
5/25/2011

1

Trade-offs in Implementing Atomic
l i i l i d i i

ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ

Multi-Writer, Multi-Reader Registers in
Asynchronous Message-passing Systems

Chryssis Georgiou
University of Cyprus

17/5/2011 – Chryssis Georgiou ©

University of Cyprus

May 17, 2011

This work is partially funded by the Cyprus Research Promotion Foundation and
co-funded by the Republic of Cyprus and the European Regional Development Fund

Motivation for this
Research

17/5/2011 – Chryssis Georgiou ©

5/25/2011

2

Survivability of Data
 Data Survivability is essential in today’s systems and

applications
 Popular approach – RAID
 Use of a Redundant Array of Inexpensive Disks

[Patterson, Gibson, Katz 1988]

 Use of a Redundant Array of Inexpensive Disks
 Mirroring or erasure code is used to prevent loss of data upon

a disk failure
 A RAID system contains

 a single box
 residing at a single physical location
 connected to clients via a single network interface

17/5/2011 – Chryssis Georgiou © 3

Single point of failure
[Chockler, Keidar, Guerraoui, Vukolic 09]
[Schroeder, Gibson 07]

Distributed Storage
 Uses Replication

disk or server

17/5/2011 – Chryssis Georgiou © 4

 Fault-Tolerance, Availability and Geographical Proximity

5/25/2011

3

No Free Lunch

Great Challenge:
Maintain consistency among the replicas Maintain consistency among the replicas
despite system asynchrony and failures
And do so efficiently

17/5/2011 – Chryssis Georgiou © 5

Akamai’s Top Ten Challenges
Harald Prokop, Senior Vice President of Engineering, July 2008

Problem Abstraction

17/5/2011 – Chryssis Georgiou ©

5/25/2011

4

Read/Write Object (register)

read()

write(v)
Distributed Storage

Abstraction:
Read/Write Register

17/5/2011 – Chryssis Georgiou ©

 Read/Write operations – invocation and response
 Concurrency
 Consistency Semantics

7

g

Operation Relations
 Precedence Relations for two operations π1 ,π2:
 π1 precedes π2 if the response of π1 happens before the

invocation of π2

π2
Time

 π1 succeeds π2 if the invocation of π1 happens after the
response of π2

π1

π1

π2
Time

17/5/2011 – Chryssis Georgiou ©

 π1 is concurrent with π2 if π1 neither precedes nor succeeds π2

8

π1

π2
Time

5/25/2011

5

Consistency Semantics [Lamport 1986]

Safety
write(8)

Time

Regularity

read(3) read(0) read(8)

read(8)

write(8)

read(0)

Time

read(8)

17/5/2011 – Chryssis Georgiou ©

Atomicity
read(8)

write(8)

read(8)

Time

read(8)

9

Atomic Read/Write Register
 An atomic Read/Write register allows concurrent

processes
 to share information through a common variable
 if th i thi i bl i ti l

[Lamport 1986]

 as if they were accessing this variable in a sequential manner

 It supports read and write operations
 Read() returns the latest written value of the object
 Write(v) sets the value to v and returns OK

17/5/2011 – Chryssis Georgiou © 10

5/25/2011

6

Applicability
 The atomic register is fundamental in distributed

computing and is at the heart of a large number of
distributed algorithms

[Attiya & Welch 1998/2004]

 Atomic register implementations are used as building
blocks for complex distributed storage systems

 Th l b d di tl t b ild di t ib t d fil

[y]

[Fleet 2000, SBQ-L 2002, PASIS 2004, HP’s FAB 2006,
Amazon’s Dynamo 2007]

17/5/2011 – Chryssis Georgiou © 11

 The can also be used directly to build distributed file
systems [Chockler, Keidar, Guerraoui, Vukolic 09]

Challenge: Ordering of read/write operations

 Using the “time” at which each operation is invoked
 Clock Synchronization

 Access to centralize clock (e.g. , GPS)

 Associate a sequence number with each value written
 tags=<timestamp, wid>, [Attiya, Bar-Noy, Dolev 1995]

 Timestamp: counter (positive integer)

 wid: writer id

 tag1 > tag2 if either:

17/5/2011 – Chryssis Georgiou ©

 tag1.timestamp > tag2.timestamp, or
 tag1.timestamp = tag2.timestamp AND tag1.wid > tag2.wid

12

5/25/2011

7

Challenge: Communication Rounds

X

p1 p2

X

17/5/2011 – Chryssis Georgiou © 13

Multiple Round-Trips
 Consider the following example [Attiya, Bar-Noy, Dolev 1995]:

Read returns v1 Read returns v0

1,v0 

1,v0 

1,v0 

1,v0 

1,v0 

2,v1 

17/5/2011 – Chryssis Georgiou © 14

Write(v1) … (proceeds slowly) …
1,v0 

5/25/2011

8

Complexity Measure-Operation Latency

Operation Latency is measured in
Communication Rounds (round-trips)

A process p performs a communication round for
an operation π if

• Sends a message m regarding π to a subset
(potentially all) of processes

17/5/2011 – Chryssis Georgiou © 15

(p y) p
• Any process that receives m, replies to p
• Process p collects “enough” of such replies
and proceeds accordingly.

