
Towards Feasible Implementations of
Low-Latency Multi-Writer Atomic Registers

Chryssis Georgiou
Univ. of Cyprus

chryssis@cs.ucy.ac.cy

Nicolas Nicolaou
Univ. of Cyprus & Univ. of Connecticut

nicolas@engr.uconn.edu

Alexander C. Russell
Univ. of Connecticut
acr@cse.uconn.edu

Alexander A. Shvartsman
Univ. of Connecticut
aas@cse.uconn.edu

Abstract—This work explores implementations of multi-
writer/multi-reader (MWMR) atomic registers in asyn-
chronous, crash-prone, message-passing systems with the focus
on low latency and computational feasibility. The efficiency
of atomic read/write register implementations is traditionally
measured in terms of the latency of read and write operations.
To reduce operation latency researchers focused on the com-
munication costs, expressed as the number of communication
round-trips (or rounds), often ignoring the computation costs.

In this paper we consider efficiency of a register imple-
mentation in terms of both communication and computation
costs. As of this writing, algorithm SFW is the sole known
MWMR algorithm that allows single round read and write
operations. The algorithm uses collections of intersecting sets
(quorums), and to enable single round operations,SFW relies
on the evaluation of certain predicates. We formulate a new
combinatorial problem that captures the computational burden
of evaluating the predicates in algorithmSFW and we show that
it is NP-Complete. To make the evaluation of the predicates
feasible, we present apolynomial log-approximation algorithm
for this problem and we show how to use it with algorithmSFW.
Then we present a new algorithm, calledCWFR, that allows
fast operations independentlyof the underlying quorum system
construction. The algorithm implements two-round writes and
allows reads to complete in a single round. We conclude
with experimental evaluations of our algorithms obtained from
simulations in NS2.

I. I NTRODUCTION

Emulating atomic registers in asynchronous, crash-prone,
message-passing systems is one of the basic problems in
distributed computing. In such settings the register is repli-
cated among a set of replica hosts or servers to provide fault-
tolerance and availability. Then read and write operationsare
implemented as communication protocols that ensure atomic
consistency.

Efficiency of register implementations is normally mea-
sured in terms of the latency of read and write opera-
tions. Two factors affect operation latency: (a) computation,
and (b) communication delays. An operation may need
to communicate with servers to read or write the register
value. This involves at least a single communication round-
trip, or round, i.e., messages from the invoking process
to some servers and then the replies from these servers.
Previous works focused on minimizing the number of rounds
required by each operation. Dutta et al. [6] developed the
first single-writer/multi-reader (SWMR) algorithm, where
all operations complete in a single round. Such operations
are calledfast. They also showed that it is impossible to have

multi-writer/multi-reader (MWMR) implementations where
all operations are fast.

As of this writing, algorithm SFW of Englert et al. [7],
is the only MWMR algorithm that enables some reads and
writes to be fast. The algorithm uses quorum systems, sets
of intersecting subsets of servers, to handle server failures.
To decide whether an operation can terminate after its
first round, the algorithm employs specializedpredicates.
The main drawbacks of this algorithm is that it contains
evaluations of the predicates that require substantial compu-
tational effort, and that it relies on very specialized quorum
constructions. Thus this algorithm is primarily of theoretical
importance and it is not sufficiently practical.

Contributions: Our goal is to provide efficient and practical
implementations of atomic MWMR registers. We examined
algorithm SFW [7], and we identified two weaknesses with
respect to its practicality: (1) the algorithm uses two com-
putationally hard predicates to decide on the value of the
register, and (2) fast write operations are enabled only if the
quorum system satisfies specific quorum intersection proper-
ties. Motivated by these observations, our contributions are
as follows:

(1) We define a new combinatorial problem, calledK-
SET-INTERSECTION, that represents both predicates used in
algorithm SFW. We prove that the problem, and hence the
evaluation of the predicates, areNP-Completeby reduction
from the 3-SAT problem. We present a polynomial time
approximation algorithm that uses as its core a greedy
approximation algorithm for the SET COVER problem. Our
approximation provides alog u-approximation for the num-
ber of sets included in the solution, whereu is the size of the
set given as the input; for algorithm SFW, u is the number
of severs. We derive a new atomic register algorithm, called
APRX-SFW, by embedding our approximation algorithm
to evaluate the predicates in algorithm SFW. For O(log u)
predicate evaluations, the approximation used by algorithm
APRX-SFW may yield false negatives, however this is a
performance, not a correctness, issue.

(2) We examine whether fast operations can be achieved if
one uses general quorum constructions. By generalizing the
client side decision tools, called Quorum Views, developed
for the SWMR setting in [9], we derive algorithm CWFR.
The new algorithm uses the conventional two round writes.
To allow fast read operations the algorithm analyzes, using

quorum views, the distribution of a value within a quorum
of replies from servers. As multiple writes can occur con-
currently, an iterative technique is used to discover the latest
potentially completed write operation.

(3) We obtained experimental results by simulating our
algorithms on the NS2 simulator. In particular, we first
compare algorithms SFW and APRX-SFW in terms of the
number of second communication rounds and show that
the experimental results are within the theoretical approxi-
mation bounds. Furthermore, the hardness of the predicate
evaluation computation is made evident from the observed
operation latency (as the number of servers increases). We
then compare the operation latency of algorithms APRX-
SFW, CWFR, and a traditional two-round algorithm that
incurs a low computational overhead. We observe that
the first two algorithms achieve lower latency despite the
computational burden. Finally, we compare the operation
latency and the percentage of fast reads of algorithms CWFR

and APRX-SFW. We observe that in quorum systems with
small intersection degree, CWFR seems to perform better
than APRX-SFW; in quorums with large intersection degree
APRX-SFW performs better.

