KYMPIAKH AHMOKPATIA

EYPQMAIKH ENQZH

Trade-offs in Implementing Atomic
Multi-Writer, Multi-Reader Registers in
Asynchronous Message-passing Systems

Chryssis Georgiou
University of Cyprus

May 17, 2011

This work is partially funded by the Cyprus Research Promotion Foundation and
co-funded by the Republic of Cyprus and the European Regional Development Fund

17/5/201 1 — Chryssis Georgiou ©

Motivation for this

Research

17/5/2011 — Chryssis Georgiou ©

5/25/2011

Survivability of Data

» Data Survivability is essential in today’s systems and
applications
> POPU'&I’ approach — RA|D [Patterson, Gibson, Katz 1988]
Use of a Redundant Array of Inexpensive Disks

Mirroring or erasure code is used to prevent loss of data upon
a disk failure
A RAID system contains

a single box

residing at a single physical location

connected to clients via a single network interface

Single point of failure

[Chockler, Keidar, Guerraoui, Vukolic 09]
[Schroeder, Gibson 07]

3 17/5/201 1 — Chryssis Georgiou ©

Distributed Storage

» Uses Replication

disk or server

% X

» Fault-Tolerance,Availability and Geographical Proximity

4 17/5/2011 — Chryssis Georgiou ©

5/25/2011

No Free Lunch

Great Challenge:

Maintain consistency among the replicas
despite system asynchrony and failures
And do so efficiently

Akamai’s Top Ten Challenges
Harald Prokop, Senior Vice President of Engineering, July 2008

5 17/5/201 1 — Chryssis Georgiou ©

Problem Abstraction

17/5/2011 — Chryssis Georgiou ©

5/25/2011

Read/Write Object (register)

; read()

Distributed Storage
Abstraction:
Read/Write Register

write(V)

» Read/Write operations — invocation and response
» Concurrency
» Consistency Semantics

7 17/5/201 1 — Chryssis Georgiou ©

Operation Relations

» Precedence Relations for two operations 1, ,m,:
T, precedes m, if the response of i, happens before the

invocation of m,
| T(Z | Time
L™

T, succeeds T, if the invocation of m, happens after the
response of T,

| T[z | Time
L ™ |
T, is concurrent with m, if t; neither precedes nor succeeds m,

| T[Z | Time
L&

8 17/5/201 1 — Chryssis Georgiou ©

5/25/2011

Consistency SemanticCs [Lamport 1986]

' write(8) h

Time

Safety | | T | |
v A read(3) read(0) J
'—'\.. ~
write(8) .

Regularity . | — | | B
L A read(8) read(Q) vy
i write(8))

Time
Atomicity Le |
Lo | [o] o
\d A read(8) read(8) J
9 17/5/201 1 — Chryssis Georgiou ©

Atomic Read/Write Register [Lamport 1986]

» An atomic Read/Write register allows concurrent
processes
to share information through a common variable
as if they were accessing this variable in a sequential manner

» It supports read and write operations
Read() returns the latest written value of the object
Write(v) sets the value to v and returns OK

10 17/5/2011 — Chryssis Georgiou ©

5/25/2011

Applicability

» The atomic register is fundamental in distributed
computing and is at the heart of a large number of

distributed algorithms
[Attiya & Welch 1998/2004]

» Atomic register implementations are used as building
blocks for complex distributed storage systems

[Fleet 2000, SBQ-L 2002, PASIS 2004, HP’s FAB 2006,
Amazon’s Dynamo 2007]

» The can also be used directly to build distributed file
systems [Chockler, Keidar, Guerraoui,Vukolic 09]

Il 17/5/201 1 — Chryssis Georgiou ©

Challenge: Ordering of read /write operations

» Using the “time” at which each operation is invoked
Clock Synchronization
Access to centralize clock (e.g. , GPS)

» Associate a sequence number with each value written
tags=<timestamp, wid>, [Attiya, Bar-Noy, Dolev 1995]
Timestamp: counter (positive integer)
wid: writer id
tagl > tag? if either:
tagl.timestamp > tag2.timestamp, or

tagl.timestamp = tag2.timestamp AND tagl.wid > tag2.wid

12 17/5/2011 — Chryssis Georgiou ©

5/25/2011

Challenge: Communication Rounds

J

13 17/5/201 1 — Chryssis Georgiou ©

Multiple Round-Trips

» Consider the following example [Attiya, Bar-Noy, Dolev 1995]:

Read returns v,

Read returns v,

1,V
o \ \8
V) @V) \\ \\
Vo) t \ \
(1.Vg) ye
Write(v,) ... (proceeds slowly) ...
14 17/5/201 1 — Chryssis Georgiou ©

5/25/2011

Complexity Measure-Operation Latency

Operation Latency is measured in
Communication Rounds (round-trips)

A process p performs a communication round for
an operation T if
» Sends a message m regarding 1T to a subset
(potentially all) of processes
* Any process that receives m, replies to p
* Process p collects “enough” of such replies
and proceeds accordingly.

