
Work-stealing optimizations for Macro-Dataflow
Runtime Systems1

Sağnak Taşırlar, Vivek Sarkar

Department of Computer Science, Rice University
6100 Main Street, Houston TX 77005

{sagnak,vsarkar}@rice.edu

Abstract—Modern parallel programming models perform their
best under the particular patterns they are tuned to express
and execute, such as MPI for bulk synchronous parallelism,
OpenMP for loop-level parallelism, and Cilk for divide-and-
conquer parallelism. In cases where the model does not fit the
problem, shoehorning of the problem to the model leads to
loss of both programmability and performance, most often by
introducing unnecessary dependences. In addition, some of these
models, like MPI, have a machine abstraction that by necessity
is exposed in the solution to the application problem at hand.

We postulate that an expressive parallel programming model
should not over-constrain the problem it declares and should not
require the application programmer to code for the underlying
machine and thereby sacrifice portability. In our former work,
we proposed the Data-Driven Tasks model for macro-dataflow
parallelism, which represents an approach to expressive and
portable parallelism that only requires the application program-
mer to declare the inherent dependences in the application. In this
work, we build on another instantiation of macro-dataflow, the
Open Community Runtime (OCR) with work-stealing support
for directed-acyclic graph (DAG) parallelism.

This paper makes the following contributions. First, we demon-
strate that the more portable macro-dataflow model can use DAG
parallelism to match the performance of hand-tuned parallel
libraries on today’s architectures. Second, we address granularity
optimizations for DAG parallelism and show how work stealing
schedulers can be extended to deliver better performance in the
presence of complex dependence graphs. Finally, we study the
impact of locality optimizations on work-stealing schedulers for
DAG-parallel applications.

Index Terms—futures; macro-dataflow; task parallelism; work-
stealing

I. INTRODUCTION

Most popular architectures of our day (x86, ARM, etc)
are modifications to the original von Neumann machines2.
Inherent to this design are: the program counter (what to do
next) and the state of the memory (what has happened before).
Imperative languages declare a sequence of instructions to the
machine, where what will happen next and what has happened
before are how programs are declared. Hence the evolution of
programming languages favored imperative languages, as they
provide a better fit for the underlying architecture.

Firstly, let us observe the implications of imperative pro-
gramming before delving into parallelism. An imperative

1The text in this paper has been derived from the first author’s PhD
dissertation[1] but has not been published in any other venue

2For the pedantic reader, they are modified Harvard architectures [2], [3]

program consists of a sequence of actions declared by the
programmer, where implicitly in between every statement is a
state change in the underlying machine. To a programmer,
the sequence in a program may seem an arbitrary choice
and a different order could instead have been chosen just
as easily3. However, from the viewpoint of the programming
environment all the way from the compiler to the chip, that
order is fixed, and is considered to be the true meaning of
the program. Optimizations on all these levels have to reverse-
engineer the programmer’s intent and check if these statements
can be reordered, or otherwise manipulated, to deliver better
performance while maintaining the same semantics as the
original program.

We argue that an imperative program is an arbitrary topolog-
ical sorting of the inherent dependence graph of that program.
This restricts optimization decisions to the motto: ‘Everything
is banned unless it is permitted by dependence analysis’. We
instead propose dependence as a user-lever construct to allow
better optimizations, and changing the motto to: ‘Everything
is permitted unless it is banned by dependence declarations’.

The conditions on ordering and state becomes more prob-
lematic, once we consider the implications of parallel pro-
gramming for parallel architectures. Given a machine with N
execution units, there are N program counters to decide what
will happen next and this makes utilization (load-balancing) a
bigger concern. Secondly, these N execution units can have
an intractably large [4] number of possible states (schedules,
and therefore states of the machine). Both these problems, in
addition to the inherited pitfalls of imperative programming,
led to parallel programming models that either constrain the
expressiveness of the model for performance and safety of
that particular subset, or relinquish a lot of control (but also
performance pitfalls) to the programmer.

Additionally, given that the necessary ordering constraints
between objects are declared as dependences, the legal sched-
ules prevent any ordering hazards. Though, we burden the
programmer with expressing these dependences, the program-
mer does not have to guess what the underlying semantics for

3Any problem can be viewed as a partially-order set of tasks, where
the partial order relation is the dependence relation. By the order-extension
principle, there is at least one strictly total order relation (one legal topological-
sort of this relation).

memory orderings are. The legal orderings must all obey the
dependences specified by the programmer.