Background and prior work: Attiya et al. [2] gave
a SWMR algorithm that achieves consistency by using
intersecting majorities of servers in combination with
〈timestamp, value〉 value tags. A write operation incre-
ments the writer’s local timestamp and delivers the new tag-
value pair to a majority of servers, taking one round. A read
operation obtains tag-value pairs from some majority, then
propagates the pair corresponding to the highest timestamp
to some majority of servers, thus taking two rounds.

The majority-based approach in [2] is readily general-
ized to quorum-based approaches in the MWMR setting
(e.g., [14], [13], [8], [11]). Such algorithms requires at
least two communication rounds for each read and write
operation. Both write and read operations query the servers
for the latest value of the replica during the first round.
In the second round the write operation generates a new
tag and propagates the tag along with the new value to
a quorum of servers. A read operation propagates to a
quorum of servers the largest value it discovers during its
first round. Dolevet al. [5] and Chockleret al. [3], provide
MWMR implementations where some reads involve a single
communication round when it is confirmed that the value
read was already propagated to some quorum.

Dutta et al. [6] present the firstfast atomic SWMR
implementation where all operations take asingle commu-
nication round. They show that fast behavior is achievable
only when the number of reader processesR is inferior to
S
t
− 2, whereS the number of servers,t of whom may

crash. They also showed that fast MWMR implementations
are impossible even in the presence of a single server
failure. Georgiou et al. [10] introduced the notion ofvirtual
nodesthat enables an unbounded number of readers. They
define the notion ofsemifastimplementations where only
a single read operation per write needs to be “slow” (take

two rounds). They also show the impossibility of semifast
MWMR implementations.

Georgiou et al. [9] showed that fast and semifast quorum-
based SWMR implementations are possible iff a common
intersection exists among all quorums. Hence a single
point of failure exists in such solutions (i.e., any server
in the common intersection), making such implementations
not fault-tolerant. To trade efficiency for improved fault-
tolerance,weak-semifastimplementations in [9] require at
least one single slow read per write operation, and where all
writes are fast. To obtain a weak-semifast implementation
they introduced a client-side decision tool calledQuorum
Views that enables fast read operations under read/write
concurrency whengeneral quorum systemsare used.

Recently, Englertet al. [7] developed an atomic MWMR
register implementation, called algorithm SFW, that allows
both reads and writes to complete in asingle round. To
handle server failures, their algorithm usesn-wise quorum
systems: a set of subsets of servers, such that eachn
of these subsets intersect. The parametern is called the
intersection degreeof the quorum system. The algorithm
relies on〈tag, value〉 pairs to totally order write operations.
In contrast with traditional approaches, the algorithm uses
the server side ordering(SSO) approach that transfers the
responsibility of incrementing the tag from the writers to
the servers. This way, thequeryround of write operations is
eliminated. The authors proved that fast MWMR implemen-
tations are possible if and only if they allow not more than
n−1 successive write operations, wheren is the intersection
degree of the quorum system. If read operations are also
allowed to modify the value of the register then from the
provided bound it follows that a fast implementation can
accommodate up ton − 1 readers and writers.

Paper organization: In Section II we give the model of
computation and the notation we use throughout. In Section
III we overview algorithm SFW. Section IV introduces the
new combinatorial problem, its analysis, and the approxima-
tion algorithm. Algorithm CWFR is presented in Section V.
Simulation results and comparisons of algorithms are in
Section VI. We conclude in Section VII.Omitted discussion
and proofs are found in [1].

II. M ODEL AND DEFINITIONS

We consider the asynchronous message-passing model.
There are three distinct finite sets of crash-prone processors:
a set of readersR, a set of writersW , and a set of serversS .
The identifiers of all processors are unique and comparable.
Communication among the processors is accomplished via
reliable communication channels.

Servers and quorums:Servers are arranged into intersecting
sets, orquorums, that together form a quorum systemQ.
For a set of quorumsA ⊆ Q we denote the intersection
of the quorums inA by IA =

⋂

Q∈A Q. A quorum system
Q is called ann-wise quorum systemif for any A ⊆ Q,
s.t. |A| = n we haveIA 6= ∅. We call n the intersection
degreeof Q. Any quorum system is a2-wise (pairwise)

quorum system because any two quorums intersect. At the
other extreme, a|Q|-wise quorum system has a common
intersection among all quorums. Note that ann-wisequorum
system is also ak-wisequorum system, for2 ≤ k ≤ n.

Our system allows processes to fail by crashing. A process
i is faulty in an execution ifi crashes in the execution(i is
not allowed to recover); otherwisei is correct. A quorum
Q ∈ Q is non-faulty if ∀i ∈ Q, i is correct; otherwiseQ
is faulty. We assume that at least one quorum inQ is non-
faulty in any execution.

Atomicity: We study atomic read/write register implemen-
tations, where the register is replicated at servers. Reader
p requests a read operationρ on the register using action
readp. Similarly, a write operation is requested using action
write(∗)p at writer p. The steps corresponding to such
actions are calledinvocationsteps. An operation terminates
with the corresponding acknowledgment action; these steps
are calledresponsesteps. An operationπ is incompletein
an execution when the invocation step ofπ does not have
the associated response step; otherwise we say thatπ is
complete. Requests made by read and write processes are
well-formed: a process does not request a new operation until
it receives the response for a previously invoked operation.

In an execution, we say that an operation (read or write)
π1 precedesanother operationπ2, or π2 succeedsπ1, if the
response step forπ1 precedes in real time the invocation
step ofπ2; this is denoted byπ1 → π2. Two operations are
concurrentif neither precedes the other.