Research Questions

What is the operation latency of atomic register
implementations in a fail-prone, message-passing,implementations in a fail prone, message passing,

asynchronous distributed system?

17/5/2011 – Chryssis Georgiou ©

What are the trade-offs to achieve such performance?

16

5/25/2011

9

Background and
Prior Work

17/5/2011 – Chryssis Georgiou ©

Model of Computation
 Asynchronous, Message-Passing model
 Process sets: writers W, readers R, servers S (replica hosts)
 Reliable Communication Channels
 Well Formedness

 Environments:
 Single Writer, Multiple Readers: |W|=1, |R|≥1
 Multiple Writers, Multiple Readers: |W|≥1, |R|≥1

 Failures:
 Crash Failures

17/5/2011 – Chryssis Georgiou ©

 Crash Failures
 A subset of the servers may crash, all writer and reader processes

may crash

 Correctness: Atomicity (safety), Termination (liveness)

18

5/25/2011

10

Fastness
 Fast Operation
 Completes at the end of its first round

 Fast Implementation of an atomic register
 All operations are fast

 Communication scheme
 Message delivery: Servers  Clients
 No server to server or client to client communication

Data-centric communication
[Martin Alvisi Dahlin 2002]

17/5/2011 – Chryssis Georgiou © 19

[Martin, Alvisi, Dahlin 2002]
[Chockler, Keidar, Guerraoui, Vukolic 2009]

Tools: Quorum systems

Qz

Servers

p

QiQj

p1

p2

X

17/5/2011 – Chryssis Georgiou © 20

 Qi, Qj, Qz are quorums
 Quorum System is the set {Qi, Qj, Qz}

 Property: every pair of quorums intersects
 Every R/W operation communicates with a single quorum
 Faulty Quorum: Contains a faulty process

5/25/2011

11

Quorum Systems Examples

B

A C

Majorities [Thomas79,Gifford79]

17/5/2011 – Chryssis Georgiou ©

Matrix Quorums [Vitanyi, Awerbuch 1992]

21

Prior Work: Traditional Implementations

• e.g., [Attiya, Bar-Noy, Dolev 95]
• Single round writes
• Two round reads

• Phase 1: Obtain latest value (max tag)
SWMR

• Phase 1: Obtain latest value (max tag)
• Phase 2: Propagate latest value (max tag)

• Folklore belief: “Reads must Write”

• e.g., [Lynch Shvartsman 97, 02, Englert, Shvartsman 00]
• Two round writes

• Phase 1: Discover latest value (max tag)

17/5/2011 – Chryssis Georgiou ©

MWMR
• Phase 2: Order new value after the latest and propagate

• Belief: “Writes must Read”
• Two round reads

22

5/25/2011

12

Algorithm: Simple

Write Protocol: two rounds
• P1: Query a single quorum for the latest tag
• P2: Increment the timestamp in the max tag, and send <newtag, v> to

a quoruma quorum

Read Protocol: two rounds
• P1: Query a single quorum for the latest tag
• P2: Propagate <maxtag,v> to a single quorum

17/5/2011 – Chryssis Georgiou ©

Server Protocol: passive role
• Receive requests, update local timestamp (if msg.tag>server.tag) and

reply with <server.tag,v>

23

Reader

Round1: Discover maximum tag Compute maxTag

<tag,value>
from a quorum

17/5/2011 – Chryssis Georgiou © 24

5/25/2011

13

Reader

Read completes with maxTag
and associated value

Round2: Propagate <maxTag,value>

ACK
from quorum

17/5/2011 – Chryssis Georgiou © 25

Update <tag,value>

Writer

Round1: Discover maximum tag Compute maxTag
Increment it by one

<tag,value>
from a quorum

17/5/2011 – Chryssis Georgiou © 26

5/25/2011

14

Writer

Write completes

Round2: Propagate <maxTag,value>

ACK
from quorum

17/5/2011 – Chryssis Georgiou © 27

Update <tag,value>

Prior Work: Fast Operations

SWMR Fast

• [Dutta et al. 04]
• Single round (fast) writes and reads

• Bounded readers: R<(S/f)-2 where S servers & f failures
• Impossible in MWMR model

