows exponentially with respect to the number of servers (and thus
quorum members) in the deployed quorum system. As it appears in the figure, the average latency for
every read in SFW was little lower than 200sec when using 15 quorums, and then it exploded close to
1200sec when the number of quorums is 20. On the other hand the average latency of read operations in
APRX-SFW grows very slowly. The average number of slow reads as it appears on the left plot of Figure 2
shrinks as the number of quorums grows, for both algorithms. Notice that as the number of servers grows
the intersection degree which is equal to n = ('%l — 1) grows as well since f is fixed to 1. From the figure
we also observe that although the approximation algorithm may invalidate the predicate when there is
actually a solution, its average of slow reads does not diverge from the average of slow reads in SFw.
This can be explain from the fact that read operations may be fast even when the predicate does not
hold, but there is a confirmed tag propagated in sufficient servers.

20 Readers, 20 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr20.nw20.f1.2D plot Read Latency vs # of Servers: SL.nr20.nw20.f1.2D plot
40 T T T T 1200 T T T T
SFW —+— SFW —+—
APRX-SFW --x-—- APRX-SFW -~

38 —

) 1000 q
36
34
800 |- 1
32

30 600 [q

%2comm-reads

28

ReadLatency in seconds

400 |- q
26

24

22

20 L L L L 0 T L L
10 12 14 16 18 20 10 12 14 16 18 20

#Quorums #Quorums

Figure 2: Left Column: Percentage of slow reads, Right Column: Latency of read operations

10 Readers:

% of Slow Writes vs # of Writers: WR.nr10.all.PROTO.rounds.maj15.f1.data.2D plot Write Latency vs # of Writers: WL.nr10.all. PROTO.rounds.maj15.f1.data.2D plot
100 T T T T T T 60

‘
— === SFW —+—
T APRX-SPW e

90
80 -

70

%2comm-writes

60

WriteLatency in seconds

50 ¥/

40 I I I I I I 0 I I I I I I
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80

#Writers #Writers

Figure 3: 14-wise quorum system (|S = 15, f = 1): Left Column: Percentage of slow writes, Right
Column: Latency of write operations

A writer performs two rounds only when the predicate does not hold. Thus, counting the number
of two-round writes reveals how many times the predicate does not hold for an algorithm. According to
our theoretical findings, algorithm APRX-SFW should allow no more than log|S|- RR two-round reads or
log |S| - WR two-round writes in each scenario, where RR and W R are the number of two-round reads
and writes allowed by the algorithm, respectively. Our experimental results are within the theoretical
upper bound, illustrating the fact that algorithm APRX-SFW implements a log |S|-approximation relative
to algorithm SFw. Figure 3 presents the average amount of slow writes and the average write latency
when we fix [R| = 10, |S| = 15 and f = 1. The number of writers vary from |W| = [10, 20, 40, 80]. This is
one of the few scenarios we could run SFw with 80 writers. As we can see the two algorithm experience
a huge gap on the completion time of each write operation. Surprisingly, APRX-SFW appears to win
on the number of slow writes as well. Even though we would expect that APRX-SFW would contain
more slow writes than SFW this is not an accurate measure of the predicate validation. Notice that read
operations may be invoked concurrently with write operations, and each read may also propagate a value
in the system. This may favor or delay write operations. As the conditions on which the write operations
try to evaluate their predicates are difficult to find, it suffices to observe that there is a small gap on

10

the number of rounds for each write for the two algorithms. Thus we claim the clear benefit of using
algorithm APRX-SFW over algorithm Srw.

5.2 Algorithm SIMPLE vs. CWFR vs. APRX-SFW

In this section we compare algorithm APRX-SFw with algorithm CwFR. To examine the impact of
computation on the operation latency, we compare both algorithms to algorithm SIMPLE. Recall that
algorithm SIMPLE requires insignificant computation. Thus, the latency of an operation in SIMPLE directly
reflects four communication delays (i.e., two rounds).

In the next paragraphs we present how the read and write operation latency is affected by the scenarios
we discussed in Section 4.3. A general conclusion that can be extracted from the simulations is that in
most of the tests algorithms APRX-SFW and CWFR perform better than algorithm SIMPLE. This suggests
that the additional computation incurred in these two algorithms does not exceed the delay associated
with a second communication round.

Variable Participation: For this scenario we tested the scalability of the algorithms when the number
of readers, writers, and servers changes. The plots that appear in the Appendices B and C present the
results of this scenario for the read and write performance respectively.

The plots in Appendix B present how the performance of read operation is affected as we change the
number of readers. Each figure contains the plots we obtain when we fix the number of servers and server
failures, and we vary the number of readers and writers. So, for instance, Figure 4 fixes the number of
servers to |S| = 10, and f = 1. Each row of the figure fixes the number of writers and varies the number
of readers. Therefore we obtain four rows corresponding to |[W| € [10, 20,40, 80]. Each row in a figure
contains a pair of plots that presents the percentage of slow reads (left plot) and the latency of each read
(right plot) as we increase the number of readers.

From the plots we observe that the read performance of neither algorithm is affected a lot by the
number of readers in the system. On the other hand we observe that the number of writers seem to have
an impact on the performance of the APRX-SFW algorithm. As the number of writers grow we observe
that both the number of slow read operations and inevitably the latency of read operations for APRX-SFW
increases. Both CWFR and APRX-SFW require fewer than 20% of reads to be slow when no more than
20 writers exist in the service. That is true for most of the server participation scenarios and leaves the
latency of read operations for the two algorithms below the latency of read operations in SIMPLE. That
suggests that the computation burden does not exceed the latency added by a second communication
round. Once the number of writers grows larger than 40 the read performance of APRX-SFW degrades
both in terms the number of slow reads and the average latency of read operations.

Unlike APRX-SFW, algorithm CWFR is not affected by the participation of the service. The number
of slow reads seem to by sustained below 30% in all scenarios and the average latency of each read remains
under the 2 second marking. APRX-SFW over-performs CWFR only when the intersection degree is large
and the number of writers is small.

Our outcomes can be seen in Figure 4. The 20-wise intersection allows APRX-SFW to enable more
single round read operations. Due to computation burden however the average latency of each read in
APRX-SFW is almost identical to the average read latency in CWFR. It is also evident that the reads
in APRX-SFW are greatly affected by the number of writers in the system. That was expected as by
APRX-SFW, each read operation may examine a single tag per writer. From the plots on the second row
of Figure 4 we observe that although close to half reads are fast the average read latency of APRX-SFw
exceeds the average latency of SIMPLE, or otherwise the average latency of 2 communication rounds. This
is evidence that the computation time of APRX-SFW exceeded by a great margin the time required for a
communication round.

Similar to the read operations, the performance of write operations is not affected by the number
of reader participants. It is affected however by both the number of writers and servers in the system.

11

10 Writers:

% of Slow Reads vs # of Readers: RR.nw10.all.PROTO.rounds.ma;j20.f1.data.2D plot Read Latency vs # of Readers: RL.nw10.all. PROTO.rounds.maj20.f1.data.2D plot
100 f T f T T T 3 T T T T T T
SIMPLE —+— SIMPLE —+—
CWFR —>-- | [CWER -
o L APRX-SFW -~ | APRX-SFW ------

2.8 q

80 B
26 —
70 —

60 i 24 q

ReadLatency

22 —

%2comm-reads

40 + g

30 | —

[R-F S — e
16 1 1 1 1 1 1
10 20 30 40 50 60 70 80
#Readers #Readers
.
80 Writers:
% of Slow Reads vs # of Readers: RR.nw80.all.PROTO.rounds.maj20.f1.data.2D plot Read Latency vs # of Readers: RL.nw80.all. PROTO.rounds.maj20.f1.data.2D plot
100 f T f T T T 32 T T T T
SIMPLE —+— SIMPLE —+—
CWFR - CWFR -
9 | APRX-SFW % 3l R N APRX-SFW ---%--- |
A e ——]
80 | — 28 L i
70 b
26 g
& 60 4
= >
§ 2 24t]
z b ©
£ 50 - 2
§ g 22t g
X 40 | a 13
2k 1
30 q
20 | B 18 —
10 i 16 g |
,,,,,,,,,,,,, SO —
0 1 1 1 1 1 1 14 1 1 1 1 1 1
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Readers #Readers

Figure 4: Plots from Figure 15 - 19-wise quorum system (|S = 20, f = 1): Left Column: Percentage of
slow reads, Right Column: Latency of read operations

The only algorithm that allows single round write operations is APRX-SFW. The number of writers and
servers however, introduce high computation demands for the write operations and as a result, despite
the fast writes, the average write latency of APRX-SFW can be higher than the average write latency of
the other two algorithms. Note here that unlike the read operations, writes can be fast in APRX-SFw
only when the write predicate holds. This characteristic can be also depicted from the plot presented in
Figure 5 (part of Figure 25) where the 4-wise intersection does not allow for the write predicate to hold.
Thus, every write operation in APRX-SFW performs two communication round in this case. The spikes
on the latency of the write operations in the same figure appear due to the small range of the values and
the small time inconsistency that may be caused by the simulation randomness.

Quorum Construction: We consider majority quorums due to the property they offer on their in-
tersection degree [7]: if |S| the number of servers and up to f of them may crash then if every quorum
has size |S| — f we can construct a quorum system with intersection degree n = IS, Using that
property we obtain the quorum systems presented on Table 6 by modifying the number of servers and
the maximum number of server failures.

In Appendix D we plot the performance of read and write operations (communication rounds and
latency) with respect to the number of quorum members in the quorum system. Each figure contains

12

20 Readers:

% of Slow Writes vs # of Writers: WR.nr20.all.PROTO.rounds.maj10.f2.data.2D plot Write Latency vs # of Writers: WL.nr20.all. PROTO.rounds.maj10.f2.data.2D plot
101 T T T T T T 226 T T T T T T

SIMPLE —+— SIMPLE —+— _
CWFR ---x--- CWFR --=~"

APRX-SFW -~ APRX-SFW k-

224 = T

100.5 - q

100

%2comm-writes
WriteLatency

99.5 —

99 1 1 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers

Figure 5: 4-wise quorum system (|S = 10, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

Servers | Server Failures | Int. Degree | Quorums
S| f n Q|
10 1 9 10
15 1 14 15
20 1 19 20
25 1 24 25
10 2 4 45
15 2 6 105
20 2 9 190
25 2 11 300

Figure 6: Quorum system parameters.

four pairs of plots. The first two pairs correspond to the quorum system that allows a single server failure
whereas the bottom two pairs correspond to the quorum system that allows up to two server failures. For
each type of quorum system the top pair describes the performance of read operations while the bottom
pair the performance of write operations. Lastly, the left plot in each pair presents the percentage of slow
read/write operations, and the right plot the latency of each operation respectively.

We observe from the plots that the incrementing number of servers, and thus cardinality of the quorum
system, reduces the percentage of slow reads for both APRX-SFw and CwWFR. Operation latency on the
other hand is not proportional to the reduction on the amount of slow operations. Both algorithms APRX-
SFrw and CWFR experience an incrementing trend on the latency of the read operations as the number of
servers and the quorum members increases. Worth noting that the latency of read operations in SIMPLE
also follows an increasing trend even though every read operation requires two communication rounds
to complete. This is evidence that the increase on the latency is partially caused by the communication
between the readers and the servers: as the servers increase in number the readers need to send and
wait for more messages. The latency of read operations in CWFR is not affected greatly as the number
of servers changes. As a result, CWFR appears to maintain a read latency close to 1.5 sec in every
scenario. With this read latency CWFR over-performs algorithm SIMPLE in every scenario as the latter
maintains a read latency between 2.5 and 3 sec. Unlike CWFR, algorithm APRX-SFW experiences a more
aggressive change on the latency of read operations. The read latency in APRX-SFW is affected by both

13

40 Readers, 80 Writers, f=2:

% of Slow Reads vs # of Servers: SR.nr40.nw80.f2.data.2D plot Read Latency vs # of Servers: SL.nr40.nw80.f2.data.2D plot
100 T T T T T 12 T T T
SIMPLE —+—
Honenmmenm TR CWFR -~ ;
90 T APRX-SFW % 1 -
e
80 E 0r T
of 1
70 | g
8 1
« [i E
g 60 >
2 § 7Tt 4
£ L i =
E 50 2
<] @ 6 —
< 3 L
L 40l i 4
5 - 1
30 | oy R e
4+ i
20 -
I - 3k)
-------- S | e — |
TG e — 1 2k 1
o
0 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
#Quorums #Quorums
% of Slow Writes vs # of Servers: SR.nr40.nw80.f2.data.2D plot Write Latency vs # of Servers: SL.nr40.nw80.f2.data.2D plot
100 5.5 T T T T T
SIMPLE —+— SIMPLE —+—
. CWFR - CWFR -
" APRX-SFW - APRX-SFW -
99.95 R sl A
99.9 g
g 45+ q
g 98| 4
g 5 al]
i * 2
E 9981 K g =
g £ s *
99.75 i
3k 1
99.7 - 4
Koo L
99.65 | A 25
99.6 1 1 1 1 1 2 1 1 1 1 1
0 50 100 150 200 250 300 0 50 100 150 200 250 300
#Quorums #Quorums

Figure 7: Left Column: Percentage of slow operations, Right Column: Latency of operations

the number of quorums in the system, and the number of writers in the system. As a result the latency
of read operations in APRX-SFW in conditions with a large number of quorum members and writers may
exceed the read latency of SIMPLE up to 5 times. The reason for such performance is that every read
operation in APRX-SFW the reader examines the tags assigned to every writer and for every tag runs the
approximation algorithm on a number of quorums in the system. The more the writers and the quorums
in the system, the more time the read operation takes to complete.

