
Trade-Offs in Implementing
Consistent Distributed Storage

PhD Dissertation Defense

Nicolas Nicolaou

Major Advisor: Dr. Alexanter A. Shvartsman

Associate Advisors: Dr. Alexander Russell, Dr. Aggelos Kiayias,
Dr. Chryssis Georgiou

5/3/20101 Nicolas Nicolaou -- Dissertation Defense

What is a Distributed Storage System?

read()

write(v)

� Data Replication – Servers/Disks
� Survivability and Availability

� Read/Write operations
� Consistency Semantics

5/3/2010Nicolas Nicolaou -- Dissertation Defense2

Distributed Storage
Abstraction

Consistency Semantics [Lamport86]

Safety

read(3)

write(8)

read(0)

Time

read(8)

write(8)

Regularity

Atomicity

read(8)

write(8)

read(8)

Time

read(8)

read(8) read(0)

Time

read(8)

5/3/20103 Nicolas Nicolaou -- Dissertation Defense

How to order read/write operations?

� Based on the value each operation writes/returns
� Non-unique Values

� Using the “time” at which each operation is invoked
� Clock Synchronization

� Associate a sequence number with each value written
� SWMR: timestamps

� MWMR: tags=<timestamp, wid>

5/3/2010Nicolas Nicolaou -- Dissertation Defense4

Challenges – Communication Rounds

X

5/3/2010Nicolas Nicolaou -- Dissertation Defense5

p1 p2

Multiple Round-Trips

� Consider the following example [Attiya et al. 96]:

S1 0

S2 0

S3 1

S1 1

S2 1

S3 1

S4 0

S5 0

W(1) R1(1) R2(0)

Atomicity is Violated

6/16/20106 Nicolas Nicolaou -- Doctoral Proposal

S4 0

S5 0

W(1) R1(1)

Efficiency Measure-Operation Latency

Operation Latency is measured in
Communication Rounds (round-trips)Communication Rounds (round-trips)

5/3/20107 Nicolas Nicolaou -- Dissertation Defense

Prior Work: Traditional Implementations

SWMR

• e.g., [Attiya et al. 96]
• Single round writes
• Two round reads

• Phase 1: Obtain latest value
• Phase 2: Propagate latest value

• Folklore belief: “Reads must Write”

MWMR

• e.g., [LS97, ES00, LS02]
• Two round writes

• Phase 1: Discover latest value
• Phase 2: Order new value after the latest and propagate

• Belief: “Writes must Read”
• Two round reads

5/3/2010Nicolas Nicolaou -- Dissertation Defense8

Prior Work: “Fast” Implementations

MWMR
Crashes

• [Dolev et al. 03, Chockler et al. 09]
• Single round (fast) reads

• Only if tag is confirmed
• When the written value is propagated to a full quorum

SWMR

• [Dutta et al. 04]
• Single round (fast) reads and writes

• All operations are fast
SWMR
Crashes

• All operations are fast
• Bounded readers: R<(S/f)-2 whereS servers & f failures
• Impossible in MWMR model

SWMR
Byzantine

• “Lucky” Operations [GV 06]
• Synchronous(receive replies from all servers within some interval)
• Contention free (not concurrent with a write)

• Refine Quorum Systems [GV 07]
• One to Three round reads
• Eventual Synchrony and use of timeouts

5/3/2010Nicolas Nicolaou -- Dissertation Defense9

Goal of this Thesis….

What is the operation latencyof atomic register
implementations in an unconstrained, fail-prone,

message-passing, asynchronous distributed system?

What are the trade-offsto achieve such performance?