15 17/5/201 1 — Chryssis Georgiou ©

Research Questions

What is the operation latency of atomic register
implementations in a fail-prone, message-passing,
asynchronous distributed system?

e ™

What are the trade-offs to achieve such performance?

. /

16 17/5/2011 — Chryssis Georgiou ©

5/25/2011

Background and

Prior Work

17/5/201 | — Chryssis Georgiou ©

Model of Computation

» Asynchronous, Message-Passing model
Process sets: writers W, readers R, servers S (replica hosts)
Reliable Communication Channels
Well Formedness

» Environments:
Single Writer, Multiple Readers: |W|=1, |R|>1
Multiple Writers, Multiple Readers: |[W|>1, |R[>1

» Failures:
Crash Failures

A subset of the servers may crash, all writer and reader processes
may crash

» Correctness: Atomicity (safety), Termination (liveness)

18 17/5/201 1 — Chryssis Georgiou ©

5/25/2011

Fastness

» Fast Operation
Completes at the end of its first round

» Fast Implementation of an atomic register
All operations are fast

» Communication scheme
Message delivery: Servers <> Clients
No server to server or client to client communication

Data-centric communication

[Martin, Alvisi, Dahlin 2002]
[Chockler, Keidar, Guerraoui, Vukolic 2009]

19 17/5/201 1 — Chryssis Georgiou ©

Tools: Quorum systems
Servers
€ B

z
n

N

» Q, Qi’ Q, are quorums
» Quorum System is the set {Q, Q, Q}
Property: every pair of quorums intersects
» Every R/W operation communicates with a single quorum
» Faulty Quorum: Contains a faulty process

20 17/512011 — Chryssis Georgiou ©

5/25/2011

10

Quorum Systems Examples

Maijorities [Thomas79,Gifford79]

21

Matrix Quorums [Vitanyi, Awerbuch 1992]

17/5/201 1 — Chryssis Georgiou ©

Prior Work: Traditional Implementations

4

SWMR

e.g., [Attiya, Bar-Noy, Dolev 95]

Single round writes

Two round reads

* Phase 1: Obtain latest value (max tag)

* Phase 2: Propagate latest value (max tag)
 Folklore belief: “Reads must Write”

e.g., [Lynch Shvartsman 97, 02, Englert, Shvartsman 00]

Two round writes

» Phase 1: Discover latest value (max tag)

* Phase 2: Order new value after the latest and propagate
 Belief: “Writes must Read”

Two round reads

& &

22

17/512011 — Chryssis Georgiou ©

5/25/2011

11

Algorithm: Simple

Write Protocol: two rounds

* P1:Query a single quorum for the latest tag

* P2:Increment the timestamp in the max tag, and send <newtag, v> to
a quorum

Read Protocol: two rounds

* Pl:Query a single quorum for the latest tag
* P2:Propagate <maxtag,v> to a single quorum

Server Protocol: passive role

* Receive requests, update local timestamp (if msg.tag>server.tag) and
reply with <server.tag,v>

23

17/51201 1 — Chryssis Georgiou ©

Reader

Round1: Discover maximum tag Compute maxTag

S}

<
) <tagyvalu
om aA\gu

or
J

p it

I

— —
— —

P

P

24 17/512011 — Chryssis Georgiou ©

5/25/2011

12

5/25/2011

Reader

Round2: Propagate <maxTag,value>
Read completes with maxTag
and associated value

=
i o 1

C
om gyorum
Update <tag,value>
25 17/5/201 1 — Chryssis Georgiou ©
Writer
Round1: Discover maximum tag Compute maxTag
o | Increment it by one
wnr

e
&
<tagyvalu
om a\guor!
= = =

L

26 17/5/2011 — Chryssis Georgiou ©

P
—

(TN
(i1

(LA
(111

Writer

Round2: Propagate <maxTag,value>

Write completes

Update <tag,value>

17/5/201 1 — Chryssis Georgiou ©

Prior Work: Fast Operations

\

SWMR Fast

<

SWMR
Semifast

4

SWMR Weak-
Semifast

4

[Dutta et al. 04]

Single round (fast) writes and reads

* Bounded readers: R<(S/f)-2 where S servers & f failures
* Impossible in MWMR model

[Georgiou, Nicolaou, Shvartsman 06/09]
Fast writes

At most a single complete 2-round (slow) read per write
(experimental results: 10% slow reads)

e Unbounded readers
* Impossible in the MWMR model

[Georgiou, Nicolaou, Shvartsman 06/09]

General Quorum System

Fast writes and Multiple slow reads per write (exp: 16% slow)
» Allows concurrent fast reads with writes

* How about the MWMR model?

