Towards Feasible Implementations of
Low-Latency Multi-Writer Atomic Registers

Chryssis Georgiou Nicolas Nicolaou Alexander C. RussellAlexander A. Shvartsman
Univ. of Cyprus Univ. of Cyprus & Univ. of Connecticut Univ. of Connecticut Univ. of Connecticut
chryssis@cs.ucy.ac.cy nicolas@engr.uconn.edu acr@cse.uconn.edu aas@cse.uconn.edu

Abstract—This work explores implementations of multi- multi-writer/multi-reader (MWMR) implementations where
writer/multi-reader (MWMR) atomic registers in asyn- gl operations are fast.

chronous, crash-prone, message-passing systems with tloeds . . .
on low latency and computational feasibility. The efficieny S Of this writing, algorithm 8w of Englert et al. [7],

of atomic read/write register implementations is traditionally IS the only MWMR algorithm that enables some reads and
measured in terms of the latency of read and write operations writes to be fast. The algorithm uses quorum systems, sets
To reduce operation latency researchers focused on the com-of intersecting subsets of servers, to handle server &slur
munication costs, expressed as the number of communication To decide whether an operation can terminate after its
round-trips (or rounds), often ignoring the computation costs. . - . .

In this paper we consider efficiency of a register imple- first rou.nd, the algorithm e_mployslSpe(:_lallzp(bFilcates.
mentation in terms of both communication and computation 1he main drawbacks of this algorithm is that it contains
costs. As of this writing, algorithm SFw is the sole known evaluations of the predicates that require substantiapeem
MWMR algorithm that allows single round read and write tational effort, and that it relies on very specialized auor

operations. The algorithm uses collections of .intersect'gn sets constructions. Thus this algorithm is primarily of thedzat
(quorums), and to enable single round operationsSFw relies imoortance and it is not sufficiently practical
on the evaluation of certain predicates. We formulate a new P yp)

combinatorial problem that captures the computational burden Contributions: Our goal is to provide efficient and practical
of evaluating the predicates in algorithmSFw and we show that implementations of atomic MWMR registers. We examined

it is NP-Complete To make the evaluation of the predicates . . iy .
feasible, we present golynomial log-approximation algorithm algorithm S:w [7], and we identified two weaknesses with

for this problem and we show how to use it with algorithmSrw. ~ F€Spect to its practicality: (1) the algorithm uses two com-
Then we present a new algorithm, calledCwFR, that allows putationally hard predicates to decide on the value of the

fast operationsindependentlyof the underlying quorum system register, and (2) fast write operations are enabled onlysf t
construction. The algorithm implements two-round writes and quorum system satisfies specific quorum intersection proper

allows reads to complete in a single round. We conclude ties. Motivated by these observations, our contributioms a
with experimental evaluations of our algorithms obtained fom : y '

simulations in NS2. as follows:
(1) We define a new combinatorial problem, called
|. INTRODUCTION SET-INTERSECTION that represents both predicates used in

Emulating atomic registers in asynchronous, crash-pro@égorithm Sw. We prove that the problem, and hence the
message-passing systems is one of the basic problem&Yaluation of the predicates, aP-Completeby reduction
distributed computing. In such settings the register igivepffom the 3-3\T problem. We present a polynomial time
cated among a set of replica hosts or servers to provide fa@pProximation algorithm that uses as its core a greedy
tolerance and availability. Then read and write operatanes aPProximation algorithm for the &5 CoveR problem. Our
implemented as communication protocols that ensure atordRProximation provides kg u-approximation for the num-
consistency. ber of sets included in the solution, wherés the size of the

Efficiency of register implementations is normally meaSet given as the input; for algorithnF®, v is the number
sured in terms of the latency of read and write oper&f severs. We derive a new atomic register algorithm, called
tions. Two factors affect operation latency: (a) compotati APRX-SFw, by embedding our approximation algorithm
and (b) communication delays. An operation may nedf evaluate the predicates in algorithravé For O(logu)
to communicate with servers to read or write the regist@fédicate evaluations, the approximation used by algarith
value. This involves at least a single communication roun@PRX-SFwW may yield false negatives, however this is a
trip, or round, i.e., messages from the invoking proceserformance, not a correctness, issue.
to some servers and then the replies from these servéBy.We examine whether fast operations can be achieved if
Previous works focused on minimizing the number of roundmse uses general quorum constructions. By generalizing the
required by each operation. Dutta et al. [6] developed tllient side decision tools, called Quorum Views, developed
first single-writer/multi-reader (SWMR) algorithm, wherefor the SWMR setting in [9], we derive algorithmvw-R.
all operations complete in a single round. Such operatiomhe new algorithm uses the conventional two round writes.
are calledast They also showed that it is impossible to hav&o allow fast read operations the algorithm analyzes, using

guorum views, the distribution of a value within a quoruntwo rounds). They also show the impossibility of semifast
of replies from servers. As multiple writes can occur corMWMR implementations.

currently, an iterative technique is used to discover thesta Georgiou et al. [9] showed that fast and semifast quorum-
potentially completed write operation. based SWMR implementations are possible iff a common

