
Seeking Fastness in Multi-Writer Multiple-
Reader Atomic Register Implementations 

 
ΠΕΝΕΚ/0609/31 

Nicolas Nicolaou 
 

University of Cyprus &  
University of Connecticut 

 

Funded by the Cyprus Research Promotion Foundation and co-funded by the 
Republic of Cyprus and the European Regional Development Fund 

Η	  ΔΕΣΜΗ	  2009-‐10	  ΣΥΓΧΡΗΜΑΤΟΔΟΤΕΙΤΑΙ	  ΑΠΟ	  ΤΗΝ	  ΚΥΠΡΙΑΚΗ	  ΔΗΜΟΚΡΑΤΙΑ	  
ΚΑΙ	  ΤΟ	  ΕΥΡΩΠΑΪΚΟ	  ΤΑΜΕΙΟ	  ΠΕΡΙΦΕΡΕΙΑΚΗΣ	  ΑΝΑΠΤΥΞΗΣ	  ΤΗΣ	  ΕΕ 

 

ΚΥΠΡΙΑΚΗ	  ΔΗΜΟΚΡΑΤΙΑ ΕΥΡΩΠΑΪΚΗ	  ΕΝΩΣΗ 



What is a Distributed Storage System? 

  Data Replication – Servers/Disks 
  Survivability and Availability 

  Read/Write operations 
  Consistency Semantics 

 

read() 

write(v) 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  2	  

Distributed Storage  
Abstraction 



Definition: Operation Relations 
  Precedence Relations for two operations π1	  ,π2:	  

  π1 precedes π2	  if the response of π1	  happens before the 
invocation of π2	   

  π1 succeeds π2	  if the invocation of π1	  happens after the 
response of π2 

  π1 is concurrent with π2	  if π1	  neither precedes nor succeeds π2 

9/27/11 3	   Nicolas Nicolaou --  CS Colloquium @ UCY	  

π1 

π2 
Time 

π1 

π2 Time 

π1 

π2 
Time 



Consistency Semantics [Lamport86] 

Safety 

Regularity 

Atomicity 

read(3) 

write(8) 

read(0) 

Time 

read(8) 

read(8) 

write(8) 

read(8) 

Time 

read(8) 

read(8) 

write(8) 

read(0) 

Time 

read(8) 

9/27/11 4 Nicolas Nicolaou --  CS Colloquium @ UCY 



How to order read/write operations? 
  Based on the value each operation writes/returns 

  Non-unique Values 

  Using the “time” at which each operation is invoked 
  Clock Synchronization 
 

  Associate a sequence number with each value written 
  SWMR: timestamps 
  MWMR: tags=<timestamp, wid> 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 5 



Challenges – Communication Rounds 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 6 

p1 p2 

X 



Multiple Round-Trips 
  Consider the following example [Attiya et al. 96]: 
 S1 0 

S2 0 

S3 1 

S4 0 

S5 0 

W(1) R1(1) R2(0) 

Atomicity is Violated 

9/27/11	  7 Nicolas Nicolaou --  CS Colloquium @ UCY 

S1 1 

S2 1 

S3 1 

S4 0 

S5 0 

W(1) R1(1) 



Complexity Measure 

Operation 
Latency 

Communication 
Delays  

(round-trips) 
Computation 

9/27/11 8 Nicolas Nicolaou --  CS Colloquium @ UCY 



What was known… 

Traditional 
SWMR 

•  [Attiya et al. 95] 
•  Single round writes   
•  Two round reads 

•  Phase 1: Obtain latest value 
•  Phase 2: Propagate latest value 

•  Folklore belief: “Reads must Write” 

Traditional 
MWMR 

•  Two round writes 
•  Phase 1: Discover latest value 
•  Phase 2: Order new value after the latest and propagate 

•  Belief: “Writes must Read” 
•  Two round reads 

9/27/11	  Nicolas Nicolaou --  CS Colloquium @ UCY	  9	  



The Era of Fast Implementations… 

SWMR Fast 

•  Single round (fast) writes and reads 
•  Bounded readers: R<(S/f )-2 where S servers & f failures 
•  Impossible in MWMR model 

