
Seeking Fastness in Multi-Writer Multiple-
Reader Atomic Register Implementations

ΠΕΝΕΚ/0609/31

Nicolas Nicolaou

University of Cyprus &
University of Connecticut

Funded by the Cyprus Research Promotion Foundation and co-funded by the
Republic of Cyprus and the European Regional Development Fund

Η	
 ΔΕΣΜΗ	
 2009-­‐10	
 ΣΥΓΧΡΗΜΑΤΟΔΟΤΕΙΤΑΙ	
 ΑΠΟ	
 ΤΗΝ	
 ΚΥΠΡΙΑΚΗ	
 ΔΗΜΟΚΡΑΤΙΑ	

ΚΑΙ	
 ΤΟ	
 ΕΥΡΩΠΑΪΚΟ	
 ΤΑΜΕΙΟ	
 ΠΕΡΙΦΕΡΕΙΑΚΗΣ	
 ΑΝΑΠΤΥΞΗΣ	
 ΤΗΣ	
 ΕΕ

ΚΥΠΡΙΑΚΗ	
 ΔΗΜΟΚΡΑΤΙΑ ΕΥΡΩΠΑΪΚΗ	
 ΕΝΩΣΗ

What is a Distributed Storage System?

  Data Replication – Servers/Disks
  Survivability and Availability

  Read/Write operations
  Consistency Semantics

read()

write(v)

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 2	

Distributed Storage
Abstraction

Definition: Operation Relations
  Precedence Relations for two operations π1	
 ,π2:	

  π1 precedes π2	
 if the response of π1	
 happens before the
invocation of π2	

  π1 succeeds π2	
 if the invocation of π1	
 happens after the
response of π2

  π1 is concurrent with π2	
 if π1	
 neither precedes nor succeeds π2

9/27/11 3	
 Nicolas Nicolaou -- CS Colloquium @ UCY	

π1

π2
Time

π1

π2 Time

π1

π2
Time

Consistency Semantics [Lamport86]

Safety

Regularity

Atomicity

read(3)

write(8)

read(0)

Time

read(8)

read(8)

write(8)

read(8)

Time

read(8)

read(8)

write(8)

read(0)

Time

read(8)

9/27/11 4 Nicolas Nicolaou -- CS Colloquium @ UCY

How to order read/write operations?
  Based on the value each operation writes/returns

  Non-unique Values

  Using the “time” at which each operation is invoked
  Clock Synchronization

  Associate a sequence number with each value written
  SWMR: timestamps
  MWMR: tags=<timestamp, wid>

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 5

Challenges – Communication Rounds

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 6

p1 p2

X

Multiple Round-Trips
  Consider the following example [Attiya et al. 96]:
 S1 0

S2 0

S3 1

S4 0

S5 0

W(1) R1(1) R2(0)

Atomicity is Violated

9/27/11	
 7 Nicolas Nicolaou -- CS Colloquium @ UCY

S1 1

S2 1

S3 1

S4 0

S5 0

W(1) R1(1)

Complexity Measure

Operation
Latency

Communication
Delays

(round-trips)
Computation

9/27/11 8 Nicolas Nicolaou -- CS Colloquium @ UCY

What was known…

Traditional
SWMR

•  [Attiya et al. 95]
•  Single round writes
•  Two round reads

•  Phase 1: Obtain latest value
•  Phase 2: Propagate latest value

•  Folklore belief: “Reads must Write”

Traditional
MWMR

•  Two round writes
•  Phase 1: Discover latest value
•  Phase 2: Order new value after the latest and propagate

•  Belief: “Writes must Read”
•  Two round reads

9/27/11	
 Nicolas Nicolaou -- CS Colloquium @ UCY	
 9	

The Era of Fast Implementations…

SWMR Fast

•  Single round (fast) writes and reads
•  Bounded readers: R<(S/f)-2 where S servers & f failures
•  Impossible in MWMR model

SWMR
Semifast

•  Fast writes
•  Only a single complete 2-round (slow) read per write

•  Unbounded readers
•  Impossible in the MWMR model

SWMR Weak-
Semifast

•  General Quorum System
•  Fast writes and Multiple slow reads per write

•  Allows concurrent fast reads with writes
•  Unknown if applicable in MWMR model

9/27/11 Nicolas Nicolaou -- CS Colloquium @
UCY

10

Model
  Asynchronous, Message-Passing model

  Process sets: writers W, readers R, servers S (replica hosts)
  Reliable Communication Channels
  Well Formedness

  Environments:
  SWMR: |W|=1, |R|≥1
  MWMR: |W|≥1, |R|≥1

  Failures:
  Crash Failures

  Correctness: Atomicity (safety), Termination (liveness)

9/27/11 11	
 Nicolas Nicolaou -- CS Colloquium @ UCY	

Communication Round

  A process p performs a communication round during an
operation π	
 if:
  p sends a message m to a set of servers for π	