Correctness of an implementation of an atomic read/write
object is defined in terms of theatomicity and termination
properties. Assuming the failure model discussed earlier,the
termination property requires that any operation invoked by
a correct process eventually completes. Atomicity is defined
as follows [12]. For any execution if all read and write
operations that are invoked complete, then the operations can
be partially ordered by an ordering≺, so that the following
properties are satisfied:

P1. The partial order is consistent with the external order
of invocation and responses, that is, there do not exist
operationsπ1 andπ2, such thatπ1 → π2, yet π2 ≺ π1.

P2. All write operations are totally ordered and every read
operation is ordered with respect to all the writes.

P3. Every read operation ordered after any writes returns
the value of the last write preceding it in the partial
order, and any read operation ordered before all writes
returns the initial value of the register.

Efficiency and Fastness:We measure the efficiency of an
atomic register implementation in terms ofcomputationand
communication round-trips(or simply rounds). A round is
defined as follows [6], [10], [9]:

Definition 2.1: Process p performs a communication
round during operationπ if all of the following hold:

1. p sends request messages forπ to a set of processes,
2. any processq that receives a request message fromp

for operationπ, replies without delay.

3. when processp receives enough replies it terminates
the round (either completingπ or starting new round).

Operation π is fast [6] if it completes after its first
communication round; an implementation is fast if in each
execution all operations are fast. We use quorum systems
and tags to maintain and impose an ordering on the values
written to the register replicas. We say that a quorumQ ∈ Q,
replies to a processp for an operationπ during a round, if
∀s ∈ Q, s receives a message during the round and replies
to this message, andp receives all such replies.

Given that any subset of readers or writers may crash, the
termination of an operation cannot depend on the progress of
any other operation. Furthermore we guarantee termination
only if servers’ replies within a round of some operation
do not depend on receipt of any message sent by other
processes. Thus we can construct executions where only the
messages from the invoking processes to the servers, and
from the servers to the invoking processes are delivered.
Lastly, to guarantee termination under the assumed failure
model, no operation can wait for more than a singe quorum
to reply within the processing of a single round.

III. B RIEF DESCRIPTION OFALGORITHM SFW

Algortihm SFW assumes that the servers are arranged in
an n-wise quorum system. To order the written values the
algorithm uses〈tag, value〉 pairs. To enable fast writes the
algorithm assigns partial responsibility to the servers for the
ordering of the values written. If a server receives a write
request it generates a new tag, larger than any of the tags it
witnessed, and assigns it to the value enclosed in the write
message. The server records a generated tag, along with the
write operation it was created for, in a set calledinprogress.
The set holds only the latest tag generated for each writer.

Each reader or writer must communicate with a quorum
of servers, sayQ, during the first round of each read/write
operation. Due to concurrency different servers can receive
messages from write operations in different order, thus an
operation may witness different tags assigned to a single
write operation. To deal with this algorithm SFW uses two
predicatesto determine whether “enough” servers in the
replying quorum assigned the same tag to a particular write
operation. Letn be the intersection degree of the quorum
system, andinprogresss(ω) be the inprogress set that
servers enclosed in the message it sent to the writer that
invokedω. The write and read predicates are:

PW: Writer predicate for a write ω: ∃ τ, A, MS where:
τ ∈ {〈., ω〉 : 〈., ω〉 ∈ inprogresss(ω) ∧ s ∈ Q}, A ⊆
Q, 0 ≤ |A| ≤ n

2 − 1, and MS = {s : s ∈ Q ∧ τ ∈
inprogresss(ω)}, s.t. either|A| 6= 0 and IA ∩ Q ⊆ MS or
|A| = 0 andQ = MS.

PR: Reader predicate for a readρ: ∃ τ, B, MS, where:
max(τ) ∈

⋃

s∈Q inprogresss(ρ), B ⊆ Q, 0 ≤ |B| ≤ n
2 − 2,

andMS = {s : s ∈ Q ∧ τ ∈ inprogresss(ρ)}, s.t. either
|B| 6= 0 andIB ∩ Q ⊆ MS or |B| = 0 andQ = MS.

The predicates examine whether the same tag for a write

operation is contained in the replies of all servers in the
intersection among the replying quorum andn

2 − 1 for PW
(resp.n

2 −2 for PR) of other replying quorums. Satisfaction
of the predicates for a tagτ guarantees that any subsequent
operation will also determine that the write operation is
assigned tagτ . If the predicates hold with|A| ≥ n

2 − 1
or |B| = n

2 −2 then the write or read operation respectively
needs to proceed to a second round. A write operation can
only be fast if PW holds. A read operations can be fast
even if PR does not hold, but the read observed enough
confirmed tags with the same value. Confirmed tags are
maintained in the servers and they indicate that either the
write of the value with that tag is complete, or the tag was
returned by some read operation. See [7] for full details.

IV. NP-COMPLETENESS ANDAPPROXIMATION

The complexity of the predicates raises the question
whether they can be computed efficiently. The two pred-
icates can be captured by a decision problem that we
formalize as follows:

Definition 4.1 (k-SET-INTERSECTION): Given a set of
elementsU , a subset of those elementsM ⊆ U and a set
of subsetsQ = {Q1, . . . , Qn} s.t. Qi ⊆ U , a setI is an
intersecting set ifI ⊆ Q,

⋂

Q∈I Q 6= ∅, and
⋂

Q∈I Q ⊆ M .
If |I| = k thenI is a k intersecting set.