(3) We obtained experimental results by simulating ouptersection exists among all quorums. Hence a single
algorithms on the NS2 simulator. In particular, we firsoint of failure exists in such solutions (i.e., any server
compare algorithms v and APRX-SFW in terms of the in the common intersection), making such implementations
number of second communication rounds and show tHi@t fault-tolerant. To trade efficiency for improved fault-
the experimental results are within the theoretical approfolerance weak-semifasimplementations in [9] require at
mation bounds. Furthermore, the hardness of the predici&@st one single slow read per write operation, and where all
evaluation computation is made evident from the observédites are fast. To obtain a weak-semifast implementation
operation latency (as the number of servers increases). figy introduced a client-side decision tool calldiorum
then compare the operation latency of algorithmer&- Views that enables fast read operations under read/write
SFw, CWFR, and a traditional two-round algorithm thatconcurrency whemeneral quorum systenzse used.

incurs a low computational overhead. We observe thatRecently, Engleret al.[7] developed an atomic MWMR
the first two algorithms achieve lower latency despite tH&€dister implementation, called algorithnF\8, that allows
computational burden. Finally, we compare the operati¢¥oth reads and writes to complete insangle round To
latency and the percentage of fast reads of algorithm&ie handle server failures, their algorithm usesvise quorum
and APRX-SFW. We observe that in quorum systems witifystems a set of subsets of servers, such that each
small intersection degree,WIFR seems to perform betterOf these subsets intersect. The parametes called the

than APRX-SFw; in quorums with large intersection degredntersection degreef the quorum system. The algorithm
APRX-SFw performs better. relies on({tag, value) pairs to totally order write operations.
. o In contrast with traditional approaches, the algorithmsuse
Background and prior work: Attiya et al. [2] gave . .
: : . . the server side orderindSSO) approach that transfers the

a SWMR algorithm that achieves consistency by usin - : . .
. . L) 7 . responsibility of incrementing the tag from the writers to
intersecting majorities of servers in combination with : . . .

,) o the servers. This way, thgueryround of write operations is
(timestamp, value) value tags. A write operation incre-

: . : eliminated. The authors proved that fast MWMR implemen-
ments the writer’s local timestamp and delivers the new tag- P P

. o : tions are possible if and only if they allow not more than
value pair to a majority of servers, taking one round. A rea . : . . : :
n— 1 successive write operations, wherés the intersection

operation obtains tag-value pairs from some majority, ‘h%l“e ree of the quorum system. If read operations are also

propagates the pair corresponding to the highest tlmestag] owed to modify the value of the register then from the

to some m_apnty of servers, thus_taklng_two rom_mds. rovided bound it follows that a fast implementation can
The majority-based approach in [2] is readily genera.ficcommodate up to — 1 readers and writers.
ized to quorum-based approaches in the MWMR setting

(e.g., [14], [13], [8], [11]). Such algorithms requires aPaper organization:In Section Il we give the model of
least two communication rounds for each read and wrig@mputation and the notation we use throughout. In Section
operation. Both write and read operations query the servéliswe overview algorithm $w. Section IV introduces the
for the latest value of the replica during the first roundlew combinatorial problem, its analysis, and the approxima
In the second round the write operation generates a n#é@n algorithm. Algorithm QVvFR is presented in Section V.
tag and propagates the tag along with the new value $mulation results and comparisons of algorithms are in
a quorum of servers. A read operation propagates toSgction VI. We conclude in Section VIOmitted discussion
quorum of servers the largest value it discovers during i@&hd proofs are found in [1].
first round. Dolevet al. [5] and Chockleret al. [3], provide
MWMR implementations where some reads involve a single
communication round when it is confirmed that the value We consider the asynchronous message-passing model.
read was already propagated to some quorum. There are three distinct finite sets of crash-prone procgsso
Dutta et al. [6] present the firstast atomic SWMR @ set of reader®, a set of writer9V, and a set of servets.
implementation where all operations takesiagle commu- The identifiers of all processors are unique and comparable.
nication round. They show that fast behavior is achievabfeommunication among the processors is accomplished via
only when the number of reader processess inferior to reliable communication channels.
% — 2, where S the number of servers, of whom may Servers and quorumsServers are arranged into intersecting
crash. They also showed that fast MWMR implementatiorsets, orquorums that together form a quorum systeth
are impossible even in the presence of a single senfr a set of quorumsd C Q we denote the intersection
failure. Georgiou et al. [10] introduced the notionwiftual of the quorums ind by I4 = ﬂQeA Q. A quorum system
nodesthat enables an unbounded number of readers. Th@yis called ann-wise quorum systerf for any 4 C Q,
define the notion okemifastimplementations where only s.t. |[A| = n we havel4 # (. We call n the intersection
a single read operation per write needs to be “slow” (taldegreeof Q. Any quorum system is @-wise (pairwise)

II. MODEL AND DEFINITIONS

guorum system because any two quorums intersect. At the3. when procesg receives enough replies it terminates

other extreme, dQ|-wise quorum system has a commorthe round (either completing or starting new round).

intersection among all quorums. Note thatrawisequorum Operation 7 is fast [6] if it completes after its first

system is also &-wisequorum system, fo2 < k < n. communication round; an implementation is fast if in each
Our system allows processes to fail by crashing. A procegsecution all operations are fast. We use quorum systems

i is faulty in an execution ifi crashes in the executiqis and tags to maintain and impose an ordering on the values

not allowed to recover) otherwisei is correct A quorum Wwritten to the register replicas. We say that a quotra Q,

Q € Q is non-faulty if vi € @Q, i is correct; otherwise) repliesto a procesg for an operationr during a round, if

is faulty. We assume that at least one quorunims non- Vs € @, s receives a message during the round and replies

faulty in any execution. to this message, angdreceives all such replies.