We argue that explicit dependence declaration allows further
scheduling opportunities than popular programming models by
not constraining how problems can be declared. In particular,
first-order dependence constructs can enable any arbitrary task
graph to be built.

A. Nested fork/join parallelism

Task parallel models introduce new constructs to control
flow for explicit parallelism but in a finer granularity than
thread based models, hence the name ‘task’. The user declares
parallel procedures and how they are synchronized, leaving
the mapping and scheduling aspects to the underlying runtime
system.

The most common task-parallel constructs are flavors of fork
and join. A fork operation creates an alternate and parallel flow
of control to the context from which it is called. In contrast, a
join operation merges more than one flow of control into one.
These constructs occur in thread based models, too but the
differentiating factor is the granularity used for best practices.

Nested use of fork and join constructs yield task graphs that
are series-parallel [5]. A series-parallel graph can be formu-
lated inductively by defining a series or a parallel composition
applied to two series-parallel graphs. The base case for this
induction is the unit series-parallel graph, which only consists
of a sink and a source node. Since series-parallel graphs are
a subset of partially-ordered sets, one can think of sink and
source nodes as greatest and least elements of a partial-order.
A series composition of two series-parallel graphs, (g1, g2),
merges the sink node of g1 and the source node of g2. A
parallel composition of series-parallel graphs (g1, g2) merges
the source node of both graphs as the resulting graph’s source
and merges the sink node of both graphs as the sink node of
the resulting graph.

II. OVERVIEW OF THE OPEN COMMUNITY RUNTIME
(OCR)

In this paper, we build on the Open Community Runtime,
henceforth abbreviated as OCR, as a macro-dataflow model
to address the challenges stated in section I. The OCR API
enables the (manually or automatically generated) client pro-
gram to declare unrestricted DAG parallelism that is executed
by the underlying runtime system. The separation of concerns
provided by this API allows runtime research to be conducted
on separate platforms with several different objectives.

A. Application Programming Interface

Open Community Runtime allows a client program to
declare macro-dataflow parallelism using the following library
calls, which will also cover the concepts utilized:

1) ocrTaskCreate: is used to create a parallel task. This task
may have dependences declared via ocrAddDependence
calls and preserved by the runtime system. Since the user
may not know the underlying implementation, it is not safe to
assume any implicit ordering among tasks or the permanence

of the stack variables across stack invocations. This interface
requires the user to pass the function to be executed, the
function parameters and how many of them there are, and
how many dependences it will eventually declare.

2) ocrEventCreate: This function creates an event object,
which can be used to declare dependences between tasks. The
event construct is a more general version of a future, in that
it does not know its producer or the value it will carry. Since
events are the dependence abstraction for this model, they are
single assignment, i.e., they can only be satisfied once.

3) ocrDbCreate: This function is used to create a data-
block. A data-block can be described as a contiguous chunk
of memory managed by the runtime. They can be used to
satisfy events, declare data-dependences, and support race-
free data accesses. All data outside of data-blocks are user-
managed, and could be the source of data races as a result of
programming errors.

4) ocrEventSatisfy: As events can be used to build a
dependence graph, this interface informs the runtime that
the dependence has been satisfied. If the dependence is a
data-dependence, this function declares what data is flowing
through this dependence via data-blocks. If the dependence
satisfied is not a data-dependence, the event may be satisfied
with any object value.

5) ocrAddDependence: is how a task declares that it is
a sink of a dependence that is passed as an argument. The
user is required to enlist all the shared data across tasks to be
declared as a dependence to guarantee safe access through the
synchronization provided by dependences.

6) ocrScheduleEDT: is how a user declares that the listing
of the dependences for a particular task is over and now the
runtime can take control over it.

B. Runtime Library

Any runtime system that implements the OCR APIs de-
scribed above, can be labeled an OCR library, thus there is
not one single OCR library. For our explorations in this paper,
we have used an OCR runtime library implementation that is
heavily influenced by Habanero-C [6] that implements the user
interface from OCR version 0.7 [7].

The runtime library is implemented in C, which does not
natively support language constructs like abstract classes,
interfaces or inheritance. Therefore we instead have provided
a poor man’s version for these constructs by providing base
structures for modules that we anticipate the runtime imple-
menter would have to extend, with function pointer tables
mimicking a virtual function table. The modules are for data-
blocks, events, task pools, workers, executors (abstracting
the underlying execution unit), schedulers and policy-domains
(abstracting a mini-runtime, for hierarchical runtimes).