5/3/201010 Nicolas Nicolaou -- Dissertation Defense

Model - Definitions

� Asynchronous, Message-Passing model
� Process sets: writers W, readers R, servers S (replica hosts)
� Reliable Communication Channels (unless otherwise stated)
� Well Formedness

� Environments:
� SWMR: |W|=1, |R|≥1
� MWMR: |W|≥1, |R|≥1� MWMR: |W|≥1, |R|≥1

� Failures:
� Crash Failures

� Correctness: Atomicity (safety), Termination (liveness)

5/3/201011 Nicolas Nicolaou -- Dissertation Defense

Definition: Quorum Systems

� Quorum System :

� n-wise Quorum System:

∅≠=⊆∀⊆=
∈
I

AQ

QnAAwhereSQQ and |:|}:{ QQ

Q

Q

∅≠∩∈∀⊆= jiji QQQQtsSQQ :,..}:{ QQ

� : intersection degree

� Faulty Quorum: Contains a faulty process
� At least a single quorum contains non-faulty replicas

� Faulty Quorum System: Every quorum is faulty

∈AQ

||2 Q≤≤ n

5/3/201012 Nicolas Nicolaou -- Dissertation Defense

Definition: Fastness
� A process p performs a communication round during an

operation π if:
� p sends a message m to a set of servers for π

� Any server that receives m replies to p
� Once p receives “enough” responses completes π or proceed to a next

communication round

� Fast Operation
Completes after the end of its first round� Completes after the end of its first round

� Fast Implementation
� All operations are fast

� Communication scheme
� Message delivery: Servers to Clients
� No server to server or client to client communication

5/3/201013 Nicolas Nicolaou -- Dissertation Defense

Can we trade fastness for scalability?

Question

Can we allow fast operations in atomic register
implementations with unbounded number of readers? implementations with unbounded number of readers?

5/3/201014 Nicolas Nicolaou -- Dissertation Defense

Definition: Semifast Implementations

� Writes are fast

� Reads perform 1 or 2 rounds

� Only a single complete slow read per write operation; any � Only a single complete slow read per write operation; any
read that proceeds or succeeds the slow read and returns
the same value is fast.

� There exists an execution with only fast operations

5/3/201015 Nicolas Nicolaou -- Dissertation Defense

Algorithm: SF

� Idea: Group readers into Virtual Nodes
� Local vid assignment per process

� V: set of virtual node identifiers

� Challenge: achieve atomicity between siblings

r1
r2

rR

v1 v2 vV

Siblings

5/3/201016 Nicolas Nicolaou -- Dissertation Defense

Algorithm: SF

Write Protocol: one round
• Increment ts and send <ts,v> to S-f servers

Read Protocol: one or two rounds
• Collect S-f replies and find the maxTS

• Fast: maxTSseen by “few” VN and is not confirmed => maxTS-1• Fast: maxTSseen by “few” VN and is not confirmed => maxTS-1
• Fast: maxTS seen by “enough” VN or ≥f+1 confirmed maxTS=> maxTS
• Slow: maxTS seen by exact # of VN or <f+1 confirmed maxTS => maxTS

Server Protocol
• Receive read/write request:

• Update replica ts and value and record requester’s vid
• Received inform request: mark ts as confirmed

5/3/201017 Nicolas Nicolaou -- Dissertation Defense

Idea of the Predicate

� Assume |S|=5, f=1 and operations
� write(v) => |S|-f servers

� Complete read() from <r1,vr1> => |S|-f servers
� Witness v in |S|-2f servers => |seen| = 2

� returns v to preserve atomicity(both executions)

{vr1} {w,vr1} {w,vr1} {w,vr1} {w}

5/3/2010Nicolas Nicolaou -- Dissertation Defense18

{vr1} {w,vr1} {w,vr1} {w,vr1} {w}

{vr1} {w,vr1} {w,vr1} {w,vr1} {}

Execution (a):
write(v) Complete

Execution (b):
write(v) Incomplete

Idea of the Predicate (Cont.)