To the best of our knowledge this is a new combinatorial
problem and it is similar to the open problem stated in [4].
In the context of [7], the universe of elementsU is the
set of servers, and the set of subsets ofU is the deployed
quorum system. Clearlyk-SET-INTERSECTION is in NP :
given(U, M, Q) and a setI ⊂ Q, s.t. |I| = k, we can verify
in polynomial time(with respect to |Q|) if

⋂

Q∈I Q ⊆ M .

A. Polynomial Reduction from3-SAT

We now show that thek-SET-INTERSECTION problem
is NP-Completeby providing a polynomial reduction from
the 3-SAT problem. The reduction involves a polynomial
transformation of the input to 3-SAT to an instance ofk-
SET-INTERSECTION. We first provide the definition of 3-
SAT [15]:

Definition 4.2 (3-SAT): Let X = {x1, . . . , xn} be a set
of variables andΦ a boolean formula in CNF (Conjuctive
Normal Form) where each clause contains at most three
literals (variable or its negation). Is there a truth assignment
to everyxi ∈ X s.t. Φ becomes true?

Construction:We transform an instance of the 3-SAT prob-
lem to an instance(U, M, Q, k) of k-SET-INTERSECTION

as follows. Let k = n the total number of variables.
The universe consists of an element for each variable, the
negation of each variable and an element for each clauseCi

of 3-SAT. It also includesn elements which will ensure that
each variable is chosen at least once:

U = {x1, . . . , xn, x1, . . . , xn, C1, . . . , Cm, ℓ1, . . . , ℓn}

The setM ⊆ U contains all the elements that appear in the
clauses. Both the variablexi and its negationxi may appear

in M , if they appear is some clause of the boolean formula.
Thus the setM is constructed inO(2nm) time as follows:

M = {xi : ∃Cj , xi ∈ Cj} ∪ {xi : ∃Cj , xi ∈ Cj}

Lastly we construct the set of subsetsQ. For each variable
xi ∈ M we construct a subset,Qi and for each variablexi ∈
M we construct a subsetQ′

i. EveryQi contains the variable
xi, the variablesxj for j 6= i and their negations, and the
clauses that do not containxi or containxi. Intuitively, those
are the clauses that are not directly satisfied if we setxi =
true. Finally, we include one elementℓj for eachj 6= i.
These elements will ensure that for a variablexi we choose
eitherQi or Q′

i but not both. We constructQ′
i similarly for

xi. More formally the sets we obtain are the following:

Qi = {xi : xi ∈ M} ∪ {xj , xj : j 6= i}

∪{Cj : xi /∈ Cj or xi ∈ Cj} ∪ {ℓj : j 6= i}

Q′
i = {xi : xi ∈ M} ∪ {xj , xj : j 6= i}

∪{Cj : xi /∈ Cj or xi ∈ Cj} ∪ {ℓj : j 6= i}

Given the above sets, the set of subsetsQ is: Q =
{
⋃

xi∈M{Qi}
}

∪
{
⋃

xi∈M{Q′
i}

}

. The construction of all
setsQi andQ′

i takes at mostO(2n2m).

The idea of this construction is to find a set of subsets
such that their intersection contains positive and negative
variables and no clauses or elementsℓj . In our construction
this implies that setting the variables of the intersectionto
true satisfies all clauses. In addition, the elimination of the
elementsℓj , in combination withk being equal ton, implies
that we choose eitherQi or Q′

i but not both. Therefore, the
intersection ofn subsets implies that we chose a single truth
value for every variable. With this construction we formally
show that 3-SAT ≤p k-SET-INTERSECTION, obtaining the
following theorem:

Theorem 4.3:k-SET-INTERSECTION is NP-Complete.

B. Approximation Algorithm

Here we provide a polynomial time algorithm that yields
an approximate solution to the problem given in Definition
4.1. As a part of our algorithm we use the standard SET-
COVER greedylog-approximation algorithm (cf. [15]). The
set cover problem is defined as follows [15]:

Definition 4.4 (SET-COVER): Given a universeU of ele-
ments, a collection of subsets ofU , S = {S1, . . . , Sz}, and
a numberk, find at mostk sets ofS such that their union
covers all elements inU .

We now present the steps of the algorithm in Figure 1
and provide an explanation of the algorithm’s rationale.

EveryTm contains the complements of the quorums that
containm. Let Rm,i = (U − M)− (Qi −M) for m ∈ Qi.
Given the setsRm,i if we can findk of those thatRm,1∪. . .∪
Rm,k = U − M , then by de Morgan’s Law it follows that
Rm,1∩. . .∩Rm,k = ∅. Since,Rm,i = (U−M)−(Qi−M),
thenRm,i = (Qi − M) and

Rm,1 ∩ . . .∩Rm,k = (Qi −M)∩ . . .∩ (Qk −M) = ∅ (1)

For an instance(U, M, Q, k) of k-SET-INTERSECTIONdo:
Step 1:∀m ∈ M

let Tm = {(U − M) − (Qi − M) : m ∈ Qi}
Step 2:Run SET-COVER greedy algorithm on

the instance{U − M, Tm, k} for everym ∈ M :
Step 2a:Pick the setRi ∈ Tm with

the maximum uncovered elements
Step 2b:Take the union of everyR ∈ Tm

picked in Step 2a (incl.Ri)
Step 2c:If the union equalsU − M go to Step 3;

else if there are more sets inTm go to Step 2a
else repeat for anotherm ∈ M

Step 3:For any set(U − M) − (Qi − M) in the solution
of set cover, addQi in the intersecting set.

Fig. 1. Polynomial approximation algorithm fork-SET-INTERSECTION.

