
The Function-Centric Model: Supporting SIMD Execution of Streaming
Computations

Stephen V. Cole and Jeremy D. Buhler
Washington University in St. Louis

St. Louis MO, 63110, USA
E-mail: {svcole, jbuhler}@wustl.edu

Abstract—Wide-SIMD multiprocessors such as GPUs are an
increasingly prominent architecture for streaming comput-
ing. Existing prescriptive Parallel Execution Models (PXMs)
do not inherently exploit the SIMD parallelism offered by
such architectures. We therefore introduce a novel PXM,
the Function-Centric (FC) model, tailored to achieve high-
throughput execution of streaming applications on a wide-
SIMD multiprocessor architecture. The FC model forms the
basis of our MERCATOR framework supporting modular
streaming CUDA applications, which is currently under de-
velopment.

1. Introduction / Background

Emerging architectures show a trend towards increasing
SIMD execution width among both traditional multipro-
cessors and off-chip accelerators. The essence of SIMD
execution is that it applies the same function to multiple
data inputs in parallel. As for many parallel platforms,
writing efficient application code for wide-SIMD machines
is challenging. To provide guidance to application designers,
parallel platforms are often abstracted through prescrip-
tive parallel execution models (PXMs), which propose a
structured execution strategy conducive to achieving high
performance. The closer the match between a PXM and
the underlying architecture on which it is realized, the
greater its potential to guide developers to high-performing
implementations.

In this work, we introduce the Function-Centric (FC)
PXM for mapping streaming computation to wide-SIMD
architectures. Streaming computation is a widely used
paradigm for processing massive data streams that can be
mapped onto many different parallel architectures. The FC
model keeps the data streams in a computation partitioned by
the function to be applied to the items throughout an appli-
cation’s execution. This partitioning exposes the maximum
potential for the processor to fill SIMD lanes at each execu-
tion step. The FC model contrasts with existing streaming
computing models, which either partition data more finely
and therefore isolate potentially SIMD-executable inputs, or
queue data for different computations together and therefore
compromise SIMD execution.

1.1. Streaming computing paradigm

We use the term streaming computing to denote compu-
tational models with the following characteristics:

• The input consists of an unbounded stream of data
items.

• Computations to be performed on data items are
described by a dataflow graph (DFG) whose nodes
each perform some function on their input streams
(if any) and may produce output streams.

• Each data item input to a node may generate zero or
more outputs in a dynamic, data-dependent fashion.

• The computational performance metric of interest is
total throughput, defined as number of input items
consumed per unit time.

1.2. GPUs as wide-SIMD multiprocessors

GPUs are today’s preeminent wide-SIMD multiproces-
sors. Compared to other SIMD+MIMD architectures (e.g.,
Intel Xeon Phi, Tilera chips), GPUs support wider SIMD
execution. In this work, we focus on NVIDIA GPUs pro-
grammed in CUDA as representative of a broader class of
architectures for which our FC model is appropriate.

Processor/core structure A GPU contains several (8-15)
independent streaming multiprocessors (SMs). Fixed-sized
groups (warps) of w threads are bound to a particular SM
for scheduling and execution. An SM can be thought of as a
w-lane SIMD execution unit, with threads corresponding to
individual SIMD lanes. All current NVIDIA GPUs set w =
32. A single SM may dynamically context-switch among
several active warps.

Execution GPU code is exposed for execution as one or
more kernels that are launched from CPU code. The division
of work across SMs is specified at launch time in the form of
a desired number of blocks of work and of compute threads
(hence, warps) per block. The warps of a single block are
executed by a single SM for the duration of the kernel.

Execution constraints To distill the salient features of
GPU execution behavior, we will constrain an application’s
mapping to the GPU in the following ways:



• Each application runs within a single kernel call,
keeping the GPU block configuration and the assign-
ment of blocks to SMs fixed throughout execution.

• Every thread within a GPU block executes the same
code.

• GPU blocks operate on disjoint sets of input items
and use independent working memory sets, which
include any data-dependent DFG routing infor-
mation computed during the course of execution.
Hence, no synchronization among blocks is required.

Under these constraints, each block may be viewed as an
independent instance of the application running on its own
input data set. The conceptual SIMD width is increased from
the minimum physical width w to the number of threads in
an entire block, which may in practice be in the hundreds.

