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What is a Distributed Storage System?

read()

write(v)

� Data Replication – Servers/Disks
� Survivability and Availability

� Read/Write operations
� Consistency Semantics

5/3/2010Nicolas Nicolaou -- Dissertation Defense2

Distributed Storage 
Abstraction



Consistency Semantics [Lamport86]

Safety

read(3)

write(8)

read(0)

Time

read(8)

write(8)

Regularity

Atomicity

read(8)

write(8)

read(8)

Time

read(8)

read(8) read(0)

Time

read(8)

5/3/20103 Nicolas Nicolaou -- Dissertation Defense



How to order read/write operations?

� Based on the value each operation writes/returns
� Non-unique Values

� Using the “time” at which each operation is invoked
� Clock Synchronization

� Associate a sequence number with each value written
� SWMR: timestamps

� MWMR: tags=<timestamp, wid>
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Challenges – Communication Rounds

X
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Multiple Round-Trips

� Consider the following example [Attiya et al. 96]:

S1 0

S2 0

S3 1

S1 1

S2 1

S3 1

S4 0

S5 0

W(1) R1(1) R2(0)

Atomicity is Violated
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S4 0

S5 0

W(1) R1(1)



Efficiency Measure-Operation Latency

Operation Latency is measured in 
Communication Rounds (round-trips)Communication Rounds (round-trips)
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Prior Work: Traditional Implementations

SWMR

• e.g., [Attiya et al. 96]
• Single round writes 
• Two round reads

• Phase 1: Obtain latest value
• Phase 2: Propagate latest value

• Folklore belief: “Reads must Write”

MWMR

• e.g., [LS97, ES00, LS02]
• Two round writes

• Phase 1: Discover latest value
• Phase 2: Order new value after the latest and propagate

• Belief: “Writes must Read”
• Two round reads
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Prior Work: “Fast” Implementations

MWMR 
Crashes

• [Dolev et al.  03, Chockler et al. 09]
• Single round (fast) reads

• Only if tag is confirmed
• When the written value is propagated to a full quorum

SWMR 

• [Dutta et al. 04]
• Single round (fast) reads and writes

• All operations are fast
SWMR 
Crashes

• All operations are fast
• Bounded readers: R<(S/f )-2 whereS servers & f failures
• Impossible in MWMR model

SWMR 
Byzantine

• “Lucky” Operations [GV 06]
• Synchronous(receive replies from all servers within some interval)
• Contention free (not concurrent with a write)

• Refine Quorum Systems [GV 07] 
• One to Three round reads
• Eventual Synchrony and use of timeouts 
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Goal of this Thesis….

What is the operation latencyof atomic register 
implementations in an unconstrained, fail-prone, 

message-passing, asynchronous distributed system?

What are the trade-offsto achieve such performance?
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Model - Definitions

� Asynchronous, Message-Passing model
� Process sets: writers W, readers R, servers S (replica hosts)
� Reliable Communication Channels (unless otherwise stated) 
� Well Formedness

� Environments:
� SWMR: |W|=1, |R|≥1
� MWMR: |W|≥1, |R|≥1� MWMR: |W|≥1, |R|≥1

� Failures:
� Crash Failures

� Correctness: Atomicity (safety), Termination (liveness)
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Definition: Quorum Systems

� Quorum System :

� n-wise Quorum System:

∅≠=⊆∀⊆=
∈
I

AQ

QnAAwhereSQQ  and |:|}:{ QQ

Q

Q

∅≠∩∈∀⊆= jiji QQQQtsSQQ :,..}:{ QQ

� : intersection degree

� Faulty Quorum: Contains a faulty process
� At least a single quorum contains non-faulty replicas

� Faulty Quorum System: Every quorum is faulty

∈AQ

||2 Q≤≤ n
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Definition: Fastness
� A process p performs a communication round during an 

operation π if:
� p sends a message m to a set of servers for π

� Any server that receives m replies to p
� Once p receives “enough” responses completes π or proceed to a next 

communication round

� Fast Operation
Completes after the end of its first round� Completes after the end of its first round

� Fast Implementation
� All operations are fast

� Communication scheme
� Message delivery: Servers to Clients
� No server to server or client to client communication
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Can we trade fastness for scalability?

Question

Can we allow fast operations in atomic register 
implementations with unbounded number of readers? implementations with unbounded number of readers? 
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Definition: Semifast Implementations

� Writes are fast

� Reads perform 1 or 2 rounds

� Only a single complete slow read per write operation; any � Only a single complete slow read per write operation; any 
read that proceeds or succeeds the slow read and returns 
the same value is fast.