Similar observations can be made for the write operations. Observe that although both CwFRr and
SIMPLE require two communication rounds per write operation, the write latency in these algorithms is
affected negatively by the increase of the number of quorums in the system. As we said before this is
evidence of the higher communication demands when we increase the number of servers. We also note
that the latency of the write operations in SIMPLE is almost identical to the latency of the read operations
of the same algorithm. This proves the fact that the computation demands in either operation is also
identical. As for APRX-SFW we observe that the increase on the number of servers reduces the amount
of slow write operations. The reduction on the amount of the slow writes however, is not proportional
to the latency of each write. Thus, the average write latency of APRX-SFW increases as the number
of quorums increases in the system. Interestingly however, unlike the latency of read operations, the
latency of writes do not exceed the write latency of SIMPLE by more than 3 times. Comparing with the
latency of read operations it appears that although APRX-SFW may allow more fast read operations than
writes under the same conditions, the average latency of each read is higher than the latency of write
operations. An example of this behavior can be seen in Figure 7 (part of Figure 43). In this example

14

20 Writers:

% of Slow Reads vs # of Readers: RR.nw20.al.PROTO.rounds.maj15.f2.L500ms.data.2D plot Read Latency vs # of Readers: RL.nw20.all.PROTO.rounds.maj15.f2.L500ms.data.2D plot
100 f T f T T T 85 T T T T
SIMPLE —+— r— @ SIMPLE —+—
CWFR - CWFR -
APRX-SFW - APRX-SFW -
% E sl]
80 q
75 —
ke Hooeeoe
g 0T q S 5 4
¢ E T 1
£ L] g
g 60 g
] @
< * Koo g 65 q
S ETTTT T E
50 |- B
6 1
40 q
30 b p 55 b
SRR emnn
Py — I e s I 5
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Readers #Readers
% of Slow Reads vs # of Readers: RR.nw20.all. PROTO.rounds.maj15.f2.data.2D plot Read Latency vs # of Readers: RL.nw20.all. PROTO.rounds.maj15.f2.data.2D plot

100 t T t T T T

CWFR e - CWFR
APRX-SFW - APRXSFW - %---
% R

23 q
80 | —

22 —

21 q

%2comm-reads
ReadLatency

50 |- —
19 - —

40 1 18]

30 h L f I h I 1.7 hmmzzmzoos — i * t L i

#Readers #Readers

Figure 8: 6-wise quorum system (|S| = 15, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

less than 90% of reads need to be slow and the average read latency climbs to almost 12 seconds. On
the other hand almost every write operation is slow and the average write latency climbs just above 5
seconds. The simple explanation for this behavior lie on the evaluation of the read and write predicates.
Each reader needs to examine the latest tags assigned to every writer in the system whereas each writer
only examines the tags assigns to its own write operation.

Network Latency: During our last scenario we considered increasing the latency of the network in-
frastructure from 10ms to 500ms. With this scenario we want to examine whether in slow networks is
more preferable to minimize the amount of rounds, even if that means higher computation demands. The
results of this scenario appear in Appendix E. We considered just a single setting for this scenario where
the number of servers is 15, the maximum number of failures is 2 and we pick the number of readers and
writers to be one of [10, 20, 40, 80].

In order to establish meaningful conclusions we need to compare the outcomes of the operation
performance of this scenario with the respective scenario where the latency is 10ms. We notice that the
largest network delay reduces the amount of slow reads for both CWFR and APRX-SFw. In addition
the delay indeed helps APRX-SFW to perform better than SIMPLE in scenarios where APRX-SFW was
performing identical or worse than SIMPLE when the delay was 10ms. This can be seen in Figure 8
(part of Figure 45). As we can see in the figure the latency of the read operations of APRX-SFW was
aligning with the read latency of SIMPLE when the delay was 10ms. When we increased the network

15

delay to 500ms the average read latency of APRX-SFW was remarkably smaller than the average latency
of SIMPLE under the same participation and failure conditions. Similar observations can be made for the
write operations as can be seen in Figures 47 and 48.

So we can safely conclude that the network delay can be one of the factors that may affect the decision
on which algorithm is suitable for a particular application.

6 Conclusions

This work experimentally compares the operation latency of four MWMR atomic register algorithms
designed for the asynchronous, failure prone, message passing environment. The experiments involved
the implementation and evaluation of the algorithms on the NS2 network simulator. At first we provided
a comparison between algorithm SFw and APRX-SFW. Then we compared the performance algorithms
CwWFR,APRX-SFW and SIMPLE. Under the controlled environment offered by NS2 we were able to
manipulate and test the algorithms under various environmental conditions, and extract valuable data
regarding the characteristics of the three approaches. In particular, we tested the scalability of the
algorithms by varying the number of readers, writers and servers in the system. Apart from scalability
we tested how the performance of the algorithms is affected when deploying different quorum systems
and when we increase the delay of the underlying network.

The comparison between algorithm SFw over the approximation algorithm APRX-SFW demonstrated
the computation gap between the two algorithms. The results for CWFR,APRX-SFW and SIMPLE, sug-
gested that algorithms CwFR and APRX-SFW over-perform algorithm SIMPLE in most scenarios we
tested. From our experiments we observed that the number of writers, servers and quorums in the
system can have a negative impact on both the number of slow operations, and the operation latency
especially on APRX-SFW. The algorithms CWFR and SIMPLE are also affected, but insignificantly. This
behavior agrees with our theoretical bounds presented in Table 1. According to the table the computation
of every read operation in APRX-SFW is affected by the number of writers, servers, and quorums in the
system. This explains the difference from CWFR and SIMPLE whose read operation is not affected by the
number of writers in the system. Similar for the write operations where APRX-SFW is affected by both
the number of servers and the quorums in the system. A factor that favors APRX-SFW is the intersection
degree of the underlying quorum system. We observed that large intersection degrees allowed for more
fast read operations and as a result the latency of APRX-SFW was sometimes over-performing the latency
of CWFR. Finally, the network delay has a negative impact on the operation latency of every algorithm
we tested. We observed however, that network delays promote in some cases the use of algorithms with
high computation demands that minimize the communication rounds, like algorithm APRX-SFw.

The next step is to better evaluate the practicality of the examined algorithms by deploying them on
a real-time planetary scale environment, such as Planetlab [1]. In Planetlab the algorithms will adhere
to the constraints imposed by the networked environment. Thus, we expect to obtain a better picture on
the realistic performance of the algorithms as they will be tested under realistically adverse conditions.

Acknowledgments. We thank Alexander Russell and Alexander A. Shvartsman for helpful discussions.

References
[1] PlanetLab: A planetary-scale networked system, http://www.planet-lab.org.
[2] NS2 network simulator. http://www.isi.edu/nsnam/ns/.

[3] ATTIvA, H., BAR-NOY, A., AND DOLEV, D. Sharing memory robustly in message passing systems.
Journal of the ACM 42(1) (1996), 124-142.

16

[4]

[10]

[11]

[14]

CHOCKLER, G., GILBERT, S., GRAMOLI, V., MUSIAL, P. M., AND SHVARTSMAN, A. A. Recon-

figurable distributed storage for dynamic networks. Journal of Parallel and Distributed Computing
69, 1 (2009), 100-116.

DoLev, S., GILBERT, S., LYNCH, N., SHVARTSMAN, A., AND WELCH, J. Geoquorums: Imple-
menting atomic memory in mobile ad hoc networks. In Proceedings of 17th International Symposium

on Distributed Computing (DISC) (2003).

Durta, P., GUERRAOUI, R., LEVY, R. R., AND CHAKRABORTY, A. How fast can a distributed

atomic read be? In Proceedings of the 23rd ACM symposium on Principles of Distributed Computing
(PODC) (2004), pp. 236-245.

ENGLERT, B., GEOrRGIOU, C., MUsiAL, P. M., NicoLAoU, N., AND SHVARTSMAN, A. A. On the
efficiency of atomic multi-reader, multi-writer distributed memory. In Proceedings 13th International
Conference On Principle Of DIstributed Systems (OPODIS 09) (2009), pp. 240-254.

ENGLERT, B., AND SHVARTSMAN, A. A. Graceful quorum reconfiguration in a robust emulation

of shared memory. In Proceedings of International Conference on Distributed Computing Systems
(ICDCS) (2000), pp. 454-463.

FaN, R., AND LyNcH, N. Efficient replication of large data objects. In Distributed algorithms (Oct
2003), F. E. Fich, Ed., vol. 2848/2003 of Lecture Notes in Computer Science, pp. 75-91.

GEORGIOU, C., NICcOLAOU, N., RUSSEL, A., AND SHVARTSMAN, A. A. Towards feasible implemen-
tations of low-latency multi-writer atomic registers. In 10th Annual IEEFE International Symposium
on Network Computing and Applications (August 2011).

GEORGIOU, C., NicorLAaou, N., RUSSEL, A., AND SHVARTSMAN, A. A. Towards feasible imple-
mentations of low-latency multi-writer atomic registers. Tech. Rep. TR-11-03, Dept. of Computer
Science, University of Cyprus, Cyprus, March 2011.

GEORGIOU, C., AND NicorLAoU, N. C. Algorithm cwFRr: Using quorum views for fast reads in the
MWMR setting. Tech. Rep. TR-10-05, Dept. of Computer Science, University of Cyprus, Cyprus,
December 2010.

GEORGIOU, C., NicorLAou, N. C.; AND SHVARTSMAN, A. A. On the robustness of (semi) fast
quorum-based implementations of atomic shared memory. In DISC ’08: Proceedings of the 22nd
international symposium on Distributed Computing (Berlin, Heidelberg, 2008), Springer-Verlag,
pp- 289-304.

GEORGIOU, C., NicoLAou, N. C., AND SHVARTSMAN, A. A. Fault-tolerant semifast implemen-
tations of atomic read/write registers. Journal of Parallel and Distributed Computing 69, 1 (2009),
62-79. A preliminary version of this work appeared in the proceedings 18th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA’06).

GRAMOLI, V., ANCEAUME, E., AND VIRGILLITO, A. SQUARE: scalable quorum-based atomic
memory with local reconfiguration. In SAC ’07: Proceedings of the 2007 ACM symposium on Applied
computing (New York, NY, USA, 2007), ACM, pp. 574-579.

LyNcH, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

LyNcH, N., AND SHVARTSMAN, A. RAMBO: A reconfigurable atomic memory service for dynamic
networks. In Proceedings of 16th International Symposium on Distributed Computing (DISC) (2002),
pp- 173-190.

17

[18] LyNcH, N. A., AND SHVARTSMAN, A. A. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant Computing

(1997), pp. 272-281.

18

Appendix: Figures

A SFw vs APRX-SFwW

The plots below illustrate the latency of read operations with respect to the size of the quorum system
under algorithms SFw and APRX-SFw. The left column of each figure presents the percentage of slow
read operations required by each algorithm.

19

10

9%2comm-reads

10

9%2comm-reads

10

%2comm-reads

Readers, 10 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr10.nw10.f1.2D plot

28 T T T T

#Quorums

Readers, 20 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr10.nw20.f1.2D plot
38 T T T

T sPw ——
N APRX-SFW X~
36

26
24

22

20

#Quorums

Readers, 40 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr10.nw40.f1.2D plot

50 T T T T
SFW —+—
APRX-SFW --x---

#Quorums

Figure 9: Left Column: Percentage of slow reads, Right Column: Latency

20

ReadLatency in seconds

ReadLatency in seconds

ReadLatency in seconds

450

Read Latency vs # of Servers: SL.nr10.nw10.1.2D plot

400

350

300

200

150 -

100

T
SFW
APRX-SFW

0
10

1200

#Quorums

Read Latency vs # of Servers: SL.nr10.nw20.f1.2D plot

1000 -

600

400

200

T
N

T sFw
APRX-SFW X~

14

#Quorums

Read Latency vs # of Servers: SL.nr10.nw40.f1.2D plot

10

14

#Quorums

of read operations

20

9%2comm-reads

20

9%2comm-reads

20

%2comm-reads

Readers, 10 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr20.nw10.f1.2D plot

28 T T T T

26

24 |

#Quorums

Readers, 20 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr20.nw20.f1.2D plot

40 T T T
JE—

" sFw
. APRX-SFW X~
38

20 L L L L

#Quorums

Readers, 40 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr20.nw40.f1.2D plot

28 T T T T
SFW —+—
APRX-SFW --x---

#Quorums

Figure 10: Left Column: Percentage

ReadLatency in seconds

ReadLatency in seconds

ReadLatency in seconds

Read Latency vs # of Servers: SL.nr20.nw10.f1.2D plot

450

400

350

300

200

150 -

100

50 -

T
SFW
APRX-SFW

0
10

1200

#Quorums

Read Latency vs # of Servers: SL.nr20.nw20.f1.2D plot

1000 -

600

200

T T T
N

T sFw
APRX-SFW -

12 14
#Quorums

Read Latency vs # of Servers: SL.nr20.nw40.f1.2D plot

10

#Quorums

of slow reads, Right Column: Latency of read operations

21

40 Readers, 10 Writers, f=1:

9%2comm-reads

40

9%2comm-reads

40

%2comm-reads

26

% of Slow Reads vs # of Servers: SR.nr40.nw10.1.2D plot

#Quorums

Readers, 20 Writers, f=1:

