
Algorithm CwFr: Using Quorum Views for

Fast Reads in the MWMR Setting ∗

Chryssis Georgiou † Nicolas C. Nicolaou† ‡

Abstract

This report presents algorithm CwFr, that allows fast read operations in the MWMR setting.
The algorithm uses an adjusted version of Quorum Views, client side decision tools introduced in
[8], to establish whether a read operation can return in a single communication round. The new
algorithm does not depend on the morphology of the underlying quorum system. Moreover, it
allows fast reads when those are concurrently invoked with write operations. We provide a formal
specification of algorithm CwFr and we present its rigorous proof of correctness.

Technical Report TR-10-05
Department of Computer Science

University of Cyprus
December 2010

∗This work is supported by the Cyprus Research Promotion Foundation’s grant ΠENEK/0609/31 and the European
Regional Development Fund
†Department of Computer Science, University of Cyprus, Cyprus. Email: {chryssis,nicolasn}@cs.ucy.ac.cy.
‡Department of Computer Science and Engineering, University of Connecticut, CT, USA.

1 Introduction

Emulating atomic registers in asynchronous, crash-prone, message-passing systems is one of the ba-
sic problems in distributed computing. In such settings the register is replicated among a set of
replica hosts or servers to provide fault-tolerance and availability. Then read and write operations are
implemented as communication protocols that ensure atomic consistency.

Efficiency of register implementations is normally measured in terms of the latency of read and
write operations. Two factors affect operation latency: (a) computation, and (b) communication
delays. An operation may need to communicate with servers to read or write the register value. This
involves at least a single communication round-trip, or round, i.e., messages from the invoking process
to some servers and then the replies from these servers. Previous works focused on minimizing the
number of rounds required by each operation. Dutta et al. [4] developed the first single-writer/multi-
reader (SWMR) algorithm, where all operations complete in a single round. Such operations are called
fast. The authors showed that fast operations are possible only if the number of readers in the system
is constrained with respect to the number of servers. They also showed that it is impossible to have
multi-writer/multi-reader (MWMR) implementations where all operations are fast. To remove the
constraint on the number of readers, Georgiou et al. [9] introduced semifast implementations where
at most one complete two-round read operation is allowed per write operation. They also showed that
semifast MWMR implementations are impossible.

As of this writing, algorithm SfW, developed by Englert et al. [5], is the only algorithm that
allows both reads and writes to be fast in the MWMR setting. The algorithm uses quorum systems,
sets of intersecting subsets of servers, to handle server failures. To decide whether an operation can
terminate after its first round, the algorithm employs two predicates, one for the write and one for
read operations. Validation of both predicates relied on the construction of the underlying quorum
system. Predicates hold (and thus operations could be fast) only when every five or more quorums
of the quorum system had non empty intersection. Such quorum systems have large intersections. As
a result a server needs to belong in more quorums. Thus, the probability that a server is going to
be accessed per operation is higher and the load of each server is higher. On the other hand failure
of any server in the system may result in the failure of many quorums, decreasing this way the fault
tolerance of the quorum system.

Here we explore whether general quorum systems can be used and still allow some operations to
be fast in the MWMR setting. We present algorithm CwFr that uses Quorum Views [8], client-
side decision tools, to allow some fast read operations without additional constraints on the quorum
system. Write operations in this implementations take two rounds. The greatest challenge of the new
algorithm is to handle the multiple concurrent write operations and try to predict the state of each
one of those. To handle this problem the algorithm establishes an iterative approach to determine the
largest potentially completed write operation.

Backround. Attiya et al. [1] gave a SWMR algorithm that achieves consistency by using intersecting
majorities of servers in combination with 〈timestamp, value〉 pairs. A write operation increments the
writer’s local timestamp and delivers the new tag-value pair to a majority of servers, taking one round.
A read operation obtains tag-value pairs from some majority, then propagates the pair corresponding
to the highest timestamp to some majority of servers, thus taking two rounds.

The majority-based approach in [1] is readily generalized to quorum-based approaches in the
MWMR setting (e.g., [14, 6, 12, 7, 10]). Such algorithms requires at least two communication rounds
for each read and write operation. Both write and read operations query the servers for the latest value
of the replica during the first round. In the second round the write operation generates a new tag and
propagates the tag along with the new value to a quorum of servers. A read operation propagates to
a quorum of servers the largest value it discovers during its first round. Dolev et al. [3] and Chockler

1

et al. [2], provide MWMR implementations where some reads involve a single communication round
when it is confirmed that the value read was already propagated to some quorum.

Dutta et al. [4] present the first fast atomic SWMR implementation where all operations take a
single communication round. They show that fast behavior is achievable only when the number of
reader processes R is inferior to S

t − 2, where S the number of servers, t of whom may crash. They
also showed that fast MWMR implementations are impossible even in the presence of a single server
failure. Georgiou et al. [9] introduced the notion of virtual nodes that enables an unbounded number
of readers. They define the notion of semifast implementations where only a single read operation
per write needs to be “slow” (take two rounds). They also show the imposibility of semifast MWMR
implementations.

Georgiou et al. [8] showed that fast and semifast quorum-based SWMR implementations are pos-
sible if and only if a common intersection exists among all quorums. Hence a single point of failure
exists in such solutions (i.e., any server in the common intersection), making such implementations not
fault-tolerant. To trade efficiency for improved fault-tolerance, weak-semifast implementations in [8]
require at least one single slow read per write operation, and where all writes are fast. To obtain a
weak-semifast implementation they introduced a client-side decision tool called Quorum Views that
enables fast read operations under read/write concurrency when general quorum systems are used.

Recently, Englert et al. [5] developed an atomic MWMR register implementation, called algorithm
SfW, that allows both reads and writes to complete in a single round. To handle server failures, their
algortihm uses n-wise quorum systems: a set of subsets of servers, such that each n of these subsets
intersect. The parameter n is called the intersection degree of the quorum system. The algorithm
relies on 〈tag, value〉 pairs to totally order write operations. In contrast with traditional approaches,
the algorithm uses the server side ordering (SSO) approach that transfers the responsibility of incre-
menting the tag from the writers to the servers. This way, the query round of write operations is
eliminated. The authors proved that fast MWMR implementations are possible if and only if they
allow not more than n−1 successive write operations, where n is the intersection degree of the quorum
system. If read operations are also allowed to modify the value of the register then from the provided
bound it follows that a fast implementation can accomodate up to n− 1 readers and writers.

Contributions. Our goal is to provide efficient and practical implementations of atomic MWMR
registers. We examined the only known algorithm that allows fast read and write operations, algorithm
SfW, and we identified that fast write operations are enabled only if the quorum system satisfies
specific quorum intersection properties. If the same properties do not hold, the number of two round
read operations may also increase. Moreover, such specifications restrict the flexibility and usability
of the proposed algorithm

Motivated by the above observations, we examine whether fast operations can be achieved if one
uses general quorum constructions. By generalizing the client side decision tools, called Quorum
Views, developed for the SWMR setting in [8], we derive algorithm CwFr. The new algorithm uses
the conventional two round writes. To allow fast read operations the algorithm analyzes, using quorum
views, the distribution of a value within a quorum of replies from servers. As multiple writes can occur
concurrently, an iterative technique is used to discover the latest potentially completed write operation.

Paper Organization. In Section 2 we give the model of computation considered in this work. In
Section 3 we present algorithm CwFr and in Section 4 we prove its correctness. We conclude in
Section 5.

2

2 Model of Computation

We consider the asynchronous message-passing model. There are three distinct finite sets of crash-
prone processors: a set of readers R, a set of writers W, and a set of servers S . The identifiers of
all processors are unique and comparable. Communication among the processors is accomplished via
reliable communication channels.

