
Limitations Imposed by the Multi-Writer Setting on the Fastness of

Read/Write Atomic Register Implementations ∗

Chryssis Georgiou † Nicolas C. Nicolaou† ‡

Abstract

We survey recent literature to determine the limitations that a multi-writer multi-reader (MWMR)
setting may impose on the operation latency of read/write atomic register implementations under
crash-prone processes. We first present the challenges for devising atomic register implementations
in an asynchronous, message passing, failure-prone environment. Then we present the techniques
proposed to implement an atomic read/write register and examine operation latency boundaries
on such techniques. In this survey we consider algorithms designed for both SWMR and MWMR
settings.

Technical Report TR-10-04
Department of Computer Science

University of Cyprus
December 2010

∗This work is supported by the Cyprus Research Promotion Foundation’s grant ΠENEK/0609/31 and the European
Regional Development Fund
†Department of Computer Science, University of Cyprus, Cyprus. Email: {chryssis,nicolasn}@cs.ucy.ac.cy.
‡Department of Computer Science and Engineering, University of Connecticut, CT, USA.

1

1 Challenges in Implementing Atomic Read/Write Registers

Availability of network storage technologies (e.g., SAN, NAS [16]) and cheap commodity disks in-
creased the popularity of reliable distributed storage systems. To ensure data availability and sur-
vivability, such systems replicate the data among multiple basic storage units – disks or servers. A
popular method for data replication and maintenance uses redundant arrays of independent disks
(RAID) [4, 31]. Although a RAID system may sometimes offer both performance boosting and data
availability, it usually resides in a single physical location, is controlled via a single disk controller,
and is connected to the clients via a single network interface. Thus, this single physical location with
its single interface constitutes a single point of failure and a performance bottleneck. In contrast,
a distributed storage system implements reliable data storage by replicating data in geographically
dispersed nodes, ensuring data survivability even in cases of complete site disasters. Researchers often
focus on implementing abstract objects that allow primitive operations, like read and write registers.
Read/write registers can be used as building blocks for more complex storage systems or to directly
implement file storage systems, making them interesting in their own right.

A distributed read/write register implementation involves two distinct sets of participating entities:
the replica hosts and the clients. Each replica host maintains a copy of the replicated register. Each
client is a reader or a writer and performs read or write operations on the register, respectively. In
the message-passing environment, clients access the replicated register by exchanging messages with
the replica hosts. A reader performs a read operation as follows: (i) accepts a read request from its
environment, (ii) exchanges messages with the replica hosts to obtain the value of the register, and
(iii) returns the value discovered to the environment. Similarly, a writer performs a write operation
as follows: (i) accepts a value to be written on the register, (ii) exchanges messages with the replica
hosts to write this value on the register, and (iii) reports completion to the environment.

Replication allows several clients to access different replicas of the register concurrently, leading to
challenges in guaranteeing replica consistency. To define the exact operation guarantees in situations
where the register can be accessed concurrently, researchers introduced different consistency models.
The strongest consistency model is atomicity that provides the illusion that operations are performed
in a sequential order, when in reality they are performed concurrently. In addition to atomicity,
atomic register implementations must ensure fault-tolerance. That is, any operation that is invoked
by a non-faulty client terminates, despite the failures in the system.

Two obstacles in implementing an atomic read/write register are asynchrony and failures. A
communication round-trip (or simply round) between two participants A and B, involves a message
sent by A to B, then a message sent by B to A. Due to asynchrony, every message sent between two
participants experiences an unpredictable communication delay. As a result, a communication round-
trip involves two communication delays. To obtain the value of the register during a read operation,
a reader requires at least one round and thus two communication delays for: (a) delivery of a read
message from the reader to at least a single replica host, and (b) delivery of the reply from the replica
host to the reader. Similarly, to modify the value of the register during a write operation, a writer
requires at least one round and thus two communication delays for: (a) delivery of a write message
from the writer to at least a single replica host, and (b) delivery of an acknowledgment from the replica
host to the writer. Although the writer may enclose the value to be written in its write message, the
write operation cannot terminate before receiving an acknowledgment from the replica host. In fact,
this could lead to the termination of the write operation before the replica host receives the write
message, either due to delay or due to replica host failure. In any case, atomicity may be violated as
a subsequent operation will be unaware of the existence of the write operation. Consequently, both
read and write operations require at least two communication delays, that is, a single round before
terminating. We refer to operations that terminate after their first round as fast.