38

26

24

22

% of Slow Reads vs # of Servers: SR.nr40.nw20.f1.2D plot

T T T
JE—

" sFw
APRX-SFW X~

12 14 16 18 20
#Quorums

Readers, 40 Writers, f=1:

48

38

36

% of Slow Reads vs # of Servers: SR.nr40.nw40.f1.2D plot

Figure 11: Left Column: Percentage

12 14 16 18 20
#Quorums

22

ReadLatency in seconds

ReadLatency in seconds

ReadLatency in seconds

450

400

350

300

200

150

100

50

0
10

Read Latency vs # of Servers: SL.nr40.nw10.f1.2D plot

T
SFW
APRX-SFW

#Quorums

Read Latency vs # of Servers: SL.nr40.nw20.f1.2D plot

T T T
N

" sFw
APRX-SFW X~

10

#Quorums

Read Latency vs # of Servers: SL.nr40.nw40.f1.2D plot

10

#Quorums

of slow reads, Right Column: Latency of read operations

80

9%2comm-reads

80

9%2comm-reads

80

%2comm-reads

Readers, 10 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr80.nw10.1.2D plot

30 T T T T

w ‘ ‘ ‘ ‘
10 12 14 16 18 20
#Quorums
.
Readers, 20 Writers, f=1:
% of Slow Reads vs # of Servers: SR.nr80.nw20.f1.2D plot
38 T T T T
SFW —+—
APRX-SFW --%---
» ‘ ‘ ‘ ‘
10 12 14 16 18 20
#Quorums
.
Readers, 40 Writers, f=1:
% of Slow Reads vs # of Servers: SR.nr80.nw40.f1.2D plot
46 T T T T
SFW —+—
APRX-SFW --%---
36 1
34 I I I I -
10 12 14 16 18 20

#Quorums

Figure 12: Left Column: Percentage

ReadLatency in seconds

ReadLatency in seconds

ReadLatency in seconds

Read Latency vs # of Servers: SL.nr80.nw10.f1.2D plot

450

400

350

300

200

150 -

100

50 -

T
SFW
APRX-SFW

0
10

#Quorums

Read Latency vs # of Servers: SL.nr80.nw20.f1.2D plot

T T T
N

" sFw
APRX-SFW X~

10

#Quorums

Read Latency vs # of Servers: SL.nr80.nw40.f1.2D plot

10

#Quorums

of slow reads, Right Column: Latency of read operations

23

B Read Performance

Below we present the plots regarding the read performance under variable number of writers and quorum
constructions. In particular, we run the SIMPLE, CWFR, and APRX-SFW algorithms using quorum
constructions with eight different intersection degrees by setting the number of servers to 10, 15, 20, and
25, and by tolerating 1 and 2 server failures. We assume majority quorums, where each quorum @); has
size |Q;| = |S| — f, where f the maximum number of server failures. We test each quorum system, using
10,20, 40, and 80 readers and writers. By fixing the intersection degree and the number of writers a plot
depicts the performance of read operations as we increase the number of readers in the system. Such
plots help us determine the scalability of the algorithms in terms of reader participants.

24

10 Writers:

100

9

80

70

60

%2comm-reads

50

40

30

% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj10.f1.data.2D plot

SIMPLE ——

CWFR
APRX-SFW -

L L L L L L
10 20 30 40 50 60 70 80
#Readers

20 Writers:

100

9

80

70

60

%2comm-reads

50

40

30

% of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj10.f1.data.2D plot

') ')) SIMPLE —+—
CWFR --x—
APRX-SFW -
L N]
x- A
.
10 20 30 2 50 60 70 80
#Readers

40 Writers:

100

9

80

70

60

%2comm-reads

50
40

30

80

100
9
80
70
60

50

%2comm-reads

40

30

% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj10.f1.data.2D plot

' " ' " " SIMPLE ——
APRXSFW -
-
a ; i ;
10 20 30 40 50 60 70 80

#Readers

% of Slow Reads vs # of Readers: RR.nw80.all PROTO.rounds.maj10.f1.data.2D plot

SIMPLE ——

CWFR --x--

L APRXSFW % |
.

10 20 30 40 50 60 70 80

#Readers

ReadLatency

ReadLatency

ReadLatency

ReadLatency

Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj10.1.data.2D plot

CWFR
APRX-SFW -
.
10 20 30 20 50 60 70 80
#iReaders
Read Latency vs # of Readers: RL.nw20.all.PROTO.rounds.maj10.fL.data.2D plot
))))) SIMPLE ——
CWFR -
ol
L .]
L N
.
10 20 30 40 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nwa0.all.PROTO.rounds.maj10.fL.data.2D plot
))))) SIMPLE ——
CWFR
5 *
L «]
- n i L L L
10 20 30 40 50 60 70 80
4Readers
Read Latency vs # of Readers: RL.nw80.all.PROTO.rounds.maj10.fL. data.2D plot
j j j j j SIMPLE ——
o
L o
L L L L L L o
10 20 30 40 50 60 70 80

#Readers

Figure 13: 9-wise quorum system (|S| = 10, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

25

10

%2comm-reads

20

%2comm-reads

40

%2comm-reads

80

%2comm-reads

Figure 14: 14-wise quorum system (|S| = 15, f

Writers:

% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj15.f1.data.2D plot
100 + T + T T

SIMPLE ——

CWFR
s APRX-SFW -
80 - 4
70 - 4
60 - 4
50 - 4

a0 - B

30 4

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj15.f1.data.2D plot
100 + T + T T

SIMPLE —+—
FR -

CWFR -
APRX-SFW ----

30 | § +

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj15.f1.data.2D plot
100 + T + T T

SIMPLE ——

%0 APRXSFW x|

80 4

60 4

40 | —

10 L L L L L L
10 20 30 40 50 60 70 80

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw80.all PROTO.rounds.maj15.f1.data.2D plot
100 t T t T T

SIMPLE ——

CWFR
% APRX-SFW - -

70+ 4

60 4

50 - o]

40 1 R

0 L L L L L L
10 20 30 40 50 60 70 80

#Readers

Column: Latency of read operations

ReadLatency

ReadLatency

ReadLatency

ReadLatency

Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj15.f1.data.2D plot

SIMPLE ——
APRX-SFW -

#Readers

Read Latency vs # of Readers: RL.nw20.all PROTO.rounds.maj15.f1.data.2D plot

T s]

.
10 20 30 40 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nw40.all PROTO.founds.maj15.f1.data.2D plot

SIMPLE —+—
APRXSFW -
L * i
x
. |
10 20 30 40 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nw80.all PROTO.rounds.maj15.f1.data.2D plot
!) N ' ' SIMPLE ——
APRXSFW =
x
-
.
10 20 30 40 50 60 70 80

#Readers

1): Left Column: Percentage of slow reads, Right

26

10 Writers:

9% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj20.{1.data.2D plot Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj20.f1.data. 2D plot
100 + T + T T T 3 T T T T T T
SIMPLE —— SIMPLE —+—
CWFR -—-%---
%0 APRX-SFW - d
281 g
80 |- g
26| g
70 - —
8
§ 60 | d g 241 J
£ g
: 3
§ 50 b & a2t 1
40 - 4
21 1
30+ g
1.8 ¥
. *
10 h ; 16
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Readers #iReaders
20 Writers
.
9% of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj20.{1.data.2D plot Read Latency vs # of Readers: RL.nw20.all PROTO.rounds.maj20.f1.data. 2D plot
100 t T t T T T 3 T T T T T T
SIMPLE —— SIMPLE —+—
CWFR --%--- CWFR
% | APRX-SFW ---%--- | | — T APRXSEW x|
28} i
80 |- g
26| g
70 - —
§ eof] g 241 g
E <
ki
§ sl | E
§ & 22p 1
40 4 § o
Py 1
30 g
-
10 16
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Readers #Readers
.
40 Writers:
.
9% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj20.f1.data.2D plot Read Latency vs # of Readers: RL.nw40.all PROTO.rounds.maj20.fL.data. 2D plot
100 t T t T T T 3 T T T T T T
SIMPLE —— SIMPLE ——
%0 APRXSFW x|
28 —
80 |- g
26 | g
70 - —
8 > *
§ eof] g 24F i
E <
£ E
g 50 B S ol A
g B
40 q
- 2t g
30 g
18 | 1
20 g
n i i n 16
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Readers #Readers
9% of Slow Reads vs # of Readers: RR.nw80.all PROTO.rounds.maj20.f1.data.2D plot Read Latency vs # of Readers: RL.nw80.all PROTO.rounds.maj20.fL.data. 2D plot
100 t T t T T T 32 T T T T T T
SIMPLE —— SIMPLE ——
CWFR --x-- CWFR --x--
% APRX-SFW -+ o e APRX-SFW -
8o 7 28 4
70 g
26 1
8 60 - o
] 3
¥ E 24 1
£ sof 3
£ g .ol 1
8 g 2
£ 40 - o
21 1
30 - —
20l B 18 F 4
10} 1 16 E
0 14
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Readers #Readers

Figure 15: 19-wise quorum system (|S| = 20, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

27

10

%2comm-reads

20

%2comm-reads

40

%2comm-reads

80

%2comm-reads

Writers:

% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj25.f1.data.2D plot
100 + T + T T

SIMPLE ——

CWFR
APRX-SFW -
80 |- g
70 - -
60 |- 1
50 g
40 E

30 4

10 20 30 40 50 60 70 80
#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj25.f1.data.2D plot
100 + T + T T

SIMPLE —+—
FR -

CWFR -
s APRX-SFW -----

70+ 4
50 4

40 4

30 4

10 L L L L L L
10 20 30 40 50 60 70 80

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj25.f1.data.2D plot
100 + T + T T

SIMPLE ——

% APRX-SFW ------ o

80 4

50 4

40 1 R

30 ’]

20 | 4

#Readers

Writers:

9% of Slow Reads vs # of Readers: RR.nw80.all PROTO.rounds.maj25.f1.data.2D plot
100 t T t T T

SIMPLE ——

CWFR
% APRX-SFW - -

70+ 4
60 4
50 | 4

40 1 R

0 L L L L L L
10 20 30 40 50 60 70 80

#Readers

ReadLatency

ReadLatency

ReadLatency

ReadLatency

N
@

Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj25.f1.data.2D plot

// ' \\‘SM‘%%.;

CWFR
APRX-SFW -

#Readers

Read Latency vs # of Readers: RL.nw20.all PROTO.rounds.maj25.f1.data.2D plot

- T sMPtE——
CWFR
APRX-SFW -
* . *
.
10 20 30 40 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nw40.all PROTO.founds.maj25.f1.data.2D plot
e SIMPLE ——
e CWER -
o J— e RS
L xe]
.
10 20 30 40 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nw80.all PROTO.rounds.maj25.f1.data.2D plot
j j j j j SIMPLE ——
CWFR —x—
S e APRXCSFW -

L L L L L L
10 20 30 40 50 60 70 80
#Readers

Figure 16: 24-wise quorum system (|S| = 25, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

10

%2comm-reads

20

%2comm-reads

40

%2comm-reads

80

%2comm-reads

Writers:

% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj10.f2.data.2D plot

100 t T t T T T
SIMPLE ——
CWFR --%---
APRX-SFW -
90 - 1
80 - 1
70 - 1
60 - 1
50 % . - 4
a0 4
30 1
10 20 30 40 50 60 70 80

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj10.2.data.2D plot

100 t T t T T ;
SIMPLE ——
CWFR =-%---
APRX-SFW ---%-
90 - 1
80 - 1
70 - 1
*
%
60 - 1
50 - 1
30 1
10 20 30 40 50 60 70 80

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj10.f2.data.2D plot
100 + T + T T

SIMPLE ——

APRX-SFW -
% 4

60 4

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw80.all PROTO.rounds.maj10.2.data.2D plot

100 t T t T T T
SIMPLE ——
CWFR ——x-—-
R S APRX-SFW -
% xeo E
80 - R
70+ g
60 - g
50 - g
40 - E
0 i n i n
10 20 30 40 50 60 70 80

#Readers

ReadLatency

ReadLatency

ReadLatency

ReadLatency

Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj10.2.data.2D plot

))))) SIMPLE —+—
CWFR

15
10 20 30 40 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nw20.all PROTO.rounds.maj10.2.data.2D plot
23 T T T T T ;i
SIMPLE ——
CWFR -
*
22
21F B
2 4
19+ > * 4
18 B
17t 4
16 s
10 20 30 40
#Readers
Read Latency vs # of Readers: RL.nw40.all PROTO.rounds.maj10.f2.data.2D plot
23 T T T T T

SIMPLE —+—
CWFR —x—

#Readers

Read Latency vs # of Readers: RL.nw80.allPROTO.rounds.maj10.2.data.2D plot

T T T T T T
- o SIMPLE ——

CWFR
RPRICSEW e

e

#Readers

Figure 17: 4-wise quorum system (|S| = 10, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

29

10 Writers:

100

9

80

70

60

%2comm-reads

50

40

% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj15.f2.data.2D plot

" j " j j SIMPLE —+—

CWFR
APRX-SFW -

#Readers

20 Writers:

100

90

80

60

%2comm-reads

50

40

% of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj15.f2.data.2D plot

') ')) SIMPLE —+—
FR s

CWFR -
APRX-SFW ----

20 30 40 50 60 70 80
#Readers

40 Writers:

100

9

70

60

%2comm-reads

50

40

30

100

9

80

70

60

50

%2comm-reads

40

30

% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj15.12.data.2D plot

' " ' " " SIMPLE ——
L APRX-SFW —x-
4
A
10 20 30 40 50 60 70 80
#Readers
.
80 Writers:
96 of Slow Reads vs # of Readers: RR.nw0.all PROTO.rounds.maj15 f2.data.20 plot
' j ' j j SIMPLE ——
- CWER, -
r ABRXCSAW X
.
10 20 30 40 50 60 70 80

#Readers

ReadLatency

ReadLatency

ReadLatency

ReadLatency

Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj15.2.data.2D plot

SIMPLE ——

#Readers

Read Latency vs # of Readers: RL.nw20.all PROTO.rounds.maj15.2.data.2D plot

SIMPL
CWFR
APRX-SFW ---%-

40 50 60 70 80
#Readers

Read Latency vs # of Readers: RL.nw40.allPROTO.rounds.maj15.2.data.2D plot

))))) SIMPLE ——

APRX-SFW ---%-

#Readers

Read Latency vs # of Readers: RL.nw80.allPROTO.rounds.maj15.f2.data.2D plot

j j ' j j SIMPLE ——
e CWFR ox--

t APRX-SFW - 1
[-
.