Servers and Quorums. Servers are arranged into intersecting sets, or quorums, that together form
a quorum system Q. For a set of quorums A ⊆ Q we denote the intersection of the quorums in A
by (

⋂
Q∈AQ) =

⋂
Q∈AQ. A quorum system Q is called an n-wise quorum system if for any A ⊆ Q,

s.t. |A| = n we have (
⋂
Q∈AQ) 6= ∅. We call n the intersection degree of Q. Any quorum system is a

2-wise (pairwise) quorum system because any two quroums intersect. At the other extreme, a |Q|-wise
quorum system has a common intersection among all quorums. From the definition it follows that an
n-wise quorum system is also a k-wise quorum system, for 2 ≤ k ≤ n.

IO Automata and Executions. An algorithm A is a composition of automata Ai [13, 11], each
assigned to some process i. Each Ai is defined in terms of a set of states states(Ai) that includes the
initial state σ0, a signature sig(Ai) that specifies input, output, and internal actions and transitions,
that for each action ν gives the triple 〈σ, ν, σ′〉 defining the transition of Ai from state σ to state σ′.
Such a triple is also called a step. An execution fragment φ of Ai is a finite or an infinite sequence
σ0, ν1, σ1, ν2, . . . , νr, σr, . . . of alternating states and actions, such that every σk, νk+1, σk+1 is a step of
Ai. If an execution fragment begins with an initial state of Ai then it is called an execution.

Our system allows processes to fail by crashing. A process i crashes in an execution φ if it contains
a step 〈σk, faili, σk+1〉 as the last step of Ai. A process i is faulty in an execution if i crashes in the
execution; otherwise i is correct. A quorum Q ∈ Q is non-faulty if ∀i ∈ Q, i is correct; otherwise Q is
faulty. We assume that at least one quorum in Q is non-faulty in any execution.

Atomicity. We study atomic read/write register implementations, where the register is replicated
at servers. Reader p requests a read operation ρ on the register using action readp. Similarly, a write
operation is requested using action write(∗)p at writer p. The steps corresponding to such actions are
called invocation steps. An operation terminates with the corresponding acknowledgment action; these
steps are called response steps. An operation π is incomplete in an execution when the invocation
step of π does not have the associated response step; otherwise we say that π is complete. We assume
that requests made by read and write processes are well-formed: a process does not request a new
operation until it receives the response for a previously invoked operation.

In an execution, we say that an operation (read or write) π1 precedes another operation π2, or π2

succeeds π1, if the response step for π1 precedes in real time the invocation step of π2; this is denoted
by π1 → π2. Two operations are concurrent if neither precedes the other.

Correctness of an implementation of an atomic read/write object is defined in terms of the atomicity
and termination properties. Assuming the failure model discussed earlier, the termination property
requires that any operation invoked by a correct process eventually completes. Atomicity is defined
as follows [11]. For any execution if all read and write operations that are invoked complete, then the
operations can be partially ordered by an ordering ≺, so that the following properties are satisfied:

P1. The partial order is consistent with the external order of invocation and responses, that is, there
do not exist operations π1 and π2, such that π1 completes before π2 starts, yet π2 ≺ π1.

P2. All write operations are totally ordered and every read operation is ordered with respect to all
the writes.

3

P3. Every read operation ordered after any writes returns the value of the last write preceding it in
the partial order, and any read operation ordered before all writes returns the initial value of
the register.

Efficiency and Fastness. We measure the efficiency of an atomic register implementation in terms
of computation and communication round-trips (or simply rounds). A round is defined as follows [4,
9, 8]:

Definition 2.1 Process p performs a communication round during operation π if all of the following
hold:

1. p sends request messages that are a part of π to a set of processes,
2. any process q that receives a request message from p for operation π, replies without delay.
3. when process p receives enough replies it terminates the round (either completing π or starting

new round).

Operation π is fast [4] if it completes after its first communication round; an implementation is
fast if in each execution all operations are fast. We use quorum systems and tags to maintain, and
impose an ordering on, the values written to the register replicas. We say that a quorum Q ∈ Q,
replies to a process p for an operation π during a round, if ∀s ∈ Q, s receives a message during the
round and replies to this message, and p receives all such replies.

Given that any subset of readers or writers may crash, the termination of an operation cannot
depend on the progress of any other operation. Furthermore we guarantee termination only if servers’
replies within a round of some operation do not depend on receipt of any message sent by other
processes. Thus we can construct executions where only the messages from the invoking processes
to the servers, and from the servers to the invoking processes are delivered. Lastly, to guarantee
termination under the assumed failure model, no operation can wait for more than a singe quorum to
reply within the processing of a single round.

3 Algorithm CwFr

We explored the possibility to introduce fast operations in the MWMR environment by exploiting
techniques presented in the SWMR environment. The developments of [3, 2], made an effort to
introduce fast read operations in the MWMR environment, but their techniques did not convince that
such fast behavior is possible under read and write concurrency. On the other hand the development
in [5] showed that it is possible to obtain both fast reads and writes in the MWMR setting but their
approach relied on restrictive specifications on the quorum system they deployed.

In this Section we introduce a new algorithm, we call CwFr, which enables fast read operations
by adopting the general idea of Quorum Views [8]. The algorithm employs two techniques:

(i) the classic query and propagate technique (two round) for write operations, and

(ii) analysis of Quorum Views for potentially fast (single round) read operations.

The new algorithm can use any general quorum construction and allows read operations to be fast
even when they are invoked concurrently with one or multiple write operations. This distinguishes
CwFr from previous approaches. To impose a total ordering on the written values, CwFr exploits
〈tag, value〉 pairs as also used in prior papers (e.g., [2, 3, 12]). A tag is a tuple of the form 〈ts, w〉 ∈
N×W, where ts is the timestamp and w is a writer identifier. Two tags are ordered lexicographically,
first by the timestamp, and then by the writer identifier.

4

1(a) 1(b) 1(c) 1(d)

Figure 1: (a) QV1, (b) QV2, (c) QV3 with incomplete write, (d) QV3 with complete write.

3.1 Incorporating Prior Techniques – Quorum Views

To comply with the ordering scheme of CwFr we revised the definition of quorum views as presented
in [8], to examine tags instead of timestamps. The revised definition is the following:

Definition 3.1 Let process p, receive replies from every server s in some quorum Q ∈ Q for a read or
write operation π. Let a reply from s include a tag m(π)s,p.tag and let maxTag= maxs∈Q(σres(π)[s].tag).
We say that p observes one of the following quorum views for Q:

QV1: ∀s ∈ Q : m(π)s,p.tag = maxTag,

QV2: ∀Q′ ∈ Q : Q 6= Q′ ∧ ∃A ⊆ Q ∩Q′, s.t. A 6= ∅ and ∀s ∈ A : m(π)s,p.tag < maxTag,

QV3: ∃s′ ∈ Q : m(π)s′,p.tag < maxTag and ∃Q′ ∈ Q s.t. Q 6= Q′ ∧ ∀s ∈ Q ∩ Q′ : m(π)s,p.tag =
maxTag

QV1 implies the potential completion of the write operation that wrote a value associated with
maxTag. QV2 imposes its non-completion and QV3 does not reveal any information about the write
completion.

Analyzing these three types of quorum views we can derive conclusions on the state of the write
operation (complete or incomplete) that tries to propagate a value with maxTag in the system.
Figure 1 illustrates those quorum views assuming that a reader r invokes a read operation ρ and
receives replies from all the servers in Qi. The dark nodes maintain the maximum tag of the system
and white nodes or “empty” quorums maintain an older tag. Recall that it follows from our failure
model that no operation (read or write) can wait for more than one quorum to reply. Thus having
a full quorum reporting the same tag, as seen in Figure 1(a), implies the possible completion of the
write operation (in the case of Figure 1(a) the complete write operation strictly contacts Qi).

Observe that if a full quorum contains maxTag then the members of any intersection of that
quorum contain maxTag. So witnessing a subset of members of each intersection of Qi (as seen in
Fig. 1(b) the representation of QV2) to maintain an older timestamp, implies directly that the write
operation which propagates maxTag is not yet complete.