Fault-tolerance is not guaranteed if an operation communicates with a single replica host. A

1

crash failure may prevent the delivery of messages to that host, keeping clients waiting for a reply
and preventing them from terminating. Additionally, if two operations communicate with different
replica hosts, they may observe different replica values, thus atomicity may be violated, as the second
operation may return an older value than the one written or read by the first operation. Therefore, a
client needs to send messages to a subset of replica hosts. To tolerate failures, such a subset should
contain more replica hosts than the maximum number of allowed replica host failures. Moreover, to
ensure that operations are aware of each other they must obtain information from overlapping subsets
of replica hosts.

Communicating with overlapping subsets of replicas may be insufficient to guarantee atomicity.
Suppose a write operation communicates with a subset A and a succeeding read operation with a
subset B 6= A where A ∩ B 6= ∅. The read operation obtains the value written from the replica hosts
in the intersection A ∩ B. As the read succeeds the write, it returns the value written. Consider, a
different scenario where the write operation is delayed and communicates only with the replica hosts
in A ∩ B before the read communicates with the replica hosts in B. The read operation cannot
differentiate the two scenarios and thus returns the value being written. A second read operation
may communicate with a subset C, such that A ∩ C 6= ∅, B ∩ C 6= ∅, and A ∩ B ∩ C = ∅. Thus,
the read is not aware of the delayed write and hence returns an older value, violating atomicity. To
ensure that any succeeding operation observes the written value, the first read operation can either:
(i) ensure that the written value is propagated to enough replica hosts by waiting for hosts not in A
to reply, or (ii) propagate the value to a subset of replica hosts that overlaps with the subset obtained
by any subsequent operation. As hosts not in A may crash, waiting for more replies may prevent
the read operation from terminating. So it remains for the read operation to perform another round
to propagate the written value. As a result, atomic register implementations may contain operations
that may experience four communication delays before terminating.

In general the efficiency of atomic read/write register implementations is measured in terms of
the latency of read and write operations. The latency of an operation is affected by two factors: (a)
communication, and (b) computation.

Document Structure: The rest of the report presents the current research in distributed systems
regarding implementations of consistent distributed read/write (R/W) storage objects. We begin
with an overview of the consistency semantics in Section 2. In Section 3 we talk about mathematical
tools that were extensively used for implementing atomic register implementatios, called Quorum
Systems. In Section 4, we discuss implementations that establish consistent distributed storage in
message-passing, failure prone, and asynchronous environments. Finally in Section 5 we enumerate
our conclusions from this survey on the limitations that a MWMR setting may impose on the operation
latency of atomic R/W register implementations.

2 Consistency Semantics

Lamport in [24], defined three consistency semantics for a R/W register abstraction in the SWMR
environment: safe, regular, and atomic.

The safe register semantic ensures that if a read operation is not concurrent with a write operation,
it returns the last value written on the register. Otherwise, if the read is concurrent with some write,
it returns any arbitrary value that is allowed to be written to the register. The latter property
renders this consistency semantic insufficient for a distributed storage system: a read operation that
is concurrent with some write may return a value that was never written on the register.

A stronger consistency semantic is the regular register. As in the safe register, regularity ensures
that a read operation returns the latest written value if the read is not concurrent with a write. In the
event of read and write concurrency, the read returns either the value written by the last preceding

2

Figure 1: Safe, Regular, and Atomic semantics among a set of read/write operations.

write operation, or the value written by the concurrent write. In any case, regularity guarantees that
a read returns a value that is written on the register, and is not older than the value written by the
read’s last preceding write operation.