10 20 30 40 50 60 70 80
#Readers

Figure 18: 6-wise quorum system (|S| = 15, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

30

10 Writers:

%2comm-reads

20

%2comm-reads

40

%2comm-reads

80

%2comm-reads

100

9

80

70

60

50

40

% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj20.f2.data.2D plot

" j " j j SIMPLE —+—

CWFR
APRX-SFW -

20 30 40 50 60 70 80
#Readers

Writers:

100

9

80

70

60

50

40

30

% of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj20.f2.data.2D plot

') ')) SIMPLE —+—
CWFR --x—
APRX-SFW -
: *
.
10 20 30 2 50 60 70 80
#Readers

Writers:

100

9

80

70

60

50

40

30

% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj20.f2.data.2D plot

SIMPLE ——

APRX-SFW ---x--- |

20 30 40 50 60 70 80
#Readers

Writers:

100

9

80

70

60

50

40

30

% of Slow Reads vs # of Readers: RR.nw80.all PROTO.rounds.maj20.f2.data.2D plot

' j ' j j SIMPLE ——

CWFR
APRX-SFW -+-%-

20 30 40 50 60 70 80
#Readers

ReadLatency

ReadLatency

ReadLatency

ReadLatency

Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj20.2.data.2D plot

; ' !)) SIMPLE —+—
CWER s

APRX-SFW -~ 1

#Readers

Read Latency vs # of Readers: RL.nw20.all PROTO.rounds.maj20.2.data.2D plot

))))) SIMPLE —+—

... OWER ==
APRX-SFW -

#Readers

Read Latency vs # of Readers: RL.nw40.allPROTO.rounds.maj20.2.data.2D plot

U T e SIMPLE ——

APRX-SFW ---%-

#Readers

Read Latency vs # of Readers: RL.nw80.allPROTO.rounds.maj20.2.data.2D plot

j j j j j SIMPLE ——

CWER.—
APRXSFW - o

*

20 30 40 50 60 70 80
#Readers

Figure 19: 9-wise quorum system (|S| = 20, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

31

10

%2comm-reads

20

%2comm-reads

40

%2comm-reads

80

%2comm-reads

Writers:

% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj25.f2.data.2D plot

100 t T t T T T
SIMPLE ——
CWFR --%---
APRX-SFW -
90 -
80 - 1
70 - 1
60 - 1
50 - 1
a0+ 4
x-
20 1
10 20 30 40 50 60 70 80

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj25.f2.data.2D plot

100 t T t T T ;
SIMPLE ——
FR -

CWFR -
APRX-SFW ----

30

#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj25.12.data.2D plot
100 + T + T T

SIMPLE ——

%0 APRX-SFW -

80

60

a0

10 L L L L L L

10 20 30 40 50 60 70
#Readers

Writers:

% of Slow Reads vs # of Readers: RR.nw80.all PROTO.rounds.maj25.f2.data.2D plot
100 t T t T T

SIMPLE ——
CWFR
0L APRX-SFW ---x-

70+

60

50

40 -

0 L L L L L L

10 20 30 40 50 60 70
#Readers

ReadLatency

ReadLatency

ReadLatency

ReadLatency

Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj25.f2.data.2D plot

38 T T T T T ;i
SIMPLE —+—
CWFR_--%=
36 1 e APRRCSFW e
%o
34 4
32 g
3l 1
28 £ el
26| g
241 g
22 —
21 1
16
10 20 30 40 50 60 70 80
#iReaders
Read Latency vs # of Readers: RL.nw20.all PROTO.rounds.maj25.12.data. 2D plot
55 *
SIMPLE —+—
CWFR ---x---
5| APRX-SFW ---%--
a5 | A
al 1
351 g
s 1
25 1 1
21 1
15
10 20 30 40 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nw40.all PROTO.rounds.maj25.12.data. 2D plot
8 T T F T T
e R SIMPLE. —+—._
APRX-SFW ---3-
a8 1
6 1
5| 1
4l 1
3l 1
21 1
;
10 20 30 40 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nw80.all.PROTO.rounds.maj25.12.data. 2D plot
12 T T T T T T
SIMPLE ——
* . * CWFR ---x---
1 APRX-SFW ------ 7|
10| g
ol 1
sl 1
a8 1
6l 1
sl 1
4r 4
3b]
2t 1
:
10 20 30 40 50 60 70 80
#Readers

Figure 20: 11-wise quorum system (|S| = 25, f = 2): Left Column: Percentage of slow reads, Right

Column:

Latency of read operations

C Write Performance

Below we present the plots regarding the write performance under variable number of readers and quorum
constructions. In particular, we run the SIMPLE, CWFR, and APRX-SFW algorithms using quorum
constructions with eight different intersection degrees by setting the number of servers to 10, 15, 20, and
25, and by tolerating 1 and 2 server failures. We assume majority quorums, where each quorum @); has
size |Q;| = |S| — f, where f the maximum number of server failures. We test each quorum system, using
10,20, 40, and 80 readers and Readers. By fixing the intersection degree and the number of readers a plot
depicts the performance of write operations as we increase the number of Readers in the system. Such
plots help us determine the scalability of the algorithms in terms of writer participation.

33

10

9%2comm-writes

20

9%2comm-writes

40

%2comm-writes

80

%2comm-writes

Readers

9% of Slow Writes vs # of Writers: WR.nr10.all PROTO.rounds.maj10.f1.data.2D plot
100 + .

e GIMPLE

CWFR
APRX-SFW -

95
%
85
80
7
0L

65 i

60 L L L L L L

10 20 30 40 50 60 70
#Writers.

Readers

9% of Slow Writes vs # of Writers: WR.nr20.all.PROTO.rounds.maj10.f1.data.2D plot

100 * T * T T T o
[AR ~ SIMPLE ==
WFR

C -
APRX-SFW ----

60 L L L L L L

10 20 30 40 50 60 70
#Writers

Readers:

9% of Slow Writes vs # of Writers: WR.nr40.all.PROTO.rounds.maj10.fL.data.2D plot
100 * T * T T

e e SIRPLE

APRX-SFW -
95

%
85

80

o

60 L L L L L L

10 20 30 40 50 60 70
#Writers

Readers:

% of Slow Writes vs # of Writers: WR.nr80.all. PROTO.rounds. maj10.fL.data. 2D plot
100 * .

T SIMPLE 5

* -
e

CWFR -
APRX-SFW ----

95

%

85
80

75

65

60 L L L L L L

10 20 30 40 50 60 70
#Writers

Figure 21:
Column:

34

WriteLatency

WriteLatency

WriteLatency

WriteLatency

Write Latency vs # of Writers: WL.nr10.all.PROTO.rounds.maj10.f1.data.2D plot

21 I
10 20 30 40 50 60 70 80
#Writers
Write Latency s # of Writers: WL.nr20.all PROTO.rounds.maj10.f1.data.2D plot
26 T T T T T ;
SIMPLE ——
CWFR ---x---
APRX-SFW -+
=
24 F B
235 4
23 B
225 F B
22 4
215 B
214 B
208 . . . I . I
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr40.all PROTO.rounds.maj10.f1.data 2D plot
26 T T T T T ;
SIMPLE ——
255 F APRX-SFW -
24 b 4
*
235 F B
23 1
225 4
22 B
215 B
21
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nrg0.all PROTO rounds.maj10.f1.data 2D plot
26 T T T T T

SIMPLE ——

CWFR
APRX-SFW -3 7

241 g
235 | * g
23 —
.
20 30 40 50 60 70 80

#Writers

9-wise quorum system (|S| = 10, f = 1): Left Column: Percentage of slow reads, Right
Latency of read operations

10 Readers

9% of Slow Writes vs # of Writers: WR.nr10.all.PROTO.rounds.maj15.f1.data.2D plot

100 + T * T T T o
. SIMPLE —+—
*- CWFR ---%---
APRX-SFW -
90 H
80 | Bl
8 %
:
E F 4
£ 70
£
:
g
X
60 H
50 H
10 20 30 40 50 60 70 80
#Writers
% of Slow Writes vs # of Writers: WR.nr20.all. PROTO.rounds.maj15.f1.data.2D plot
100 +* T * T T T S
SIMPLE ——
* CWFR -----
APRX-SFW ---%-
90 H
80 | Bl
8
H
E F 4
£ 70
:
:
g
B3
60 | Bl
50 H
10 20 30 40 50 60 70 80
#Writers
40 Readers:
:
% of Slow Writes vs # of Writers: WR.nr40.all. PROTO.rounds.maj15.f1.data.2D plot
100 +* T * T T T "
* eeeeen SIMPLE —+—
- APRX-SFW -+
90 H
80 | Bl
H
E F 4
£ 70
:
:
g
=
60 | Bl
50 H
10 20 30 40 50 60 70 80
#Writers
80 Readers:
% of Slow Writes vs # of Writers: WR.nr80.all. PROTO.rounds.maj15.f1.data.2D plot
100 * T * T T T .
,,,,, SIMPLE
o CWFR --x---
g APRX-SFW -
90 H
80 H
H
13 F 4
£ 70
:
:
g
B3
60 | Bl
10 20 30 40 50 60 70 80

#Writers

Figure 22:
Column:

35

WriteLatency

WriteLatency

WriteLatency

WriteLatency

Write Latency vs # of Writers: WL.nr10.allPROTO.rounds.maj15.f1.data.2D plot

28 T T r g T ;i

INPLE "=

CWFR
26 F B
25 B
24 F B
23 B
22 4
21 f 4

2
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr20.allPROTO.rounds. maj15.11.data.2D plot

28 T T T T T ;i

IMPLE.

PRXSEW -3
24 F B
23 B
22 4
21t 4
2 . . . I . I
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr40.allPROTO.rounds. maj15.11.data.2D plot

29 T T T T T

SIMPLE, ——
. CWER ~5c

10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr80.all PROTO.rounds.maj15.f1.data.2D plot
29 T T T T T T
SIMPLE ——
CWFR --x--
281 _APRX.SFW. 4
27 P El
26 1 1
25 1
*
241 g
23 —
22 g
21 g
2
10 20 30 40 50 60 70 80

#Writers

14-wise quorum system (|S| = 15, f = 1): Left Column: Percentage of slow reads, Right
Latency of read operations

10

Readers

9% of Slow Writes vs # of Writers: WR.nr10.allPROTO.rounds.maj20.1.data.2D plot

Write Latency vs # of Writers: WL.nr10.allPROTO.rounds.maj20.f1.data.2D plot

100 * T * T T T — 31 T T T T T T
e SIMPLE —+— SIMPLE —+—
X CWFR - - CWFR -
APRX-SFW - 3l APRX.SEW. --—-vr--4
920 —
80 H
8 ¥ o 27} 1
H s
E 70 B 8 26 A
g]
g E 25 i
60 —
24 F 4
23 —
50 - —
22 | H
w© 21
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers
% of Slow Writes vs # of Writers: WR.nr20.all. PROTO.rounds.maj20.f1.data.2D plot Write Latency vs # of Writers: WL.nr20.all. PROTO.rounds.maj20.f1.data.2D plot
100 * T * T T T 31 T T T T T T
SIMPLE —+— SIMPLE —+—
* CWFR -
APRX-SFW - 4
90 —
80 - q q
] . >
2 5 1
E 70 1 3
g] i
$
g H
60 H 25 H
; 24 F 1
50 1 —
w© 22
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers
40 Readers:
:
% of Slow Writes vs # of Writers: WR.nr40.all. PROTO.rounds.maj20.f1.data.2D plot Write Latency vs # of Writers: WL.nr40.all. PROTO.rounds.maj20.f1.data.2D plot
100 * T * T T T 31 T T T T T T
SIMPLE —+— SIMPLE —+—
APRX-SFW ---%- 3r
9 4 *
28 1
80 H
8 x -~ 27} 4
5 &
E 700 g 5 26t R
g]
g s L6l |
60 H
24 | q
23 —
50 - —
22 —
w© "
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers
80 Readers:
% of Slow Writes vs # of Writers: WR.nr80.all.PROTO.rounds.maj20.f1.data.2D plot Write Latency vs # of Writers: WL.nr80.all. PROTO.rounds.maj20.f1.data.2D plot
100 * T * T T T 5 3 T T * T T T
. SIMPLE = IMPLE ==
- CWFR --x--- -
APRX-SFW ---%--
90 H
80 H
27 H
; L i Fy .
S g a2sf ¥ g
£ 3
3
£ R]
§ 60 4 § 25
24 4
50 - 4
23 —
22 —
. ”
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers

Figure 23: 19-wise quorum system (|S| = 20, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

36

10 Readers

9%2comm-writes

20

9%2comm-writes

40

%2comm-writes

80

%2comm-writes

100

90

80

60

50

40

30

Readers

100

90

80

60

50

40

9% of Slow Writes vs # of Writers: WR.nr10.allPROTO.rounds.maj25.1.data.2D plot

¥ T * i j SIMPLE =5
. CWFR --x—
APRX.SFW -
.
10 20 30 2 50 60 70 80

#Writers.