� Extend (b) by read()from <r2, vr2> (not sibling with r1):
� Witness v in |S|-3f servers, |seen| = 3

� Returns v to preserve atomicity

{vr1, vr2} {w,vr1,vr2} {vr2}{w,vr1,vr2} {w,vr1,vr2}

� Extend (b) by read()from <r2, vr1> (sibling with r1):
� Witness v in |S|-3f servers, |seen| = 2

� Has to return v to preserve atomicity => r1 needs 2nd round

5/3/2010Nicolas Nicolaou -- Dissertation Defense19

{vr1} {w,vr1} {vr1}{w,vr1} {w,vr1}

Impossibility Results

Theorem: A semifast implementation is not possibleif the
number of virtual nodes is

|V| ≥ (|S|/f)-2
and a second round contacts fewer than 3f servers.

Theorem: It is not possible to devise a MWMR semifast
implementationeven with |W|=2, |R|=2 and f=1.

5/3/201020 Nicolas Nicolaou -- Dissertation Defense

Multiple Slow Reads per Write

� By Definition: One completecompleteslow read per write
� No guarantees for reads concurrent with the slow read!!

slow/fast?

Time

slow

slow/fast?

fastfast

5/3/201021 Nicolas Nicolaou -- Dissertation Defense

Measuring the Number of Slow Reads

• Low Contention: O(log|R|)
• High Contention: O(|R|)

Probabilistic

Bounds

• Stochastic: 10% (worst case)

• Fix Interval: 60% (worst case)
Simulation

5/3/201022 Nicolas Nicolaou -- Dissertation Defense

Observation

� Fast Implementations [Dutta et al. 04]:
� By their bound: f<|S|/(|R|+2)
� So f<|S|/4 if we want to support 2 readers

� Semifast Implememtations:
� By our bound: f<|S|/(|V|+2)
� So f<|S|/3 since a single VN accommodates unbounded readersSo f<|S|/3 since a single VN accommodates unbounded readers

� ABD Algorithm [ABD 96] (all slow reads):
� Majorities: f<|S|/2

� Is there a relation between server organization and
fastness?

5/3/201023 Nicolas Nicolaou -- Dissertation Defense

Quorum-Based Implementations

Question

Can we devise atomic register implementations that
allow fastoperations using a general quorum system allow fastoperations using a general quorum system
construction?

5/3/201024 Nicolas Nicolaou -- Dissertation Defense

First the Bad News

Theorem: Fast and Semifast implementations are possible
in an unconstrainedquorum-based environment iff the
underlying quorum system Q is a |Q|-wise quorum system

∅≠
∈

Q
Q Q
I

25 Nicolas Nicolaou -- Dissertation Defense 5/3/2010

Remark: Fast and Semifast quorum-based
implementations of atomic register are not fault-tolerant.
� Single failure in the common intersection disables the
quorum system.

Non-Robust Fast Implementations: Proof Sketch

� Execution a:
� Complete write(v) => Qi

� Complete read() => Qz

� read() returns v to preserve atomicity

Qz

read()

5/3/2010Nicolas Nicolaou -- Dissertation Defense26

QiQj

write(v)

read()

Not Robust Fast Implementations (Proof Sketch)

� Execution b:
� Incomplete write(v) =>
� Complete read1() => Qz
� read1() cannot distinguish between executions a and b, thus returns v

� Complete read2() => Qj
� read2() returns an oldervalue since does not observe v

Qz

zi QQ ∩

5/3/2010Nicolas Nicolaou -- Dissertation Defense27

Qz

QiQj

write(v)

read1()

read2()

Not Robust SemiFast Implementations (Proof Sketch)

Execution a’: Qz

QiQj

slow_read1(v)
(Complete)

read2()
(Complete)

Execution b’:

5/3/2010Nicolas Nicolaou -- Dissertation Defense28

QiQj

Qz

QiQj

slow_read1(v)
(Incomplete)

read2()
(Complete)

Now the Good News

� Introduce Weak SemifastImplementations
� Trade speed for efficiency and fault-tolerance
� Allow multiple “slow” reads per write operation

but maintain the fast behavior when possible

� To do so, we introduce Quorum Views

� Simulations of Quorum View Implementation
� <13% of slow reads in realistic scenarios

5/3/201029 Nicolas Nicolaou -- Dissertation Defense

Quorum Views

Idea:
� Try to determine the state of the write operation

based on the distribution of the maxTS in the replied
quorum.