Although regularity is sufficient for many applications that exploit distributed storage systems, it
does not provide the consistency guarantees of a traditional sequential storage. In particular, it does
not ensure that two read operations overlapping the same write operation will return values as if they
were performed sequentially. If the two reads do not overlap then regularity allows the succeeding
read to return an older value than the one returned by the first read. This is known as new-old read
inversion. Atomic semantics overcome this problem by ensuring that a read operation does not return
an older value than the one returned by a preceding read operation. In addition, it preserves all the
properties of the regular register. Thus, atomicity provides the illusion that operations are ordered
sequentially. Figure 1 provides a pictorial of an example that demonstrates the difference between the
three consistency semantics.

Herlihy and Wing in [21] introduce linearizability, generalizing the notion of atomicity to any
type of distributed object. That same paper presented two important properties of linearizability:
locality and non-blocking. These properties distinguish linearizability from correctness conditions like
sequential consistency (introduced by Lamport in [23]) and seriazability (introduced by Papadimitriou
in [30]). An in-depth comparison between sequential consistency and linearizability was conducted
by Attiya and Welch in [3]. As defined in [21], a property P of a concurrent system is local if the
system satisfies P whenever each individual object satisfies P . Thus, locality allows a system to
be linearizable as long as every individual object of the system is linearizable. Non-blocking allows
processes to complete some operation without waiting for any other operation to complete. Wait-
freedom, is stronger than non-blocking, and is defined by Herlihy in [20]: any process completes an
operation in a finite number of steps regardless of the operation conducted by other processes. While
wait-freedom ensures non-blocking on an operation level, weakest non-blocking progress conditions
guarantee only that some (and not all) operation complete in finite number of steps (lock-freedom)
or require conflicting operations to abort and retry (obstruction-freedom). Both non-blocking and
locality properties enhance concurrency. Also, locality improves modularity (since every object can be
verified independently), and non-blocking favors the use of linearizability in time critical applications.

Subsequent works revisited and redefined the definitions provided in [24, 21] for more specialized
distributed systems. Lynch [26] provided an equivalent definition of atomicity of [24] to describe
atomic R/W objects in the MWMR environment. This definition, totally orders write operations,
and partially orders read operations with respect to the write operations.

3

(a) (b)

Figure 2: Examples of quorums systems: (a) Majority (b) Matrix.

3 Quorum Systems

Intersecting collections of sets can be used to achieve synchronization and coordination of concurrent
accesses on distributed data objects. A Quorum System is a collection of sets known as quorums,
such that every pair of such sets intersects. More specifically, given a quorum system Q, for every two
quorums Q1, Q2 ∈ Q, it holds that Q1 ∩Q2 6= ∅.

Several families of quorums systems have been defined [17, 33, 11, 35, 32, 29]. Figure 2 depicts
examples of the majority [17] and matrix [35] quorums systems. In the latter, elements are placed on a
virtual matrix, and a quorum is defined as a row and a column of the matrix. Observe that every two
quorums share at least two elements, but they might share much more (e.g., a whole row or column).

Gifford [17] and Thomas [33] used quorums to achieve mutual exclusion on concurrent file and
database access control respectively. Garcia-Molina and Babara [11], compared the counting (or vote
assignment) strategy presented in [17, 33], with a strategy that explicitly defines a priori the set of
intersecting groups (i.e., the quorum system). Their investigation revealed that although the two
strategies appear to be similar, they are not equivalent since one may devise quorum systems for
which there exist no vote assignment. Following this finding, quorum systems for distributed services
adhere to one of the following design principles:

• Voting: Quorums are defined by the number of distributed objects collected during an operation.

• Explicit Quorums: Quorum formulation is specified before the deployment and use of the
quorum system.

As efficient tools for collaboration and coordination, quorums attracted the attention of researchers
studying implementations of distributed shared memory. Upfal and Wigderson in [34], introduced an
atomic emulation of a synchronous R/W shared memory model, where a set of processes shared a
set of data items. To allow faster discovery of a single data item and fault-tolerance, the authors
suggested its replication among several memory locations. Retrieval (read) or modification (write) of
the value of a data item involved the access of the majority of the replicas. The authors exploited
coordination mechanisms to allow only a single read or write operation per data item at a time. This
work was the first to introduce and use 〈value, timestamp〉 pairs to order the written values, where
timestamp ∈ N.