Finally, QV3, provides insufficient information regarding the state of the write operation. Observe
Figures 1(c) and 1(d). In the former an incomplete write operation propagates the maxTag in the
dark nodes and in the latter it completes by receiving replies from Qz. Notice that if a read operation
ρ strictly contacts Qi (i.e., scnt(ρ,Qi)∗) in the two executions, it won’t be able to distinguish 1(c) from
1(d). So, more formally, if an operation witnesses some intersection Qi ∩Qz that contains maxTag in
all of its members, then a write operation might: (i) have been completed and contacted Qz or (ii) be
incomplete and contacted a subset of servers B such that Qi ∩Qz ⊆ B and ∀Qj ∈ Q, Qj 6⊆ B.

5

3.2 High Level Description of CwFr

The original quorum views algorithm [8] relies on the fact that a single writer is participating in the
system. If a quorum view is able to predict the non-completeness of the latest write operation, is
immediately understood that – by well-formedness of the single writer – any previous write operation
is already completed. Multiple writer participants in the system prohibit such assumption: different
values (or tags) may be written concurrently. Hence, the discovery of a write operation that propagates
some tag does not imply the completion of the write operations that propagate a smaller tag. To this
end, direct adaptation of the quorum view idea form the SWMR model to the MWMR model was
impossible. So, algorithm CwFr incorporates an iterative technique around quorum views that not
only predicts the completion status of a write operation, but also detects the last potentially completed
write operation. Below we provide a high level description of our algorithm and present the main idea
behind our technique.

Writers. The write protocol has two rounds. During the first round the writer discovers the max-
imum tag among the servers: it sends read messages to all servers and waits for replies from all the
members of a single quorum. It then discovers the maximum tag among the replies and generates a
new tag in which it encloses the incremented timestamp of the maximum tag, and the writer’s identi-
fier. In the second round, the writer associates the value to be written with the new tag, it propagates
the pair to a complete quorum, and completes the write.

Readers. The read protocol is more involved. When a reader invokes a read operation, it sends a
read message to all servers and waits for some quorum to reply. Once a quorum replies, the reader
determines the maxTag. Then the reader analyzes the distribution of the tag within the responding
quorum Q in an attempt to determine the latest, potentially complete, write operation. This is
accomplished by determining the quorum view conditions. Detecting conditions of QV1 and QV3
are straightforward. When condition for QV1 is detected, the read completes and the value associated
with the discovered maxTag is returned. In the case of QV3 the reader continues into the second
round, advertising the latest tag (maxTag) and its associated value. When a full quorum replies to
the second round, the read returns the value associated with maxTag.

Analysis of QV2 involves discovery of the earliest completed write operation. This is done itera-
tively by (locally) removing the servers from Q that replied with the largest tags. After each iteration
the reader determines the next largest tag in the remaining server set, and then re-examines the quo-
rum views in the next iteration. This process eventually leads to either QV1 or QV3 being observed.
If QV1 is observed, then the read completes in a single round by returning the value associated with
the maximum tag among the servers that remain in Q. If QV3 is observed, then the reader proceeds
to the second round as above, and upon completion it returns the value associated with the maximum
tag maxTag discovered among the original respondents in Q.

Servers. The servers play a passive role. They receive read or write requests, update their object
replica accordingly, and reply to the process that invoked the request. Upon receipt of any message,
the server compares its local tag with the tag included in the message. If the tag of the message is
higher than its local tag, the server adopts the higher tag along with its corresponding value. Once
this is done the server replies to the invoking process.

3.3 Formal Specification of CwFr

We now present the formal specification of CwFr using IOA [13] notation. Our implementation
includes four automata: (i) automaton CwFrw that handles the write operations for each writer
w ∈ W, (ii) automaton CwFrr that handles the reading for each r ∈ R, (iii) automaton CwFrs that

6

Signature:

Input:
write(val)w, val ∈ V , w ∈ W
rcv(m)s,w, m ∈M , s ∈ S, w ∈ W
failw, w ∈ W

Output:
send(m)w,s, m ∈M , s ∈ S, w ∈ W
write-ackw, w ∈ W

Internal:
write-phase1-fixw, w ∈ W
write-phase2-fixw, w ∈ W

State:

tag = 〈ts, w〉 ∈ N×W, initially {0, w}
v ∈ V , initially ⊥
vp ∈ V , initially ⊥
maxTS ∈ N, initially 0
wCounter ∈ N+, initially 0

phase ∈ {1, 2}, initially 1
status ∈ {idle, active, done}, initially idle
srvAck ⊆M × S, initially ∅
failed, a Boolean initially false

Transitions:

Input write(val)w
Effect:

if ¬failed then
if status = idle then
status← active
srvAck ← ∅
phase← 1
vp← v
v ← val
wCounter ← wCounter + 1

Input rcv(〈msgT, t, C〉)s,w
Effect:

if ¬failed then
if status = active and wCounter = C then

if (phase = 1 ∧msgT = read-ack)∨
(phase = 2 ∧msgT = write-ack) then
srvAck ← srvAck ∪ {s, 〈msgT, t, C〉}

Output send(〈msgT, t, C〉)w,s
Precondition:
status = active
¬failed[
(phase = 1 ∧ 〈msgT, t, C〉 =

〈read, 〈tag, vp〉, wCounter〉)∨
(phase = 2 ∧ 〈msgT, t, C〉 =

〈write, 〈tag, v〉, wCounter〉)
]

Effect:
none

Output write-ackw
Precondition:
status = done
¬failed

Effect:
status← idle

Internal write-phase1-fixw
Precondition:
¬failed
status = active
phase = 1
∃Q ∈ Q : Q ⊆ {s : (s,m) ∈ srvAck}

Effect:
maxTS ← maxs∈Q∧(s,m)∈srvAck(m.t.tag.ts)
tag = 〈maxTs+ 1, w〉
phase← 2
srvAck ← ∅
wCounter ← wCounter + 1

Internal write-phase2-fixw
Precondition:
¬failed
status = active
phase = 2
∃Q ∈ Q : Q ⊆ {s : (s,m) ∈ srvAck}

Effect:
status← done

Input failw
Effect:
failed← true

Figure 2: CwFrw Automaton: Signature, State and Transitions

handles the read and write requests on the atomic register for each s ∈ S, and (iv) Channelp,p′ that
establish the reliable asynchronous process-to-process communication channels; these are the typical
Channel automata, as defined in [11].

Automaton CwFrw. The state variables, the signature and the transitions of the CwFrw are
depicted in Figure 2. The state of the CwFrw automaton includes the following variables:

7

• 〈〈ts, wid〉, v〉 ∈ N×W × V : writer’s local tag along with the latest value written by the writer.
The tag is composed of a timestamp and the identifier of the writer.

• vp ∈ V : this variable is used to hold the previous value written.

• maxTS ∈ N: the maximum timestamp discovered during the last write operation.

• wCounter ∈ N: the number of write requests performed by the writer. Is used by the servers to
distinguish fresh from stale messages.

• phase ∈ {1, 2}: indicates the active communication round of the write operation.

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an operation
(status = active) or it is done with any requests (status = idle). When status = done, it
indicates that the writer received all the necessary replies to complete its write operation and is
ready to respond to the client. This variable also ensures well formedness for the writer, since
no request is accepted by the automaton as long as status 6= idle.

• srvAck ⊆ S: a set that contains the servers that reply to the write messages as a result of a
write request. The set is reinitialized to ∅ at the response step of every write operation.

• failed ∈ {true, false}: indicates whether the process associated with the automaton has failed.

The automaton completes a write operation in two phases. A write operation ω is invoked when
the write(val)w request is received from the automaton’s environment. The status variable becomes
active, the previous value vp gets the current value and the variable v gets the requested value val
to be written. As long as the status = active and phase = 1 the automaton sends messages to all
server processes and collects the identifiers of the servers that reply to those messages in the srvAck
set. To avoid adding any delayed message from a previous phase, the writer examines the type of
the acknowledgment. The action write-phase1-fix occurs when the replies from the members of a full
quorum are received by the writer, i.e., ∃Q ∈ Q : Q ⊆ srvAck. In the same action the writer discovers
the maximum timestamp maxTS among the replies and generates the new tag. In particular, it
assigns tag = 〈maxTS + 1, w〉. Once the new tag is generated, the writer changes the phase variable
to 2, to indicate the start of its second round, and reinitializes the srvAck to accept the replies to
its new round. When a full quorum replies to w, the status of the automaton becomes done. This
change, and assuming that the writer does not fail, enables the write-ackw. Finally, when the action
write-ackw occurs, the writer responds to the environment and the status variable becomes idle.