SWMR
Semifast

• [Georgiou, Nicolaou, Shvartsman 06/09]
• Fast writes
• At most a single complete 2-round (slow) read per write

(experimental results: 10% slow reads)
• Unbounded readers
• Impossible in the MWMR model

[G i Ni l Sh 06/09]

17/5/2011 – Chryssis Georgiou ©

SWMR Weak-
Semifast

• [Georgiou, Nicolaou, Shvartsman 06/09]
• General Quorum System
• Fast writes and Multiple slow reads per write (exp: 16% slow)

• Allows concurrent fast reads with writes
• How about the MWMR model?

28

5/25/2011

15

Fastness in the
MWMR Setting

17/5/2011 – Chryssis Georgiou ©

Question

Can we allow some reads to be fast (single round reads)
and still guarantee atomicity in the MWMR settings?

17/5/2011 – Chryssis Georgiou © 30

Answer: YES!!

5/25/2011

16

Tool: Quorum Views

Idea:
 Try to determine the state of the write operation

based on the distribution of the latest value in the based on the distribution of the latest value in the
replied quorum.

 Write State in the First Round of Read Operation
Determinable => Read is Fast

17/5/2011 – Chryssis Georgiou © 31

Undeterminable => Read is Slow

Determinable Write - Qview(1)

 All members of a quorum contain the maxTag

Qz

17/5/2011 – Chryssis Georgiou © 32

QiQj

(Potentially) Write Completed

5/25/2011

17

Determinable Write - Qview(2)

 Every intersection contains a member with tag<maxTag

Qz

17/5/2011 – Chryssis Georgiou © 33

QiQj

(Definitely) Write <maxTag,v> Incomplete

Undeterminable Write - Qview(3)

 There is intersection with all its members with tag=maxTag

Qz Qz

QQ

17/5/2011 – Chryssis Georgiou © 34

QiQj
QiQj

Undeterminable => second Com. Round

qV(3) and Incomplete Write qV(3) and Complete Write

5/25/2011

18

Algorithm: CWFR

Traditional Write Protocol: two rounds
• P1: Query a single quorum for the latest tag
• P2: Increment the max tag, send <newtag, v> quorum

Read Protocol: one or two rounds
• Iterate to discover smallest completed write
• P1: receive replies from a quorum Q

• QViewQ(1) – Fast: return maxTag of current iteration
• QViewQ(2) – remove servers with maxTag and re-evaluate
• QViewQ(3) – Slow: propagate and return maxTag0

17/5/2011 – Chryssis Georgiou ©

Server Protocol: passive role
• Receive requests, update local timestamp and return <tag,v>

35

Quorum Views and Multiple Writers
 MWMR environment
 Concurrent writes

 Multiple concurrent values

F l 1 1 2 2 3 3 For values <tag1,v1> , <tag2, v2>, <tag3,v3>
 Let tag1 < tag2 < tag3

Qz

17/5/2011 – Chryssis Georgiou © 36

QiQj

5/25/2011

19

Idea: Uncover the Past
 Discover the latest potentially completed write
 For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
 <tag3,v3> not completed (servers possibly contained <tag2, v2>)
 <tag2, v2> not completed (servers possibly contained <tag1,v1>)

1 1 t ti ll l t d <tag1,v1> potentially completed

Qz

17/5/2011 – Chryssis Georgiou © 37

QiQj

Read Iteration: Discard Incomplete Tags
 For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
 <tag3,v3> not completed: remove servers that contain <tag3,v3>
 <tag2, v2> not completed: remove servers that contain <tag2, v2>
 <tag1,v1> potentially completed in Qi

 Qview(1) : all remaining servers contain <tag1,v1>

Qz Qz

17/5/2011 – Chryssis Georgiou © 38

QiQj QiQj

Server Removal Past Prediction

5/25/2011

20

Read Iteration: Discard Incomplete Tags
 For values <tag1,v1> , <tag2, v2>, <tag3,v3>:
 <tag3,v3> not completed: remove servers that contain <tag3,v3>
 <tag2, v2> potentially completed in Qj

 Qview(3) : an intersection of the remaining servers contains <tag2, v2>

 P2: propagate <tag3,v3> to a complete quorum (help <tag3,v3> to complete)

Qz Qz

17/5/2011 – Chryssis Georgiou © 39

QiQj QiQj

Server Removal Past Prediction

What about writes?