1.3. Related work

Certain classes of streaming application have been op-
timized for SIMD processing (e.g., tree-traversal algo-
rithms [1] and polyhedral-friendly algorithms [2]). However,
to the best of our knowledge, no general prescriptive PXM
has been proposed targeting streaming SIMD computation.
Although dozens of streaming applications have been ported
to GPU architectures (see [3] for a sample), few implemen-
tations follow a general PXM, and the optimizations they
use to achieve high throughput are therefore application-
specific. We mention general frameworks that do conform
to an existing PXM below.

Existing PXMs for streaming processing belong to one
of two broad categories based on their work queueing
schemes: Dataflow Process Network models and Shared
Worklist models.

Dataflow Process Network (DPN) models Dataflow
Process Networks [4] encompass both Kahn Process Net-
works [5] and Dataflow Models (e.g. [6]). In a DPN, as
shown in Figure 1a, each edge is realized as a typed FIFO
queue storing work to be performed by its downstream node,
and nodes communicate only via their queues. Modular
computing frameworks such as Auto-Pipe [7], RaftLib [8],
and Ptolemy [9] are DPN-based, as are the GPU-based
StreamIt frameworks presented in [10] and [11].

Shared Worklist (SW) models In contrast to the well-
defined topology and typed queues of a DPN, the Shared
Worklist model for general task-based execution, illustrated
in Figure 1b, does not distinguish work by graph topology or
data type. Instead, individual “tasks,” each of which encap-
sulates a particular function to be applied to particular data,
are placed on a common worklist or per-processor worklists.
Strategies such as work stealing and work donation [12]
are used to balance computation across resources. GPU
frameworks such as those in [13] and [14] are based on
the Shared Worklist model.

The Codelet PXM [15], [16] contains components that
operate under each of the DPN and SW models. Its codelets
are event-driven and atomically scheduled, as for nodes in

(a) Data Process Network (DPN) models. Each function
instance (node) has its own worklist holding data to be
processed by that node.

(b) Shared Worklist (SW) models. Globally shared worklists
combine data to be processed by all nodes. Each data item on
each worklist is tagged with its target node.

(c) Function-Centric (FC) model. Each distinct function
(i.e., module type) has its own worklist holding only data
to be processed by instances of that module type. Each
data item on the worklist is tagged with its target module
instance.

Figure 1: Dataflow graph for a streaming application composed
of three functions (A, B, C), each instantiated at multiple nodes,
and work queueing strategies under three streaming PXMs. The
FC model resembles a modified DPN model in which worklists
for nodes representing the same function have been merged.



the DPN model, while its Threaded Procedures (TPs) pull
coarse-grained tasks from a common worklist and employ
work-stealing techniques, as in the SW model.

Inadequacy of Existing PXMs While both DPN-based
and Shared Worklist PXMs can be used to structure appli-
cations whose nodes internally implement SIMD computa-
tions, the models themselves do not optimally group data
items that could be processed in parallel as a SIMD en-
semble. A DPN system maintains separate, isolated queues
even for nodes that execute identical code on their input
streams. In contrast, an SW system mixes data requiring
different forms of processing in a common worklist. We
seek an ideal middle ground: a model that keeps separate
those data items requiring different kinds of processing yet
groups items requiring identical processing, thereby making
it easier to form ensembles of items that can fill the lanes
of a wide SIMD architecture.

2. Function-Centric (FC) model

To address the shortcomings of existing streaming PXMs
on wide-SIMD architectures, we propose the Function-
Centric or FC model. By organizing an application’s pend-
ing work into a form that exposes maximum SIMD-friendly
parallelism, the FC model automatically capitalizes on op-
portunities for wide-SIMD execution in a way that models
targeting more general multiprocessor architectures do not.

Structure The FC model abstracts an application as a
dataflow graph whose components are defined as follows.

(1) Each distinct function, as defined by its instruction
stream, that operates on streaming data (possibly at one or
more nodes of an application) is defined to be a module type
(or just module).

(2) Each node in the application’s DFG instantiates
some function and is therefore a module instance. Multiple
instances of the same module type may exist in a single
DFG. Modules may be parametrized; for example, a filtering
module may have many instances that implement the same
filter but with different threshold values. In such cases, the
functional code defining the module type is still constant
across all instances of that type, while the instance to which
each item is targeted is passed as a data parameter to the
module type’s code.