Atomicity: We study atomic read/write register implemen- CGiven that any subset of readers or writers may crash, the
tations, where the register is replicated at servers. RealffMination of an operation cannot depend on the progress of
» requests a read operatignon the register using actionahy other operation. Furthermore we guarantee termination
read,,. Similarly, a write operation is requested using actiof"ly if servers’ replies within a round of some operation
write(+), at writer p. The steps corresponding to sucil® NOt depend on receipt of any message sent by other
actions are calleihvocationsteps. An operation terminateg?f0cesses. Thus we can construct executions where only the
with the corresponding acknowledgment action: these stdp§Ssages from the invoking processes to the servers, and
are calledresponsesteps. An operation is incompletein 1OM the servers to the invoking processes are delivered.
an execution when the invocation step-ofdoes not have Lastly, to guarantee termination under the assumed failure
the associated response step; otherwise we saysthat model, no_operation can wgit for more than a singe quorum
complete Requests made by read and write processes &d€Ply within the processing of a single round.
well-formed a process does not request a new operation until
it receives the response for a previously invoked operation _ _
In an execution, we say that an operation (read or write) Al9ortihm Srw assumes that the servers are arranged in
™1 precedesanother operatiom, or 7> succeedsr, if the &N 7-wise quorum system. Tq order the written vglues the
response step for, precedes in real time the invocatior@lgorithm usestag, value) pairs. To enable fast writes the

step ofm; this is denoted byr; — 7. Two operations are algorithm assigns partial responsibility to the serverdlie
concurrentif neither precedes the other. ordering of the values written. If a server receives a write

Correctness of an implementation of an atomic read/wri[SqUESt I generates_ anew tag, larger than any O.f the tag_s It
object is defined in terms of thatomicity and termination witnessed, and assigns it to the value enclosed in the write

properties. Assuming the failure model discussed eatlier, message. The server records a generated tag, along with the

termination property requires that any operation invokgd Hvtr:te oper:alt:jon It \I/vashcrtlaated for, in a set Cadﬂ?mgreﬁs' .
a correct process eventually completes. Atomicity is ddfing € seht 0 dS only t 1€ atest tag gener-ate or r:aac writer.
as follows [12]. For any execution if all read and write F2ch reader or writer must communicate with a quorum

operations that are invoked complete, then the operatiams é)f SEIVers, sayy, during the first _round of each read/wntg
be partially ordered by an ordering, so that the following operation. Due to concurrency different servers can receiv
properties are satisfied: messages from write operations in different order, thus an

operation may witness different tags assigned to a single
P1. The partial order is consistent with the external ordggyite operation. To deal with this algorithmF® uses two
of invocation and responses, that is, there do not exigledicatesto determine whether “enough” servers in the
operationsr; andms, such thatr; — 3, yetm < m1. replying quorum assigned the same tag to a particular write
P2. All write operations are totally ordered and every reagperation. Letn be the intersection degree of the quorum
operation is ordered with respect to all the writes. system, andinprogress (w) be the inprogress set that
P3. Every read operation ordered after any writes returdgrvers enclosed in the message it sent to the writer that

the value of the last write preceding it in the partialyokedw. The write and read predicates are:
order, and any read operation ordered before all writes)))
returns the initial value of the register. PW: Writer predicate for a write w: 3 7, A, M .S where:

- . 7 € {{,w) : (,w) € inprogress,(w) N s € Q}, A C
Efficiency and FastnessWe measure the efficiency of A o< (A <Z-1,andMS ={s:s€Q A ¢

atomic register implementation in termsafmputatiorand inprogress, (w)}, s.t. either|A| # 0 and I, N Q C MS or
communication round-tripgor simply rounds). A round is 1A] =0 anSdQ : MS. N

defined as follows [6], [10], [9]: _
Definition 2.1: Process p performs a communication PR: Reader pfedlcate for a readp: 3 7, B, MS, \:lvhere:
round during operatiom if all of the following hold: max(7) € U eq inprogress,(p), B < Q.0 < |B] < § -2,
1. p sends request messages foto a set of processes, andMS = {s:s € Q A 7 & inprogress,(p)}, St either
. |IBl|#0andIpN@ C MSor|B|=0andQ = MS.
2. any procesg that receives a request message from
for operationm, replies without delay. The predicates examine whether the same tag for a write

Ill. BRIEF DESCRIPTION OFALGORITHM SFW

operation is contained in the replies of all servers in tha M, if they appear is some clause of the boolean formula.
intersection among the replying quorum afid- 1 for PW Thus the setfM is constructed irO(2nm) time as follows:
(resp.3 — 2 for PR) of other replying quorums. Satisfaction M ={z;:3Cj,z; € C;} U{T; : 3C;,T; € C;}

of the P red|c_ates for a tag guarantees that any subse_que_nt Lastly we construct the set of subs€&isFor each variable
operation will also determine that the write operation is

assigned tag-. If the predicates hold withA| > = — 1 x; € M we construct a subsef),; and for each variablg; €

2 /)) .
or |B| = & —2 then the write or read operation respectiveI)M Vtvheec\(/):r'?;rtzjlzg-s% ?SQ;A ,E\;enrg?ﬁeﬁ:)gflr;ézes Vgggbtlﬁe
needs to proceed to a second round. A write operation ¢ guses that do nét conjtain (z)r containg; Ingtuitively those
only be fast if PW holds. A read operations can be fast ’ v Y

even if PR does not hold, but the read observed enougﬂseth;r?;l; S?I;I‘Seﬂ;iéﬁ:jeen(?:}:':::é;?tg:eg;;ﬁeaz%