Automaton CwFrρ. The state variables, the signature and the transitions of the CwFrr are
depicted in Figures 3 and 4. The state of the CwFrr automaton includes the following variables:

• 〈〈ts, wid〉, v〉 ∈ N×W × V : the maximum tag (timestamp and writer identifier pair) discovered
during r’s last read operation along with its associated value.

• maxTag ∈ N × W, and retvalue ∈ V : the maximum tag discovered and the value that was
returned during the last read operation.

• rCounter ∈ N: read request counter. Used by the servers to distinguish fresh from stale mes-
sages.

• phase ∈ {1, 2}: indicates the active communication round of the read operation.

8

Signature:

Input:
readr, r ∈ R
rcv(m)s,r, m ∈M , r ∈ R, s ∈ S
failr, r ∈ R

Output:
send(m)r,s, m ∈M , r ∈ R, s ∈ S
read-ack(val)r, val ∈ V , r ∈ R

Internal:
read-phase1-fixr
read-phase2-fixr

State:

tag = 〈ts, wid〉 ∈ N×W, initially {0,min(W)}
maxTag = 〈ts, wid〉 ∈ N×W, initially {0,min(W)}
v ∈ V , initially ⊥
retvalue ∈ V , initially ⊥
phase ∈ {1, 2}, initially 1
rCounter ∈ N+, initially 0

status ∈ {idle, active, done}, initially idle
srvAck ⊆M × S, initially ∅
maxAck ⊆M × S, initially ∅
maxTagSrv ⊆ S, initially ∅
replyQ ⊆ S, initially ∅
failed, a Boolean initially false

Figure 3: CwFrr Automaton: Signature and State

• status ∈ {idle, active, done}: specifies whether the automaton is in the middle of an operation
(status = active) or it is done with any requests (status = idle). When status = done, it
indicates that the reader decided on the value to be returned and is ready to respond to the
client. This variable also ensures well formedness for the reader, since no request is accepted by
the automaton as long as status 6= idle.

• srvAck ⊆ M × S: a set that contains the servers and their replies to the read operation. The
set is reinitialized to ∅ at the response step of every read operation.

• maxAck ⊆ M × S: this set contains the messages (and the servers senders) that contained the
maximum tag during r’s last read request.

• maxTagSrv ⊆ S: The servers that replied with the maxTag.

• replyQ ⊆ S: The quorum of servers that replied to r during the last read operation.

• failed ∈ {true, false}: indicates whether the process associated with the automaton has failed.

Any read operation requires one or two phases to complete (fast or slow). The decision on the
number of communication rounds is based on the quorum views that the reader obtains during its first
communication round.

A read operation is invoked when the CwFrr automaton receives a readr request from its environ-
ment. The status of the automaton becomes active preventing the invocation of any other operation
until the current operation completes. As long as the status = active, the automaton sends messages
to each server s ∈ S to obtain the value of the atomic object. The rcv(m)s,r action is triggered when
a reply from a server s is received. The reader collects the identifiers of servers that replied to the
current operation and their messages, by adding a pair (s,m) in the srvAck set. When the set srvAck
contains the members of at least a single quorum Q of the quorum system Q, the set of messages is
filtered (during action read-phase1-fixr) to find the messages that contain the maximum tag (maxTag).
Those messages are placed in maxTagAck set. The servers that belong into the collected quorum and
have messages in maxTagAck, are placed separately in the maxTagSrv set. Lastly, the replyQ vari-
able becomes equal to the quorum Q and the value v becomes equal to the value assigned to maxTag.

Iterative algorithm: From the newly formed sets the reader iteratively analyzes the distribution of the
maximum tag on the members of replyQ, in an attempt to determine the latest write operation that
has potentially completed. This is done by the read-qview-evalr action. In particular, the iterative

9

Transitions:

Input readr
Effect:

if ¬failed then
if status = idle then
status← active
rCounter ← rCounter + 1

Input rcv(〈msgT, t, C〉)s,r
Effect:

if ¬failed then
if status = active and rCounter = C then
srvAck ← srvAck ∪ {(s, 〈msgT, t, C〉)}

Output send(〈msgT, t, C〉)r,s
Precondition:
status = active
¬failed[
(phase = 1 ∧ 〈msgT, t, C〉 =
〈read, 〈maxTag, v〉, rCounter〉)∨

(phase = 2 ∧ 〈msgT, t, C〉 =
〈inform, 〈maxTag, v〉, rCounter〉)

]
Effect:

none

Output read-ack(val)r
Precondition:
¬failed
status = done
val=retvalue

Effect:
replyQ← ∅
srvAck ← ∅
status← idle

Internal read-phase2-fixr
Precondition:
¬failed
status = active
phase = 2
∃Q ∈ Q : Q ⊆ {s : (s,m) ∈ srvAck}

Effect:
status← done
phase← 1

Internal read-phase1-fixr
Precondition:
¬failed
status = active
phase = 1
∃Q ∈ Q : Q ⊆ {s : (s,m) ∈ srvAck}

Effect:
replyQ← Q
maxTag ← maxs∈replyQ∧(s,m)∈srvAck(m.t.tag)
maxAck ← {(s,m) : (s,m) ∈ srvAck ∧m.t.tag = maxTag}
maxTagSrv ← {s : s ∈ replyQ ∧ (s,m) ∈ maxAck}
v ← {m.t.val : (s,m) ∈ maxAck}

Internal read-qview-evalr
Precondition:
¬failed
replyQ 6= ∅

Effect:
tag ← maxs∈replyQ∧(s,m)∈srvAck(m.t.tag)
maxAck ← {(s,m) : (s,m) ∈ srvAck ∧m.t.tag = maxTag}
maxTagSrv ← {s : s ∈ replyQ ∧ (s,m) ∈ maxAck}
retvalue← {m.t.val : (s,m) ∈ maxAck}
if replyQ = maxTagSrv then
status← done

else
if ∃Q′ ∈ Q, Q′ 6= replyQ s.t. replyQ ∩Q′ ⊆ maxTagSrv then
tag ← maxTag
retvalue← v
phase← 2
srvAck ← ∅
rCounter ← rCounter + 1

else
replyQ← replyQ− {s : s ∈ maxTagSrv}

Input failr
Effect:
failed← true

Figure 4: CwFrr Automaton: Transitions

10

5(a) 5(b) 5(c)

Figure 5: Illustrating the progress of the iterative algorithm.

approach works as follows. Let maxTag` denote the maximum tag in replyQ at iteration `, with
maxTag0 = maxTag. Also let replyQ` be the set of servers that the read operation examines during
iteration `, with replyQ0 = replyQ = Q. During every iteration `, the reader r proceeds as follows
(locally) depending on the quorum view it observes during ρ in replyQ`:

Set ` = 0 and replyQ0 = replyQ

Repeat until return:

QV1: Return the value associated with maxTag` = maxs∈replyQ`(m(ρ)s,r.t.tag)

QV3: Proceed to a second round, and propagate messages that contain maxTag0 = maxTag
to all servers. Once the read-phase2-fixr event occurs, return the value associated with maxTag.

QV2: Set replyQ`+1 = replyQ` − {s : (s ∈ replyQ`) ∧ (m(ρ)s,r.t.tag = maxTag`)} and proceed
to iteration `+ 1.