SWMR 
Semifast 

•  Fast writes 
•  Only a single complete 2-round (slow) read per write 

•  Unbounded readers 
•  Impossible in the MWMR model 

SWMR Weak-
Semifast 

•  General Quorum System 
•  Fast writes and Multiple slow reads per write 

•  Allows concurrent fast reads with writes 
•  Unknown if applicable in MWMR model  

9/27/11 Nicolas Nicolaou --  CS Colloquium @ 
UCY 

10 



Model 
  Asynchronous, Message-Passing model 

  Process sets: writers W, readers R, servers S (replica hosts) 
  Reliable Communication Channels  
  Well Formedness 

  Environments: 
  SWMR: |W|=1, |R|≥1 
  MWMR: |W|≥1, |R|≥1 
 

   Failures: 
  Crash Failures 

  Correctness: Atomicity (safety), Termination (liveness) 

9/27/11 11	   Nicolas Nicolaou --  CS Colloquium @ UCY	  



Communication Round 

  A process p performs a communication round during an 
operation π	  if: 
  p sends a message m to a set of servers for π	  
  Any server that receives m replies to p 
  Once p receives responses from a single quorum completes π	  or 

proceeds to a next communication round 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 12 



Definition: Quorum systems 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 13 

Qz 

Qi Qj 

Servers 

  Qi, Qj, Qz are quorums 
  Quorum System is the set {Qi, Qj, Qz} 

  Property: every pair of quorums intersects  
  N-wise quorums systems: every N quorums intersect for N>1 

  Every R/W operation communicates with a single quorum    
  Faulty Quorum: Contains a faulty process 

p1 

p2 

X 



Algorithm: Simple 

Write Protocol: two rounds 
•  P1: Query a single quorum for the latest tag 
•  P2: Increment the timestamp in the max tag, and send <newtag, v> to a 

quorum 

Read Protocol:  two rounds 
•  P1: Query a single quorum for the latest tag 
•  P2: Propagate <maxtag,v> to a single quorum 

Server Protocol: passive role 
•  Receive requests, update local timestamp (if msg.tag>server.tag) and reply 

with <server.tag,v> 

9/27/11 14 Nicolas Nicolaou --  CS Colloquium @ UCY 



Example: Simple (write operations) 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  15	  

0 

Qz 

Qi Qj 

0 0 

0 

0 
0 

0 

0 
0 

0 

0 
0 

wi 

wk 

read() 

read() 

  Assume wi>wk 



Example: Simple (write operations) 

  Assume wi>wk 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  16	  

1 

Qz 

Qi Qj 

1 1 

0 

0 
1 

1 

0 
0 

1 

0 
0 

wi 

wk 

read() 

read() 

write(<1,wi>,v) 



Example: Simple (write operations) 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  17	  

1 

Qz 

Qi Qj 

1 1 

1 

1 
1 

1 

1 
0 

1 

1 
0 

wi 

wk 

read() 

read() 

write(<1,wk>,v) 

write(<1,wi>,v) 

  Assume wi>wk 

Belief: Writes must Read in MW environments 



Example: Simple (read operation) 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  18	  

1 

Qz 

Qi Qj 

1 1 

1 

1 
1 

1 

1 
0 

1 

1 
0 

ri 

read() 

  Assume wi>wk 



Example: Simple (read operation) 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  19	  

1 

Qz 

Qi 
Qj 

1 1 

1 

1 
1 

1 

1 
1 

1 

1 
1 

ri 

read() 

write(<1,wi>,v) 

  Assume wi>wk 

ret(v) 

Operation Ordering: wk -> wi -> ri 



Why a read performs 2 rounds? 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 20 

1 

Qz 

Qi Qj 

1 1 

0 

0 
1 

1 

0 
0 

1 

0 
0 

ri 

read() 

0 

Qz 

Qi Qj 

0 0 

0 

0 
0 

0 

0 
0 

1 

0 
0 

ri 

read() 

Consider the following executions with single round reads: 

ret(v) ret(v) 

Ex(a) Ex(b) 



Why a read performs 2 rounds? (Cont.) 
Extend execution Ex(b) with a read from rj: 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 21 

Folklore Belief: Reads must Write in MR environments 

0 

Qz 

Qi Qj 

0 0 

0 

0 
0 

0 

0 
0 

1 

0 
0 

ri 

read() 

ret(<1,wk>, v) 

rj 
read() 

ret(<0,0>, v0) 

Atomicity is Violated 



Question 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  22	  

Can we allow reads and writes to be fast (single round) 
and still guarantee atomicity? 