) d tags with the same value. Confirmed tags a .)
con.firme 9 9 hese elements will ensure that for a variableve choose

maintained in the servers and they indicate that either th , e
write of the value with that tag is complete, or the tag wa;esﬁherQi or Q; but not both. We construap; similarly for

returned by some read operation. See [7] for full details. z;- More formally the sets we obtain are the following:

c Q; = {l‘i:,TiE]\/f}U{xj,Tjij#i}
IV. NP-COMPLETENESS ANDAPPROXIMATION U{C; i ¢ C; or T € CyY UL« j # i)
The complexity of the predicates raises the question o _ (FTi: T e MYU{,,T; 1 j #1i}

whether they can be computed efficiently. The two pred-
icates can be captured by a decision problem that we

formalize as follows: Given the above sets, the set of subsBtsis: Q =
Definition 4.1 ¢-SET-INTERSECTION: Given a set of {U, ¢, {Q:i}} U {Uz, 0 {Qi}}. The construction of all

elementsl/, a subset of those element$ C U and a set setsQ; and Q' takes at mosO(2n?m).

of subsetsQ = {Q1,...,Q,} st.Q; C U, a setl is an

intersecting set if C Q, Mg, @ # 0, and(Ny, Q@ € M.

If |I| =k then! is ak intersecting set.

U{CjzfﬁéCj orxieCj}U{ﬂj:j;éi}

The idea of this construction is to find a set of subsets
such that their intersection contains positive and negativ
e) “variables and no clauses or elemefjtsin our construction

To the best of our knowledge this is a new combinatorighis implies that setting the variables of the intersection
problem and it is similar to the open problem stated in [4}ye satisfies all clauses. In addition, the eliminationaf t
In the context of [7], the universe of elemerii5 is the elementy;, in combination with: being equal to,, implies
set of servers, and the set of subsetd/ofs the deployed that we choose eithap; or @ but not both. Therefore, the
quorum system. Clearl§-SET-INTERSECTIONIS in NP: intersection of: subsets implies that we chose a single truth
given(U, M,Q) and a sef C Q, s.t.|I| = k, we can verify yajye for every variable. With this construction we forrgall
in polynomial time(with respect to |Q) if (,c; @ € M. show that 3-&T <, k-SET-INTERSECTION obtaining the
following theorem:

Theorem 4.3:k-SET-INTERSECTIONIS NP-Complete

A. Polynomial Reduction frorB-SaT

We now show that thé-SET-INTERSECTION problem
is NP-Completeby providing a polynomial reduction from g aApproximation Algorithm

the 3-T problem. The reduction involves a polynomial H id | ial ti lqorithm that vield
transformation of the input to 343 to an instance of- ere we provide a polynomial time algorithm that yields

SET-INTERSECTION We first provide the definition of 3- an approximate solution to the problem given in Definition
SAT [15]: 4.1. As a part of our algorithm we use the standaer-S

. _ COVER greedylog-approximation algorithm (cf. [15]). The
Definition 4.2 B-SAT): Let X = {z1,...,x,} D& @ S€t gt cover problem is defined as follows [15]:
of variables andd a boolean formula in CNF (Conjuctive _ . .
Definition 4.4 GET-COVER): Given a universé/ of ele-

Normal Form) where each clause contains at most three

literals (variable or its negation). Is there a truth assignt ments,ba ZOIIE.e%“On of SltJ:sets Uffg - {r‘?l ’h " ,:z_}, ar_ld
to everyz; € X s.t.® becomes true? a numberk, find at mostk sets ofS such that their union

i] covers all elements /.

Construction: We transform an instance of the 3xSprob- . N
lem to an instancél, M, Q, k) of k-SET-INTERSECTION We now present the steps of the algorithm in Figure 1
as follows. Let k _ n’th’e total number of variables. &Nd Provide an explanation of the algorithm’s rationale.
The universe consists of an element for each variable, theEvery T contains the complements of the quorums that
negation of each variable and an element for each claysecontainm. Let Ry, ; = (U — M) — (Q; — M) for m € Q;.
of 3-SaT. It also includes: elements which will ensure that Given the setdt,,, ; if we can findk of those that,,, 1U. . .U
each variable is chosen at least once: By p = U — M, then by de Morgan's Law it follows that

U= {1, 00, F1r .o T Crveo s O by ooy b} Bma 0 OB = 0. Since, Ry, ; = (U= M) —(Qi— M),

) _ thenR,,; = (Q; — M) and
The setM C U contains all the elements that appear in the

clauses. Both the variablg and its negatiow; may appear R,,1N...NRy = (Q:—M)N...N(Qr—M) =0 (1)

For an instancéU, M, Q, k) of k-SET-INTERSECTIONdO:
Step 1:Vm € M
let T, ={(U—-M)—(Qi— M) :me Q;}
Step 2:Run SET-COVER greedy algorithm on
the instance{U — M, T, k} for everym € M:
Step 2a:Pick the setR; € T,, with
the maximum uncovered elements
Step 2b:Take the union of evenR € T,
picked in Step 2a (inclR;)
Step 2c:If the union equald/ — M go to Step 3;
else if there are more sets i, go to Step 2a
else repeat for anothen € M
Step 3:For any set(U — M) — (Q: — M) in the solution
of set cover, addy; in the intersecting set.