Let us discuss the idea behind our proposed technique. Observe that under our failure model, any
write operation can expect a response from at least one full quorum. Moreover a write ω distributes its
tag tagω to some quorum, say Q′, before completing.Thus when a read operation ρ, s.t. ω → ρ, receive
replies from some quorum Q, then it will observe one of the following tag distributions: (a) if Q = Q′

, then ∀s ∈ Q,m(ρ)s,r = tagω (QV1), or (b) if Q 6= Q′ , then ∀s ∈ Q ∩ Q′,m(ρ)s,r = tagω (QV3).
Hence, if ρ observes a distribution as in QV1 then it follows that a write operation completed and
received replies from the same quorum that replied to ρ. Alternatively, if only an intersection contains
a uniform tag (i.e., the case of QV3) then there is a possibility that some write completed in an
intersecting quorum (in this example Q′). The read operation is fast in QV1 since it is determinable
that the write potentially completed. The read proceeds to the second round in QV3, since the
completion of the write is indeterminable and it is necessary to ensure that any subsequent operation
will observe that tag. If none of the previous quorum views hold (and thus QV2 holds), then it must
be the case that the write that yielded the maximum tag is not yet completed. Hence we try to
discover the latest potentially completed write by removing all the servers with the highest tag from
Q and repeating the analysis. If at some iteration, QV1 holds on the remaining tag values, then a
potentially completed write – that was overwritten by greater values in the rest of the servers – is
discovered and that tag is returned (in a single round). If no iteration is interrupted because of QV1,
then eventually QV3 will be observed, in the worst case, when a single server will remain in some
intersection of Q. Since a second round cannot be avoided in this case, we take the opportunity to
propagate the largest tag observed in Q. At the end of the second round that tag will be written to
at least a single complete quorum and thus the reader can safely return it.

11

Signature:

Input:
rcv(m)p,s, m ∈M , s ∈ S, p ∈ R ∪W
fails

Output:
send(m)s,p, m ∈M , s ∈ S, p ∈ R ∪W

State:

tag = 〈ts, wid〉 ∈ N×W, initially {0,min(W)}
v ∈ V , initially ⊥
Counter(p) ∈ N+, p ∈ R ∪W, initially 0

msgType ∈ {writeack,readack,infoack}
status ∈ {idle, active}, initially idle
failed, a Boolean initially false

Transitions:

Input rcv(〈msgT, t, C〉)p,s
Effect:

if ¬failed then
if status = idle and C > Counter(p) then
status← active
Counter(p)← C
if tag < t.tag then

(tag.ts, tag.wid, v)← (t.tag.ts, t.tag.wid, t.val)

Output send(〈msgT, t, C〉)s,p
Precondition:
¬failed
status = active
p ∈ R ∪W
〈msgT, t, C〉 =

〈msgType, 〈tag, v〉, Counter(p)〉
Effect:
status← idle

Input fails
Effect:
failed← true

Figure 6: CwFrs Automaton: Signature, State and Transitions

In Figure 5 we present an example that illustrates the stages of our iterative algorithm. Assume
that a reader r invokes a read operation ρ that receive replies from all the servers in Qi. Let the reader
observe three different values in that quorum as shown in Figure 5(a). Assume that the blue value is
associated with a higher tag than the green value which in turn is associated with a higher tag than
the orange value. We refer the writes that propagate these values as the blue, green and orange write.
In the first iteration of our algorithm we investigate the distribution of the higher tag, in this case
the blue value. We observe that in every intersection there is a server that maintains a smaller tag.
Since a server updates its local tag whenever it receives a higher tag, it follows that those servers did
not receive message from the writer that invoked the write of the blue value. Thus, the blue write
should not be completed as QV2 is satisfied. By our algorithm we remove the servers that replied
with a blue value and we re-evaluate the quorum views on the remaining values. A QV2 holds for
the green value (see Figure 5(b)) as every intersection contains a smaller value. When we remove the
servers that replied with a green value we observe that the remaining servers replied with the same,
orange value (see Figure 5(c)). So re-evaluating the quorum views we obtain a QV1. Thus, the read
operation will return the orange value in a single round. So this example implies that the orange write
may have completed by receiving replies from Qi, and the orange value was replaced by a higher value
in the servers of Qi that replied with a blue or orange value.

Automaton CwFrs. The server automaton has relatively simple actions. The signature, state and
transitions of the CwFrs are depicted in Figure 6. The state of the CwFrs contains the following
variables:

• 〈〈ts, wid〉, v〉 ∈ N×W × V : the maximum tag (timestamp, writer identifier pair) reported to s
along with its associated value. This is the value of the register replica of s.

• Counter(p) ∈ N: this array maintains the latest request index of each client (reader or writer).

12

It helps s to distinguish fresh from stale messages.

• status ∈ {idle, active}: specifies whether the automaton is processing a request received (status =
active) or it can accept new requests (status = idle).

• msgType ∈ {writeack,readack,infoack}: Type of the acknowledgment depending on the
type of the received message.

• failed ∈ {true, false}: indicates whether the server associated with the automaton has failed.

Each server replies to a message without waiting to receive any other messages from any process.
Thus, the status of the server automaton determines whether the server is busy processing a message
(status = active) or if it is able to accept new messages (status = idle). When a new message
arrives, the rcv(m)p,s event is responsible to process the incoming message. If the status is equal to
idle and this is a fresh message from process p then the status becomes active. The Counter(p) for
the specific process becomes equal to the counter included in the message. The the server checks if
m(π)p,s.t.tag > tags. The comparison is validated if either:

• the timestamp of the received tag is greater than the timestamp in the local tag of the server
(i.e., m(π)p,s.t.tag.ts > tags.ts), or

• m(π)p,s.t.tag.ts = tags.ts and the writer identifier included in the tag of the received message is
greater than the writer identified included in the local tag of the server (i.e., m(π)p,s.t.tag.wid >
tags.wid).

If any of the above cases hold, the server updates its tag and v variables to be equal to the
ones included in the received message. The type of the received message specifies the type of the
acknowledgment.

While the server is active, the send(m)s,p event may be triggered. When this event occurs, the
servers sends its local replica value, to a process p. The execution of the action results in modifying
the status variable to idle and thus setting the server enable to receive new messages.

4 Correcntess

We proceed to show that algorithm CwFr satisfies both termination and atomicity properties as
discussed in Section 2.

Termination. A read/write operation terminates each phase when it receives replies from at least
a single quorum. As, according to our failure model, any adversary can fail all but one quorums, then
any correct process eventually receives replies from at least the correct quorum. Thus, every operation
from a correct process terminates; therefore, the termination condition is satisfied.

Atomicity. We now show that algorithm CwFr satisfies all atomicity properties. In particular, we
use varp to refer to the variable var of the automaton Ap. To access the value of a variable var of Ap
in a state σ of an execution ξ, we use σ[p].var. Also, by m(π)p,p′ we denote the message sent from p to
p′ as a result of operation π. Any variable var enclosed in such a message is accessed by m(π)p,p′ .var.
We refer to a step 〈σ, read-qview-evalr, σ

′〉, where σ′[r].status = done or σ′[r].phase = 2, as the read-fix
step of a read operation ρ invoked by reader r. Similarly we refer to a step 〈σ,write-phase2-fixw, σ

′〉
as the write-fix step of a write operation ω invoked by w. We use the notation σfix(π), to capture the
final state of a read or write fix step (i.e., σ′ in the previous examples) for an operation π. Finally,
for an operation π, σinv(π) and σres(π) denote the system state before the invocation and after the
response of operation π respectively.

13

Given this notation, the value of the maximum tag observed during a read operation ρ from a reader
r is σfix(ρ)[r].maxTag. As a shorthand we use maxTagρ = σfix(ρ)[r].maxTag to denote the maximum
tag witnessed by ρ. Similarly, we use minTagρ to denote the minimum tag witnessed by ρ. For a write
operation we use maxTagω = σrfix(ω)[w].maxTag to denote the maximum tag witnessed during the
read phase. The state σrfix(ω) is the state of the system after the write-phase1-fixw event occurs during
operation ω. Note that σres(π)[p].tag is the tag returned if π is a read operation. Lastly given tag′ and a
set of servers Q that replied to some operation π from p, let (Q)>tag

′
= {s : s ∈ Q∧m(π)s,p.tag > tag′}

be the set of servers in Q that replied with a tag greater than tag′.
We first provide an alternative definition to atomicity, to express the three atomicity properties

based on the tags returned. Notice that for ease of analysis we split property P1 of definition of
atomicity in two properties that capture the relation between reads and writes separately. So, the
following must hold for every finite or infinite execution ξ of our implementation:

1. For each process p the tagp variable is alphanumerically monotonically nondecreasing and it
contains a non-negative timestamp.