  Any server that receives m replies to p
  Once p receives responses from a single quorum completes π	
 or

proceeds to a next communication round

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 12

Definition: Quorum systems

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 13

Qz

Qi Qj

Servers

  Qi, Qj, Qz are quorums
  Quorum System is the set {Qi, Qj, Qz}

  Property: every pair of quorums intersects
  N-wise quorums systems: every N quorums intersect for N>1

  Every R/W operation communicates with a single quorum
  Faulty Quorum: Contains a faulty process

p1

p2

X

Algorithm: Simple

Write Protocol: two rounds
•  P1: Query a single quorum for the latest tag
•  P2: Increment the timestamp in the max tag, and send <newtag, v> to a

quorum

Read Protocol: two rounds
•  P1: Query a single quorum for the latest tag
•  P2: Propagate <maxtag,v> to a single quorum

Server Protocol: passive role
•  Receive requests, update local timestamp (if msg.tag>server.tag) and reply

with <server.tag,v>

9/27/11 14 Nicolas Nicolaou -- CS Colloquium @ UCY

Example: Simple (write operations)

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 15	

0

Qz

Qi Qj

0 0

0

0
0

0

0
0

0

0
0

wi

wk

read()

read()

  Assume wi>wk

Example: Simple (write operations)

  Assume wi>wk

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 16	

1

Qz

Qi Qj

1 1

0

0
1

1

0
0

1

0
0

wi

wk

read()

read()

write(<1,wi>,v)

Example: Simple (write operations)

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 17	

1

Qz

Qi Qj

1 1

1

1
1

1

1
0

1

1
0

wi

wk

read()

read()

write(<1,wk>,v)

write(<1,wi>,v)

  Assume wi>wk

Belief: Writes must Read in MW environments

Example: Simple (read operation)

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 18	

1

Qz

Qi Qj

1 1

1

1
1

1

1
0

1

1
0

ri

read()

  Assume wi>wk

Example: Simple (read operation)

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 19	

1

Qz

Qi
Qj

1 1

1

1
1

1

1
1

1

1
1

ri

read()

write(<1,wi>,v)

  Assume wi>wk

ret(v)

Operation Ordering: wk -> wi -> ri

Why a read performs 2 rounds?

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 20

1

Qz

Qi Qj

1 1

0

0
1

1

0
0

1

0
0

ri

read()

0

Qz

Qi Qj

0 0

0

0
0

0

0
0

1

0
0

ri

read()

Consider the following executions with single round reads:

ret(v) ret(v)

Ex(a) Ex(b)

Why a read performs 2 rounds? (Cont.)
Extend execution Ex(b) with a read from rj:

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 21

Folklore Belief: Reads must Write in MR environments

0

Qz

Qi Qj

0 0

0

0
0

0

0
0

1

0
0

ri

read()

ret(<1,wk>, v)

rj
read()

ret(<0,0>, v0)

Atomicity is Violated

Question

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 22	

Can we allow reads and writes to be fast (single round)
and still guarantee atomicity?

Answer: YES!!

New Technique - SSO

[Englert et. al 09]

  SSO: Server Side Ordering

  Tag is incremented by the servers and not by the writer.
  Generated tags may be different across servers
  Clients decide operation ordering based on server responses

  SSO Algorithm
  Enables Fast Writes and Reads -- first such algorithm
  Allows Unbounded Participation

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 23	

Traditional Writer-Server Interaction

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 24	

w s

writer server

P1: read()

P2: write(tw,v)

Find max (ts)
tw = inc(ts)

reply(ts)

reply(max(tw,ts))

Return(OK)

SFW Writer-Server Interaction

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 25	

w s

writer server

P1: write(tw,v)

P2: write(tw,v)

reply(ts,v)

reply(max(tw,ts))

Return(OK)

ts=inc(max(ts,tw))
Is ts
“valid”
for v?

Yes

No

tw = max(ts)

Algorithm: SFW (in a glance)

Write Protocol: one or two rounds
•  P1: Collect candidate tags from a quorum

•  Exists tag t propagated in a bigger than (n/2-1)-wise intersection (PREDICATE PW)
•  YES – assign t to the written value and return => FAST
•  NO - propagate the unique largest tag to a quorum => SLOW

Read Protocol: one or two rounds
•  P1: collect list of writes and their tags from a quorum

•  Exists max write tag t in a bigger than (n/2-2)-wise intersection (PREDICATE PR)
•  YES – return the value written by that write => FAST
•  NO – is there a confirmed tag propagated to (n-1)-wise intersection => FAST
•  NO - propagate the largest confirmed tag to a quorum => SLOW

Server Protocol
•  Increment tag when receive write request and send to read/write the latest writes

9/27/11	
 26 Nicolas Nicolaou -- CS Colloquium @ UCY

Predicates: Read and Write

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 27

Lower bounds

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 28	

Theorem: No execution of safe register implementation
that use an -wise quorum system, contains more than
consecutive, quorum shifting, fast writes.