Fig. 1. Polynomial approximation algorithm fé~SET-INTERSECTION
By constructionvR,, ; € T,,,, m € Q;, and thus{m} C
Q:N...NQ%. From this and (1) it follows tha®; N...N Q%
is a non-trivial subset of\/.
It is known [15] that &T-COVER greedy algorithm is
a log u-approximation algorithm, where = |U|. That is,

A. Quorum Views

We generalize the definition @fuorum viewdgrom [9] for
use with structured tags:

Definition 5.1: Let process receive replies from every
server s in some quorum@ € Q for a read or write
operationr. Let a reply froms include a tagtags(w) and
let mazTag = maxeq(tags(m)). We say thafp observes
one of the followingguorum views for Q:

o gView(l): Vs € Q : tags(m) = mazTag,

o ¢View(2):VQ' € Q: Q#Q ANFACQNQ, st

A # () andVs € A : tags(m) < mazTag,
e qView(3): s’ € Q : tagy (1) < mazTag and3IQ’ €
QstQ#Q ANVseQNQ :tags(w) = maxTag

Restating the above definitiog} iew(1) requires that all
servers in some quorum reply with the same tagiew(3)
reveals that some servers in the quorum contain an older
value, but there exists an intersection where all of itsexrv
contain the new value. FinallyView(2) is the negation of
the other two views, revealing a quorum where the new value

if k is the optimal solution, then the greedy algorithm willg aither distributed to the full quorum nor distributedifu

include at most log u sets in its solution. As the number of

subsets in the solution éf SET-INTERSECTIONIS the same
as the number of subsets in the solution @fSCOVER, we
obtain the following lemma:

Lemma 4.5:The algorithm in Figure 1 is alogu-
approximation algorithm for thek-SET-INTERSECTION
problem, where, = |U]|.

in any of its intersections.

B. Description of CWFR

The original quorum views algorithm [9] relies on the
fact that there is a single writer. If a quorum view is able to
predict the non-completeness of the latest write operaition
is immediately understood that — by the well-formedness of

If we use the above algorithm to evaluate the predicatthe single writer — any previous write operation is already
of algorithm Sw, the resulting implementation yields acomplete. Multiple writers invalidate such a conclusion:

logarithmic in the number of servers increase in the numbdifferent values (and tags) may be written concurrently.
of second communication rounds. This is a modest price fttence, the discovery of a write operation that propagates
pay in exchange for substantial reduction in the computatiome tag does not imply the completion of the write opera-
overhead of algorithm &v. In Section VI we present an tions that propagate a smaller tag. Thus a direct adaptation

empirical evaluation of the approximate algorithnFvg Of the quorum view idea from the SWMR model to the
comparing it to the original algorithmrSv. MWMR model is not possible. Consequently, algorithm

CWFR incorporates an iterative technique around quorum
views that not only predicts the completion status of a
write operation, but also detects the last potentially cletep

érite operation. Below we provide a description of our

V. ALGORITHM CWFR

In this section we explore the possibility of introducin _ o i :
fast operations in the MWMR setting when servers a gorithm and present the main idea behm.d our technique.
organized as an arbitrary quorum system. We introduce Qe pS?UdOCOdg of the algorithm appears in Flgur_e 2.
new algorithm, called algorithm \@FR, that enables fast Writers: The write protocol has two rounds. During the

read operations by adopting the general idea of QuorJPEFt rounq the writer discovers the maximum tag among the
Views [9]. The algorithm employs two techniques: servers: it sends read messages to all servers and waits for

]) replies from all members of some quorum. It then discovers
(i) the typical query and propagate approach (two roundgle maximum tag among the replies and generates a new
_ for write operations, and _ tag in which it encloses the incremented timestamp of the
(i) analysis of Quorum Views [9] for potentially fastmaximum tag, and the writer's identifier. In the second

(single round) read operations. round, the writer associates the value to be written with
Read operations can be fast in algorithmwER even when the new tag, it propagates the pair to some quorum, and
they are invoked concurrently with write operations. Thisompletes the write.
distinguishes algorithm @WFR from previous approachesReaders:The read protocol is more involved. The reader
[5], [3]. To impose a total ordering on the written valuessends a read message to all servers and waits for some
algorithm GNFR uses(tag, value) pairs. Atag is a tuple of quorum to reply. Once a quorum replies, the reader deter-
the form(r, w) € NxW, wherer is the timestamp and is minesmaxTag. Then the reader analyzes the distribution
a writer identifier. Such tags are compared lexicograplyicalof the tag within the responding quorughin an attempt to

write(val):

init: tag=(0, wid), v=_L, wcounter=0

. wcounter++

: send(READ, (tag, v), wcounter) to all servers

. wait for the servers of a quoru® to reply

: [* find maximum tag among the replies */

tag = maxseq(s.tag)

: I* increment the maximum tag and generate a new tag */
I tag = (tag.ts + 1, wid)

v = val

. wcounter++

10: send(W RITE, (tag, v), wcounter) to all servers
11: wait for the servers of a quorur® to reply

12: return OK

CONOUAWNE

read():

init: tag=maxTag=(0, 0),v=_L, rcounter=0

1: rcounter++

2: send(READ, (tag, v), wcounter) to all servers
3: wait for the servers of a quorui® to reply

4: while (Q # 0) do

5: (mazTag,v) = maxseq({s.tag, s.v))