Answer: YES!! 



New Technique - SSO 

[Englert et. al 09] 
 
  SSO: Server Side Ordering 

  Tag is incremented by the servers and not by the writer. 
  Generated tags may be different across servers 
  Clients decide operation ordering based on server responses 

  SSO Algorithm 
  Enables Fast Writes and Reads -- first such algorithm 
  Allows Unbounded Participation 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  23	  



Traditional Writer-Server Interaction 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  24	  

w s 

writer server 

P1: read() 

P2: write(tw,v) 

Find max (ts) 
tw = inc(ts) 

reply(ts) 

reply(max(tw,ts)) 

Return(OK) 



SFW Writer-Server Interaction 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  25	  

w s 

writer server 

P1: write(tw,v) 

P2: write(tw,v) 

reply(ts,v) 

reply(max(tw,ts)) 

Return(OK) 

ts=inc(max(ts,tw)) 
Is ts 
“valid” 
for v? 

Yes 

No 

tw = max(ts) 



Algorithm: SFW (in a glance) 

Write Protocol: one or two rounds 
•  P1: Collect candidate tags from a quorum 

•  Exists tag t propagated in a bigger than (n/2-1)-wise intersection (PREDICATE PW) 
•  YES – assign t to the written value and return => FAST 
•  NO - propagate the unique largest tag to a quorum => SLOW 

Read Protocol: one or two rounds 
•  P1: collect list of writes and their tags from a quorum 

•  Exists max write tag t in a bigger than (n/2-2)-wise intersection (PREDICATE PR) 
•  YES – return the value written by that write => FAST 
•  NO – is there a confirmed tag propagated to (n-1)-wise intersection => FAST 
•  NO - propagate the largest confirmed tag to a quorum => SLOW 

Server Protocol 
•  Increment tag when receive write request and send to read/write the latest writes 

9/27/11	  26 Nicolas Nicolaou --  CS Colloquium @ UCY 



Predicates: Read and Write  

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 27 

  

  



Lower bounds 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  28	  

Theorem: No execution of safe register implementation 
that use an    -wise quorum system, contains more than         
consecutive, quorum shifting, fast writes. 

Theorem: It is impossible to get MWMR safe register 
implementations that exploit an   -wise quorum system, if  

€ 

|W ∪R |> N −1

1−NN

N



Remarks 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY	  29	  

Remark: SSO algorithm is near optimal since it allows up 
to         consecutive, quorum shifting, fast writes. ⎟

⎠

⎞
⎜
⎝

⎛ −1
2
N



The Weak Side of SFW 

 Predicates are Computationally Hard 
  NP-Complete 

 Restriction on the Quorum System 
  Deploys n-wise Quorum Systems 
  Guarantees fastness iff n>3 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 30 



The Good News… 

 Approximation Algorithm (APRX-SFW) 
  Polynomial 
  Log-approximation 

   log|S| times the optimal number of fast operations 
 
 Algorithm CWFR 
  Based on Quorum Views 

  SWMR prediction tools 
  Fast operations in General Quorum Systems 
  Trades Speed of Write operations 

 Two Round Writes 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 31 



NP-Completeness 

9/27/11	  Nicolas Nicolaou --  CS Colloquium @ UCY	  32	  

K-SET-INTERSECTION: (captures both PR and PW) 

Theorem: K-SET-INTERSECTION is NP-complete (reduction 
from 3-SAT). 