Theorem: It is impossible to get MWMR safe register
implementations that exploit an -wise quorum system, if

€

|W ∪R |> N −1

1−NN

N

Remarks

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY	
 29	

Remark: SSO algorithm is near optimal since it allows up
to consecutive, quorum shifting, fast writes. ⎟

⎠

⎞
⎜
⎝

⎛ −1
2
N

The Weak Side of SFW

 Predicates are Computationally Hard
  NP-Complete

 Restriction on the Quorum System
  Deploys n-wise Quorum Systems
  Guarantees fastness iff n>3

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 30

The Good News…

 Approximation Algorithm (APRX-SFW)
  Polynomial
  Log-approximation

  log|S| times the optimal number of fast operations

 Algorithm CWFR
  Based on Quorum Views

  SWMR prediction tools
  Fast operations in General Quorum Systems
  Trades Speed of Write operations

 Two Round Writes

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 31

NP-Completeness

9/27/11	
 Nicolas Nicolaou -- CS Colloquium @ UCY	
 32	

K-SET-INTERSECTION: (captures both PR and PW)

Theorem: K-SET-INTERSECTION is NP-complete (reduction
from 3-SAT).

Given a set of elements U , a subset of those elements M ⊆ U , a set of
subsets Q = {Q1, . . . , Qn} s.t. Qi ⊆ U , and an integer k ≤ |Q|, a set I ⊆ Q is a
k-intersecting set if: |I| = k,

�
Q∈I Q ⊆ M , and

�
Q∈I Q �= ∅.

k-Set-Intersection Approximation
  Greedy algorithm

  Uses Set Cover greedy approximation algorithm at its core

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 33

K-SET-COVER:
 Given a universe U of elements, a collection of subsets of U , S = {S1, . . . , Sz},
and a number k, find at most k sets of S such that their union covers all elements
in U .

Step 1:

Step 2: Run k-SET-COVER greedy algorithm on
•  2a: Pick with the maximum uncovered elements
•  2b: Take the union of every set picked in 2a
•  2c: If the union is go to step 3, else if we picked less than k sets go to 2a,

else repeat for another

Step 3:
•  For every set in the set cover, add in the intersecting set

k-Set-Intersection Approximation
  Given do:

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 34

∀m ∈ M, Tm = {(U \ M) \ (Qi \ M) : m ∈ Qi}

(U, M, Q, k)

R ∈ Tm

U \ M
m ∈ M

(U \ M) \ (Qi \ M) Qi

Algorithm Rationale

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 35

  Let for

  If we can find k sets such that:

  By de Morgan’s:

  Since and for

Rm,i ∈ Tm : Rm,i = (U \ M) \ (Qi \ M)

m ∈ M, Qi

Rm,1 ∪ . . . ∪Rm,k = U \ M

Rm,1 ∩ . . . ∩Rm,k = ∅

Rm,i = (Qi \ M) m ∈ Qi i ∈ [1, . . . , k]

m ∈ Q1 ∩ . . . ∩Qk and Q1 ∩ . . . ∩Qk ⊆ M

Approximation Algorithm: APRX-SFW
  Adopt k-Set-Intersection Approximation:

  the set of servers
  is the quorum system
  the servers that replied with the latest value
  k the number of quorums required by the predicates

  Log-Approximation
  Invalidates RP and WP a factor of log|S| times

  What does it mean for SFW?

  Extra Communication Rounds (esp. for writes)
  Slower acceptance of a new value
  Does not affect correctness

9/27/11	
 Nicolas Nicolaou -- CS Colloquium @ UCY 36

Unrestricting Quorums
  APRX-SFW

  Improves Computation Time
  Still relies on n-wise Quorum Systems

  n>3 to allow fast operations

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 37

Can we allow fast operations in the MWMR when
deploying General Quorum Systems?

Answer: YES!!

Tool: Quorum Views

38	

Used in the SWMR [Georgiou et al. 08]

Idea:
  Try to determine the state of the write operation

based on the distribution of the latest value in the
replied quorum.