6 if (Vs € Q :s.tag = mazTag) then

7 /* qView(1) */

8 tag = mazxTag

9 returntag

10: endif

11: /* qView(3) */

12: if 3Q" : Q' # QAVs € Q' NQ,s.tag = mazxTag then
13: tag = maxTag

14: send(WRITE, (tag, v), wcounter) to all servers
15: wait for the servers of a quorui® to reply

16: returntag

17: end if

18: /* qView(2) */

19: ifvQ :Q #QATs € Q NQ,s.tag < mazTag then
20: Q=Q —{s:s€QAs.tag=mazTag}

21: endif

22: end while

serve():

init: tag=(0, 0), v=_1, pCounter[]=0

1: upon receipt ol msgType, (t,val), counter) from processp
2: I* check message freshness */

3: if counter > pCounter|p| then

4. if t > tag then

5: (tag, v) = (t,val)

6: endif

7 if msgType = WRITE then

8: send(WRITEACK, (tag, v), pCounter[p]) to p
9. else

10: send(READACK, (tag, v), pCounter[p]) to p
11: end if

12: end if

Fig. 2. Pseudocode for Writer, Reader and Server of algori@wFR.

with the maximum tag among the servers tlehainin Q.

If ¢View(3) is observed, then the reader proceeds to the
second round as above, and upon completion it returns the
value associated with the maximum tagx7 ag discovered
among the original respondents Gh

Servers:The servers play a passive role. They receive read
or write requests, update their object replica accordiragid
reply to the process that invoked the operation. Upon réceip
of any message, the server compares its local tag with the
tag included in the message. If the tag of the message is
higher than its local tag, the server adopts the higher tag
along with its corresponding value. Once this is done the
server replies to the invoking process.

Main Idea: We now explain the idea behind our technique.
Observe that under our failure model, any write operation
can expect a response from at least one full quorum.
Moreover a writew distributes its tagag,, to some quorum,
say @;, before completing. Thus, when a read operation
p, St.w — p, receives replies from some quorufy,
then observes one of the following tag distributions: (a) if
Q; = Qi, thenVs € Qj;,tags = tag. (¢View(1)), or (b)

if Q; # Qi, thenVs € Q; N Q;,tags = tag. (¢View(3)).
Hence, if p observes a distribution as igView(1) then

the write operation completed and received replies from
the same quorum that replied @ Alternatively, if only

an intersection contains a uniform tag (i.e., the case of
qView(3)) then there is a possibility that some write com-
pleted in an intersecting quorum (in this exam@lg. The
read operation is fast ipView(1) since it is determinable
that the write potentially completed. The read proceeds to
the second round iView(3), since the completion of
the write is indeterminable and it is necessary to ensure
that any subsequent operation observes that tag. If neither
qView(1) nor gView(3) hold, thengView(2) holds, and

it must be the case that the write that yields the maximum
tag is not yet complete. Hence we try to discover the latest
potentially complete write by removing all servers with the

determine the latest, potentially complete, write operati highest tag from); and repeating the analysis. If at some
This is accomplished by determining the quorum view coriteration,qView(1) holds on the remaining tag values, then

ditions. Detecting conditions ofView(1) and ¢View(3) a potentially complete write (that was overwritten by geeat

are straightforward. When condition fef/icw(1) is de- tags in the rest of the servers) is discovered and that tag is

tected, the read completes and the value associated with teirned. If no iteration is interrupted becauseyBfiew(1),

discoveredmaxTag is returned. In the case @fi’iew(3) then eventuallygView(3) is observed, in the worst case,

the reader continues to the second round, advertising thhben a single server remains in some intersectior)of

latest tag (raxTag) and its associated value. When a fulBince a second round cannot be avoided in this case, we

quorum replies in the second round, the read returns ttake the opportunity to propagate the largest tag observed

value associated withmaxTag. in @;. At the end of the second round that tag is written to
Analysis of ¢View(2) involves the discovery of the at least one complete quorum and thus the reader can safely

earliest completed write operation. This is done iterdivereturn the corresponding value.

by (locally) removing the servers froif} that replied with Theorem 5.2:Algorithm CwFR implements an atomic

the largest tags. After each iteration the reader detesningwMR register.

the next largest tag in the remaining server set, and then

re-examines the quorum views in the next iteration. This

process eventually leads to eithg¥iew(1) or gView(3)

being observed. IfgView(1) is observed, then the read We now present experimental evaluations of our algo-

completes in a single round by returning the value assatiati¢hms, obtained by using the NS-2 network simulator.

VI. EMPIRICAL RESULTS. SIMULATIONS

9% of Slow Reads vs # of Readers: RR.nw20.al fastSSOAPRX.rounds. majL0.12.data.2D plot

Read Latency vs # of Readers: RL.nw20.all fastSSOAPRX.rounds. maj10.f2.data. 2D plot

SIMPLE ——7

APRXSFW - |

Wiite Latency vs # of Writers: WL.nr40.all fastSSOAPRX.rounds.maj10.12.data.2D plot

9%2comm-reads
wr

,,,

15 4
10 20 20 40 50 60 70 80 10 20 30 a0 50 60 70 EY 10 15 20 25 30 35 a0
#Readers #Readers #Wiiters

(a) (b) (©)
Fig. 3. 4-wise quorum system§ = 10, f = 2): (a) Percentage of slow reads, (b) Latency of read opegtiand (c) Latency of write operations.