By construction∀Rm,i ∈ Tm, m ∈ Qi, and thus{m} ⊆
Qi∩ . . .∩Qk. From this and (1) it follows thatQi∩ . . .∩Qk

is a non-trivial subset ofM .
It is known [15] that SET-COVER greedy algorithm is

a log u-approximation algorithm, whereu = |U |. That is,
if k is the optimal solution, then the greedy algorithm will
include at mostk log u sets in its solution. As the number of
subsets in the solution ofk-SET-INTERSECTIONis the same
as the number of subsets in the solution of SET-COVER, we
obtain the following lemma:

Lemma 4.5:The algorithm in Figure 1 is alog u-
approximation algorithm for thek-SET-INTERSECTION

problem, whereu = |U |.

If we use the above algorithm to evaluate the predicates
of algorithm SFW, the resulting implementation yields a
logarithmic in the number of servers increase in the number
of second communication rounds. This is a modest price to
pay in exchange for substantial reduction in the computation
overhead of algorithm SFW. In Section VI we present an
empirical evaluation of the approximate algorithm SFW

comparing it to the original algorithm SFW.

V. A LGORITHM CWFR

In this section we explore the possibility of introducing
fast operations in the MWMR setting when servers are
organized as an arbitrary quorum system. We introduce a
new algorithm, called algorithm CWFR, that enables fast
read operations by adopting the general idea of Quorum
Views [9]. The algorithm employs two techniques:

(i) the typical query and propagate approach (two rounds)
for write operations, and

(ii) analysis of Quorum Views [9] for potentially fast
(single round) read operations.

Read operations can be fast in algorithm CWFR even when
they are invoked concurrently with write operations. This
distinguishes algorithm CWFR from previous approaches
[5], [3]. To impose a total ordering on the written values,
algorithm CWFR uses〈tag, value〉 pairs. Atag is a tuple of
the form〈τ, w〉 ∈ N×W , whereτ is the timestamp andw is
a writer identifier. Such tags are compared lexicographically.

A. Quorum Views

We generalize the definition ofquorum viewsfrom [9] for
use with structured tags:

Definition 5.1: Let processp receive replies from every
server s in some quorumQ ∈ Q for a read or write
operationπ. Let a reply froms include a tagtags(π) and
let maxTag = maxs∈Q(tags(π)). We say thatp observes
one of the followingquorum views for Q:

• qV iew(1): ∀s ∈ Q : tags(π) = maxTag,
• qV iew(2): ∀Q′ ∈ Q : Q 6= Q′ ∧ ∃A ⊆ Q ∩ Q′, s.t.

A 6= ∅ and∀s ∈ A : tags(π) < maxTag,
• qV iew(3): ∃s′ ∈ Q : tags′(π) < maxTag and∃Q′ ∈

Q s.t. Q 6= Q′ ∧ ∀s ∈ Q ∩ Q′ : tags(π) = maxTag

Restating the above definition,qV iew(1) requires that all
servers in some quorum reply with the same tag.qV iew(3)
reveals that some servers in the quorum contain an older
value, but there exists an intersection where all of its servers
contain the new value. FinallyqV iew(2) is the negation of
the other two views, revealing a quorum where the new value
is neither distributed to the full quorum nor distributed fully
in any of its intersections.

B. Description ofCWFR

The original quorum views algorithm [9] relies on the
fact that there is a single writer. If a quorum view is able to
predict the non-completeness of the latest write operation, it
is immediately understood that – by the well-formedness of
the single writer – any previous write operation is already
complete. Multiple writers invalidate such a conclusion:
different values (and tags) may be written concurrently.
Hence, the discovery of a write operation that propagates
some tag does not imply the completion of the write opera-
tions that propagate a smaller tag. Thus a direct adaptation
of the quorum view idea from the SWMR model to the
MWMR model is not possible. Consequently, algorithm
CWFR incorporates an iterative technique around quorum
views that not only predicts the completion status of a
write operation, but also detects the last potentially complete
write operation. Below we provide a description of our
algorithm and present the main idea behind our technique.
The pseudocode of the algorithm appears in Figure 2.
Writers: The write protocol has two rounds. During the
first round the writer discovers the maximum tag among the
servers: it sends read messages to all servers and waits for
replies from all members of some quorum. It then discovers
the maximum tag among the replies and generates a new
tag in which it encloses the incremented timestamp of the
maximum tag, and the writer’s identifier. In the second
round, the writer associates the value to be written with
the new tag, it propagates the pair to some quorum, and
completes the write.
Readers:The read protocol is more involved. The reader
sends a read message to all servers and waits for some
quorum to reply. Once a quorum replies, the reader deter-
minesmaxTag. Then the reader analyzes the distribution
of the tag within the responding quorumQ in an attempt to

write(val):
init: tag=〈0, wid〉, v=⊥, wcounter=0

1: wcounter++
2: send〈READ, 〈tag, v〉, wcounter〉 to all servers
3: wait for the servers of a quorumQ to reply
4: /* find maximum tag among the replies */
5: tag = maxs∈Q(s.tag)
6: /* increment the maximum tag and generate a new tag */
7: tag = 〈tag.ts + 1, wid〉
8: v = val
9: wcounter++
10: send〈WRITE, 〈tag, v〉, wcounter〉 to all servers
11: wait for the servers of a quorumQ to reply
12: return OK

read():
init: tag=maxTag=〈0, 0〉, v=⊥, rcounter=0
1: rcounter++
2: send〈READ, 〈tag, v〉, wcounter〉 to all servers
3: wait for the servers of a quorumQ to reply
4: while (Q 6= ∅) do
5: 〈maxTag, v〉 = maxs∈Q(〈s.tag, s.v〉)
6: if (∀s ∈ Q : s.tag = maxTag) then
7: /* qView(1) */
8: tag = maxTag