� There exists an execution with only fast operations
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Algorithm: SF

� Idea: Group readers into Virtual Nodes
� Local vid assignment per process

� V: set of virtual node identifiers

� Challenge:  achieve atomicity between siblings

r1
r2

rR

v1 v2 vV

Siblings
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Algorithm: SF

Write Protocol: one round
• Increment ts and send <ts,v> to S-f servers

Read Protocol: one or two rounds
• Collect S-f replies and find the maxTS

• Fast: maxTSseen by “few” VN and is not confirmed => maxTS-1• Fast: maxTSseen by “few” VN and is not confirmed => maxTS-1
• Fast: maxTS seen by “enough” VN or ≥f+1 confirmed maxTS=> maxTS
• Slow:  maxTS seen by exact # of VN or <f+1 confirmed maxTS => maxTS

Server Protocol
• Receive read/write request: 

• Update replica ts and value and record requester’s vid
• Received inform request:  mark ts as confirmed
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Idea of the Predicate

� Assume |S|=5, f=1 and operations 
� write(v) => |S|-f servers

� Complete read() from <r1,vr1> => |S|-f servers
� Witness v in |S|-2f servers => |seen| = 2 

� returns v to preserve atomicity(both executions) 

{vr1} {w,vr1} {w,vr1} {w,vr1} {w}
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{vr1} {w,vr1} {w,vr1} {w,vr1} {w}

{vr1} {w,vr1} {w,vr1} {w,vr1} {}

Execution (a):
write(v) Complete

Execution (b):
write(v) Incomplete



Idea of the Predicate (Cont.)

� Extend (b) by read()from <r2, vr2> (not sibling with r1):
� Witness v in |S|-3f servers, |seen| = 3

� Returns v to preserve atomicity

{vr1, vr2} {w,vr1,vr2} {vr2}{w,vr1,vr2} {w,vr1,vr2}

� Extend (b) by read()from <r2, vr1> (sibling with r1):
� Witness v in |S|-3f servers, |seen| = 2

� Has to return v to preserve atomicity => r1 needs 2nd round
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{vr1} {w,vr1} {vr1}{w,vr1} {w,vr1}



Impossibility Results

Theorem: A semifast implementation is not possibleif the 
number of virtual nodes is

|V| ≥ (|S|/f)-2
and a second round contacts fewer than 3f servers.

Theorem: It is not possible to devise a MWMR semifast 
implementationeven with |W|=2, |R|=2 and f=1.
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Multiple Slow Reads per Write

� By Definition: One completecompleteslow read per write
� No guarantees for reads concurrent with the slow read!!

slow/fast?

Time

slow

slow/fast?

fastfast
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Measuring the Number of Slow Reads

• Low Contention: O(log|R|)
• High Contention: O(|R|)

Probabilistic 

Bounds

• Stochastic: 10% (worst case)

• Fix Interval: 60% (worst case)
Simulation
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Observation

� Fast Implementations [Dutta et al. 04]:
� By their bound: f<|S|/(|R|+2)
� So f<|S|/4 if we want to support 2 readers

� Semifast Implememtations:
� By our bound: f<|S|/(|V|+2)
� So f<|S|/3 since a single VN accommodates unbounded readersSo f<|S|/3 since a single VN accommodates unbounded readers

� ABD Algorithm [ABD 96] (all slow reads):
� Majorities: f<|S|/2

� Is there a relation between server organization and 
fastness?
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Quorum-Based Implementations

Question

Can we devise atomic register implementations that 
allow fastoperations using a general quorum system allow fastoperations using a general quorum system 
construction?
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First the Bad News 

Theorem: Fast and Semifast implementations are possible 
in an unconstrainedquorum-based environment iff the 
underlying quorum system Q is a |Q|-wise quorum system

∅≠
∈

Q
Q Q
I
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Remark: Fast and Semifast quorum-based 
implementations of atomic register are not fault-tolerant.
� Single failure in the common intersection disables the 
quorum system.