30

� Write State in the First Round of Read Operation

Determinable => Read is Fast

Undeterminable=> Read is Slow

Nicolas Nicolaou -- Dissertation Defense 5/3/2010

Determinable Write - Qview(1)

� All members of a quorum contain the maxTS

Qz

5/3/201031

QiQj

(Potentially) Write Completed

Nicolas Nicolaou -- Dissertation Defense

Determinable Write - Qview(2)

� Every intersection contains a member with ts<maxTS

Qz

5/3/201032

QiQj

(Definitely) Write Incomplete

Nicolas Nicolaou -- Dissertation Defense

Undeterminable Write - Qview(3)

� There is intersection with all its members with ts=maxTS

Qz Qz

33

QiQj
QiQj

Undeterminable => second Com. Round

qV(3) and Incomplete Write qV(3) and Complete Write

Nicolas Nicolaou -- Dissertation Defense 5/3/2010

Algorithm: SLIQ

Write Protocol: one round
• P1: Writer increments ts and propagates the <ts,v> to a quorum

Read Potocol: one or two rounds
• P1: send read requests and wait for replies from a quorum Q

• QView (1) – Fast and return maxTS• QViewQ(1) – Fast and return maxTS
• QViewQ(2) –Fast and return maxTS-1
• QViewQ(3) –Slow proceed to P2 and return maxTS

• P2: propagate <maxTS,v> to a quorum and return <maxTS,v>

Server Protocol: passive role
• Receive requests, update local timestamp and return <ts,v>

5/3/201034 Nicolas Nicolaou -- Dissertation Defense

Thus Far…

SWMR Fast

• Single round (fast) writes and reads
• Bounded readers: R<(S/f)-2 whereS servers & f failures
• Impossible in MWMR model

• Fast writes
• Only a single complete 2-round (slow) read per write

• Unbounded readersSWMR
Semifast

• Unbounded readers
• Impossible in the MWMR model

SWMR Weak-
Semifast

• General Quorum System
• Fast writes and Multiple slow reads per write

• Allows concurrent fast reads with writes
• Unknown if applicable in MWMR model

5/3/2010Nicolas Nicolaou -- Dissertation Defense35

What about MWMR?

Question

Can we use Quorum Views to devise MWMR atomic
register implementationsthat allow executions that
contain fast operations?

5/3/201036 Nicolas Nicolaou -- Dissertation Defense

Quorum Views – CWFR Algorithm

� Idea:
� Adopt techniques developed for the SWMR

� Quorum Views
� Allow fast operations in unconstrained SWMR environments� Allow fast operations in unconstrained SWMR environments

� Generalize the Quorum Views for MWMR

5/3/201037 Nicolas Nicolaou -- Dissertation Defense

What happens in MWMR?

� MWMR environment
� Concurrent writes

� Multiple concurrent values

� For values <tag1,v1> , <tag2, v2>, <tag3,v3>
� Let tag1< tag2< tag3

Qz

5/3/201038 Nicolas Nicolaou -- Dissertation Defense

Qz

QiQj

Idea: Uncover the Past
� Discover the latest potentially completed write
� For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
� <tag3,v3>not completed (servers possiblycontained <tag2, v2>)
� <tag2, v2>not completed (servers possiblycontained <tag1,v1>)
� <tag1,v1>potentially completed

Qz

5/3/201039 Nicolas Nicolaou -- Dissertation Defense

QiQj

Algorithm: CWFR

Traditional Write Protocol: two rounds
• P1: Query a single quorum for the latest tag
• P2: Increment the max tag, send <newtag, v> quorum

Read Protocol: one or two rounds
• Iterate to discover smallest completed write
• P1: receive replies from a quorum Q • P1: receive replies from a quorum Q