9: return tag
10: end if
11: /* qView(3) */
12: if ∃Q′ : Q′ 6= Q ∧ ∀s ∈ Q′ ∩ Q, s.tag = maxTag then
13: tag = maxTag

14: send〈WRITE, 〈tag, v〉, wcounter〉 to all servers
15: wait for the servers of a quorumQ to reply
16: return tag
17: end if
18: /* qView(2) */
19: if ∀Q′ : Q′ 6= Q ∧ ∃s ∈ Q′ ∩ Q, s.tag < maxTag then
20: Q = Q − {s : s ∈ Q ∧ s.tag = maxTag}
21: end if
22: end while

serve():
init: tag=〈0, 0〉, v=⊥, pCounter[]=0

1: upon receipt of〈msgType, 〈t, val〉, counter〉 from processp
2: /* check message freshness */
3: if counter > pCounter[p] then
4: if t > tag then
5: 〈tag, v〉 = 〈t, val〉
6: end if
7: if msgType = WRITE then
8: send〈WRITEACK, 〈tag, v〉, pCounter[p]〉 to p
9: else
10: send〈READACK, 〈tag, v〉, pCounter[p]〉 to p

11: end if
12: end if
Fig. 2. Pseudocode for Writer, Reader and Server of algorithm CWFR.

determine the latest, potentially complete, write operation.
This is accomplished by determining the quorum view con-
ditions. Detecting conditions ofqV iew(1) and qV iew(3)
are straightforward. When condition forqV iew(1) is de-
tected, the read completes and the value associated with the
discoveredmaxTag is returned. In the case ofqV iew(3)
the reader continues to the second round, advertising the
latest tag (maxTag) and its associated value. When a full
quorum replies in the second round, the read returns the
value associated withmaxTag.

Analysis of qV iew(2) involves the discovery of the
earliest completed write operation. This is done iteratively
by (locally) removing the servers fromQ that replied with
the largest tags. After each iteration the reader determines
the next largest tag in the remaining server set, and then
re-examines the quorum views in the next iteration. This
process eventually leads to eitherqV iew(1) or qV iew(3)
being observed. IfqV iew(1) is observed, then the read
completes in a single round by returning the value associated

with the maximum tag among the servers thatremain in Q.
If qV iew(3) is observed, then the reader proceeds to the
second round as above, and upon completion it returns the
value associated with the maximum tagmaxTag discovered
among the original respondents inQ.
Servers:The servers play a passive role. They receive read
or write requests, update their object replica accordingly, and
reply to the process that invoked the operation. Upon receipt
of any message, the server compares its local tag with the
tag included in the message. If the tag of the message is
higher than its local tag, the server adopts the higher tag
along with its corresponding value. Once this is done the
server replies to the invoking process.

Main Idea: We now explain the idea behind our technique.
Observe that under our failure model, any write operation
can expect a response from at least one full quorum.
Moreover a writeω distributes its tagtagω to some quorum,
say Qi, before completing. Thus, when a read operation
ρ, s.t. ω → ρ, receives replies from some quorumQj ,
then observes one of the following tag distributions: (a) if
Qj = Qi, then∀s ∈ Qj , tags = tagω (qV iew(1)), or (b)
if Qj 6= Qi, then∀s ∈ Qi ∩ Qj , tags = tagω (qV iew(3)).
Hence, if ρ observes a distribution as inqV iew(1) then
the write operation completed and received replies from
the same quorum that replied toρ. Alternatively, if only
an intersection contains a uniform tag (i.e., the case of
qV iew(3)) then there is a possibility that some write com-
pleted in an intersecting quorum (in this exampleQi). The
read operation is fast inqV iew(1) since it is determinable
that the write potentially completed. The read proceeds to
the second round inqV iew(3), since the completion of
the write is indeterminable and it is necessary to ensure
that any subsequent operation observes that tag. If neither
qV iew(1) nor qV iew(3) hold, thenqV iew(2) holds, and
it must be the case that the write that yields the maximum
tag is not yet complete. Hence we try to discover the latest
potentially complete write by removing all servers with the
highest tag fromQj and repeating the analysis. If at some
iteration,qV iew(1) holds on the remaining tag values, then
a potentially complete write (that was overwritten by greater
tags in the rest of the servers) is discovered and that tag is
returned. If no iteration is interrupted because ofqV iew(1),
then eventuallyqV iew(3) is observed, in the worst case,
when a single server remains in some intersection ofQj .
Since a second round cannot be avoided in this case, we
take the opportunity to propagate the largest tag observed
in Qj . At the end of the second round that tag is written to
at least one complete quorum and thus the reader can safely
return the corresponding value.

Theorem 5.2:Algorithm CWFR implements an atomic
MWMR register.

VI. EMPIRICAL RESULTS: SIMULATIONS

We now present experimental evaluations of our algo-
rithms, obtained by using the NS-2 network simulator.

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80

%
2c

om
m

-r
ea

ds

#Readers

% of Slow Reads vs # of Readers: RR.nw20.all.fastSSOAPRX.rounds.maj10.f2.data.2D plot

SIMPLE
CWFR

APRX-SFW

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 10 20 30 40 50 60 70 80

R
ea

dL
at

en
cy

#Readers

Read Latency vs # of Readers: RL.nw20.all.fastSSOAPRX.rounds.maj10.f2.data.2D plot

SIMPLE
CWFR

APRX-SFW

 2.24

 2.26

 2.28

 2.3

 2.32

 2.34

 2.36

 2.38

 10 15 20 25 30 35 40

W
rit

eL
at

en
cy

#Writers

Write Latency vs # of Writers: WL.nr40.all.fastSSOAPRX.rounds.maj10.f2.data.2D plot

SIMPLE
CWFR

APRX-SFW

(a) (b) (c)
Fig. 3. 4-wise quorum system (|S = 10, f = 2): (a) Percentage of slow reads, (b) Latency of read operations, and (c) Latency of write operations.