(3) Each module type has a single corresponding work-
list holding all data items awaiting processing by an instance
of that type. Because all instances execute the same stream
of instructions on their inputs, each worklist is composed of
exactly those items that require identical processing, hence
can be processed in parallel in SIMD fashion!

Figure 1c illustrates the FC model’s worklist strategy,
while Table 1 highlights key differences between the FC,
DPN, and SW models.

Execution In a GPU application organized after the FC
model, a block runs the application on its input stream by
executing a series of module firing steps. A single firing first
chooses a module type to execute; all warps in the block then

TABLE 1: Characteristic Features of Different PXMs

Feature DPN SW FC

Worklist scope module instance global or processor module type
Worklist composition function-specific mixed-function function-specific

Communication local global global
Typed worklist? yes no yes

pull data items from that module type’s worklist, forming
an ensemble of items requiring identical processing. This
ensemble is then processed in SIMD fashion by the module
type’s code. A firing may generate outputs that are placed on
one or more other worklists for processing by later firings.

Execution of a full application is simply a sequence
of firings, each of which processes one or more pending
items from some module’s worklist, until the application
terminates. To preclude situations in which some firing
sequences may lead to deadlock with bounded worklist
storage, we restrict dynamic data-rate application in the FC
model to those whose DFG topologies contain only single-
input nodes (i.e. trees). General graph topologies can be
supported safely if all modules’ data production rates are
fixed, as in Synchronous Data Flow (SDF) applications.

A performance-critical consequence of the FC model is
that parallel SIMD execution of DFG nodes is implicitly
contained in the module firings, since inputs to multiple
DFG nodes of the same module type are processed si-
multaneously during a firing. In other words, the model
automatically induces SIMD execution even without explicit
coding by the application programmer. Indeed, a module’s
code could in principle be specified as a single-threaded
function that is transparently replicated across all lanes of a
SIMD processor. The dynamic scheduling capability of the
FC model affords it more flexibility than a classical event-
driven Data Flow execution model: an FC scheduler may
always choose to fire modules as soon as their inputs are
available, preserving the integrity of Synchronous Data Flow
behavior; however, it may also choose to wait to fire an
module until a certain number of inputs have been queued
on its worklist in order to maximally fill SIMD lanes upon
firing, increasing execution parallelism over that realized by
an event-driven model. The problem of finding throughput-
optimal firing schedules for given SIMD width will likely
be a fruitful topic for research.

Example applications To demonstrate the utility of the
FC model, we now show how two high-impact streaming ap-
plications may be implemented in conformity to the model.
DFGs of these applications are shown in Figure 2.

In random-forest evaluation (Figure 2a), input items
(feature vectors) are streamed through a filter cascade. At
each level of the cascade, a critical value is computed
from an input item’s data and compared to a threshold; the
result of this comparison determines the output path of the
item. Each node of the filter cascade is a module instance
parametrized by its threshold value, with nodes representing
the same discriminator function having the same module
type. When implemented in conformity to the FC model,
all nodes of the same module type will share a worklist,



(a) Random forest classi-
fier. Classifier-specific topol-
ogy with module instances op-
erating on items. Since all in-
stances are of the same mod-
ule type, the FC model merges
data inputs to all nodes into a
single worklist, enabling every
module firing to execute with
the maximum possible SIMD
width.

(b) WOODSTOCC. Alternating layers
of module instances of two different
types implement dynamic-programming
and tree-traversal calculations, respec-
tively. In this case, the FC model creates
two separate worklists, one for each type,
and each module firing processes work
from one of the two worklists in SIMD.

Figure 2: Dataflow graphs of example applications. Only the top
few levels of the graphs are shown; in practice, they may extend
to many more levels depending on the inputs to be processed.

and inputs to all of these nodes can be processed in SIMD
fashion.

A second application is DNA short-reads alignment
(Figure 2b), which performs approximate string matching of
many short DNA strings against a common long reference
string. The search is performed one character at a time,
first computing a row of a dynamic programming matrix
for each successive reference character, then computing the
next character to align based on a virtual tree traversal. The
two functions of dynamic programming calculation and tree
traversal are the module types of the application.

Our WOODSTOCC application [17] implements short-
reads alignments in conformity to the FC model, and it
therefore contains one worklist corresponding to each func-
tion type. Empirical testing on NVIDIA GPUs [18] revealed
a performance improvement of > 50% with the introduction
of these worklists, which are themselves themselves man-
aged using SIMD operations, compared to a sequential data
management scheme.