Vitanyi and Awerbuch in [35] give an implementation of atomic shared memory for the MWMR
environment under asynchrony. Their work organized the register replicas in an n×n matrix construc-
tion, where n is the number of client processes. A process pi is allowed to access the distinct ith row and
distinct ith column per write and read operation respectively. This strategy allows reads to be aware
of any preceding write due to the intersection of any row with any column of the matrix. To accommo-
date concurrent write operations, the authors use 〈value, tag〉 pairs to order the written values. A tag
is a tuple of the form 〈timestamp, WID〉, where the timestamp ∈ N and WID is a writer identifier.
Tags are compared lexicographically. Namely, tag1 > tag2 if either tag1.timestamp > tag2.timestamp,
or tag1.timestamp = tag2.timestamp and tag1.WID > tag2.WID .

4

4 Atomic Memory Implementations

The works presented in [34] and [35] were designed for the synchronous and failure-free environments.
These approaches are inapplicable in the asynchronous, failure-prone, message-passing model. As
discussed by Chockler et al. in [6], implementations in these environments must be wait-free, tolerate
various types of failures, and support concurrent accesses on replicated data.

A seminal paper by Attiya et al. [2] was the first to introduce a solution to the problem, by devising
an algorithm that implements a Single-Writer, Multi-Reader (SRMW) atomic read/write register in
the asynchronous message-passing model. Their algorithm overcomes crash failures of any subset of
readers, the writer, and up to f out of 2f + 1 replica hosts. The correctness of the algorithm is based
on the use of majorities, a quorum construction established by voting. This work adopts the idea
of [34] and uses 〈value,timestamp〉 pairs to impose a partial order on read and write operations. A
write operation, involves a single round: the writer has to increment its local timestamp, associate
the new timestamp with the value to be written, and send the new pair to the majority (f + 1) of
the replica hosts. A read operation requires two rounds: during the first round the reader collects the
timestamp-value pairs from a majority of the replica hosts, discovers the maximum timestamp among
those, and propagates (in the second round) the maximum timestamp-value pair to the majority of the
replica hosts. Although the value of the read is established after the first round, skipping the second
round can lead to violations of atomicity when read operations are concurrent with a write operation.

Lynch and Shvartsman [28] generalized the majority-based approach of [2] to the MWMR envi-
ronment using quorum systems. To preserve data availability in the presence of failures, the atomic
register is replicated among all the service participants. To preserve consistency, they utilize a quorum
system (refer to it as quorum configuration). This allows read and write operations to terminate a
round as soon as the value of the replicated data object (register) was collected from all the members
of a single quorum (instead of collecting the majority of the replicas as in [2]). To order the values
written, the algorithm utilizes the 〈tag,value〉 pairs as those presented by Vitanyi and Awerbuch in
[35], and requires every write operation to perform two rounds to complete. Read and write operations
are implemented symmetrically. In the first round a read (resp. write) obtains the latest 〈tag,value〉
pair from a complete quorum. In the second round, a read propagates the maximum tag-value pair
to some complete quorum. A write operation increments the timestamp enclosed in the maximum
tag, and generates a new tag including the new timestamp and the writer’s identifier. Then, the
writer associates the new tag with the value to be written and propagates the tag-value pair to a
complete quorum. To enhance longevity of the service the authors in [28] suggest the reconfiguration
(replacement) of quorums. Transition from the old to the new configuration could lead to violations
of atomicity as operations can communicate with quorums of either the old or the new configuration
during that period. Thus, the authors suggest a blocking mechanism to suspend the read and write
operations during the transition.

A follow up work by Englert and Shvartsman in [10] made a valuable observation: taking the
union of the new with the old configuration defines a valid quorum system. Based on this observation
they allow R/W operations to be active during reconfiguration, by requiring that any operation
communicates with both new and old configurations. Both [10] and [28] dedicate a single reconfigurer
to propose the next replica configuration. The reconfiguration involves three rounds. During the first
round the reconfigurer notifies the readers and writers about the new configuration and collects the
latest register information. During the second round it propagates the latest register information in
the members of the new configuration. Finally, during the third round the reconfigurer acknowledges
the establishment of the new configuration. Read and write operations involve two rounds when they
do not discover that a reconfiguration is in progress. Otherwise they may involve multiple rounds to
ensure that they are going to reach the latest proposed configuration.