• QViewQ(1) –Fast: return maxTS of current iteration
• QViewQ(2) –remove servers with maxTS and re-evaluate
• QViewQ(3) –Slow: propagate and return maxTS0

Server Protocol: passive role
• Receive requests, update local timestamp and return <ts,v>

5/3/201040 Nicolas Nicolaou -- Dissertation Defense

Read Iteration: Discard Incomplete Tags

� For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
� <tag3,v3>not completed: remove servers that contain<tag3,v3>
� <tag2, v2>not completed: remove servers that contain <tag2, v2>
� <tag1,v1>potentially completed in Qi
� Qview(1): all remaining servers contain<tag1,v1>

Qz Qz

5/3/201041 Nicolas Nicolaou -- Dissertation Defense

QiQj QiQj

Server Removal Past Prediction

Read Iteration: Discard Incomplete Tags

� For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
� <tag3,v3>not completed: remove servers that contain<tag3,v3>
� <tag2, v2>potentially completed in Qj
� Qview(3): an intersection of the remaining servers contains<tag2, v2>

� P2: propagate <tag3,v3>to a complete quorum (help <tag3,v3>to complete)

Qz Qz

5/3/201042 Nicolas Nicolaou -- Dissertation Defense

QiQj QiQj

Server Removal Past Prediction

What about fast writes?

Question

Can we devise MWMR atomic register

5/3/2010Nicolas Nicolaou -- Dissertation Defense43

implementationsthat allow executions that contain
both fast read and write operations?

New Technique - SSO

� SSO: Server Side Ordering
� Tag is incremented by the servers and not by the writer.
� Generated tags may be different across servers

� Clients decide operation ordering based on server responses

� SFW Algorithm
� Enables Fast Writes and Reads --first such algorithm
� Allows UnboundedParticipation

5/3/2010Nicolas Nicolaou -- Dissertation Defense44

Traditional Writer-Server Interaction

w s

writer server

P1: read()

Find max (t
s
)

t = inc(t)

reply(t
s
)

5/3/2010Nicolas Nicolaou -- Dissertation Defense45

P2: write(t
w
,v)

s

t
w
= inc(t

s
)

reply(max(t
w
,t
s
))

Return(OK)

SFW Writer-Server Interaction

w s

writer server

P1: write(t
w
,v)

reply(t
s
,v)

t
s
=inc(max(t

s
,t
w
))

Is t
s

“valid”

for v?

Yes

5/3/2010Nicolas Nicolaou -- Dissertation Defense46

P2: write(t
w
,v)

reply(max(t
w
,t
s
))

Return(OK)

for v?

No

t
w
= max(t

s
)

Algorithm: SFW

Write Protocol: one or two rounds
• P1: send v and gather candidatetags from a quorum

• Exists tag t propagated in a biggerthan (n/2-1)-wise intersection
• YES– assign t to the written value and return => FAST
• NO - propagate the unique largest tag to a quorum => SLOW

Read Protocol: one or two rounds
• P1: collect list of writes and their tags from a quorum

• Exists max write tag t in a biggerthan (n/2-2)-wise intersection
• YES– return the value written by that write => FAST
• NO - propagate the largest confirmed tag to a quorum => SLOW

Server Protocol
• Increment tagwhen receive write request and record the latest writes
• Upon read/write request send the recording set

5/3/201047 Nicolas Nicolaou -- Dissertation Defense

Lower Bounds (Definitions)

� Consecutiveoperations:
� Invoked by different processes

� They are complete

� They are not concurrent

Quorum Shifting operation set Π:� Quorum Shifting operation set Π:
� Any π1,π2 in Π are consecutive

� if π1 contacts Q and π2 contacts Q’ then Q not equal to Q’

5/3/2010Nicolas Nicolaou -- Dissertation Defense48

Lower bounds

Theorem: No execution of safe registerimplementation that
use an -wise quorum system, contains more than
consecutive, quorum shifting, fast writes.