Non-Robust Fast Implementations: Proof Sketch

� Execution a:
� Complete write(v) => Qi

� Complete read() => Qz

� read() returns v to preserve atomicity

Qz

read()

5/3/2010Nicolas Nicolaou -- Dissertation Defense26

QiQj

write(v)

read()



Not Robust Fast Implementations (Proof Sketch)

� Execution b:
� Incomplete write(v) =>
� Complete read1() => Qz
� read1() cannot distinguish between executions a and b, thus returns v

� Complete read2() => Qj 
� read2() returns an oldervalue since does not observe v

Qz

zi QQ ∩
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Qz

QiQj

write(v)

read1()

read2()



Not Robust SemiFast Implementations (Proof Sketch)

Execution a’: Qz

QiQj

slow_read1(v)
(Complete)

read2()
(Complete)

Execution b’: 
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QiQj

Qz

QiQj

slow_read1(v)
(Incomplete)

read2()
(Complete)



Now the Good News

� Introduce Weak SemifastImplementations
� Trade speed for efficiency and fault-tolerance
� Allow multiple “slow” reads per write operation 

but maintain the fast behavior when possible

� To do so, we introduce Quorum Views

� Simulations of Quorum View Implementation
� <13% of slow reads in realistic scenarios
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Quorum Views

Idea:
� Try to determine the state of the write operation 

based on the distribution of the maxTS in the replied 
quorum.

30

� Write State in the First Round of Read Operation

Determinable => Read is Fast

Undeterminable=> Read is Slow
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Determinable Write - Qview(1)

� All members of a quorum contain the maxTS

Qz

5/3/201031

QiQj

(Potentially) Write Completed
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Determinable Write - Qview(2)

� Every intersection contains a member with ts<maxTS

Qz
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QiQj

(Definitely) Write Incomplete
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Undeterminable Write - Qview(3)

� There is intersection with all its members with ts=maxTS

Qz Qz

33

QiQj
QiQj

Undeterminable => second Com. Round

qV(3) and Incomplete Write qV(3) and Complete Write
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Algorithm: SLIQ

Write Protocol:  one round 
• P1: Writer increments ts and propagates the <ts,v> to a quorum

Read Potocol: one or two rounds
• P1: send read requests and wait for replies from a quorum Q

• QView (1) – Fast and return maxTS• QViewQ(1) – Fast and return maxTS
• QViewQ(2) –Fast and return maxTS-1
• QViewQ(3) –Slow proceed to P2 and return maxTS

• P2: propagate <maxTS,v> to a quorum and return <maxTS,v>

Server Protocol: passive role
• Receive requests, update local timestamp and return <ts,v>

5/3/201034 Nicolas Nicolaou -- Dissertation Defense



Thus Far…

SWMR Fast

• Single round (fast) writes and reads
• Bounded readers: R<(S/f )-2 whereS servers & f failures
• Impossible in MWMR model

• Fast writes
• Only a single complete 2-round (slow) read per write

• Unbounded readersSWMR 
Semifast

• Unbounded readers
• Impossible in the MWMR model

SWMR Weak-
Semifast

• General Quorum System
• Fast writes and Multiple slow reads per write

• Allows concurrent fast reads with writes
• Unknown if applicable in MWMR model 

5/3/2010Nicolas Nicolaou -- Dissertation Defense35



What about MWMR?

Question

Can we use Quorum Views to devise MWMR atomic 
register implementationsthat allow executions that 
contain fast operations?
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Quorum Views – CWFR Algorithm

� Idea: 
� Adopt techniques developed for the SWMR

� Quorum Views
� Allow fast operations in unconstrained SWMR environments� Allow fast operations in unconstrained SWMR environments

� Generalize the Quorum Views for MWMR
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What happens in MWMR?

� MWMR environment
� Concurrent writes

� Multiple concurrent values

� For values <tag1,v1> , <tag2, v2>, <tag3,v3>
� Let tag1< tag2< tag3

Qz
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Qz

QiQj



Idea: Uncover the Past
� Discover the latest potentially completed write
� For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
� <tag3,v3>not completed (servers possiblycontained <tag2, v2>)
� <tag2, v2>not completed (servers possiblycontained <tag1,v1>)
� <tag1,v1>potentially completed

Qz
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QiQj



Algorithm: CWFR

Traditional Write Protocol: two rounds
• P1: Query a single quorum for the latest tag
• P2: Increment the max tag, send <newtag, v> quorum

Read Protocol: one or two rounds
• Iterate to discover smallest completed write
• P1:  receive replies from a quorum Q • P1:  receive replies from a quorum Q 

• QViewQ(1) –Fast:  return maxTS of current iteration
• QViewQ(2) –remove servers with maxTS and re-evaluate
• QViewQ(3) –Slow:  propagate and return maxTS0

Server Protocol: passive role
• Receive requests, update local timestamp and return <ts,v>
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Read Iteration: Discard Incomplete Tags

� For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
� <tag3,v3>not completed: remove servers that contain<tag3,v3>
� <tag2, v2>not completed: remove servers that contain <tag2, v2>
� <tag1,v1>potentially completed in Qi
� Qview(1): all remaining servers contain<tag1,v1>

Qz Qz
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QiQj QiQj

Server Removal Past Prediction



Read Iteration: Discard Incomplete Tags

� For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
� <tag3,v3>not completed: remove servers that contain<tag3,v3>
� <tag2, v2>potentially completed in Qj
� Qview(3): an intersection of the remaining servers contains<tag2, v2>

� P2: propagate <tag3,v3>to a complete quorum (help <tag3,v3>to complete)

Qz Qz
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QiQj QiQj

Server Removal Past Prediction



What about fast writes?