9% of Slow Writes vs # of Writers: WR.nr20.all.PROTO.rounds.maj25.1.data.2D plot

20 30 40 50 60 70 80
#Writers

Readers:

100

9%

80

70

60

50

30

40 -

9% of Slow Writes vs # of Writers: WR.nr40.all.PROTO.rounds.maj25.f1.data.2D plot

T T T T o SIMPLE
APRXSFW -
.
10 20 30 40 50 60 70 80
#Writers

Readers:

100

9

80

70

60

50

40

30

9% of Slow Writes vs # of Writers: WR.nr80.all.PROTO.rounds.maj25.f1.data.2D plot

* T * T T T
SIMPLE =+

x CWFR --x--
APRX-SFW -+-%-
L » 1
.
10 20 30 40 50 60 70 80
#Writers

Write Latency vs # of Writers:

WL.nr10.all.PROTO.rounds.maj25.f1.data. 2D plot

3.4 T T

))) SIMPLE ——

CWFR. -
APRX-SFW -

g 28f 4
g
g
T
S 26f 1
24 -
22, —
2
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr20.all PROTO.founds.maj25.f1.data.2D plot
34 T T T T T T
SIMPLE —+—
CWFR ------
APRX-SFW -=::3%:
32 g
L
g 28f 4
g
g
E
S 26t g
24 -
2
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr40.all PROTO.rounds.maj25.f1.data.2D plot
34 T T T T T T
SIMPLE ——
APRX-SFW- =<5
32}) q
*
g 28f 4
g
kit
z
S 26t g
241 g
22 -
2
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr80.all PROTO.rounds.maj25.f1.data.2D plot
34 T T T T T T
SIMPLE ——
CWFR --x--
 APRXCSFW. oo
32 ™ Bl
g 28f 4
g .
5 *
3 2
S 26t g
241 g
22| g
2
10 20 30 40 50 60 70 80
#Writers

Figure 24: 24-wise quorum system (|S| = 25, f = 1): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

37

10 Readers

9%2comm-writes

9%2comm-writes

9% of Slow Writes vs # of Writers: WR.nr10.allPROTO.rounds.maj10.f2.data.2D plot

101 T T T T T T
SIMPLE ——
CWFR --%---
APRX-SFW -
1005 - 1
100
995 [4
99
10 20 30 40 50 60 70 80
#Writers
% of Slow Wites vs # of Writers: WR.nr20.all.PROTO.rounds.maj10.f2.data.2D plot
101 T T T T T T
SIMPLE ——
CWFR --%---
APRX-SFW ---%-
1005 - 1
100
99.5 1
99 . . 1 . . 1
10 20 30 20 50 60 70 80

#Writers.

40 Readers:

9% of Slow Writes vs # of Writers: WR.nr40.all.PROTO.rounds.maj10.f2.data.2D plot

101 T T T T T T
SIMPLE —+—
APRX-SFW ---%--
1005 Bl
:
E
£ 100
£
§
5
=
995 H
10 20 30 40 50 60 70 80
#Writers.
80 Readers:
% of Slow Writes vs # of Writers: WR.nr80.all. PROTO.rounds.maj10.f2.data.2D plot
101 T T T T T T
SIMPLE —+—
CWFR --x---
APRX-SFW ---%--
1005 Bl
$
13
£ 100
£
§
5
B3
995 H
10 20 30 40 50 60 70 80

Figure 25: 4-wise quorum system (|S| = 10, f

#Writers

Column: Latency of read operations

WriteLatency

WriteLatency

WriteLatency

WriteLatency

2): Left Column: Percentage of slow reads,

Write Latency vs # of Writers: WL.nr10.all.PROTO.rounds.maj10.f2.data.2D plot

2.26 T T i T T T
I SIMPLE —+—

o

CWFR
APRX-SFW ---%-

214
10 20 30 40 50 60 70
#Writers
Write Latency vs # of Writers: WL.nr20.all PROTO.rounds.maj10.f2.data.2D plot
226 T T T T T ;
SIMPLE ——
CWFR
APRX-SFW_:+<%:

224 s .

214
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr40.all PROTO. rounds.maj10.12.data.2D plot
228 T T T T T T
SIMPLE .+
JGWFR -----
- APRX-SFW %
226
*
224 g

#Writers

Write Latency vs # of Writers: WL.nr80.all PROTO. rounds.maj10.2.data.2D plot
228 T T T T T

SIMPLE ——
CWFR —x—
APRXSFW -

10 20 30 40 50 60 70
#Writers

10 Readers

% of Slow Writes vs i of Writers: WR.nr10.all PROTO.rounds.maj15.12.data.2D plot Write Latency vs # of Writers: WL.nr10.all.PROTO.rounds.maj15.12.data.2D plot
100 - T £ T - ; - 275 - - - - - ,
- SIMPLE —— SIMPLE ——
CWFR - - . CWFR
APRX-SFW - 271 APRX-SFW - 1
o5 - ; 1 o5l |
x
; 26 | 3 A
g 9o i 4 N
H 3 g 255 4
£ kit
g]
$ e 4 H
80 [b 2ar 1
235 H
- 23
10 20 30 2 50 60 70 80 10 20 30 40 50 60 70 80
#wiiters #wiiters
% of Slow Writes vs # of Writers: WR.nr20.all PROTO.rounds.maj15.12.data.2D plot Wiite Latency vs # of Writers: WL.nr20.allPROTO.rounds.maj15.12.data.2D plot
100 ¥ T + T T ———— 275 T T T T T r -
e e SINPLE L SIMPLE"
e CWFR - CWFR
98 e APRX-SFW ---%--- o 27 APRX-SFW ---%--
e
9% - ;]
/ 265 | 1
94 i 4
H 26 - E
A ; g > ¥
2 ; s '
E 9 v B 8 255 1
g / £
§ sl 4 B
86 1
8af/ 1
§ 24 | i
82 [/ 1
a0 235
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
HWiiters HWiiters
40 Readers:
.
% of Slow Writes vs # of Writers: WR.nr40.all PROTO.rounds.maj15.f2.data.2D plot Wiite Latency vs # of Writers: WL.nr40.allPROTO.rounds.maj15.12.data.2D plot
100 * T —— — —— 28 . - + - - ,
= SIMPLE —— s [" SIMPLE ——
APRX-SFW ---- 275 1 e APRX-SFW -
. .
s ; 1 27 F 4
265 H
g oo 4 -
H g 26 4
£ 5
s 3
8 : £ 255 | 4
ESE] Bl H
80]
24 | 1
- 235
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers
80 Readers:
% of Slow Writes vs # of Writers: WR.nr80.all PROTO.rounds. maj15.f2.data.2D plot Wiite Latency vs # of Writers: WL.nrg0.allPROTO.rounds.maj15.12.data.2D plot
100 * . * . — 28
e SIMPLE —— SIMPLE ——
CWFR -~ CWFR —x-—
APRX-SFW ---%- 275 | - APRX-SEW.~ z
* .
o5 - 1
8§ oop ; 4 .
B 3 g
£ kit
§ el | s
80 1
5 235
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers

Figure 26: 6-wise quorum system (|S| = 15, f = 2): Left Column: Percentage of slow reads, Right
Column: Latency of read operations

39

10

9%2comm-writes

20

9%2comm-writes

40

%2comm-writes

80

%2comm-writes

Readers

9% of Slow Writes s # of Writers: WR.nr10.all PROTO rounds.maj20.12.data.2D plot
100 + .

M A AeAMrtkt “SIMPLE
CWFR -—-%---
APRX-SFW -
95 H
90 | Bl
85 H
80 H
75 - H
20k L L L L L L
10 20 30 40 50 60 70 80
#Writers
% of Slow Writes vs # of Writers: WR.nr20.all.PROTO.rounds.maj20.f2.data.2D plot
100 +* T * T T p— T. =
. S crrT T SIMPLE —+—
CWFR -
APRX-SFW ---%-
95 Bl
.
90 H
85 H
80 H
75 1
70 | Bl
10 20 30 40 50 60 70 80
#Writers
Readers:
:
% of Slow Writes vs # of Writers: WR.nr40.all. PROTO.rounds.maj20.f2.data.2D plot
100 +* T ol T T , T -
g S - SIMPLE ——
APRX-SFW ---%--
95 | Bl
.
90 H
85 H
80 H
75 - H
70 F hl
10 20 30 40 50 60 70 80
#Writers
Readers:
% of Slow Writes vs # of Writers: WR.nr80.all. PROTO.rounds.maj20.f2.data.2D plot
100 * : ¥ e
e SIMPLE ——
CWFR --x---
APRX-SFW -+-%-
95 | Bl
90 | Bl
85 H
80 H
75 - H
70 H
10 20 30 40 50 60 70 80
#Writers

Figure 27:
Column:

40

WriteLatency

WriteLatency

WriteLatency

WriteLatency

Write Latency vs # of Writers: WL.nr10.all.PROTO.rounds.maj20.f2.data.2D plot

))))) SIMPLE —+—

o GWFR
APRX-SFW -3+ 7

#Writers

Write Latency vs # of Writers: WL.nr20.all.PROTO.rounds.maj20.f2.data.2D plot

))))) SIMPLE —+—

- GWFR =
APRX-SFW -3+

- n L L

20 30 40 50 60 70 80
#Writers

Write Latency vs # of Writers: WL.nr40.all.PROTO.rounds.maj20.f2.data.2D plot

))))) SIMPLE ——
B

APRX-SFW -+~

#Writers

Write Latency vs # of Writers: WL.nr80.all.PROTO.rounds. maj20.f2.data.2D plot

j j j j j SIMPLE ——

CWFR
APRX-SFW ---%-

#Writers

9-wise quorum system (|S| = 20, f = 2): Left Column: Percentage of slow reads, Right
Latency of read operations

10 Readers

9% of Slow Writes vs # of Writers: WR.nr10.all.PROTO.rounds.maj25.12.data.2D plot

Write Latency vs # of Writers: WL.nr10.allPROTO.rounds.maj25.f2.data.2D plot

100 * T ¥ T T P 55 T T T T T T
- CWFR - CWFR X
95 |- APRX-SFW - 4 APRX-SFW -+~
Al 1
90 — s
8 | 4 45 b 4
8 - .
S owf 1 s ’
E © L 4
£ g 4
r% 75 4 g
ES
70 - | 35 |
65 —
60 [|
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers
% of Slow Writes vs # of Writers: WR.nr20.all. PROTO.rounds.maj25.f2.data.2D plot Write Latency vs # of Writers: WL.nr20.all. PROTO.rounds.maj25.f2.data.2D plot
100 * T ¥ T T FerTe 55 T T T T T T
o T o SIMPLE —— SIMPLE —+—
- CWFR - CWFR --x---
95 | APRX-SFW ---%--- | APRX-SFW ---3:--
920 o 4 *
85 H 45 | H
g 5y
EE 4 g -
E © L 3 4
£ g 4
g 51 A §
ES
70 H 35 H
65 —
60 § 4
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers
40 Readers:
:
% of Slow Writes vs # of Writers: WR.nr40.all. PROTO.rounds.maj25.f2.data.2D plot Write Latency vs # of Writers: WL.nr40.all. PROTO.rounds.maj25.f2.data.2D plot
100 * T * T T T = 55 T T T T T T
¥ e BIMPLE —— SIMPLE —+—
o5 L APRX-SFW ---%- APRX-SFW ---%--
51 - 3
90 —
*
45 b 4
. 85 4
£ 3
: 5 .
E 8ol B 3 : 1
g]
g
s 75 — *
35 H
70 - —
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers
80 Readers:
% of Slow Writes vs # of Writers: WR.nr80.all. PROTO.rounds.maj25.f2.data.2D plot Write Latency vs # of Writers: WL.nr80.all. PROTO.rounds.maj25.f2.data.2D plot
100 * T * T T T 5 T T T T T T
* SIMPLE —+— SIMPLE —+—
CWFR --x--- x CWFR ---x---
o5 L APRX-SFW ---%-- APRX-SFW -----
a5 b 4
90 H
.
. 85 4 §
g T 1
:
E 80 1 3
] 2
2 35 —
< 75 —
70 - —
N]
65§ 4 _
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
#Writers #Writers
Figure 28: 11-wise quorum system (|S| = 25, f = 2): Left Column: Percentage of slow reads, Right

Column: Latency of read operations

41

D Operation Performance Relative to Quorum Construction

The plots below illustrate the performance of read operations over the number of quorums in the system.
For the following graphs we fix the number of reader and writer participants and we change the number
of servers in the system. The quorum membership is also changed when we modify the maximum number
of server failures in the service. The left column of each figure presents how the percentage of slow reads
is affected whereas the right column illustrates the impact of the quorum membership on read latency.