Given a set of elements U , a subset of those elements M ⊆ U , a set of
subsets Q = {Q1, . . . , Qn} s.t. Qi ⊆ U , and an integer k ≤ |Q|, a set I ⊆ Q is a
k-intersecting set if: |I| = k,

�
Q∈I Q ⊆ M , and

�
Q∈I Q �= ∅.



k-Set-Intersection Approximation 
  Greedy algorithm 

  Uses Set Cover greedy approximation algorithm at its core 

     

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 33 

K-SET-COVER: 
 Given a universe U of elements, a collection of subsets of U , S = {S1, . . . , Sz},
and a number k, find at most k sets of S such that their union covers all elements
in U .



Step 1:   

Step 2: Run k-SET-COVER greedy algorithm on 
•  2a: Pick       with the maximum uncovered elements 
•  2b: Take the union of every set picked in 2a 
•  2c: If the union is     go to step 3, else if we picked less than k sets go to 2a, 

else repeat for another           

Step 3: 
•  For every set       in the set cover, add  in the intersecting set  

k-Set-Intersection Approximation 
  Given    do:      

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 34 

∀m ∈ M, Tm = {(U \ M) \ (Qi \ M) : m ∈ Qi}

(U, M, Q, k)

R ∈ Tm

U \ M
m ∈ M

(U \ M) \ (Qi \ M) Qi



Algorithm Rationale 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 35 

  Let for 

  If we can find k sets such that:  

  By de Morgan’s:  

  Since    and   for    

Rm,i ∈ Tm : Rm,i = (U \ M) \ (Qi \ M)

m ∈ M, Qi

Rm,1 ∪ . . . ∪Rm,k = U \ M

Rm,1 ∩ . . . ∩Rm,k = ∅

Rm,i = (Qi \ M) m ∈ Qi i ∈ [1, . . . , k]

m ∈ Q1 ∩ . . . ∩Qk and Q1 ∩ . . . ∩Qk ⊆ M



Approximation Algorithm: APRX-SFW 
  Adopt k-Set-Intersection Approximation: 

            the set of servers 
              is the quorum system  
               the servers that replied with the latest value 
  k the number of quorums required by the predicates 

  Log-Approximation 
  Invalidates RP and WP a factor of log|S| times  

 
  What does it mean for SFW? 

  Extra Communication Rounds (esp. for writes) 
  Slower acceptance of a new value 
  Does not affect correctness 

9/27/11	  Nicolas Nicolaou --  CS Colloquium @ UCY 36 



Unrestricting Quorums 
  APRX-SFW 

  Improves Computation Time 
  Still relies on n-wise Quorum Systems  

  n>3 to allow fast operations 

 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 37 

Can we allow fast operations in the MWMR when 
deploying General Quorum Systems? 

Answer: YES!! 



Tool: Quorum Views 

38	  

Used in the SWMR [Georgiou et al. 08] 
 
Idea: 
  Try to determine the state of the write operation 

based on the distribution of the latest value in the 
replied quorum. 

  Write State in the First Round of Read Operation 
   Determinable => Read is Fast 
   Undeterminable => Read is Slow 

Nicolas Nicolaou --  CS Colloquium @ UCY	   9/27/11 



Determinable Write - Qview(1) 

  All members of a quorum contain maxTag 

9/27/11 39	  

Qz 

Qi Qj 

(Potentially) Write Completed 

Nicolas Nicolaou --  CS Colloquium @ UCY	  



Determinable Write - Qview(2) 

  Every intersection contains a member with tag<maxTag 

9/27/11 40	  

Qz 

Qi Qj 

(Definitely) Write <maxTag,v> Incomplete 

Nicolas Nicolaou --  CS Colloquium @ UCY	  



Undeterminable Write - Qview(3) 

41	  

  There is intersection with all its members with tag=maxTag 

Qz 

Qi Qj 

Qz 

Qi Qj 

Undeterminable => second Com. Round 

qV(3) and Incomplete Write qV(3) and Complete Write 

Nicolas Nicolaou --  CS Colloquium @ UCY	   9/27/11 



What happens in MWMR? 
  MWMR environment 

  Concurrent writes 
  Multiple concurrent values 

  For values <tag1,v1> , <tag2, v2>, <tag3,v3> 
  Let  tag1 < tag2 < tag3 

9/27/11 42 Nicolas Nicolaou --  CS Colloquium @ UCY 

Qz 

Qi Qj 



Idea: Uncover the Past 
  Discover the latest potentially completed write 
  For values <tag1,v1> , <tag2, v2>, <tag3,v3>: 