17/5/2011 — Chryssis Georgiou ©

5/25/2011

14

Fastness in the

MWMR Setting

17/5/201 | — Chryssis Georgiou ©

Question

Can we allow some reads to be fast (single round reads)
and still guarantee atomicity in the MVWMR settings?

Answer: YES!!

30 17/5/201 1 — Chryssis Georgiou ©

5/25/2011

15

Tool: Quorum Views

Idea:

Try to determine the state of the write operation
based on the distribution of the latest value in the
replied quorum.

» Write State in the First Round of Read Operation

Determinable => Read is Fast
Undeterminable => Read is Slow

31 17/5/201 1 — Chryssis Georgiou ©

Determinable Write - Qview(1)

» All members of a quorum contain the maxTag

Q,

Qi

(Potentially) Write Completed

32 17/5/201 1 — Chryssis Georgiou ©

5/25/2011

16

Determinable Write - Qview(2)

» Every intersection contains a member with tag<maxTag

Q,

Q

Q;

(Definitely) Write <maxTag,v> Incomplete

33 17/5/201 1 — Chryssis Georgiou ©

Undeterminable Write - Qview(3)

» There is intersection with all its members with tag=maxTag

@
@
@
@
@
o
o
o

®)
©)
@
@
(")
)
©)
®)

qV(3) and Incomplete Write qV(3) and Complete Write

Undeterminable => second Com. Round

34 17/5/201 1 — Chryssis Georgiou ©

5/25/2011

17

Algorithm: CWFR

Traditional Write Protocol: two rounds

* P1: Query a single quorum for the latest tag
* P2:Increment the max tag, send <newtag, v> quorum

Read Protocol: one or two rounds

* Iterate to discover smallest completed write

* PI: receive replies from a quorum Q
* QViewq(l) — Fast: return maxTag of current iteration
* QView(2) — remove servers with maxTag and re-evaluate
* QViewy(3) — Slow: propagate and return maxTag,

Server Protocol: passive role

* Receive requests, update local timestamp and return <tag,v>

35 17/51201 1 — Chryssis Georgiou ©

Quorum Views and Multiple Writers
» MWMR environment

Concurrent writes
Multiple concurrent values

» For values <tagl,vl>, <tag2, v2>, <tag3,v3>
Let tagl <tag2 <tag3

Q,

Qi

36 17/512011 — Chryssis Georgiou ©

5/25/2011

18

Idea: Uncover the Past

» Discover the latest potentially completed write
» For values <tagl,v1>, <tag2, v2>, <tag3,v3>:
<tag3,v3>not completed (servers possibly contained <tag2, v2>)

<tag2, v2>not completed (servers possibly contained <tagl,v1>)
<tagl,v1> potentially completed

Q,

Q

37 17/5/201 1 — Chryssis Georgiou ©

Read Iteration: Discard Incomplete Tags

» For values <tagl,v1>, <tag2, v2>, <tag3,v3>:
<tag3,v3> not completed: remove servers that contain <tag3,v3>
<tag2, v2> not completed: remove servers that contain <tag2, v2>
<tagl,v1> potentially completed in Q;
Qview(1) : all remaining servers contain <tagl,v1>

Q, Q,

@ @

o ®

[) [)

[) o

® ®

[
Qj Ql Qj .

Server Removal Past Prediction

38 17/512011 — Chryssis Georgiou ©

5/25/2011

19

Read Iteration: Discard Incomplete Tags

» For values <tagl,vl>, <tag2, v2>, <tag3,v3>:
<tag3,v3> not completed: remove servers that contain <tag3,v3>
<tag2, v2> potentially completed in Q,
Qview(3) : an intersection of the remaining servers contains <tag2, v2>
P2: propagate <tag3,v3> to a complete quorum (help <tag3,v3> to complete)

Q,

L
[

Server Removal Past Prediction

39 17/5/201 1 — Chryssis Georgiou ©

What about writes?

Can we devise MWMR atomic register

implementations that allow executions that contain
both fast read and write operations?

Answer: YES!!