Can we devise MWMR atomic registerCan we devise MWMR atomic register
implementations that allow executions that contain
both fast read and write operations?

17/5/2011 – Chryssis Georgiou © 40

Answer: YES!!

5/25/2011

21

New Technique – SSO [Englert et. al OPODIS 2009]

 SSO: Server Side Ordering
 Tag is incremented by the servers and not by the writer.

 Generated tags may be different across servers
Cli d id i d i b d  Clients decide operation ordering based on server responses

 SFW Algorithm
 Deploys the SSO technique
 Enables Fast Writes and Reads -- first such algorithm

17/5/2011 – Chryssis Georgiou © 41

Traditional Writer-Server Interaction

writer server

P1: read()

w s

()

P2: write(tw,v)

Find max (ts)
tw = inc(ts)

reply(ts)

reply(max(tw,ts))

17/5/2011 – Chryssis Georgiou © 42

Return(OK)

5/25/2011

22

SSO Writer-Server Interaction

writer server

P1: write(tw,v)

w s

P2: write(tw,v)

reply(ts,v)
ts=inc(max(ts,tw))

Is ts
“valid”
for v?

Yes

No

tw = max(ts)

17/5/2011 – Chryssis Georgiou © 43

reply(max(tw,ts))

Return(OK)

Definition: n-wise Quorum Systems

Definition:A quorum system Q is an n-wise quorum
system, if:





AQ

QnAAwhereSQQ and |:|}:{ QQ

17/5/2011 – Chryssis Georgiou © 44

5/25/2011

23

Algorithm: SFW

Write Protocol: one or two rounds
• P1: send v and gather candidate tags from a quorum

• Exists tag t propagated in a bigger than (n/2-1)-wise intersection (PREDICATE)
• YES – assign t to the written value and return => FASTg
• NO - propagate the unique largest tag to a quorum => SLOW

Read Protocol: one or two rounds
• P1: collect list of writes and their tags from a quorum

• Exists max write tag t in a bigger than (n/2-2)-wise intersection (PREDICATE)
• YES – return the value written by that write => FAST
• NO - propagate the largest confirmed tag to a quorum => SLOW

17/5/2011 – Chryssis Georgiou ©

p p g g g q

Server Protocol
• Increment tag when receive write request and record the latest writes
• Upon read/write request send the recording set

45

Predicates: Read and Write

17/5/2011 – Chryssis Georgiou © 46

5/25/2011

24

Lower bound

Theorem: No execution of safe register implementation
that use an -wise quorum system, contains more than
consecutive, quorum shifting, fast writes.

1NN

17/5/2011 – Chryssis Georgiou © 47

Remark

Remark: Algorithm SFW is near optimal since it allows
up to consecutive, quorum shifting, fast writes.






 1

2

N

17/5/2011 – Chryssis Georgiou © 48

5/25/2011

25

Trade-offs in MWMR

Trades Write
Speed for Fast

• Quorum Views in the MWMR environment
• Algorithm CWFR

• Traditional two round writes
• Some single round reads – even when reads are concurrent

with writesSpeed for Fast
Reads • Utilizes any General Quorum System

Trades Quorum

• Algorithm SFW
• Server Side Ordering
• Allows both single round reads and writes in MWMR
• Fastness depends on n-wise quorum intersections

17/5/2011 – Chryssis Georgiou ©

ades Quo u
Generality for Fast

Writes
• n-1 consecutive fast writes are possible in MWMR

• SFW near optimal – Allows n/2 consecutive fast writes

49

Recent Advancements

17/5/2011 – Chryssis Georgiou ©

5/25/2011

26

Problem: Communication vs Computation

Theorem:The computation of the read and write
predicates used by algorithm SWF is NP-complete.

We provide a reduction from 3-SAT

17/5/2011 – Chryssis Georgiou © 51

Approximation Algorithm: AprxSFW
 Greedy algorithm
 Uses Set Cover greedy approximation algorithm at its core for

the predicate computation

 Log-Approximation
 Invalidates RP and WP in a factor of log|S| times

 A factor of log|S| more second communication rounds

 Does not affect correctness

17/5/2011 – Chryssis Georgiou ©

 Preliminary empirical evaluation using the NS2 simulator
 Ongoing work: Evaluation on Planetlab

52

5/25/2011

27

AprxSFW – CWFR Empirical Evaluation

17/5/2011 – Chryssis Georgiou © 53
4-wise Quorum System

AprxSFW – CWFR Empirical Evaluation

17/5/2011 – Chryssis Georgiou © 54
14-wise Quorum System

5/25/2011

28

Gracias!