A new implementation of atomic registers for dynamic networks, called RAMBO, was developed

5

by Gilbert, Lynch, and Shvartsman in [18]. The RAMBO approach improves the longevity of imple-
mentations in [10, 28], by introducing multiple reconfigurers (and thus circumventing the failure of
the single reconfigurer) and a new mechanism to garbage-collect old and obsolete configurations. The
new service preserves atomicity while allowing participants to join and fail by crashing. The use of
multiple reconfigurers increases the complexity of the reconfiguration process. To enable the existence
of multiple reconfigurers, the service incorporates a consensus algorithm (e.g., Paxos by Lamport in
[25]) to allow reconfigurers to agree on a consistent configuration sequence.

A string of refinements followed to improve the efficiency and practicality of that service. Gramoli
et al. in [19] reduce the communication cost of the service and locally optimize the liveness of R/W op-
erations. To improve reconfiguration and operation latency, Chockler et al. in [5], propose the in-
corporation of an optimized consensus protocol, based on Paxos. Aiming to improve the longevity
of RAMBO, Georgiou et al. in [12] implement graceful participant departures. They also deploy an
incremental gossip protocol that reduce dramatically the message complexity of RAMBO, both with
respect to the number of messages and the message size. The same authors in [13] combine multiple
instances of the service to compose a complete shared memory emulation. To decrease the communica-
tion complexity of the service, Konwar et al. in [22] suggest the departure from the all-to-all gossiping
in RAMBO, and propose an indirect communication scheme among the participants. Retargetting [27]
to ad-hoc mobile networks, Dolev et al. in [7] formulate the GeoQuorums approach where replicas are
maintained by stationary focal points that in turn were implemented by mobile nodes. To expedite
write operations, the algorithm relies on a global positioning system (GPS) [1] clock to order the
written values. A write operation terminates in a single round by associating the value to be written
with the time obtained from the GPS service.

Fastness in Atomic Memory Implementations

Following the development in [2], a folklore belief formed that “atomic reads must write”, i.e., a read
operation needs to perform a second round. If that second round is avoided then atomicity may
be violated: a read operation may return an older value than the one returned by a preceding read
operation.

Dolev et al. in [7] introduced single round read operations in the MWMR environment. According
to their approach – later used by Chockler et al. in [5] – a read operation could return a value in a
single round when it was confirmed that the write phase that propagated that value completed. To
assess the status of each write operation the algorithm associated a binary variable, called confirmed,
with each tag. A participant would set this variable for a tag t in two cases: (i) it completed a write
phase and propagated a value associated with t to a full quorum, or (ii) it discovered that t was marked
as confirmed by some other participant. A read operation can complete in a single round if the largest
discovered tag is marked as confirmed. This can happen iff some write phase that propagated the tag
completed. Despite the improvement achieved in the operation latency in [7, 5], this strategy is unable
to overcome the problem presented in [2]: every read operation requires a second round– and thus a
“write” – whenever it is concurrent with a write operation.

Dutta et al. in [8] are the first to present fast operations that are not affected by read and write
concurrency. Assuming the SWMR environment the authors establish that if the number of readers is
appropriately constrained with respect to the number of replicas, then implementations that contain
only single round reads and writes, called fast, are possible. The register is replicated among a set S
of replica hosts (servers), out of which f < |S|

2 (the minority) is allowed to crash. To implement fast
writes, the algorithm adopts the write protocol in [2] and involves the use of 〈timestamp, value〉 pairs
to order the written values. The only difference is that the write operation propagates the written
value to |S|−f servers, instead of a strict majority of |S|

2 +1 required in [2]. The main departure of the
new algorithm involves the server and reader implementations. In particular, each server maintains
a bookkeeping mechanism to record any reader that inquires its local timestamp-value pair. This