3. Conclusion and Future Work

We have introduced the Function Centric model for
streaming application execution on wide-SIMD multiproces-
sors. By dividing an application’s data streams according to
the function implemented at the node receiving each stream,
the FC model naturally promotes grouping of items to be
processed into wide SIMD ensembles, facilitating efficient
execution of applications on GPUs and other SIMD archi-
tectures. The model can expose SIMD parallelism across
data items even without explicit effort by the programmer
to exploit parallelism within each node’s computation.

We are currently implementing a realization of the FC
model, based on a generalization of the worklists used in the
WOODSTOCC application, in our MERCATOR framework.

Acknowledgment This work was supported by NSF
award CNS-0905368 and Exegy, Inc.

References

[1] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen, and
W. Schulte, “SIMD parallelization of applications that traverse ir-
regular data structures,” in IEEE Int’l Symp. Code Generation and
Optimization, 2013, pp. 1–10.

[2] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and
P. Sadayappan, “When polyhedral transformations meet SIMD code
generation,” in Proc. 34th ACM Conf. Programming Language Design
and Implementation, 2013, pp. 127–138.

[3] W.-m. W. Hwu, GPU Computing Gems Emerald Edition, 1st ed. San
Francisco: Morgan Kaufmann, 2011.

[4] E. A. Lee and T. M. Parks, “Dataflow process networks,” Proc. IEEE,
vol. 83, no. 5, pp. 773–801, 1995.

[5] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. Int’l Fed. Information Processing Cong., vol. 74,
1974, pp. 471–475.

[6] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc.
IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[7] M. A. Franklin, E. J. Tyson, J. Buckley, P. Crowley, and
J. Maschmeyer, “Auto-pipe and the X language: A pipeline design
tool and description language,” in Proc. Int’l Parallel & Distributed
Processing Symp., 2006.

[8] J. C. Beard, P. Li, and R. D. Chamberlain, “Raftlib: A C++ template
library for high performance stream parallel processing,” in Program-
ming Models and Applications on Multicores and Manycores, 2015.

[9] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuen-
dorffer, S. Sachs, and Y. Xiong, “Taming heterogeneity-the Ptolemy
approach,” Proc. IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[10] A. Udupa, R. Govindarajan, and M. J. Thazhuthaveetil, “Software
pipelined execution of stream programs on GPUs,” in Proc. Int’l
Symp. Code Generation and Optimization, 2009, pp. 200–209.

[11] A. Hagiescu, H. P. Huynh, W.-F. Wong, and R. S. Goh, “Automated
architecture-aware mapping of streaming applications onto GPUs,” in
IEEE Int’l Parallel & Distributed Processing Symp., 2011, pp. 467–
478.

[12] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-
putations by work stealing,” J. ACM, vol. 46, no. 5, pp. 720–748,
1999.

[13] S. Tzeng, B. Lloyd, and J. D. Owens, “A GPU Task-Parallel Model
with Dependency Resolution,” IEEE Computer, vol. 45, no. 8, pp.
34–41, 2012.

[14] M. E. Belviranli, C.-H. Chou, L. N. Bhuyan, and R. Gupta, “A
Paradigm Shift in GP-GPU Computing: Task Based Execution of
Applications with Dynamic Data Dependencies,” in Proc. 6th Int’l
Wkshp. Data Intensive Distributed Computing, 2014, pp. 29–34.

[15] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using a
”codelet” program execution model for exascale machines: Position
paper,” in Proc. 1st Int’l Wkshp. Adaptive Self-Tuning Computing
Systems for the Exaflop Era, 2011, pp. 64–69.

[16] J. Suettlerlein, S. Zuckerman, and G. Gao, “An implementation of
the codelet model,” in Euro-Par 2013 Parallel Processing, 2013, vol.
8097, pp. 633–644.

[17] S. V. Cole, J. R. Gardner, and J. D. Buhler, “WOODSTOCC: Extract-
ing Latent Parallelism from a DNA Sequence Aligner on a GPU,” in
IEEE 13th Int’l Symp. Parallel & Distributed Computing, 2014.

[18] Cole, Stephen V. and Gardner, Jacob R. and Buhler, Jeremy D.,
“WOODSTOCC: Extracting Latent Parallelism from a DNA Se-
quence Aligner on a GPU,” Washington University Tech Report
WUCSE-2015-004, Sep 2015.