Experimentation Platform:Our test environment consists of
a set of writers, readers, and servers. We use bidirectional
links between the communicating nodes, with 1Mb band-
width, latency of10ms, and a DropTail queue. To model
asynchrony, the processes send messages after a random
delay between 0 and 0.3sec. The NS2 was running in
Ubuntu, on a Centrino 1.8GHz processor. The average
of 5 samples per scenario provided operation latencies.

We have evaluated the algorithms with majority quorums.
As discussed in [7], assuming|S| servers out of whichf can
crash, we can construct an(|S|

f
−1)-wise quorum systemQ.

Each quorumQ of Q has size|Q| = |S|−f . The processes
are not aware off . The quorum system is generateda priori
and is distributed to each participant node via an external
service (out of the scope of this work). We model server
failures by selecting some quorum of servers (unknown to
the participants) to be correct and allowing any other server
to crash. The positive time parametercInt is used to model
the failure frequency or reliability of every servers. We
use the positive time parametersrInt = 5sec andwInt =
10sec to model operation frequency. Readers and writers
pick a uniformly at random time between[0 . . . rInt] and
[0 . . . wInt], respectively, to invoke their next read (resp.
write) operation.
Algorithm SFW vs. APRX-SFW: First we compare algo-
rithms SFW and APRX-SFW. We examine a specific scenario
where the number of readers is fixed at 40 and the number
of writers is fixed at 20 (other scenarios can be found in
[1]). By assuming a single server failure and increasing
the number of servers in the system, we evaluate the two
algorithms using quorum systems with different intersection
degrees. In particular, we run the scenario using 10, 15, and
25 servers that, with a single failure, yield a 9-wise, 14-
wise, and 24-wise quorum system respectively. Examining
the latency of the two algorithms, including both commu-
nication and computation costs, provides evidence of the
heavy computational burden of algorithm SFW. In particular,
we obtained the following numbers for the average read
latency: (i) |S| = 10, SFW RL = 1.72s, APRX-SFW

RL = 1.56s, (ii) |S| = 15, SFW RL = 10.72s, APRX-SFW

RL = 1.67s, and (iii) |S| = 25, SFW RL = 45min, APRX-
SFW RL = 1.23s. It appears that the latency of algorithm
SFW grows exponentially, whereas the latency of APRX-
SFW can even improve when using quorum systems with
large intersection degree (due to the larger number of fast

reads). The exceedingly large delay of SFW in the scenario
where |S| = 25, forced us to terminate the simulation
prior to its completion. The results presented above were
obtained by examining the log files and taking an average
of the time over all the completed read operations. We then
examine the number of two-round writes. A writer performs
two rounds only when the predicate does not hold. Thus,
counting the number of two-round writes reveals how many
times the predicate does not hold for an algorithm. Below
we present the number of two round writes, out of a total
900 writes, that each algorithm performed in two different
scenarios: (i)|S| = 10, SFW #2comm = 545, APRX-SFW

#2comm = 593, (ii) |S| = 15, SFW #2comm = 428,
APRX-SFW #2comm = 592. According to our theoreti-
cal findings, algorithm APRX-SFW should allow no more
than log |S| · RR two-round reads orlog |S| · WR two-
round writes in each scenario, whereRR and WR are
the number of two-round reads and writes allowed by
the algorithm, respectively. Our experimental results are
within the theoretical upper bound, illustrating the fact that
algorithm APRX-SFW implements alog |S|-approximation
relative to algorithm SFW. These scenarios demonstrate the
performance benefit of using algorithm APRX-SFW over
algorithm SFW.

Algorithm CWFR vs. APRX-SFW: We now proceed to
compare Algorithm APRX-SFW with the new algorithm
CWFR. To examine the impact of computation on the
operation latency, we also compare these algorithms to
algorithm SIMPLE. This is a standard two-round read and
write protocol. Both read and write operations involve a
query phase to discover the maximum tag in the system;
then the write operation increments the maximum tag and
propagates the new tag along with the value to be written to
some quorum, whereas the read operation just propagates
the maximum tag to some quorum. Note that algorithm
SIMPLE requires insignificant computation, and thus the
latency of an operation in this algorithm directly reflects
four communication delays (i.e., two rounds).

To evaluate the efficiency of the algorithms we use
several scenarios. For reasons of space we present only
two scenarios (all scenarios can be found in [1]). The first
uses a quorum system with a small intersection degree and
the second uses a quorum system with a large intersection
degree: (i) |S| = 10, f = 2, thus n = 4, and (ii)
|S| = 15, f = 1, thus n = 14. In the scenarios we use

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80

%
2c

om
m

-r
ea

ds

#Readers

% of Slow Reads vs # of Readers: RR.nw20.all.fastSSOAPRX.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 10 20 30 40 50 60 70 80

R
ea

dL
at

en
cy

#Readers

Read Latency vs # of Readers: RL.nw20.all.fastSSOAPRX.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

 1.9

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

 10 15 20 25 30 35 40

W
rit

eL
at

en
cy

#Writers

Write Latency vs # of Writers: WL.nr40.all.fastSSOAPRX.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

(a) (b) (c)
Fig. 4. 14-wise quorum system (|S = 15, f = 1): (a) Percentage of slow reads, (b) Latency of read operations, and (c) Latency of write operations.