6

information is enclosed in every message sent by the server to any requested operation. The recorded
information is utilized by the readers to achieve fast read operations. The read protocol requires
the reader to send messages to all the servers, and wait for |S| − f replies. When those replies are
received, the reader discovers the maximum timestamp (maxTs) among the replies, and collects all the
messages that contain that timestamp. Then, a predicate is applied over the bookkeeping information
contained in those messages. If the predicate holds, the reader returns the value associated with
maxTs; otherwise it returns the value associated with the previous timestamp (maxTS − 1). Note
that the safety of the algorithm in the latter case is preserved because of the single writer and the
assumption that a process can invoke a single operation at a time. Thus, the initiation of the write
operation with maxTs implies that the write operation with timestamp maxTs− 1 has already been
completed. On the other hand, if the read operation decides to return maxTs then the validation of
the read predicate ensures the safety of the algorithm. The predicate is based on the following key
observation: the number of servers that reply with maxTs to any two subsequent read operations may
differ by at most f . The authors show that fast operations are only possible if the number of readers
is R < |S|

f − 2. It is also shown that fast implementations are impossible in the MWMR environment
even assuming two writers, two readers, and a single server crash.

Georgiou et al. [15] tried to relax the constraint on the number of readers of [8]. To this end, the
authors traded the operation latency of read operations for scalability. In particular, they define the
notion of semifast implementations where a single read operation per write needs to be “slow” (perform
two rounds). To allow unbounded number of readers, they introduced the notion of virtual nodes.
Each virtual node serves as an enclosure for multiple reader participants. Adapting the techniques
presented in [8], each virtual node is treated as a separate participating entity, allowed to perform
read operations. Their algorithm requires that the number of virtual nodes V is inferior to S

t − 2; this
does not prevent multiple readers as long as at least one virtual node exists. Finally, the authors show
that it is impossible to devise semifast MWMR implementations.

Georgiou et al. [14] showed that fast and semifast quorum-based SWMR implementations are
possible if and only if a common intersection exists among all quorums. Hence a single point of failure
exists in such solutions (i.e., any server in the common intersection), making such implementations not
fault-tolerant. To trade efficiency for improved fault-tolerance, weak-semifast implementations in [14]
require at least one single slow read per write operation, and where all writes are fast. To obtain a
weak-semifast implementation they introduced a client-side decision tool called Quorum Views that
enables fast read operations under read/write concurrency when general quorum systems are used.

Recently, Englert et al. [9] developed an atomic MWMR register implementation, called algorithm
SfW, that allows both reads and writes to complete in a single round. To handle server failures, their
algorithm uses n-wise quorum systems: a set of subsets of servers, such that each n of these subsets
intersect. The parameter n is called the intersection degree of the quorum system. The algorithm
relies on 〈tag, value〉 pairs to totally order write operations. In contrast with traditional approaches,
the algorithm uses the server side ordering (SSO) approach that transfers the responsibility of incre-
menting the tag from the writers to the servers. This way, the query round of write operations is
eliminated. The authors proved that fast MWMR implementations are possible if and only if they
allow not more than n−1 successive write operations, where n is the intersection degree of the quorum
system. If read operations are also allowed to modify the value of the register then from the provided
bound it follows that a fast implementation can accommodate up to n− 1 readers and writers.

7

5 Conclusion: Implications of the MWMR setting on Atomic Mem-
ory Implementations

In summary our findings suggest that:

1. Implementations where all operations are fast, i.e. complete in a single communication round,
are not possible in the MWMR setting,

2. Implementations that allow a single slow, two communication round read, are also not possible
in the MWMR setting, and

3. If n is the intersection degree of the underlying quorum system, then (i) a MWMR safe register
implementation may allow up to n − 1 successive fast write operations, and (ii) no fast safe
register implementation can be obtained if more than n − 1 readers and writers participate in
the service.

From the above observations we may conclude that fast operations in the MWMR setting are
affected both by the construction of the quorum system they use, as well as by the number of reader
and writer participants. Algorithm SfW developed in [9] satisfies the above restrictions.