2. If the readr event of a read operation ρ from reader r succeeds the write-fix step of a write
operation ω in ξ then, σres(ρ)[r].tag ≥ σres(ω)[w].tag.

3. If ω and ω′ are two write operations from the writers w and w′ respectively, such that ω → ω′

in ξ, then σres(ω′)[w′].tag > σres(ω)[w].tag.

4. If ρ and ρ′ are two read operations from the readers r and r′ respectively, such that ρ→ ρ′ in ξ,
then σres(ρ′)[r′].tag ≥ σres(ρ)[r].tag.

First we need to ensure that any process in the system maintains only monotonically nondecreasing
tags. Hence, once some process p sets its tagp variable to a value k at a state σ in an execution ξ,
then tagp 6= ` such that ` ≤ k at a state σ′ that appears after σ in ξ.

Lemma 4.1 In any execution ξ of CwFr, σ′[s].tag ≥ σ[s].tag for any server s ∈ S and any σ, σ′ in
ξ, such that σ appears before σ′ in ξ.

Proof. It is easy to see that a server s modifies its tag variable when the step 〈σ, rcv(m)p,s, σ′〉.
From that step, σ[s].tag 6= σ′[s].tag only if s receives a message during rcvp,s such that m(π)p,s.tag >
σ[s].tag. This means that either: a) m(π)p,s.tag.ts > σ[s].tag.ts or b) m(π)p,s.tag.ts = σ[s].tag.ts
and m(π)p,s.tag.wid > σ[s].tag.wid. So, if σ[s].tag 6= σ′[s].tag, then σ[s].tag < σ′[s].tag and the tag
is monotonically incrementing. Furthermore, since the initial tag of the server is set to 〈0,min(wid)〉
and the tag is updated only if m(π)p,s.tag.ts ≥ σ[s].tag.ts, then for any state σ′′ σ′′[s].tag.ts is always
greater than 0. �

Lemma 4.2 In any execution ξ of CwFr, if a server s receives a message m(π)p,s from a process p,
for operation π, then s replies to p with m(π)s,p.tag ≥ m(π)p,s.tag.

Proof. When the server receives the message from processor p it first compares m(π)p,s.tag with its
local tag tags. If m(π)p,s.tag > tags then the server sets tags = m(π)p,s.tag. From this it follows that
the tag of the server at the state σ′ after rcvp,s is σ′[s].tag ≥ m(π)p,s.tag. Since by Lemma 4.1 the tag
of the server is monotonically nondecreasing, then when the sends,p event occurs, the server replies to
p with a tag m(π)s,p.tag ≥ σ′[s].tag ≥ m(π)p,s.tag. Hence, the lemma follows. �

Lemma 4.3 In any execution ξ of CwFr, σ′[w].tag ≥ σ[w].tag for any writer w ∈ W and any σ, σ′

in ξ, such that σ appears before σ′ in ξ. Also, for any state σ in ξ, σ[w].tag.ts ≥ 0.

14

Proof. Each writer process w modifies its local tag during its first communication round. In par-
ticular when the write-phase1-fixw event happens for a write operation ω, then the tag of the writer
becomes equal to tagw = 〈maxTagω.ts + 1, w〉. So, it suffice to show that σinv(ω)[w].maxTS ≤
maxTagω. Suppose that all the servers of a quorum Q ∈ Q, received messages and replied to w,
for ω. Every message sent from w to any server s ∈ Qj (when sendw,s occurs), contains a tag
m(ω)w,s.tag = σinv(ω)[w].maxTS. By Lemma 4.2, any s ∈ Q replies with a tag m(ω)s,w.tag ≥
m(ω)w,s.tag ≥ σinv(ω)[w].maxTS. Thus, ∀s ∈ Q, m(ω)s,w.tag ≥ σinv(ω)[w].maxTS and it fol-
lows that m(ω)s,w.tag.ts ≥ σinv(ω)[w].maxTS.tag.ts. Since maxTagω.ts = max(m(ω)s,w.tag.ts)
then maxTagω.ts ≥ σinv(ω)[w].maxTS.tag.ts and hence, σres(ω)[w].tag = 〈maxTagω.ts + 1, w〉 >
σinv(ω)[w].maxTS. Therefore not only the tag of a writer is nondecreasing but we show explicitly that
the writer’s tag is monotonically increasing. Furthermore since the writer adopts the maximum tag
sent from the servers, and since by Lemma 4.1 the servers tags contain non-negative timestamps, then
it follows that the writer contains non-negative timestamps as well. �

Lemma 4.4 In any execution ξ of CwFr, σ′[r].tag ≥ σ[r].tag for any reader r ∈ R and any σ, σ′ in
ξ, such that σ appears before σ′ in ξ. Also, for any state σ in ξ, σ[r].tag.ts ≥ 0.

Proof. Notice that the tag variable of a reader is σinv(ρ)[r].tag ≤ σinv(ρ)[r].maxTS when the readr
event occurs and becomes σres(ρ)[r].tag = σres(ρ)[r].tag at the end of the operation. So, it suffices to
show that σres(ρ)[r].tag ≥ σinv(ρ)[r].maxTS. With similar arguments to Lemma 4.3 it can be shown
that for every s ∈ Q that replies to an operation ρ invoked by r, m(ρ)s,r.tag ≥ σinv(ρ)[r].maxTS.
Since maxTagρ = max(m(ρ)s,r.tag) and minTagρ = min(m(ρ)s,r.tag) then it follows that both
maxTagρ,minTagρ ≥ σinv(ρ)[r].maxTS. By the algorithm the tag returned by the read operation
is minTagρ ≤ σres(ρ)[r].tag ≤ maxTagρ. Hence, σres(ρ)[r].tag ≥ σinv(ρ)[r].maxTS. Thus, no matter
which of the tags is chosen to be returned at the end of the read operation nondecreasing monotonicity
is preserved. Also since by Lemma 4.1 all the servers reply with a non negative timestamp, then it
follows that r contains non-negative timestamps as well. �

Lemma 4.5 For each process p ∈ R ∪ W ∪ S the tag variable is monotonically nondecreasing and
contains a non-negative timestamp.

Proof. Follows from Lemmas 4.1, 4.3 and 4.4 �
The following lemma states that if a read operation returns a tag τ < maxTag it must be the case

that any pairwise intersection of the replied quorum contains a server s such that tags = τ .

Lemma 4.6 In any execution ξ of CwFr, if a read operation ρ from r receives replies from the
members of quorum Q and returns a tag σres(ρ)[r].tag < maxTagρ, then ∀Q′ ∈ Q, Q′ 6= Q, (Q ∩Q′)−
(Q)>σres(ρ)[r].tag 6= ∅.

Proof. By definition the intersection of two quorums Q,Q′ ∈ Q is not empty. Let us assume to
derive contradiction that a read operation ρ may return a tag σres(ρ)[r].tag < maxTagρ and may exist
(Q ∩ Q′) − (Q)>σres(ρ)[r].tag = ∅. According to our algorithm, when read-qview-eval event occurs, we
first check if either QV1 or QV3 is observed in Q. If neither of those quorum views is observed
then we remove all the servers with the current maximum tag from Q and we repeat the check on
the remaining servers. It follows that since all the servers s′ ∈ Q ∩ Q′ were removed from Q then
it must be the case that m(ρ)s′,r.tag > σres(ρ)[r].tag. So there must be a tag τ ′ > σres(ρ)[r].tag s.t.
A = (Q ∩Q′)− (Q)>τ

′ 6= ∅ and all servers s′ ∈ A replied with m(ρ)s′,r.tag = τ ′. If this happens there
are two cases for the reader:

a) ∀s′ ∈ (Q)−(Q)>τ
′
,m(ρ)s′,r.tag = τ ′ and thus QV1 is observed and the reader returns σres(ρ)[r].tag′ =

τ ′, or

15

b) ∀s′ ∈ A,m(ρ)s′,r.tag = τ ′ and thus, QV3 is observed and the reader returns σres(ρ)[r].tag′ =
maxTagρ.