10, 20, 40 and 80 readers, combined with 10, 20, and
40 writers respectively. We observe that in all scenarios
algorithms APRX-SFW and CWFR exhibit better read and
sometimes better write latency than algorithm SIMPLE. This
suggests that the additional computation incurred in these
two algorithms does not exceed the delay associated with a
second communication round. Figures 3 and 4 depict two
specific scenarios that we explain further below.
Scenario 1: In this scenario we consider a system with
|S| = 10 servers where 2 of them may crash, resulting in
a 4-wise quorum system. Using a small intersection degree
none of the predicates used in algorithm APRX-SFW can be
satisfied. Reads may be fast even if the predicate does not
hold. Figure 3 illustrates the run where the number of writers
is fixed to 20 in (a) and (b) and the number of readers is
fixed to 40 in (c). Observe from Figure 3(a) that algorithm
CWFR requires fewer two-round reads than APRX-SFW. For
this reason, in Figure 3(b), we observe that the average read
latency of CWFR is overall lower. Since the write predicate
does not hold when assuming small intersection degree,
the three algorithms require all write operations to perform
two rounds. The extra computation required by algorithms
CWFR and APRX-SFW explains why the write latency of
these algorithms is slightly higher than the write latency of
algorithm SIMPLE; see Figure 3(c).
Scenario 2: In this scenario we consider a system with
|S| = 15 where a single server may crash. This scenario
is designed to test the performance of the algorithms when
quorum systems with large intersection degree are used. The
scenario yields a 14-wise quorum system and contains 15
quorums. Figure 4 depicts the results obtained for a specific
run of this scenario where the number of writers is fixed to
20 in (a) and (b) and the number of readers is fixed to 40 in
(c). Due to the large intersection degree, algorithm APRX-
SFW allows more fast reads than CWFR (see Figure 4(a)).
Consequently, as it can be seen in Figure 4(b), algorithm
APRX-SFW achieves better read latency than CWFR. More-
over, from Figure 4(c) it can be observed that APRX-SFW

allows some write operations to be fast and thus, its average
write latency is better than in the other approaches.

It is worth mentioning that from other scenarios we
have run (see [1]), we observed that when the intersection
degree of the deployed quorum system is of “medium”
size, algorithms APRX-SFW and CWFR incur very similar
operation latencies.

A general observation is that the performance of algorithm
APRX-SFW is affected by both the number of writers and
the intersection degree of the underlying quorum system;
algorithm CWFR appears to have more stable performance
in the scenarios we tested.

VII. C ONCLUSIONS

We explored the feasibility of implementing multi-writer
atomic registers that enable fast, single round operations.
We determined that the only such previously known algo-
rithm incorporates a decision problem that we showed to
be NP-Complete, making the algorithm not practical. We
presented more practical algorithms, one of which uses a
log-approximation to speed up its computation. Simulation
results illustrate the advantages of our approach. We intend
to explore next whether there are specialized quorum con-
structions that improve the logarithmic approximation factor.

REFERENCES

[1] Technical Report of this work,
http://www.cs.ucy.ac.cy/fastMWMR/MWMR-TR.pdf.

[2] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in
message passing systems.Journal of the ACM, 42(1):124–142, 1996.

[3] G. Chockler, S. Gilbert, V. Gramoli, P. M. Musial, and A. A. Shvarts-
man. Reconfigurable distributed storage for dynamic networks.
Journal of Parallel and Distributed Computing, 69(1):100–116, 2009.

[4] R. Clifford and A. Popa. Maximum subset intersection.Inf. Process.
Lett., 111:323–325, March 2011.

[5] S. Dolev, S. Gilbert, N. Lynch, A. Shvartsman, and J. Welch. Geo-
quorums: Implementing atomic memory in mobile ad hoc networks.
In Proc. of 17th Int’l Symp. on Distrib. Comp. (DISC), 2003.

[6] P. Dutta, R. Guerraoui, R. R. Levy, and A. Chakraborty. How fast
can a distributed atomic read be? InProc. of the 23rd ACM Symp.
on Principles of Distr. Computing (PODC), pages 236–245, 2004.

[7] B. Englert, C. Georgiou, P. M. Musial, N. Nicolaou, and A.A.
Shvartsman. On the efficiency of atomic multi-reader, multi-writer
distributed memory. InProc. 13th Int’l Conf. On Principle Of
DIstributed Systems (OPODIS), pages 240–254, 2009.

[8] R. Fan and N. Lynch. Efficient replication of large data objects. In
Distributed Algorithms, volume LNCS 2848, pages 75–91, 2003.

[9] C. Georgiou, N. C. Nicolaou, and A. A. Shvartsman. On the robust-
ness of (semi) fast quorum-based implementations of atomicshared
memory. In Proc. of 22nd Int’l Symp. on Distributed Computing
(DISC), pages 289–304, 2008.

[10] C. Georgiou, N. C. Nicolaou, and A. A. Shvartsman. Fault-tolerant
semifast implementations of atomic read/write registers.Journal of
Parallel and Distributed Computing, 69(1):62–79, 2009.

[11] V. Gramoli, E. Anceaume, and A. Virgillito. SQUARE: scalable
quorum-based atomic memory with local reconfiguration. InProc.
of ACM Symp. on Applied Computing, pages 574–579, 2007.

[12] N. Lynch. Distributed Algorithms. Morgan Kaufmann Pub., 1996.
[13] N. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic

memory service for dynamic networks. InProc. of 16th Int’l Symp.
on Distributed Computing (DISC), pages 173–190, 2002.

[14] N. A. Lynch and A. A. Shvartsman. Robust emulation of shared mem-
ory using dynamic quorum-acknowledged broadcasts. InProceedings
of Symposium on Fault-Tolerant Computing, pages 272–281, 1997.

[15] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