As SfW is the only known algorithm to allow fast reads and writes in the MWMR setting, an
interesting research direction is to explore and address the algorithm’s weaknesses. The algorithm is
close to optimal in terms of the number of successive single round operations it allows: n

2 successive fast
write operations where n the intersection degree of the underlying quorum system. To achieve such
performance the authors relied on two predicates. These predicates have the following weaknesses:

• they are computationally demanding, and

• rely on the construction of the underlying quorum system

Up to this point researchers focused on reducing the number of communication rounds that each oper-
ation needed to perform. Practicality, however, is negatively affected if computation costs are higher
than communication costs. Thus, it is essential to analyze the computation burden of algorithm SfW
and attempt to devise algorithms to improve its overall (computation + communication) performance.

Moreover, SfW is unable to validate the predicates when the intersection degree of the underlying
quorum system is lower than 4. In other words, SfW is unable to guarantee any fast operations
when we deploy traditional quorum systems with pairwise intersections. So it is interesting to explore
whether we can devise algorithms that do not depend on the construction of the underlying quorum
system and they still allow some operations to be fast. Such algorithms would substantially improve
the practicality of MWMR atomic register implementations.

Acknowledgments. We thank Alexander A. Shvartsman and Alexander C. Russell for several dis-
cussions.

References

[1] Global positioning system (GPS). http://www.gps.gov/.

[2] Attiya, H., Bar-Noy, A., and Dolev, D. Sharing memory robustly in message passing
systems. Journal of the ACM 42(1) (1996), 124–142.

[3] Attiya, H., and Welch, J. L. Sequential consistency versus linearizability. ACM Trans.
Comput. Syst. 12, 2 (1994), 91–122.

8

[4] Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., and Patterson, D. A. Raid:
high-performance, reliable secondary storage. ACM Computing Surveys 26, 2 (1994), 145–185.

[5] Chockler, G., Gilbert, S., Gramoli, V., Musial, P. M., and Shvartsman, A. A.
Reconfigurable distributed storage for dynamic networks. Journal of Parallel and Distributed
Computing 69, 1 (2009), 100–116.

[6] Chockler, G., Keidar, I., Guerraoui, R., and Vukolic, M. Reliable distributed storage.
IEEE Computer (2008).

[7] Dolev, S., Gilbert, S., Lynch, N., Shvartsman, A., and Welch, J. Geoquorums: Im-
plementing atomic memory in mobile ad hoc networks. In Proceedings of 17th International
Symposium on Distributed Computing (DISC) (2003).

[8] Dutta, P., Guerraoui, R., Levy, R. R., and Chakraborty, A. How fast can a distributed
atomic read be? In Proceedings of the 23rd ACM symposium on Principles of Distributed Com-
puting (PODC) (2004), pp. 236–245.

[9] Englert, B., Georgiou, C., Musial, P. M., Nicolaou, N., and Shvartsman, A. A.
On the efficiency of atomic multi-reader, multi-writer distributed memory. In Proceedings 13th
International Conference On Principle Of DIstributed Systems (OPODIS 09) (2009), pp. 240–254.

[10] Englert, B., and Shvartsman, A. A. Graceful quorum reconfiguration in a robust emulation
of shared memory. In Proceedings of International Conference on Distributed Computing Systems
(ICDCS) (2000), pp. 454–463.

[11] Garcia-Molina, H., and Barbara, D. How to assign votes in a distributed system. Journal
of the ACM 32, 4 (1985), 841–860.

[12] Georgiou, C., Musial, P. M., and Shvartsman, A. A. Long-lived RAMBO: Trading knowl-
edge for communication. Theoretical Computer Science 383, 1 (2007), 59–85.

[13] Georgiou, C., Musial, P. M., and Shvartsman, A. A. Developing a consistent domain-
oriented distributed object service. IEEE Transactions of Parallel and Distributed Systems
(TPDS) 20, 11 (2009), 1567–1585. A preliminary version of this work appeared in the pro-
ceedings of the 4th IEEE International Symposium on Network Computing and Applications
(NCA’05).