Since maxTagρ ≥ τ ′, then in any case the read operation ρ would return a tag σres(ρ)[r].tag′ >
σres(ρ)[r].tag and that contradicts our assumption. �

Derived from the above lemma, the next lemma states that a read operation basically returns
either the maxTag or the maximum of the minimum tags of all the pairwise intersections of the
replied quorum.

Lemma 4.7 If a read operation ρ from r receives replies from a quorum Q in an execution ξ of
CwFr, then ∀Q′ ∈ Q, Q′ 6= Q, σres(ρ)[r].tag ≥ min(m(ρ)s,r) for s ∈ Q ∩Q′.

Proof. This lemma follows directly from Lemma 4.6. Let a subset of servers in Q ∩ Q′ replied to
ρ with the minimum tag among all the servers of that intersection, say τ . If the iteration of the
read-eval-qviewr event of ρ reaches tag τ then either ρ observes QV1 and returns σres(ρ)[r].tag = τ
or it observes QV3 and returns σres(ρ)[r].tag = maxTagρ ≥ τ . This is true for all the intersections
Q ∩Q′, for Q 6= Q′. And the lemma follows. �

Lemma 4.8 If the invocation step of a read operation ρ from reader r succeeds the write-fix step of a
write operation ω from w in an execution ξ of CwFr then, σres(ρ)[r].tag ≥ σres(ω)[w].tag.

Proof. Assume w.l.o.g. that the write operation receives messages from two, not necessarily different,
quorums Q and Q′ during its first and second communication rounds respectively. Furthermore,
let us assume that the read operation receives replies from a quorum Q′′, not necessarily different
from Q or Q′, during its first communication round. According to the algorithm the write operation
ω detects the maximum tag from Q, increments that and propagates the new tag to Q′. Since
∀s ∈ Q,maxTagω ≥ m(ω)s,w.tag then from the intersection property of a quorum system it follows
that ∀s′ ∈ (Q ∩ Q′) ∪ (Q ∩ Q′′), σres(ω)[w].tag > maxTagω ≥ m(ω)s′,w.tag. From the fact that w
propagates σres(ω)[w].tag in ω’s second communication round and from Lemma 4.2 it follows that
every s ∈ (Q′ ∩Q′′) contains a tag m(ω)s,w.tag ≥ σres(ω)[w].tag.

Since the readr operation succeeds the write-fix step of ω, then from Lemma 4.2 the read operation
will obtain a tag m(ρ)s,r.tag ≥ m(ω)s,w.tag ≥ σres(ω)[w].tag, from every server s ∈ Q′ ∩ Q′′. So,
min(m(ρ)s,r.tag) ≥ σres(ω)[w].tag. Thus from Lemma 4.7 σres(ρ)[r].tag ≥ m(ρ)s,r for s ∈ Q′ ∩Q′′ and
hence σres(ρ)[r].tag ≥ σres(ω)[w].tag completing the proof. �

Lemma 4.9 If ω and ω′ are two write operations from the writers w and w′ respectively, such that
ω → ω′ in ξ, then σres(ω′)[w′].tag > σres(ω′)[w].tag

Proof. From the precedence relation of the two write operations it follows that the write-fix step occurs
before the writew′ event of ω′. Recall that for a write operation ω, σres(ω)[w].tag = 〈maxTagω.ts+1, w〉.
So, it suffices to show here that maxTagω′ > maxTagω. This however is straightforward from Lemma
4.2 and the value propagated during the second communication round of ω. In particular let ω prop-
agate σres(ω)[w].tag > maxTagω to a quorum Q. Notice that every s ∈ Q replies with m(ω)s,w.tag ≥
σres(ω)[w].tag to the second communication round of ω. Furthermore, let the write operation ω′ receive
replies from a quorum Q′, not necessarily different than Q, during its first communication round. Since
the write-fix step of ω occurs before the writew′ event of ω′ then, by Lemmas 4.1 and 4.2, ∀s′ ∈ Q ∩Q′
m(ω′)s′,w′ ≥ m(ω)s,w ≥ σres(ω)[w].tag. Thus, maxTagω′ ≥ m(ω′)s′,w′ ≥ σres(ω)[w].tag and hence, since
σres(ω)[w].tag = 〈maxTagω′ .ts + 1, w′〉 > maxTagω′ , then σres(ω′)[w′].tag > σres(ω)[w].tag. �

Lemma 4.10 If ρ and ρ′ are two read operations from the readers r and r′ respectively, such that
ρ→ ρ′ in ξ, then σres(ρ′)[r′].tag ≥ σres(ρ)[r].tag.

16

Proof. Since ρ → ρ′ in ξ, then the read-ackr event of ρ occurs before the readr′ event of ρ′. Lets
consider that both read operations are invoked from the same reader r = r′. It follows from Lemma
4.4 that σres(ρ)[r].tag ≤ σres(ρ′)[r].tag because the tag variable is monotonically non-decrementing. So
it remains to investigate what happens when the two read operations are invoked by two different
processes, r and r′ respectively. Suppose that every server s ∈ Q receives the messages of operation
ρ with an event rcv(m)r,s, and replies with a tag m(ρ)s,r.tag with an event send(m)s,r to r. Notice
that for every server that reply, as mentioned in Lemma 4.2, m(ρ)s,r.tag ≥ σinv(ρ)[r].maxTS. Let the
members of the quorum Q′ (not necessarily different than Q) receive messages and reply to ρ′. Again
for every s′ ∈ Q′, m(ρ′)s′ ≥ σinv(ρ′)[r′].maxTS. We know that the tag of the read operation ρ after
the read-qview-evalr event of ρ may take a value between maxTagρ ≥ σres(ρ)[r].tag ≥ minTagρ. It
suffice to examine the two extreme cases and every intermediate value can be proved similarly. So we
have two cases to examine: (1) σres(ρ)[r].tag = minTagρ, and (2) σres(ρ)[r].tag = maxTagρ.

Case 1: Consider the case where σres(ρ)[r].tag = minTagρ, including the case where minTagρ =
maxTagρ. This may happen only if the read-qview-evalr event reaches an iteration with tag τ =
minTagρ and observes QV1. In other words all the servers s ∈ Q− (Q)>τ replied with m(ρ)s,r.tag =
minTagρ. By Lemma 4.6 it follows that (Q ∩Q′)− (Q ∩Q′)>τ 6= ∅ and thus every server s′ ∈ Q ∩Q′
replied to ρ with a tag m(ρ)s,r.tag ≥ minTagρ. By Lemma 4.1 it follows that every server s′ ∈ Q∩Q,
replies with a tag m(ρ′)s′,r′ .tag ≥ m(ρ)s′,r.tag ≥ minTagρ. The read operation ρ′ may return a
value within the interval minTagρ ≤ σres(ρ′)[r′].tag ≤ maxTagρ. Since for every server s′ ∈ Q ∩ Q′,
m(ρ′)s′,r′ .tag ≥ minTagρ = σres(ρ)[r].tag then maxTagρ′ ≥ m(ρ′)s′,r′ .tag ≥ σres(ρ)[r].tag. Hence,
if σres(ρ)[r′].tag = maxTagρ′ it follows that σres(ρ′)[r′].tag ≥ σres(ρ)[r].tag. On the other hand, if
σres(ρ′)[r′].tag = minTagρ′ we need to consider two cases: a) minTagρ′ ≥ minTagρ and b) minTagρ′ <
minTagρ. If the first case is valid then it follows immediately that σres(ρ′)[r′].tag ≥ minTagρ and thus
σres(ρ′)[r′].tag ≥ σres(ρ)[r].tag. If case b) is valid then it follows that the iteration reached a tag equal
to minTagρ′ . Since however every server s′ ∈ Q ∩ Q′, replied with m(ρ′)s′,r′ .tag ≥ minTagρ, then
m(ρ′)s′,r′ .tag ≥ minTagρ′ as well and thus all these servers should be removed by iteration where tag
is equal to minTagρ′ . But this means that (Q ∩Q′)− (Q′)>minTagρ′ = ∅ and that contradicts Lemma
4.6. So such a case is impossible.