42

10 Readers, 10 Writers, f=1:

%2comm-reads

9%2comm-writes

10

%2comm-reads

%2comm-writes

100

% of Slow Reads vs # of Servers: SR.nr10.nw10.f1.data.2D plot

90

80

70

60

50

40

30

100

9

80

70

60

50

40

j j j j " T sMPlE ——

CWFR
APRX-SFW -

10 12 14 16 18 20 22 24

#Quorums

% of Slow Writes vs # of Servers: SR.nr10.nw10.fL.data.2D plot

)))) N T smPlE ——
FR s

CWFR -
APRX-SFW ----

#Quorums

Readers, 10 Writers, f=2:

100

9%

80

70

60

50

40

30

20

100

95

90

85

80

75

70

65

60

55

9% of Slow Reads vs # of Servers: SR.nr10.nw10.f2.data.2D plot

" " " " SIMPLE ——
L APRXSFW -
x
.
0 50 100 150 200 250 300
#Quorums
96 of Slow Wites vs # of Servers: SR.nr10.nwi0.2.data.2D plot
N j j j SIMPLE ——
CWFR —x—
L APRX-SFW - x-
L " 1
.
0 50 100 150 200 250 300
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr10.nw10.f1.data.2D plot

SIMPLE ——

APRX-SFW ---%-

26
#Quorums
Wiite Latency vs # of Servers: SL.nr10.w10.f1.data.2D plot
))))) " SIMPLE ——
CWFR --x-—-
x
3 Ko i
.
.
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr10.nw10.12.data.2D plot
)))) SIMPLE ——
r APRX-SFW - 1
.
0 50 100 150 200 250 300
#Quorums
Wiite Latency vs # of Servers: SL.nr10.nw10.12.data.2D plot
j j j j SIMPLE ——
CWFR —
t APRXSFW -]
.
0 50 100 150 200 250 300
#Quorums

Figure 29: Left Column: Percentage of slow operations, Right Column: Latency of operations

43

20 Readers, 10 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr20.nw10.f1.data.2D plot

100 T T T T + T

CWFR
APRX-SFW

80

70+

60

50 |

%2comm-reads

40 -

30

SIMPLE ——

10 12 14 16 18 20 22 24
#Quorums

% of Slow Writes vs # of Servers: SR.nr20.nw10.f1.data.2D plot
100 T T T T * T

cwi
APRX-SFW

80

60

9%2comm-writes

50 |

a0+

SIMPLE —+—
FR s

*-

#Quorums

20 Readers, 10 Writers, f=2:

9% of Slow Reads vs # of Servers: SR.nr20.nw10.f2.data.2D plot
100 T T T T

SIMPLE

%
80
70+

60

%2comm-reads

50 |- -

40 1

30

20 L L L L L

APRX-SFW -

J—

-

o 50 100 150 200 250
#Quorums

% of Slow Writes vs # of Servers: SR.nr20.nw10.f2.data.2D plot

100 T T T T T
-. SIMPLE

%

85

80

75

%2comm-writes

65

55 L L L L L

g CWFR
% APRX-SFW -

J—

0 50 100 150 200 250
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr20.nw10.f1.data.2D plot

SIMP]

WFR -
APRX-SFW -

26
#Quorums
Wite Latency vs # of Servers: SL.nr20.nw0.fL.data 2D plot
L *]
x
L 1
. s
10 12 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr20.nw10.f2.data 2D plot
)))) SIMPLE ——
r APRXSFW . 1
.
0 50 100 150 200 250 300
#Quorums
Wite Latency vs # of Servers: SL.nr20.nw10.f2.data 2D plot
j j j j SIMPLE —+—
CWFR .
t APRXSFW %+ 4
.
0 50 100 150 200 250 300
#Quorums

Figure 30: Left Column: Percentage of slow operations, Right Column: Latency of operations

44

40

%2comm-reads

9%2comm-writes

40

%2comm-reads

%2comm-writes

Readers, 10 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr40.nw10.f1.data.2D plot
100 T T T T + T

SIMPLE ——

CWFR
APRX-SFW -

80

70+

60

50 |

40 -

30

10 12 14 16 18 20 22
#Quorums

% of Slow Writes vs # of Servers: SR.nr40.nw10.fL.data.2D plot
100 T T T T * T

SIMPLE —+—
FR s

CWFR -
APRX-SFW ----

80

60

50 |

a0+

#Quorums

Readers, 10 Writers, f=2:

9% of Slow Reads vs # of Servers: SR.nr40.nw10.f2.data.2D plot
100 T T T T

SIMPLE ——

APRX-SFW -~
%

80

70+

60

50 e

40 1

30

20 L L L L L

#Quorums

% of Slow Writes vs # of Servers: SR.nr40.nw10.f2.data.2D plot

100 T T T T T
». SIMPLE —+—

CWFR
APRX-SFW -

o5 |-
90
85
80 [",

75

65

60 L L L L L

0 50 100 150 200 250
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr40.nw10.f1.data.2D plot

—

CWFR
APRX-SFW -

26
#Quorums
Wiite Latency vs # of Servers: SL.n40.nw10.11.data.2D plot
))))) " SIMPLE ——
CWFR |
L E
x]
.
.
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr40.nw10.12.data.2D plot
)))) SIMPLE —— .-
8 APRX-SFW -
L o
”
0 50 100 150 200 250 300
#Quorums
Wiite Latency vs # of Servers: SL.nr40.nw10.12.data.2D plot
j j j j SIMPLE ——
CWFR —
t APRX-SFW -3¢ |
.
0 50 100 150 200 250 300
#Quorums

Figure 31: Left Column: Percentage of slow operations, Right Column: Latency of operations

80 Readers, 10 Writers, f=1:

100

90

80

70

60

50

%2comm-reads

40

30

100

9

80

70

60

9%2comm-writes

50

40

% of Slow Reads vs # of Servers: SR.nr80.nw10.f1.data.2D plot

j j j j " T sMPlE ——

CWFR
APRX-SFW ---%--- |

10 12 14 16 18 20 22 2 26
#Quorums
9 of Slow Wites vs # of Servers: SR.nr80.w0.f1.data.2D plot
)))) N T smPlE ——
CWFR --x—
APRX-SFW -
e
L x]
-
.
10 12 14 16 18 20 22 24 26

#Quorums

80 Readers, 10 Writers, f=2:

100

9%

80

70

60

%2comm-reads

50

40

30

20

100

95

9

85

80

%2comm-writes

75

65

60

9% of Slow Reads vs # of Servers: SR.nr80.nw10.f2.data.2D plot

SIMPLE ——

APRX-SFW -~

.
0 50 100 150 200 250 300
#Quorums
96 of Slow Wites vs # of Servers: SR.nr80.nw10.£2.data.20 plot
N j j j SIMPLE ——
CWFR —x—
L APRX-SFW - x-
L -
.
0 50 100 150 200 250 300
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.n80.nw10.f1.data.2D plot

SIMPI

CWFR -
APRX-SFW -

#Quorums

Write Latency vs # of Servers: SL.nr80.nw10.f1.data.2D plot

SIMPLE ——

#Quorums

Read Latency vs # of Servers: SL.nr80.nw10.2.data.2D plot

~
@

)))) SIMPLE —+—

APRX-SFW -3

#Quorums

Write Latency vs # of Servers: SL.nr80.nw10.12.data.2D plot

j j j j SIMPLE —— -

CWFR
APRX-SFW ---3%-

50 100 150 200 250 300
#Quorums

Figure 32: Left Column: Percentage of slow operations, Right Column: Latency of operations

46

10

%2comm-reads

9%2comm-writes

10

%2comm-reads

%2comm-writes

Readers, 20 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr10.nw20.f1.data.2D plot
100 T T T T + T

SIMPLE ——

CWFR
APRX-SFW -

80

60

50 |

40 -

10 12 14 16 18 20 22 24
#Quorums

% of Slow Writes vs # of Servers: SR.nr10.nw20.fL.data.2D plot
100 T T T T * T

SIMPLE —+—
FR s

CWFR -
APRX-SFW ----

9

80

70+

#Quorums

Readers, 20 Writers, f=2:

9% of Slow Reads vs # of Servers: SR.nr10.nw20.f2.data.2D plot
100 T T T T

SIMPLE ——

APRX-SFW -~
%

80

70+

60

50

40 1

30

20

o 50 100 150 200 250
#Quorums

% of Slow Writes vs # of Servers: SR.nr10.nw20.2.data.2D plot

100 T T T T T
- SIMPLE —+—

CWFR
APRX-SFW -

% “x

9

8 L L L L L

0 50 100 150 200 250
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr10.nw20.{1.data.2D plot

SIMPLE

26
#Quorums
Write Latency vs # of Servers: SL.nr10.w20.f1.data.2D plot
3 T T T T T T T
25%F B
24 -
23
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr10.1w20.f2.data.2D plot
55 T T T T T
SIMPLE —+—
sL APRX-SFW -3¢ |
45 1
at]
35 g
x
3l]
25
2
15
o 50 100 150 200 250 300
#Quorums
Write Latency vs # of Servers: SL.nr10.nw20.f2.data.2D plot
45 T
SIMPLE —+—
CWFR -~
APRX-SFW -
s]
35 —
3l]
25
2
0 50 100 150 200 250 300
#Quorums

Figure 33: Left Column: Percentage of slow operations, Right Column: Latency of operations

47

20 Readers, 20 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr20.nw20.f1.data.2D plot

%2comm-reads

9%2comm-writes

20

%2comm-reads

%2comm-writes

100 T T T T t T T
SIMPLE ——
CWFR --%---
90 - APRX-SFW ---%--- |
80 - 1
70 4
60 - 1
50 - 1
40 | 1
30 F T d
10 1
10 12 14 16 18 20 22 24 26
#Quorums
% of Slow Writes vs # of Servers: SR.nr20.nw20.fL.data.2D plot
100 T T T T * T T
SIMPLE ——
CWFR --%---
APRX-SFW -
95 - 1
90 - 1
85 - 1
80 - 1
xee
75 F o]
70 4
*
65 1
10 12 14 16 18 20 22 24 26

#Quorums

Readers, 20 Writers, f=2:

9% of Slow Reads vs # of Servers: SR.nr20.nw20.f2.data.2D plot

100 T T T

%

80

70+

60

50

40 1

30

20

SIMPLE ——
——

APRX-SFW -~

#Quorums

% of Slow Writes vs # of Servers: SR.nr20.nw20.2.data.2D plot

100 T T T

%

9

%

8 L L L

SIMPLE ——
CWFR —x—

Wi
APRX-SFW -~

0 50 100 150
#Quorums

200

Figure 34: Left Column:

250

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr20.nw20.{1.data.2D plot

26
#Quorums
Write Latency vs # of Servers: SL.nr20.nw20.11.data.2D plot
3 T T T T T T T
SIMPLE —+—
CWFR -~
24
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr20.nw20.12.data.2D plot
55 T T T T T -
SIMPLE ——
5L APRX-SFW -5 |
45 1
4l 1
351 § g
x
3l 1
25
21
15
o
#Quorums
Write Latency vs # of Servers: SL.nr20.w20.12.data.2D plot
45 T T T T y
SIMPLE ——
CWFR --x---
APRX-SFW -3
at 1
35 —
sl
25
2
0 50 100 150 200 250 300
#Quorums

Percentage of slow operations, Right Column: Latency of operations

40 Readers, 20 Writers, f=1:

%2comm-reads

9%2comm-writes

40

%2comm-reads

%2comm-writes

100

90

80

70

60

50

40

100

95

9

85

80

% of Slow Reads vs # of Servers: SR.nr40.nw20.f1.data.2D plot

j j j j " T sMPlE ——

CWFR
APRX-SFW -

.
10 12 14 16 18 20 22 2 26
#Quorums
9 of Slow Wites vs # of Servers: SR.nr40.w20.f1.data.2D plot

)))) N T smPlE ——
CWFR --x—

APRX-SFW -

x
x
.
10 12 14 16 18 20 22 24 26
#Quorums

Readers, 20 Writers, f=2:

100

9%

80

70

60

50

40

30

20

100

98

%

94

92

90

88

9% of Slow Reads vs # of Servers: SR.nr40.nw20.f2.data.2D plot

SIMPLE ——

APRX-SFW -~

* S

t x -4

.
0 50 100 150 200 250 300

#Quorums
96 of Slow Wites vs # of Servers: SR.nr40.nw20.£2.data.20 plot
! j j j SIMPLE ——
CWFR —x—
APRX-SFW -
.

.