1−NN

5/3/2010Nicolas Nicolaou -- Dissertation Defense49

Theorem: It is impossible to get MWMR safe register
implementations that exploit an -wise quorum system, if

|W ∪ R |> N −1

N

Remarks

Remark 1: SFW algorithm is near optimal since it allows
less than consecutive, quorum shifting fast writes.N /2

5/3/2010Nicolas Nicolaou -- Dissertation Defense50

Remark 2: Our participation bound applies in previously
presented fast implementations (i.e. [Dutta et al. 04]).

Contributions – Trade offs in SWMR

Traded Speed for
Scalability

• Semifast Implementations - Algorithm SF
• Unbounded Number of Readers
• Single slow read per write
• Impossible if V<|S|/f – 2
• Impossible in the MWMR setting

Traded Speed for
Fault-Tolerance

• (Semi)Fast Implementations Not Fault-Tolerant
• Common Intersection among Quorums

• Weak Semifast Implementations – Algorithm SLIQ
• Quorum Views – general quorum systems

5/3/2010Nicolas Nicolaou -- Dissertation Defense51

Contributions – Trade offs in MWMR

Traded Write
Speed for Fast

Reads

• Quorum Viewsin the MWMR environment
• Algorithm CWFR

• Traditional two round writes
• Some single round reads – even when reads are concurrent

with writes
• Utilizes any General Quorum System

Traded Quorum
Generality for Fast

Writes

• Algorithm SFW
• Server Side Ordering
• Allows both single round reads and writes in MWMR
• Fastness depends on n-wise quorum intersections

• n-1 consecutive fast writes are possible in MWMR
• SFW near optimal – Allows O(n/2) consecutive fast writes

5/3/2010Nicolas Nicolaou -- Dissertation Defense52

What’s Next

� Dynamism
� Dynamic Systems

� Partitionable Networks

� Byzantine Failures
� Replica Hosts

� Clients

� Partially Synchronous Environments

5/3/201053 Nicolas Nicolaou -- Dissertation Defense

List of References
1. Chryssis Georgiou, Nicolas C. Nicolaou, Alexander Russell, and Alexander A. Shvartsman,

Towards Feasible Implementations of Low-Latency Multi-Writer Atomic Registers, Tech
Report, University of Cyprus and under revision in NCA2011

2. Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman, Fault-Tolerant SemiFast
Implementations of Atomic Read/Write Registers, in Journal of Parallel and Distributed
Computing (JPDC), 69(1): 62-79, Elsevier, 2009.

3. Burkhard Englert, Chryssis Georgiou, Peter Musial, Nicolas Nicolaou, and Alexander A.
Shvartsman:On the Efficiency of Atomic Multi-Reader, Multi-Writer Distributed Memory, in
Proceedings of the 13th International Conference on Principles of Distributed Systems (OPODIS
2009), Nimes, France, 2009.

4. Chryssis Georgiou, Sotirios Kentros, Nicolas Nicolaou, and Alexander A. Shvartsman:Analyzing
the Number of Slow Reads for Semifast Atomic Read/Write Register Implementations, in the
Proceedings of the 21st International Conference on Parallel and Distributed Computing and Proceedings of the 21st International Conference on Parallel and Distributed Computing and
Systems (PDCS 2009), pages 229-236, Cambridge, MA, 2009.

5. Chryssis Georgiou, Nicolas Nicolaou, and Alexander A. Shvartsman,On the Robustness of
(Semi)Fast Quorum-Based Implementations of Atomic Shared Memory, in Proceedings of the
22nd International Symposium on Distributed Computing (DISC 2008), pages 289-304, Arcachon,
France, 2008.

6. K.M. Konwar, P.M. Musial, N.C. Nicolaou, A.A. Shvartsman:Implementing Atomic Data through
Indirect Learning in Dynamic Networks. In Proceedings of 6th IEEE International Symposium on
Network Computing and Applications (IEEE NCA 2007), pages 223-230, 2007.