Experimentation Platform:Our test environment consists ofreads). The exceedingly large delay afvgin the scenario
a set of writers, readers, and servers. We use bidirectiomdlere |S| = 25, forced us to terminate the simulation
links between the communicating nodes, with 1Mb bangbrior to its completion. The results presented above were
width, latency of10ms, and a DropTail queue. To modelobtained by examining the log files and taking an average
asynchrony, the processes send messages after a randbthe time over all the completed read operations. We then
delay between 0 and 0.8c. The NS2 was running in examine the number of two-round writes. A writer performs
Ubuntu, on a Centrino 1.8GHz processor. The average two rounds only when the predicate does not hold. Thus,
of 5 samples per scenario provided operation latencies. counting the number of two-round writes reveals how many
We have evaluated the algorithms with majority quorumgimes the predicate does not hold for an algorithm. Below
As discussed in [7], assumirr§| servers out of whiclf can we present the number of two round writes, out of a total
crash, we can construct aﬁ;— —1)-wise quorum syster@d. 900 writes, that each algorithm performed in two different
Each quorunt of Q has sizd Q| = |S| — f. The processes scenarios: (i)S| = 10, SFW #2comm = 545, APRX-SFW
are not aware of. The quorum system is generatgriori #2comm = 593, (i) |S| = 15, SFW #2comm = 428,
and is distributed to each participant node via an exterMPRX-SFW #2comm = 592. According to our theoreti-
service (out of the scope of this work). We model serveal findings, algorithm ARX-SFw should allow no more
failures by selecting some quorum of servers (unknown tban log |S| - RR two-round reads otog|S| - WR two-
the participants) to be correct and allowing any other servg@und writes in each scenario, whefeR and WR are
to crash. The positive time parametdn is used to model the number of two-round reads and writes allowed by
the failure frequency or reliability of every server We the algorithm, respectively. Our experimental results are
use the positive time parameterbnt = 5sec andwlInt = Within the theoretical upper bound, illustrating the fduatt
10sec to model operation frequency. Readers and writegdgorithm APRX-SFw implements alog |S|-approximation
pick a uniformly at random time betwedf...rInt] and relative to algorithm Sw. These scenarios demonstrate the
[0...wInt], respectively, to invoke their next read (respperformance benefit of using algorithmpAX-SFw over
write) operation. algorithm S w.
Algorithm SFw vs. APRX-SFw: First we compare algo- Algorithm CwFR vs. APRX-SFw: We now proceed to
rithms S-w and APRX-SFw. We examine a specific scenariccompare Algorithm ARX-SFw with the new algorithm
where the number of readers is fixed at 40 and the numigwFR. To examine the impact of computation on the
of writers is fixed at 20 (other scenarios can be found ipperation latency, we also compare these algorithms to
[1]). By assuming a single server failure and increasimglgorithm SMPLE. This is a standard two-round read and
the number of servers in the system, we evaluate the twwite protocol. Both read and write operations involve a
algorithms using quorum systems with different intersecti query phase to discover the maximum tag in the system;
degrees. In particular, we run the scenario using 10, 15, dheén the write operation increments the maximum tag and
25 servers that, with a single failure, yield a 9-wise, 14ropagates the new tag along with the value to be written to
wise, and 24-wise quorum system respectively. Examinisgme quorum, whereas the read operation just propagates
the latency of the two algorithms, including both commuhe maximum tag to some quorum. Note that algorithm
nication and computation costs, provides evidence of ti#VPLE requires insignificant computation, and thus the
heavy computational burden of algorithrm\8. In particular, latency of an operation in this algorithm directly reflects
we obtained the following numbers for the average reddur communication delays (i.e., two rounds).
latency: (i) |S| = 10, Sfw RL = 1.72s, APRX-SFW To evaluate the efficiency of the algorithms we use
RL = 1.56s, (i) |S| = 15, SFw RL = 10.72s, APRX-SFW several scenarios. For reasons of space we present only
RL = 1.67s, and (iii) |S| = 25, SFw RL = 45min, APRX- two scenarios (all scenarios can be found in [1]). The first
SFw RL = 1.23s. It appears that the latency of algorithmuses a quorum system with a small intersection degree and
SFw grows exponentially, whereas the latency oPX- the second uses a quorum system with a large intersection
SFw can even improve when using quorum systems wittegree: (i) [S| = 10,f = 2, thusn = 4, and (i)
large intersection degree (due to the larger number of fd8f = 15, f = 1, thusn = 14. In the scenarios we use

9% of Slow Reads vs # of Readers: RR.nw20.al fastSSOAPRX.rounds. majL5.fL.data.2D plot Read Latency vs # of Readers: RL.nw20.all fastSSOAPRX.rounds. maj15.f1.data. 2D plot Write Latency vs # of Wiiters: WL.nr40.all fastSSOAPRX rou

maj15.f1.dat

SIMPLE ——
CWER

PRX e
% APRXSFW 28/\

261 SIMPLE ——
70 4 CWFR - 26
APRXSFW -+

9%2comm-reads
ReadLatency

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

10 *] il i 2F SIMPLE —— |

APRX.SFW -

@ (b) ©

Fig. 4. 14-wise quorum systemi§ = 15, f = 1): (a) Percentage of slow reads, (b) Latency of read opemstiand (c) Latency of write operations.