0 50 100 150 200 250 300

#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr40.nw20.{1.data.2D plot

SIMPLE

R —x-
APRX-SFW ---%-

26
#Quorums
Write Latency vs # of Servers: SL.nr40.nw20.11.data.2D plot
3 T T T T T T T
SIMPLE —+—
CWFR ---x---
APRX-SF)
. A
24 -
23
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr40.nw20.12.data.2D plot
55 T T T T T
SIMPLE —— -
CWFR --
5L APRX-SFW - |
45 1
4l 1
351
3l
25
21
15
o 50 100 150 200 250 300
#Quorums
Write Latency vs # of Servers: SL.nr40.nw20.12.data.2D plot
45 T T T T y
SIMPLE ——
CWFR --x---
APRX-SFW -
at 1
35 —
x
sl 1
25
2
0 50 100 150 200 250 300
#Quorums

Figure 35: Left Column: Percentage of slow operations, Right Column: Latency of operations

49

80

%2comm-reads

9%2comm-writes

80

%2comm-reads

%2comm-writes

Readers, 20 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr80.nw20.f1.data.2D plot

100 T T T T t T T
SIMPLE ——
CWFR --%---
90 - APRX-SFW 1
80 - 1
70 4
60 - 1
50 - 1
40 - 1
30 - Tk 4
10 1
10 12 14 16 18 20 22 24 26
#Quorums
% of Slow Writes vs # of Servers: SR.nr80.nw20.fL.data.2D plot
100 T T T T * T T
SIMPLE ——
CWFR --x---
APRX-SFW
95 - 1
90 - 1
85 - 1
80 - 1
X
75 F * 1
70 w
65 1
10 12 14 16 18 20 22 24 26

#Quorums

Readers, 20 Writers, f=2:

9% of Slow Reads vs # of Servers: SR.nr80.nw20.f2.data.2D plot

100 T T T T T
SIMPLE —+—
R
APRX-SFW -~
%

80
70+

60

50 |- R

40 1

30

20

o 50 100 150 200 250
#Quorums

% of Slow Writes vs # of Servers: SR.nr80.nw20.2.data.2D plot

100 T T T T T
" SIMPLE ——
CWFR --x---

Wi
APRX-SFW -~

% *

9

8 L L L L L
0 50 100 150 200 250

#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

©
@

Read Latency vs # of Servers: SL.nr80.nw20.{1.data.2D plot

SIMP]

FR -
APRX-SFW -

26
#Quorums
Wiite Latency vs # of Servers: SL.n80.1w20.11.data.2D plot
L
.
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr80.nw20.12.data.2D plot
)))) SIMPLE ——.
L APRX-SFW -5 |
L * o i
0 50 100 150 200 250 300
#Quorums
Wiite Latency vs # of Servers: SL.nr80.nw20.12.data.2D plot
j j j j SIMPLE —+—
CWFR -
APRX-SFW -3¢
.
0 50 100 150 200 250 300
#Quorums

Figure 36: Left Column: Percentage of slow operations, Right Column: Latency of operations

50

10

%2comm-reads

9%2comm-writes

10

%2comm-reads

%2comm-writes

Readers, 40 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr10.nw40.f1.data.2D plot
100 T T T T + T

SIMPLE ——

CWFR
APRX-SFW -
80 |-
70 -
60 |-
50
40

30

#Quorums

% of Slow Writes vs # of Servers: SR.nr10.nw40.fL.data.2D plot
100 T T T T * T

SIMPLE —+—
FR s

CWFR -
APRX-SFW ----
99

97 |

% |

#Quorums

Readers, 20 Writers, f=2:

9% of Slow Reads vs # of Servers: SR.nr10.nw40.f2.data.2D plot

100 T T T T T
SIMPLE —+—

%0 APRX-SFW -

70+

50

30+

10 L L L L L

#Quorums

9% of Slow Writes vs # of Servers: SR.nr10.nw40.2.data.2D plot

100 T T T T T
SIMPLE ——

CWFR
APRX-SFW ---%-

99

984

0 50 100 150 200 250
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr10.nw40.{1.data.2D plot

—
CWFR ~<x---
APRX-SEW -

26
#Quorums
Wiite Latency vs # of Servers: SL.nr10.w40.f1data.2D plot
)))) " swplE ——
CWFR -
APRX:SFW %
26

#Quorums

Read Latency vs # of Servers: SL.nr10.nw40.12.data.2D plot

)))) SIMPLE —+—

APRX-SFW -~

50 100 150 200 250 300
#Quorums

Write Latency vs # of Servers: SL.nr10.nw40.12.data.2D plot

j j j j SIMPLE —+—

CWFR
APRX-SFW -

50 100 150 200 250 300
#Quorums

Figure 37: Left Column: Percentage of slow operations, Right Column: Latency of operations

o1

20 Readers, 40 Writers, f=1:

%2comm-reads

9%2comm-writes

20

%2comm-reads

%2comm-writes

100

% of Slow Reads vs # of Servers: SR.nr20.nw40.f1.data.2D plot

%

60
50
40

30+

j j j " T sMPlE ——

CWFR
APRX-SFW -

14 16 18 20 22 24 26

#Quorums

9% of Slow Writes vs # of Servers: SR.nr20.nw40.f1.data.2D plot

))) N SIMPLE —+—
FR s

CWFR -
APRX-SFW -+ o

#Quorums

Readers, 40 Writers, f=2:

100

9% of Slow Reads vs # of Servers: SR.nr20.nw40.f2.data.2D plot

%

80

70+

50

30+

10

SIMPLE ——

APRX-SFW ---x--- |

100

50 100 150 200 250 300

#Quorums

9% of Slow Writes vs # of Servers: SR.nr20.nw40.2.data.2D plot

! j j j SIMPLE —+—

CWFR
APRX-SFW -

50 100 150 200 250 300

#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr20.nw40.{1.data.2D plot

)))) " smPLE

R
APRX-SFW -

26
#Quorums
Write Latency vs # of Servers: SL.nr20.nw40.11.data.2D plot
32 T T T T T T T
SIMPLE —+—
CWFR ---x---
APRX-SFW ---3%--
31r
s 1
24
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr20.nw40.12.data.2D plot
8 T T
SIMPLE ——
APRX-SFW -3
a8 1
6 1
5| 1
4l 1
3l
21
Xem
;
o 50 100 150 200 250 300
#Quorums
Write Latency vs # of Servers: SL.nr20.nw40.12.data.2D plot
5 T T T T y
SIMPLE ——
CWFR - ;
APRX-SFW -
a5 b 4
4l 1
35 1
s 1
25
2
0 50 100 150 200 250 300
#Quorums

Figure 38: Left Column: Percentage of slow operations, Right Column: Latency of operations

52

40 Readers, 40 Writers, f=1:

%2comm-reads

9%2comm-writes

40

%2comm-reads

%2comm-writes

100

% of Slow Reads vs # of Servers: SR.nr40.nw40.f1.data.2D plot

80

70+

60

50 |

40 -

30

SIMPLE ——

CWFR
APRX-SFW -

26
#Quorums
% of Slow Writes vs # of Servers: SR.nr40.nw40.fL.data.2D plot
100 T T T T * T T
SIMPLE ——
CWFR --%---
APRX-SFW --%-
99 - 1
97 - 1
9 - x 4
95 - 1
0 1
10 12 14 16 18 20 22 24 26

#Quorums

Readers, 40 Writers, f=2:

100

9% of Slow Reads vs # of Servers: SR.nr40.nw40.f2.data.2D plot

%

70+

50

30+

10

SIMPLE ——

APRX-SFW ---x--- |

100

50 100 150 200 250 300
#Quorums

9% of Slow Writes vs # of Servers: SR.nr40.nw40.2.data.2D plot

99

SIMPLE —+—
CWFR
APRX-SFW -

50 100 150 200 250 300
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr40.nw40.{1.data.2D plot

CWFR
APRX-SFW -::%-

#Quorums

Write Latency vs # of Servers: SL.nr40.nw40.f1.data.2D plot

))))) " smplE ——
i p——

#Quorums

Read Latency vs # of Servers: SL.nr40.nw40.12.data.2D plot

SIMPLE —+—

APRX-SFW ---

50 100 150 200 250 300
#Quorums

Write Latency vs # of Servers: SL.nr40.nw40.12.data.2D plot

j j j j SIMPLE —+—

CWFR
APRX-SFW -

50 100 150 200 250 300
#Quorums

Figure 39: Left Column: Percentage of slow operations, Right Column: Latency of operations

93

80 Readers, 40 Writers, f=1:

%2comm-reads

9%2comm-writes

100

% of Slow Reads vs # of Servers: SR.nr80.nw40.f1.data.2D plot

%

80

70+

60

50

a0

30+

j j j " T sMPlE ——

CWFR
APRX-SFW -

) 12 14 16 18 20 22 2 26
#Quorums
96 of Slow Wites vs # of Servers: SR.nr80.nwa0.fL.data.2D plot
)))) N SIMPLE —+—
CWFR --x—
k APRX.SFW x4
L]
x. |
L S
.
10 12 14 16 18 20 22 24 26
#Quorums

80 Readers, 40 Writers, f=2:

%2comm-reads

%2comm-writes

100

9% of Slow Reads vs # of Servers: SR.nr80.nw40.f2.data.2D plot

%

80

70+

60

50

a0+

30

10

SIMPLE ——

APRX-SFW ---x--- |

100

99

50 100 150 200 250 300
#Quorums

9% of Slow Writes vs # of Servers: SR.nr80.nw40.2.data.2D plot

\ j j j SIMPLE ——

CWFR
APRX-SFW -

50 100 150 200 250 300
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.n80.nw40.{1.data.2D plot

26
#Quorums
Wite Latency vs # of Servers: SL.nr80.nw40.fL.data 2D plot
32 T T T T T T T
SIMPLE —%—
CWER ~—
APRX-SFW ---%--
31F e
24
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr80.nw40.12.data 2D plot
)))) SIMPLE —+—
APRXSFW .
7L]
ol 1
st 1
al 1
3l
s
.
.
0 50 100 150 200 250 300
#Quorums
Wite Latency vs # of Servers: SL.nr80.nw40.f2.data 2D plot
5 T T T T ,
SIMPLE ——
CWFR ——
APRXSFW -
45 -
al 1
35| v]
3t 1
25
2
0 50 100 150 200 250 300
#Quorums

Figure 40: Left Column: Percentage of slow operations, Right Column: Latency of operations

54

10 Readers, 80 Writers, f=1:

%2comm-reads

9%2comm-writes

10

%2comm-reads

%2comm-writes

100

% of Slow Reads vs # of Servers: SR.nr10.nw80.f1.data.2D plot

%

60

50

a0

j j j " T sMPlE ——

CWFR
APRX-SFW -

100

#Quorums

9% of Slow Writes vs # of Servers: SR.nr10.nw80.f1.data.2D plot

))) N SIMPLE —+—
FR s

CWFR -
APRX-SFW ----

#Quorums

Readers, 80 Writers, f=2:

100

9% of Slow Reads vs # of Servers: SR.nr10.nw80.f2.data.2D plot

70

60

50

20 |

SIMPLE ——

APRX-SFW ---x---

100

99.95

99.85

99.75

99.65

50 100 150 200 250 300
#Quorums

% of Slow Writes vs # of Servers: SR.nr10.nw80.f2.data.2D plot

T j j j SIMPLE ——

CWFR
APRX-SFW ---%-

50 100 150 200 250 300
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr10.nw80.{1.data.2D plot

)))) " smPlE ——

CWFR
APRX-SFW

#Quorums

Write Latency vs # of Servers: SL.nr10.nw80.f1.data.2D plot

)))) " swplE ——

CWFR -
APRX-SFW ---¥-

#Quorums

Read Latency vs # of Servers: SL.nr10.nw80.12.data.2D plot

SIMPLE —+—
APRXSFW -

100 150 200 250
#Quorums

Write Latency vs # of Servers: SL.nr10.nw80.12.data.2D plot

j j j SIMPLE —+—

CWFR
APRX-SFW ---3%-

100 150 200 250
#Quorums

Figure 41: Left Column: Percentage of slow operations, Right Column: Latency of operations

95

300

20 Readers, 80 Writers, f=1:

%2comm-reads

9%2comm-writes

20

%2comm-reads

%2comm-writes

100

% of Slow Reads vs # of Servers: SR.nr20.nw80.f1.data.2D plot

%

60k
50 -

a0

CWFR
APRX-SFW

SIMPLE ——

100

#Quorums

9% of Slow Writes vs # of Servers: SR.nr20.nw80.f1.data.2D plot

cwi
APRX-SFW

*-

SIMPLE —+—
FR s

#Quorums

Readers, 80 Writers, f=2:

100

9% of Slow Reads vs # of Servers: SR.nr20.nw80.f2.data.2D plot

70

60

50

20 |

APRX-SFW ---x-

SIMPLE ——

100

50 100 150 200 250
#Quorums

% of Slow Writes vs # of Servers: SR.nr20.nw80.f2.data.2D plot

99.95 -

99.85

99.75

CWFR
APRX-SFW

SIMPLE ——

ol

99.65
0

Figure 42: Left Column:

50 100 150 200 250
#Quorums

o6

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr20.nw80.{1.data.2D plot

)))) " smPlE ——

CWFR
APRX-SFW

#Quorums

Write Latency vs # of Servers: SL.nr20.nw80.f1.data.2D plot

" " " " " " splE T —

CWF
APRX-SFW ---%-

#Quorums

Read Latency vs # of Servers: SL.nr20.nw80.12.data.2D plot

SIMPLE —+—
APRXSFW -

50 100 150 200 250
#Quorums

Write Latency vs # of Servers: SL.nr20.nw80.12.data.2D plot

j j j j SIMPLE —+—

CWFR
APRX-SFW ---3%-

50 100 150 200 250
#Quorums

Percentage of slow operations, Right Column: Latency of operations

300

40 Readers, 80 Writers, f=1:

% of Slow Reads vs # of Servers: SR.nr40.nw80.f1.data.2D plot

%2comm-reads

9%2comm-writes

40

%2comm-reads

%2comm-writes

100

%

SIMPLE ——

CWFR
APRX-SFW

604

50

a0

#Quorums

9% of Slow Writes vs # of Servers: SR.nr40.nw80.f1.data.2D plot

100

SIMPLE —+—
FR s

CWFR -
APRX-SFW -

*-

#Quorums

Readers, 80 Writers, f=2:

9% of Slow Reads vs # of Servers: SR.nr40.nw80.f2.data.2D plot
100 T T T T

70

60

50

20 |

APRX-SFW

SIMPLE ——

-

o 50 100 150 200 250
#Quorums

% of Slow Writes vs # of Servers: SR.nr40.nw80.2.data.2D plot

100 T T T T

CWFR
APRX-SFW
99.95

99.85 |-

99.75

99.65

99.6 L L L L L

SIMPLE ——

ol

0 50 100 150 200 250
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr40.nw80.{1.data.2D plot