7. Chryssis Georgiou, Nicolas C. Nicolaou, Alexander A. Shvasrtsman,Fault-Tolerant SemiFast
Implementations of Atomic Read/Write Registers. In Proceedings of the 18th annual ACM
symposium on Parallelism in Algorithms and Architectures (SPAA 2006), pages 281-290, 2006.

5/3/2010Nicolas Nicolaou -- Dissertation Defense54

Other Publications
Parallel Systems

1. Sotiris Kentros, Aggelos Kiayias, Nicolas Nicolaou and Alexander A. Shvartsman: At-Most-Once Semantics in Asynchronous Shared Memory, in
Proceedings of the 22nd International Symposium on Distributed Computing (DISC 2009), pages 258-273, Elche, Spain, 2009.

Sensor Networks

1. Peng Xie, Zhong Zhou, Nicolas Nicolaou, Andrew See, Jun-Hong Cui, and Zhijie Shi: Efficient Vector-Based Forwarding for Underwater Sensor
Networks, in EURASIP Journal on Wireless Communications and Networking, vol. 2010, Article ID 195910, 13 pages, 2010

2. Nicolas C. Nicolaou, Andrew G. See, Peng Xie, Jun Hong Cui, Dario Maggiorini: Improving the Robustness of Location-Based Routing for
Underwater Sensor Networks, in Proceedings of IEEE OCEANS'07, Aberdeen, Scotland, pages 1-6, 2007.

E-Voting

1. T. Antonyan, N. Nicolaou, A. Shvartsman and T. Smith: Determining the Causes of AccuVote Optical Scan Voting Terminal Memory Card
Failures, in Online Proceedings of Electronic Voting Technology Workshop/Workshop of Trustworthy Elections (EVT/WOTE'10), Washington DC,
USA, 2010.

2. Tigran Antonyan, Seda Davtyan, Sotiris Kentros, Aggelos Kiayias, Laurent Michel, Nicolas Nicolaou, Alexander Russell and Alexander A.
Shvartsman: State-Wide Elections, Optical Scan Voting and the Pursuit of Integrity, in IEEE Trans. on Information Forensics and Security (Special Shvartsman: State-Wide Elections, Optical Scan Voting and the Pursuit of Integrity, in IEEE Trans. on Information Forensics and Security (Special
Issue on Electronic Voting), Volume 4, No 4, pages 597-610, IEEE, December 2009

3. Tigran Antonyan, Seda Davtyan, Sotiris Kentros, Aggelos Kiayias, Laurent Michel, Nicolas Nicolaou, Alexander Russell and Alexander Shvartsman:
Automating Voting Terminal Event Log Analysis, in Online Proceedings of Electronic Voting Technology Workshop/Workshop of Trustworthy
Elections (EVT/WOTE'09), Montreal, Canada, 2009.

4. Seda Davtyan, Sotiris Kentros, Aggelos Kiayias, Laurent Michel, Nicolas Nicolaou, Alexander Russell, Andrew See, Narasimha Shashidhar, Alexander
A. Shvartsman: Taking Total Control of Voting Systems: Firmware Manipulations on an Optical Scan Voting Terminal, in Proceedings of the 24th
Annual ACM Symposium on Applied Computing (SAC '09), pages 2049-2053, March 9-12, Honolulu, Hawaii, 2009.

5. Seda Davtyan, Sotiris Kentros, Aggelos Kiayias, Laurent Michel, Nicolas Nicolaou, Alexander Russell, Andrew See, Narasimha Shashidhar, Alexander
A. Shvartsman: Pre-Election Testing and Post-Election Audit of Optical Scan Voting Terminal Memory Cards, in Proceedings of the 2008 Electronic
Voting Technology Workshop (EVT '08), July 28–29, San Jose, 2008.

5/3/2010Nicolas Nicolaou -- Dissertation Defense55

5/3/201056 Nicolas Nicolaou -- Dissertation Defense