Question

Can we devise MWMR atomic register 
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implementationsthat allow executions that contain 
both fast read and write operations?



New Technique - SSO

� SSO: Server Side Ordering
� Tag is incremented by the servers and not by the writer.
� Generated tags may be different across servers

� Clients decide operation ordering based on server responses

� SFW Algorithm
� Enables Fast Writes and Reads --first such algorithm
� Allows UnboundedParticipation
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Traditional Writer-Server Interaction

w s

writer server

P1: read()

Find max (t
s
)

t = inc(t )

reply(t
s
)
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P2: write(t
w
,v)

s

t
w
= inc(t

s
)

reply(max(t
w
,t
s
))

Return(OK)



SFW Writer-Server Interaction

w s

writer server

P1: write(t
w
,v)

reply(t
s
,v)

t
s
=inc(max(t

s
,t
w
))

Is t
s

“valid” 

for v?

Yes
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P2: write(t
w
,v)

reply(max(t
w
,t
s
))

Return(OK)

for v?

No

t
w 
= max(t

s
)



Algorithm: SFW

Write Protocol: one or two rounds
• P1: send v and gather candidatetags from a quorum

• Exists tag t propagated in a biggerthan (n/2-1)-wise intersection
• YES– assign t to the written value and return => FAST
• NO - propagate the unique largest tag to a quorum => SLOW

Read Protocol: one or two rounds
• P1: collect list of writes and their tags from a quorum

• Exists max write tag t in a biggerthan (n/2-2)-wise intersection
• YES– return the value written by that write => FAST
• NO - propagate the largest confirmed tag to a quorum => SLOW

Server Protocol
• Increment tagwhen receive write request and record the latest writes
• Upon read/write request send the recording set
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Lower Bounds (Definitions)

� Consecutiveoperations:
� Invoked by different processes

� They are complete

� They are not concurrent

Quorum Shifting operation set Π:� Quorum Shifting operation set Π:
� Any π1,π2 in Π are consecutive

� if π1 contacts Q and π2 contacts Q’ then Q not equal to Q’
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Lower bounds

Theorem: No execution of safe registerimplementation that 
use an -wise quorum system, contains more than
consecutive, quorum shifting, fast writes.

1−NN

5/3/2010Nicolas Nicolaou -- Dissertation Defense49

Theorem: It is impossible to get MWMR safe register 
implementations that exploit an   -wise quorum system, if 

|W ∪ R |> N −1

N



Remarks

Remark 1: SFW algorithm is near optimal since it allows 
less than consecutive, quorum shifting fast writes.N /2
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Remark 2: Our participation bound applies in previously 
presented fast implementations (i.e. [Dutta et al. 04]). 



Contributions – Trade offs in SWMR

Traded Speed for 
Scalability

• Semifast Implementations - Algorithm SF
• Unbounded Number of Readers
• Single slow read per write
• Impossible if V<|S|/f – 2
• Impossible in the MWMR setting

Traded Speed for 
Fault-Tolerance

• (Semi)Fast Implementations Not Fault-Tolerant
• Common Intersection among Quorums

• Weak Semifast Implementations – Algorithm SLIQ
• Quorum Views – general quorum systems
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Contributions – Trade offs in MWMR

Traded Write 
Speed for Fast 

Reads

• Quorum Viewsin the MWMR environment
• Algorithm CWFR

• Traditional two round writes
• Some single round reads – even when reads are concurrent 

with writes
• Utilizes any General Quorum System

Traded Quorum 
Generality for Fast 

Writes 

• Algorithm SFW
• Server Side Ordering
• Allows both single round reads and writes in MWMR
• Fastness depends on n-wise quorum intersections

• n-1 consecutive fast writes are possible in MWMR
• SFW near optimal – Allows O(n/2) consecutive fast writes 
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What’s Next

� Dynamism
� Dynamic Systems

� Partitionable Networks

� Byzantine Failures
� Replica Hosts

� Clients

� Partially Synchronous Environments
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