SIMPLE ——

CWFR
APRX-SFW -

*-

*

26
#Quorums
Write Latency vs # of Servers: SL.nr40.nw80.11.data.2D plot

33 T T T T T T
32
24

10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr40.nw80.12.data. 2D plot
12 T T T T T
SIMPLE ——

1 - APRX-SFW ---3%-

10 g
ol 1
sl 1
s 1
6 1
5| 1
4r 4

x
s |
21
;
o 50 100 150 200 250 300
#Quorums
Write Latency vs # of Servers: SL.nr40.nw80.12.data.2D plot
55 T T T T y
SIMPLE ——
CWFR --x---
APRX-SFW -
45 b B
sl 1
351 g
sl 1
25
2
0 50 100 150 200 250 300
#Quorums

Figure 43: Left Column: Percentage of slow operations, Right Column: Latency of operations

o7

80 Readers, 80 Writers, f=1:

100

% of Slow Reads vs # of Servers: SR.nr80.nw80.f1.data.2D plot

%

50

a0

%2comm-reads

605 .

j j j " T sMPlE ——

CWFR
APRX-SFW -

#Quorums

9% of Slow Writes vs # of Servers: SR.nr80.nw80.f1.data.2D plot

9%2comm-writes

))) N SIMPLE —+—
FR s

CWFR -
APRX-SFW -+ |

#Quorums

80 Readers, 80 Writers, f=2:

100

9% of Slow Reads vs # of Servers: SR.nr80.nw80.f2.data.2D plot

70

60

50

%2comm-reads

20 |

SIMPLE ——

APRX-SFW ------

50 100 150 200 250 300
#Quorums

% of Slow Writes vs # of Servers: SR.nr80.nw80.2.data.2D plot

100

99.95 -

99.85

%2comm-writes

99.75

! j j j SIMPLE ——

CWFR
APRX-SFW -

99.65
0

50 100 150 200 250 300
#Quorums

ReadLatency

WriteLatency

ReadLatency

WriteLatency

Read Latency vs # of Servers: SL.nr80.nw80.{1.data.2D plot

))))) " smPlE ——

: &

CWFR
APRX-SFW -

#Quorums

Write Latency vs # of Servers: SL.nr80.nw80.f1.data.2D plot

SIMPLE
CWFR |
APRXSFW

.
10 12 14 16 18 20 22 24 26
#Quorums
Read Latency vs # of Servers: SL.nr80.nw80.12.data.2D plot
))) . SIMPLE ——
F 3 APRX-SFW -
L «]
0 50 100 150 200 250
#Quorums
Wiite Latency vs # of Servers: SL.nr80.nw80.12.data.2D plot
j j j j SIMPLE —+—
CWFR -
L APRX-SFW -3~
.
0 50 100 150 200 250 300
#Quorums

Figure 44: Left Column: Percentage of slow operations, Right Column: Latency of operations

o8

E Network Latency 500ms

Below we present the plots regarding the read and write performance of the algorithms when the network
experiences a latency of 500ms. We focused on a single quorum construction over a set of 15 servers, 2
of which may crash. Each quorum has size 13 and thus the quorum system has 105 quorum members.
We run the SIMPLE, CWFR, and APRX-SFW algorithms using 10,20, 40, and 80 readers and writers. By
fixing the intersection degree and the number of writers (resp. readers) a plot depicts the performance
of read (resp. write) operations as we increase the number of readers in the system. Such plots help us
determine whether high netwrok latencies may favor algorithms that allow single round operations, even
if they have higher computation demands.

99

10 Writers:

%2comm-reads

%2comm-reads

20

%2comm-reads

%2comm-reads

Figure 45: 6-wise quorum system (|S| = 15, f = 2)

100

9

80

70

60

50

40

30

100

9%

80

70

60

50

40

9% of Slow Reads vs # of Readers: RR.nw10.all.PROTO.rounds.maj15.12.L.500ms.data.2D plot

" j " j j SIMPLE —+—

CWFR
APRX-SFW -

20 30 40 50 60 70 80
#Readers

% of Slow Reads vs # of Readers: RR.nw10.all PROTO.rounds.maj15.12.data.2D plot

') ')) SIMPLE —+—
FR -oxeer

CWFR -
APRX-SFW ----

#Readers

Writers:

100

9%

80

70

60

50

40

30

100

9

80

70

60

50

40

9% of Slow Reads vs # of Readers: RR.nw20.all.PROTO.rounds.maj15.12.L.500ms.data.2D plot

' " ' " " SIMPLE ——
L APRXSFW -
x x
t E
10 20 30 40 50 60 70 80
#Readers
96 of Slow Reads vs # of Readers: RR.nw20.all PROTO.rounds.maj15 f2.data.2D plot
' j ' j j SIMPLE ——
CWFR —x—
APRX-SFW - x-
*
a ; ; ;

20 30 40 50 60 70 80
#Readers

Column: Latency of read operations

60

ReadLatency

ReadLatency

ReadLatency

ReadLatency

Read Latency vs # of Readers: RL.nw10.all PROTO.rounds.maj15.12.L500ms.data.2D plot

B e L e ——
CWFR
APRX-SFW -
x
| : f : ; |
10 20 30 20 50 60 70 80
#iReaders
Read Latency vs # of Readers: RL.nw10.all.PROTO.rounds.maj15.12.data.2D plot
))))) SIMPLE —+—
CWFR
*
L . 3
.
10 20 30 20 50 60 70 80
#Readers
Read Latency vs # of Readers: RL.nw20.all.PROTO.rounds.maj15.12.L500ms.data.2D plot

L SIMPLE ——

APRX-SFW -3

#Readers

Read Latency vs # of Readers: RL.nw20.all PROTO.rounds.maj15.12.data. 2D plot

—
SIMPLE ===
CWFR -

APRX-SFW ---3%-

10 20 30 40 50 60 70 80

#Readers

Left Column: Percentage of slow reads, Right

40

%2comm-reads

%2comm-reads

80

%2comm-reads

%2comm-reads

Figure 46:

Writers:

9% of Slow Reads vs # of Readers: RR.nw40.all.PROTO.rounds.maj15.12.L.500ms.data.2D plot
100 + T + T T

SIMPLE ——

CWFR
APRX-SFW -
S
80 [
B) e g
60
50 [
40

30

#Readers

% of Slow Reads vs # of Readers: RR.nw40.all PROTO.rounds.maj15.12.data.2D plot
100 + T + T T

SIMPLE —+—
FR -

CWFR -
APRX-SFW ----
%

P,

70+

60

50

40 -

30

20 L L L L L L

10 20 30 40 50 60 70
#Readers

Writers:

9% of Slow Reads vs # of Readers: RR.nw80.all.PROTO.rounds.maj15.12.L.500ms.data.2D plot

100 + T + T T T
SIMPLE —+—

APRX-SFW -~
%

80

70+

60

50

40 -

30

20 L L L L L L

10 20 30 40 50 60 70
#Readers

% of Slow Reads vs # of Readers: RR.nw80.allPROTO.rounds.maj15.2.data.2D plot
100 t T t T T

SIMPLE ——
e CWFR
ol APRX-SFW ™

80

70+

60

50

30

10 L L L L L L

10 20 30 40 50 60 70
#Readers

6-wise quorum system (|S| = 15, f = 2)

Column: Latency of read operations

61

ReadLatency

ReadLatency

ReadLatency

ReadLatency

Read Latency vs # of Readers: RL.nw40.all PROTO.rounds.maj15.12.L500ms.data.2D plot

')))) SIMPLE —+—

CWFR
APRX-SFW ---%--

20 30 40 50 60 70 80
#Readers

Read Latency vs # of Readers: RL.nw40.all PROTO.rounds.maj15.2.data.2D plot

))))) SIMPLE —+—

CWFR
APRX-SFW ---%-

#Readers

Read Latency vs # of Readers: RL.nw80.all.PROTO.rounds.maj15.f2.L 500ms.data.2D plot

CWFR --
APRX-SFW -

20 30 40 50 60 70 80
#Readers

Read Latency vs # of Readers: RL.nw80.all PROTO.rounds.maj15.12.data. 2D plot

' j j ' ' SIMPLE ——

o FR-
APRX-SFW -3

*

#Readers

Left Column: Percentage of slow reads, Right

10 Readers

% of Slow Writes vs # of Writers:

9%2comm-writes

9%2comm-writes

20

%2comm-writes

%2comm-writes

Figure 47:
Column:

WR.nr10.all PROTO.rounds.maj15.12.L500ms.data.2D plot

100 * T * T T - —To
x - : “USIMPLE ——
- CWFR —-x-—-
APRX-SFW -
95 —
90 —
85 —
80 —
75 H
70 H
o5
10 20 30 40 50 60 70 80
#Writers
% of Slow Writes vs # of Writers: WR.nr10.all.PROTO.rounds.maj15.f2.data.2D plot
100 * T ¥ T T T
- o B N SIMPLE
- CWFR %
APRX-SFW ---%--
95 - ; 4
90 —
85 —
5
10 20 30 40 50 60 70 80
#Writers
Readers:
% of Slow Writes vs # of Writers: WR.nr20.all.PROTO.rounds.maj15.f2.L500ms.data.2D plot
100 * T * T T T
« - SIMPLE ——
g APRX-SFW -+-%-
95 H
90 —
85 —
80 —
75 —
70 - B
o5
10 20 30 40 50 60 70 80
#Writers
% of Slow Writes vs # of Writers: WR.nr20.all. PROTO.rounds.maj15.f2.data.2D plot
100 -
N j e e SIMPLE
CWFR =
98 APRX-SFW - 4
*
96 —
94 i
92 H
90 —
88 —
86 H
84 4
82 I/ 4
I
10 20 30 40 50 60 70 80

#Writers

6-wise quorum system (|S = 15, f
Latency of write operations

WriteLatency

WriteLatency

WriteLatency

WriteLatency

=2):

62

Write Latency vs # of Writers: WL.nr10.all.PROTO.rounds.maj15.f2.L500ms.data.2D plot

88 T T T T T T
SIMPLE ——
oo GWER et
86| *- APRX-SFW -
82 4
8l d
-
78 1
76 [1
74 4
72 | 4
7
10 20 30 40 50 60 70 80
#Writers
Write Latency vs # of Writers: WL.nr10.all PROTO.rounds.maj15.f2.data.2D plot
275 T T T T T T
SIMPLE ——
. GWER 2552
27 APRX-SFW -~
265 1
26 | 4
255 1

20 30 40 50 60 70 80
#Writers

Write Latency vs # of Writers: WL.nr20.allPROTO.rounds.maj15.f2.L.500ms.data. 2D plot

SIMPLE —+—

V2150 =Y |

#Writers

Write Latency vs # of Writers: WL.nr20.all PROTO.rounds.maj15.12.data.2D plot

L SIMPLE T
e CWFR ——
e APRXSFW -

20 30 40 50 60 70 80
#Writers

Left Column: Percentage of slow writes, Right

40 Readers

% of Slow Writes vs # of Writers: WR.nr40.all.PROTO.rounds.maj15.f2.L.500ms.data.2D plot

100 + T * T T T
- CSIMPLE ——
L CWFR --X---
APRX-SFW -
9 | g
% g
-
8
£ 85t R
-
£
E
§
§ sof 1
g
75 —
65
10 20 30 40 50 60 70 80
#Writers
9% of Slow Writes vs # of Writers: WR.nr40.all PROTO rounds.maj15.12.data.2D plot
100 * T p _— -
e SIMPLE —+—
CWFR —-%---
APRX-SFW ---%-
*
95 3 1
8 oo g
H
£
£
§
8
R ssp 1
80} 4
75
10 20 30 40 50 60 70 80
#Writers

80 Readers:

9% of Slow Writes vs # of Writers: WR.nr80.all.PROTO.rounds.maj15.f2.L.500ms.data.2D plot

100 * T * T T . —
e SIMPLE
: APRX-SFW -~
95 - —
% g
P *
£ et R
Z
E
£
§
§ sof 1
®
75 g
70 1
65
10 20 30 40 50 60 70 80
#Writers
9% of Slow Writes s # of Writers: WR.nr80.all PROTO.rounds.maj15.f2.data.2D plot
100 —
N j L e SIMPLE ——
CWFR --x---
APRX-SFW -
.
9 | g
8 oop +H
H
E
£
8
§ esf 4
80 | —
75
10 20 30 40 50 60 70 80

#Writers

Figure 48: 6-wise quorum system (|S| = 15, f = 2):
Column: Latency of write operations

63

WriteLatency

WriteLatency

WriteLatency

WriteLatency

Write Latency vs # of Writers: WL.nr40.all.PROTO.rounds.maj15.f2.L500ms.data.2D plot

))))) SIMPLE —+—

. CWFR-
APRX-SFW ---%-

#Writers

Write Latency vs # of Writers: WL.nr40.all PROTO.rounds.maj15.12.data.2D plot

" " E e SIMPLE ——
- - GWER oo
APRX-SFW %

20 30 40 50 60 70 80
#Writers

Write Latency vs # of Writers: WL.nr80.allPROTO.rounds.maj15.f2.L.500ms.data. 2D plot

SIMPLE —+—
CWER -
APRXSFW

#Writers

Write Latency vs # of Writers: WL.nr80.all PROTO.rounds.maj15.12 data.2D plot

j j j j j SIMPLE ——

CWFR
_APRX:SEW. -

20 30 40 50 60 70 80
#Writers

Left Column: Percentage of slow writes, Right