Case 2: Here we examine the case where σres(ρ)[r].tag = maxTagρ. This may happen after the
read-qview-evalr of ρ if either observes a quorum view QV1 or a quorum view QV3. Let us examine
the two cases separately.
Case 2a: In this case ρ witnessed a QV1.

Therefore it must be the case that ∀s ∈ Q, s replied with m(ρ)s,r.tag = maxTagρ = minTagρ =
σres(ρ)[r].tag. Thus by Lemma 4.1 ∀s ∈ Q ∩Q′, s replies with a tag m(ρ′)s,r′ .tag ≥ m(ρ)s,r.tag to ρ′,
and hence, ρ′ witnesses a maximum tag

maxTagρ′ ≥ maxTagρ ⇒ maxTagρ′ ≥ σres(ρ)[r].tag (1)

Recall that minTagρ′ ≤ σres(ρ′)[r′].tag ≤ maxTagρ′ . Clearly if σres(ρ′)[r′].tag = maxTagρ′ then
σres(ρ′)[r′].tag ≥ σres(ρ)[r].tag. So it remains to examine the case where σres(ρ′)[r′].tag < maxTagρ′ .
By Lemma 4.7, σres(ρ′)[r′].tag must be greater or equal to the minimum tag of any intersection of Q′.
Since min(m(ρ′)s′,r′ .tag) ≥ σres(ρ)[r].tag, for every s′ ∈ Q ∩Q′, then by that lemma σres(ρ′)[r′].tag ≥
σres(ρ)[r].tag.
Case 2b: This is the case where σres(ρ)[r].tag = maxTagρ, because r witnessed a quorum view QV3.
In this case ρ proceeds in phase 2 before completing. Since ρ → ρ′ and since ρ′ happens after the
read-ackr

1 action of ρ, it means that ρ′ happens after the read-phase2-fixr action of ρ as well. However
ρ proceeds to phase 2 only after the read-phase1-fixr and read-qview-evalr actions. In the latter action

1read-ackr occurs only if all phases reach a fix point and the status variable becomes equal to done

17

ρ fixes the maxTag variable to be equal to the maxTagρ. Once in phase 2, ρ sends inform messages
with maxTagρ to a complete quorum, say Q′′. By Lemma 4.5, every server s ∈ Q′′ replies with a tag

m(ρ)s,r.tag ≥ maxTagρ ⇒ m(ρ)s,r.tag ≥ σres(ρ)[r].tag (2)

So ρ′ will observe (by Lemma 4.1) that at least ∀s′ ∈ Q′ ∩Q′′, m(ρ′)s′,r′ .tag ≥ σres(ρ)[r].tag. Hence by
Lemma 4.7 ρ′ returns a tag σres(ρ′)[r′].tag ≥ min(m(ρ′)s′,r′ .tag) and thus, σres(ρ′)[r′].tag ≥ σres(ρ)[r].tag
and this completes our proof. �

Lastly the following lemma states that if two read operations return two different tags then the
values that correspond to these tags are also different.

Lemma 4.11 If ρ and ρ′ two read operations from readers r and r′ respectively, such that ρ (resp.
ρ′) returns the value written by ω (resp. ω′), then if σres(ρ)[r].tag 6= σres(ρ′)[r′].tag then ω is different
than ω′ otherwise they are the same write.

Proof. This lemma is ensured because a unique tag is associated to each written value by the writers.
So it cannot be the case that two readers such that σres(ρ)[r].tag 6= σres(ρ′)[r′].tag returned the same
value. �

Using the above lemmas we can obtain:

Theorem 4.12 Algorithm CwFr implements a MWMR atomic read/write register.

5 Conclusions

We presented a new algorithm, called CwFr, that implements an atomic read/write register in the
MWMR model and allows some fast read operations. To achieve this, the algorithm incorporates
Quorum Views, client side decision tools used to identify the last completed write. CwFr does not
depend in any constraints on the system: it allows unbounded number of participants (readers or
writers) and can utilize any general quorum system. Thus, it overcomes the restrictive requirements
of algorithm SfW [5] on the quorum construction by sacrificing the speed of write operations. We
believe that our algorithm will allow more fast read operations than SfW when deploying quorum
systems with small intersection degree (n < 5). A comparable number of fast reads is expected when
using quorum systems with higher intersection degree. The computation cost of the iterative procedure
used by CwFr is polynomial on the size of the quorums and appears to be faster than the computation
of the predicates in SfW. We plan to examine the computation burden of the predicates in SfW and
a more precise comparison will be obtained.

Acknowledgments. We would like to thank Alexander A. Shvartsman and Alexander C. Russell
for several discussions.

References

[1] Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory robustly in message passing
systems. Journal of the ACM 42(1) (1996), 124–142.

[2] Chockler, G., Gilbert, S., Gramoli, V., Musial, P. M., and Shvartsman, A. A.
Reconfigurable distributed storage for dynamic networks. Journal of Parallel and Distributed
Computing 69, 1 (2009), 100–116.

18

[3] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., and Welch, J. Geoquorums: Im-
plementing atomic memory in mobile ad hoc networks. In Proceedings of 17th International
Symposium on Distributed Computing (DISC) (2003).

[4] Dutta, P., Guerraoui, R., Levy, R. R., and Chakraborty, A. How fast can a distributed
atomic read be? In Proceedings of the 23rd ACM symposium on Principles of Distributed Com-
puting (PODC) (2004), pp. 236–245.

[5] Englert, B., Georgiou, C., Musial, P. M., Nicolaou, N., and Shvartsman, A. A.
On the efficiency of atomic multi-reader, multi-writer distributed memory. In Proceedings 13th
International Conference On Principle Of DIstributed Systems (OPODIS 09) (2009), pp. 240–254.

[6] Englert, B., and Shvartsman, A. A. Graceful quorum reconfiguration in a robust emulation
of shared memory. In Proceedings of International Conference on Distributed Computing Systems
(ICDCS) (2000), pp. 454–463.

[7] Fan, R., and Lynch, N. Efficient replication of large data objects. In Distributed algorithms
(Oct 2003), F. E. Fich, Ed., vol. 2848/2003 of Lecture Notes in Computer Science, pp. 75–91.

[8] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. On the robustness of (semi) fast
quorum-based implementations of atomic shared memory. In DISC ’08: Proceedings of the 22nd
international symposium on Distributed Computing (Berlin, Heidelberg, 2008), Springer-Verlag,
pp. 289–304.

[9] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. Fault-tolerant semifast imple-
mentations of atomic read/write registers. Journal of Parallel and Distributed Computing 69,
1 (2009), 62–79. A preliminary version of this work appeared in the proceedings 18th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA’06).

[10] Gramoli, V., Anceaume, E., and Virgillito, A. SQUARE: scalable quorum-based atomic
memory with local reconfiguration. In SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing (New York, NY, USA, 2007), ACM, pp. 574–579.

[11] Lynch, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[12] Lynch, N., and Shvartsman, A. RAMBO: A reconfigurable atomic memory service for dy-
namic networks. In Proceedings of 16th International Symposium on Distributed Computing
(DISC) (2002), pp. 173–190.

[13] Lynch, N., and Tuttle, M. An introduction to input/output automata. CWI-Quarterly
(1989), 219–246.

[14] Lynch, N. A., and Shvartsman, A. A. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant Computing
(1997), pp. 272–281.

19