[14] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. On the robustness of (semi) fast
quorum-based implementations of atomic shared memory. In DISC ’08: Proceedings of the 22nd
international symposium on Distributed Computing (Berlin, Heidelberg, 2008), Springer-Verlag,
pp. 289–304.

[15] Georgiou, C., Nicolaou, N. C., and Shvartsman, A. A. Fault-tolerant semifast imple-
mentations of atomic read/write registers. Journal of Parallel and Distributed Computing 69,
1 (2009), 62–79. A preliminary version of this work appeared in the proceedings 18th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA’06).

[16] Gibson, G. A., and Van Meter, R. Network attached storage architecture. Commun. ACM
43, 11 (2000), 37–45.

[17] Gifford, D. K. Weighted voting for replicated data. In SOSP ’79: Proceedings of the seventh
ACM symposium on Operating systems principles (1979), pp. 150–162.

9

[18] Gilbert, S., Lynch, N. A., and Shvartsman, A. A. Rambo: a robust, reconfigurable atomic
memory service for dynamic networks. Distributed Computing 23, 4 (2010), 225–272.

[19] Gramoli, V., Musial, P. M., and Shvartsman, A. A. Operation liveness and gossip man-
agement in a dynamic distributed atomic data service. In Proceedings of the ISCA 18th In-
ternational Conference on Parallel and Distributed Computing Systems, September 12-14, 2005
Imperial Palace Hotel, Las Vegas, Nevada, US (2005), pp. 206–211.

[20] Herlihy, M. Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13, 1 (1991), 124–
149.

[21] Herlihy, M. P., and Wing, J. M. Linearizability: a correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS) 12, 3 (1990),
463–492.

[22] Konwar, K. M., Musial, P. M., Nicolaou, N. C., and Shvartsman, A. A. Implementing
atomic data through indirect learning in dynamic networks. In Sixth IEEE International Sympo-
sium on Network Computing and Applications (NCA 2007), 12 - 14 July 2007, Cambridge, MA,
USA (2007), pp. 223–230.

[23] Lamport, L. How to make a multiprocessor computer that correctly executes multiprocess
progranm. IEEE Trans. Comput. 28, 9 (1979), 690–691.

[24] Lamport, L. On interprocess communication, part I: Basic formalism. Distributed Computing
1, 2 (1986), 77–85.

[25] Lamport, L. The part-time parliament. ACM Transactions on Computer Systems 16, 2 (1998),
133–169.

[26] Lynch, N. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[27] Lynch, N., and Shvartsman, A. RAMBO: A reconfigurable atomic memory service for dy-
namic networks. In Proceedings of 16th International Symposium on Distributed Computing
(DISC) (2002), pp. 173–190.

[28] Lynch, N. A., and Shvartsman, A. A. Robust emulation of shared memory using dynamic
quorum-acknowledged broadcasts. In Proceedings of Symposium on Fault-Tolerant Computing
(1997), pp. 272–281.

[29] Malkhi, D., Reiter, M. K., Wool, A., and Wright, R. N. Probabilistic quorum systems.
Inf. Comput. 170, 2 (2001), 184–206.

[30] Papadimitriou, C. H. The serializability of concurrent database updates. Journal of ACM 26,
4 (1979), 631–653.

[31] Patterson, D. A., Gibson, G., and Katz, R. H. A case for redundant arrays of inexpensive
disks (raid). SIGMOD Rec. 17, 3 (1988), 109–116.

[32] Peleg, D., and Wool, A. Crumbling walls: A class of high availability quorum systems. In
Proceedings of 14th ACM Symposium on Principles of Distributed Computing (PODC) (1995),
pp. 120–129.

[33] Thomas, R. H. A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Database Syst. 4, 2 (1979), 180–209.

10

[34] Upfal, E., and Wigderson, A. How to share memory in a distributed system. Journal of the
ACM 34(1) (1987), 116–127.

[35] Vitanyi, P., and Awerbuch, B. Atomic shared register access by asynchronous hardware.
In Proceedings of 27th IEEE Symposium on Foundations of Computer Science (FOCS) (1986),
pp. 233–243.

11