40 17/5/2011 — Chryssis Georgiou ©

5/25/2011

20

New Technique — SSO [Englert et. al OPODIS 2009]

» SSO: Server Side Ordering

Tag is incremented by the servers and not by the writer.
Generated tags may be different across servers
Clients decide operation ordering based on server responses

» SFW Algorithm
Deploys the SSO technique
Enables Fast Writes and Reads -- first such algorithm

41 17/5/201 1 — Chryssis Georgiou ©

Traditional Writer-Server Interaction

writer server
Pl:read()
reply(t,)
Find max (t;)
£, = inc(t) P2: write(t,,v)
reply(max(t,,t,))
42 17/5/201 1 — Chryssis Georgiou ©

5/25/2011

21

SSO Writer-Server Interaction

writer server

Pl:write(t,,v)

reply(t,v)

P2: write(t,,V)

“reply(max(t,,t,))

Return(OK)

43 17/5/201 1 — Chryssis Georgiou ©

Definition: n-wise Quorum Systems

Definition: A quorum system Q is an n-wise quorum
system, if:
Q={Q:QcS}whereVAc Q:|Al=nand (|Q#Q

QcA

44 17/512011 — Chryssis Georgiou ©

5/25/2011

22

Algorithm: SFW

Write Protocol: one or two rounds

* P1: send v and gather candidate tags from a quorum
« Exists tag t propagated in a bigger than (n/2-1)-wise intersection (PREDICATE)
* YES —assign t to the written value and return => FAST
* NO - propagate the unique largest tag to a quorum => SLOW

Read Protocol: one or two rounds

* P1: collect list of writes and their tags from a quorum
« Exists max write tag t in a bigger than (n/2-2)-wise intersection (PREDICATE)
* YES — return the value written by that write => FAST
* NO - propagate the largest confirmed tag to a quorum => SLOW

Server Protocol

* Increment tag when receive write request and record the latest writes
» Upon read/write request send the recording set

45 17/51201 1 — Chryssis Georgiou ©

Predicates: Read and Write

Writer predicate for a write w (PW): 3 7, Q% M S where: 7 € {({,w} : {L,w) €
m(w)s . inprogress A s € QYL MS={s:5€Q A T & m(w)sy. inprogress }, and
QcQo<i<|§—1 st (Ngeguigy @ S MS.

/

-

Reader predicate for a read p (PR): 3 7,Q, MS, where: max(7) €
UsEQ m(p)srinprogress, MS = {s : s € Q A T € m(p)sr.inprogress}, and

@ CQ.0=<j= |52 st (Ngegigey @ S MS.

/

46 17/512011 — Chryssis Georgiou ©

5/25/2011

23

Lower bound

Theorem: No execution of safe register implementation
that use an N-wise quorum system, contains more than N —1
consecutive, quorum shifting, fast writes.

47 17/5/201 1 — Chryssis Georgiou ©

Remark

Remark: Algorithm SFW is near optimal since it allows
up to (%71] consecutive, quorum shifting, fast writes.

48 17/5/201 1 — Chryssis Georgiou ©

5/25/2011

24

Trade-offs in MWMR

| * Quorum Views in the MWMR environment

| * Algorithm CWFR

|« Traditional two round writes

Trades Write * Some single round reads — even when reads are concurrent

Speed for Fast with writes
Reads + Utilizes any General Quorum System

* Algorithm SFW
* Server Side Ordering
* Allows both single round reads and writes in MWMR
Trades Quorum * Fastness depends on n-wise quorum intersections
Generality for Fast|§ n-1 consecutive fast writes are possible in MWMR
Writes * SFW near optimal — Allows n/2 consecutive fast writes

49 17/5/201 1 — Chryssis Georgiou ©

Recent Advancements

17/5/201 | — Chryssis Georgiou ©

5/25/2011

25

Problem: Communication vs Computation

Theorem: The computation of the read and write
predicates used by algorithm SWF is NP-complete.

We provide a reduction from 3-SAT

51 17/5/201 1 — Chryssis Georgiou ©

Approximation Algorithm: AprxSFW

» Greedy algorithm

Uses Set Cover greedy approximation algorithm at its core for
the predicate computation

» Log-Approximation
Invalidates RP and WP in a factor of log|S| times
A factor of log|S| more second communication rounds
Does not affect correctness

» Preliminary empirical evaluation using the NS2 simulator
Ongoing work: Evaluation on Planetlab

52 17/5/2011 — Chryssis Georgiou ©

5/25/2011

26

AprxSFW — CWFR Empirical Evaluation

23]

22

Fead aenaoy

i8

TEL e S

i8

i5

53

149

P Lalsndy v § of Readers. AL me) el lSSS 08 PR X iounds sl 10 12 dals 20 ot

#Foudas
17/5/201 1 — Chryssis Georgiou ©

4-wise Quorum System

AprxSFW — CWFR Empirical Evaluation

Faed Laisncsy ve F of Resdsrs AL el ol faatSS OAPRAY rounds mafiE 4 deie 30 phet

el

28 |

gza_

-

1.8 dorsermre

1

=0
'

L 1

13

54

= k4] & 50 &0 TO a0

]) 14-wise Quorum System
17/512011 — Chryssis Georgiou ©

5/25/2011

27

A

Gracias!

5/25/2011