10, 20, 40 and 80 readers, combined with 10, 20, andA general observation is that the performance of algorithm
40 writers respectively. We observe that in all scenari@dsPrRx-SFw is affected by both the number of writers and
algorithms APRX-SFw and GvFR exhibit better read and the intersection degree of the underlying quorum system;
sometimes better write latency than algorithrwSLE. This algorithm GnvFR appears to have more stable performance
suggests that the additional computation incurred in theisethe scenarios we tested.

two algorithms does not exceed the delay associated with a
second communication round. Figures 3 and 4 depict two VII. CoNcLUsIONS

specific scenarios that we explain further below. We explored the feasibility of implementing multi-writer
Scenario 1:In this scenario we consider a system wititomic regi_sters that enable fast, singI(_e round operations
|S| = 10 servers where 2 of them may crash, resulting M_\/e de_termlned that the (_)n_ly such previously known algo-
a 4-wise quorum system. Using a small intersection degrd'm incorporates a decision problem that we showed to
none of the predicates used in algorithraax-SFw can be P& NP-Complete making the algorithm not practical. We
satisfied. Reads may be fast even if the predicate does RBtsented more practical algorithms, one of which uses a
hold. Figure 3 illustrates the run where the number of wsite}?9-approximation to speed up its computation. Simulation
is fixed to 20 in (a) and (b) and the number of readers jgsults illustrate the advantages of our gpproach. We dinten
fixed to 40 in (c). Observe from Figure 3(a) that aIgorithrFP explore next whether there are specialized quorum con-
CWFR requires fewer two-round reads tham@x-SFw. For structions that improve the logarithmic approximatiortée.c

this reason, in Figure 3(b), we obsgrve that th_e average read REFERENCES

latency of GVFR is overall lower. Since the write predicate _ ,

does not hold when assuming small intersection degreB! Ef‘;hp”:"f’}'mw cs. Sgg?ratc.cy/fagftM/WR/M}\wIS?- TR pdf Yvork’
the three algorithms require all write operations to perfor [2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robiysin

two rounds. The extra computation required by algorithms message passing systendsurnal of the ACM42(1):124-142, 1996.

_ . .] G. Chockler, S. Gilbert, V. Gramoli, P. M. Musial, and A. Shvarts-
CwWFR and APRX-SFwW explalns Why the write Iatency of man. Reconfigurable distributed storage for dynamic nesvor

these algorithms is slightly higher than the write laten€y 0 Journal of Parallel and Distributed Computing9(1):100-116, 2009.

algorithm SMPLE; see Figure 3(c). [4] R. Clifford and A. Popa. Maximum subset intersectidnf. Process.
. Lett, 111:323-325, March 2011.

Scenario 2: In this scenario we consider a system Wlth[5] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. \KelGeo-

|S| = 15 where a single server may crash. This scenario quorums: Implementing atomic memory in mobile ad hoc neaor

is designed to test the performance of the algorithms whe@é In Proc. of 17th Intl Symp. on Distrib. Comp. (DISG)003.

. . . P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. wHfast
quorum systems with large intersection degree are used. The cap, 4 distributed atomic read be? Bmoc. of the 23rd ACM Symp.

scenario yields a 14-wise quorum system and contains 15 on Principles of Distr. Computing (PODCpages 236-245, 2004.

quorums. Figure 4 depicts the results obtained for a specifi¢ B. Englert, C. Georgiou, P. M. Musial, N. Nicolaou, and A.
. . . . L Shvartsman. On the efficiency of atomic multi-reader, rautiter
run of this scenario where the number of writers is fixed t0 gistributed memory. InProc. 13th Intl Conf. On Principle Of

20 in (a) and (b) and the number of readers is fixed to 40 in Distributed Systems (OPODIS)ages 240-254, 2009.

i ; ith mRA- [8] R. Fan and N. Lynch. Efficient replication of large datgemits. In
(C)' Due to the Iarge Intersection degree’ algomh Distributed Algorithmsvolume LNCS 2848, pages 75-91, 2003.

SFw allows more f_aSt reads thanW_:FR (See Figure 4(a))_- [9] C. Georgiou, N. C. Nicolaou, and A. A. Shvartsman. On thieust-
Consequently, as it can be seen in Figure 4(b), algorithm ness of (semi) fast quorum-based implementations of atstmaced

_ i _ memory. InProc. of 22nd Int'l Symp. on Distributed Computing
APRX-SFW aphmves be_tter read latency thawEr. More (DISC), pages 289-304, 2008,
over, from Figure 4(c) it can be observed thatrx-SFw [10] C. Georgiou, N. C. Nicolaou, and A. A. Shvartsman. Féoierant

allows some write operations to be fast and thus, its average semifast implementations of atomic read/write registelsurnal of
write latency is better than in the other approaches. Parallel and Distributed Computing59(1):62—79, 2009.

It i h . h f h . éll] V. Gramoli, E. Anceaume, and A. Virgilito. SQUARE: dahle
t 1s worth mentioning that from other scenarios w quorum-based atomic memory with local reconfiguration. Phoc.

have run (see [1]), we observed that when the intersection of ACM Symp. on Applied Computingages 574-579, 2007.
degree of the deployed quorum system is of “medium2] N. Lynch. Distributed Algorithms Morgan Kaufmann Pub., 1996.
. . . . 13] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atom
Size, a.lgorltth.ARX-SFW and GvFR incur very similar memory service for dynamic networks. Rroc. of 16th Int'l Symp.
operation latencies. on Distributed Computing (DISCpages 173-190, 2002.

[14] N. A. Lynch and A. A. Shvartsman. Robust emulation ofrekdamem-
ory using dynamic quorum-acknowledged broadcast®raceedings
of Symposium on Fault-Tolerant Computirgpages 272-281, 1997.
[15] V. V. Vazirani. Approximation Algorithms Springer, 2001.