  <tag3,v3> not completed (servers possibly contained <tag2, v2>) 
  <tag2, v2> not completed (servers possibly contained <tag1,v1>) 
  <tag1,v1> potentially completed 

9/27/11 43 Nicolas Nicolaou --  CS Colloquium @ UCY 

Qz 

Qi Qj 



Algorithm: CWFR 

Traditional Write Protocol: two rounds 
•  P1: Query a single quorum for the latest tag 
•  P2: Increment the max tag, send <newtag, v> quorum 

Read Protocol: one or two rounds 
•  Iterate to discover smallest completed write 
•  P1:  receive replies from a quorum Q  

•  QViewQ(1) – Fast:  return maxTag of current iteration 
•  QViewQ(2) – remove servers with maxTag and re-evaluate 
•  QViewQ(3) – Slow:  propagate and return maxTag0 

Server Protocol: passive role 
•  Receive requests, update local timestamp and return <tag,v> 

9/27/11 44 Nicolas Nicolaou --  CS Colloquium @ UCY 



Read Iteration: Discard Incomplete Tags 
  For values <tag1,v1> , <tag2, v2>, <tag3,v3>: 

  <tag3,v3> not completed: remove servers that contain <tag3,v3> 
  <tag2, v2> not completed: remove servers that contain <tag2, v2> 
  <tag1,v1> potentially completed in Qi 

  Qview(1) : all remaining servers contain <tag1,v1> 

9/27/11 45 Nicolas Nicolaou --  CS Colloquium @ UCY 

Qz 

Qi Qj 

Qz 

Qi Qj 

Server Removal Past Prediction 



Read Iteration: Discard Incomplete Tags 
  For values <tag1,v1> , <tag2, v2>, <tag3,v3>: 

  <tag3,v3> not completed: remove servers that contain <tag3,v3> 
  <tag2, v2> potentially completed in Qj  

  Qview(3) : an intersection of the remaining servers contains <tag2, v2>  
  P2: propagate <tag3,v3> to a complete quorum (help <tag3,v3> to complete) 

9/27/11 46 Nicolas Nicolaou --  CS Colloquium @ UCY 

Qz 

Qi Qj 

Qz 

Qi Qj 

Server Removal Past Prediction 



APRX-SFW – CWFR: NS2 Simulation 

9/27/11	  Nicolas Nicolaou --  CS Colloquium @ UCY 47 

14-wise Quorum System 

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 10  20  30  40  50  60  70  80

R
ea

dL
at

en
cy

#Readers

Read Latency vs # of Readers: RL.nw10.all.PROTO.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80

%
2c

om
m

-re
ad

s

#Readers

% of Slow Reads vs # of Readers: RR.nw10.all.PROTO.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

Latency 

Rounds 



APRX-SFW – CWFR: Planetlab 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 48 

14-wise Quorum System 

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 10  15  20  25  30  35  40

R
ea

dL
at

en
cy

#Readers

Read Latency vs # of Readers: RL.nw10.planetlab.all.maj15.f1.res.2D plot

SIMPLE
CWFR

APRX-SFW

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  15  20  25  30  35  40

%
2c

om
m

-re
ad

s

#Readers

% of Slow Reads vs # of Readers: RR.nw10.planetlab.all.maj15.f1.res.2D plot

SIMPLE
CWFR

APRX-SFW

Latency 

Rounds 



Conclusions 
  Presented two Atomic Register MWMR implementations 

  Computation and Communication factor 

  Algorithm: APRX-SFW 
  Polynomial-Approximation of SFW predicates 
  log|S|-approximation 
  Requires n-wise Quorum Systems for n>3 

  Algorithm: CWFR 
  General Quorum systems 
  Trades the Speed of write operations 

  Experiments on NS2 and Planetlab 
  Both algorithms overperform classic approach 
  Bigger Intersections favor the APRX-SFW 

9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 49 



9/27/11 Nicolas Nicolaou --  CS Colloquium @ UCY 50 