  Write State in the First Round of Read Operation
 Determinable => Read is Fast
 Undeterminable => Read is Slow

Nicolas Nicolaou -- CS Colloquium @ UCY	
 9/27/11

Determinable Write - Qview(1)

  All members of a quorum contain maxTag

9/27/11 39	

Qz

Qi Qj

(Potentially) Write Completed

Nicolas Nicolaou -- CS Colloquium @ UCY	

Determinable Write - Qview(2)

  Every intersection contains a member with tag<maxTag

9/27/11 40	

Qz

Qi Qj

(Definitely) Write <maxTag,v> Incomplete

Nicolas Nicolaou -- CS Colloquium @ UCY	

Undeterminable Write - Qview(3)

41	

  There is intersection with all its members with tag=maxTag

Qz

Qi Qj

Qz

Qi Qj

Undeterminable => second Com. Round

qV(3) and Incomplete Write qV(3) and Complete Write

Nicolas Nicolaou -- CS Colloquium @ UCY	
 9/27/11

What happens in MWMR?
  MWMR environment

  Concurrent writes
  Multiple concurrent values

  For values <tag1,v1> , <tag2, v2>, <tag3,v3>
  Let tag1 < tag2 < tag3

9/27/11 42 Nicolas Nicolaou -- CS Colloquium @ UCY

Qz

Qi Qj

Idea: Uncover the Past
  Discover the latest potentially completed write
  For values <tag1,v1> , <tag2, v2>, <tag3,v3>:

  <tag3,v3> not completed (servers possibly contained <tag2, v2>)
  <tag2, v2> not completed (servers possibly contained <tag1,v1>)
  <tag1,v1> potentially completed

9/27/11 43 Nicolas Nicolaou -- CS Colloquium @ UCY

Qz

Qi Qj

Algorithm: CWFR

Traditional Write Protocol: two rounds
•  P1: Query a single quorum for the latest tag
•  P2: Increment the max tag, send <newtag, v> quorum

Read Protocol: one or two rounds
•  Iterate to discover smallest completed write
•  P1: receive replies from a quorum Q

•  QViewQ(1) – Fast: return maxTag of current iteration
•  QViewQ(2) – remove servers with maxTag and re-evaluate
•  QViewQ(3) – Slow: propagate and return maxTag0

Server Protocol: passive role
•  Receive requests, update local timestamp and return <tag,v>

9/27/11 44 Nicolas Nicolaou -- CS Colloquium @ UCY

Read Iteration: Discard Incomplete Tags
  For values <tag1,v1> , <tag2, v2>, <tag3,v3>:

  <tag3,v3> not completed: remove servers that contain <tag3,v3>
  <tag2, v2> not completed: remove servers that contain <tag2, v2>
  <tag1,v1> potentially completed in Qi

  Qview(1) : all remaining servers contain <tag1,v1>

9/27/11 45 Nicolas Nicolaou -- CS Colloquium @ UCY

Qz

Qi Qj

Qz

Qi Qj

Server Removal Past Prediction

Read Iteration: Discard Incomplete Tags
  For values <tag1,v1> , <tag2, v2>, <tag3,v3>:

  <tag3,v3> not completed: remove servers that contain <tag3,v3>
  <tag2, v2> potentially completed in Qj

  Qview(3) : an intersection of the remaining servers contains <tag2, v2>
  P2: propagate <tag3,v3> to a complete quorum (help <tag3,v3> to complete)

9/27/11 46 Nicolas Nicolaou -- CS Colloquium @ UCY

Qz

Qi Qj

Qz

Qi Qj

Server Removal Past Prediction

APRX-SFW – CWFR: NS2 Simulation

9/27/11	
 Nicolas Nicolaou -- CS Colloquium @ UCY 47

14-wise Quorum System

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 10 20 30 40 50 60 70 80

R
ea

dL
at

en
cy

#Readers

Read Latency vs # of Readers: RL.nw10.all.PROTO.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80

%
2c

om
m

-re
ad

s

#Readers

% of Slow Reads vs # of Readers: RR.nw10.all.PROTO.rounds.maj15.f1.data.2D plot

SIMPLE
CWFR

APRX-SFW

Latency

Rounds

APRX-SFW – CWFR: Planetlab

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 48

14-wise Quorum System

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 10 15 20 25 30 35 40

R
ea

dL
at

en
cy

#Readers

Read Latency vs # of Readers: RL.nw10.planetlab.all.maj15.f1.res.2D plot

SIMPLE
CWFR

APRX-SFW

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40

%
2c

om
m

-re
ad

s

#Readers

% of Slow Reads vs # of Readers: RR.nw10.planetlab.all.maj15.f1.res.2D plot

SIMPLE
CWFR

APRX-SFW

Latency

Rounds

Conclusions
  Presented two Atomic Register MWMR implementations

  Computation and Communication factor

  Algorithm: APRX-SFW
  Polynomial-Approximation of SFW predicates
  log|S|-approximation
  Requires n-wise Quorum Systems for n>3

  Algorithm: CWFR
  General Quorum systems
  Trades the Speed of write operations

  Experiments on NS2 and Planetlab
  Both algorithms overperform classic approach
  Bigger Intersections favor the APRX-SFW

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 49

9/27/11 Nicolas Nicolaou -- CS Colloquium @ UCY 50