1) Habanero-like runtime for OCR v0.7: The scheduling
semantics for this implementation are as follows: an OCR
task utilizes non-blocking scheduling semantics by requiring
its registered dependent events to be satisfied with the data the
task consume. In contrast common futures allow unrestricted
resolution from any context, but if the resolving task has not

completed, they block. This preserves the calling context at
the cost of delaying the continuation that is not dependent on
the future’s resolution and tying up an execution unit in case
it is not the one resolving the future.

When an OCR task is declared, a frame to contain its
context gets implicitly created, just like a common task.
Additionally, a list of registered events gets passed to this task
that serves as this task’s synchronization frontier. Eagerly the
task tries to register to the first unready event by iterating over
its dependences, checking the satisfaction conditions. Once an
unready event is reached, the task registers itself to that event
and the control returns to the parent task. If all the dependences
have been met at the time of creation, the task is simply passed
onto the scheduler, just like a normal task would.

When an event is satisfied by the producer task creating
a value to satisfy that event, the producer task grabs the list
of pending tasks and iterates their synchronization frontier, as
described in the paragraph above. If the pending tasks have
all their dependences met, they are passed onto the scheduler,
if not they linger in the heap to be picked by their following
dependences’ producers.

This scheduling follows the semantics of dataflow; the
tasks are fired when their data becomes ready. Most parallel
programming models require the data dependences to be met
at the point of task creation, burdening the programmer to
structure their code accordingly, following the spirit of the
imperative-language causing topological-sort argument cov-
ered in the section I above.

Regarding other modules, like data-blocks, workers, execu-
tors and policy-domains, we implemented bare necessities.
Data-blocks are implemented as wrappers for contiguous
memory on a shared memory machine that does not move or
get tracked by the runtime. Workers execute a loop of popping,
work-stealing when pop is failing, executing extracted work,
just like Habanero workers. Executors are abstracting the
underlying cores with an attached PThreads instantiations.
Policy models are not utilized as we have not needed explicit
hierarchies for our observations.

III. GRANULARITY OPTIMIZATIONS

Popular work-stealing runtimes for nested fork-join par-
allelism [8], [9] have utilized lazy task creation [10] in
order to avoid the runtime being swamped by eagerly created
tasks. Lazy task creation can be interpreted as a sequential-
by-default depth-first exploration of the task tree, in which
multiprocessor thread scheduling is achieved by taking tasks
from the unexplored list in the depth-first traversal. Since
this depth-first traversal has a much smaller frontier than an
alternative traversal (e.g. breadth-first), the number of tasks
available to the scheduler is tightly bound.

For example, in Multilisp, one of the earliest implementa-
tions of work-stealing schedulers, the stealing heuristic em-
ployed is to steal the oldest task from the victim, just like the
Cilk [9] implementation that followed. An oldest task would
be the task that would be the first task to make it to the

backtracking list of a depth-first traversal by a worker, and
therefore the last one to be utilized for further exploration.

In a series-parallel task graph, stealing a task that was put
aside to be explored provides the source node of another
series-parallel graph. By definition series-parallel graphs are
recursive structures, and if a task is put aside to be explored, it
can only come from a parallel composition of multiple series-
parallel graphs.

For a divide-and-conquer algorithm with a cutoff, like the
one depicted in figure 1, stealing the oldest task from a thread
provides the coarsest grained series-parallel graph that thread
has to offer. For simplicity, we depict the task graph as a tree
with spawn/fork edges, and omit the mirror image consisting
of join edges. As work starts dissipating from a single source
node, stealing would build a binary reduction tree of splitting
and mapping subsets of the task graph, as seen in figure 1. Cilk
or Mul-T [10] implementations also depend on this property
of probabilistic work-stealing. The increased granularity of
steals reduces the number of steal attempts and improves
performance since steal operations introduce more runtime
overhead, contention and increase idle time.

We used work stealing runtimes for macro-dataflow models
on our former work for dynamic scheduling and load-balance.
However, since task graphs that may be expressed by macro-
dataflow models are more general than series-parallel graphs
the implicit granularity achieved by stealing the oldest task for
work-stealing runtimes do not necessarily hold anymore.

In a series-parallel graph, stealing one task from the victim
gives us the source node of another series-parallel graph. If
you ignore the join edge symmetry, a series-parallel graph
is tree. So a steal returns the root task of a tree of tasks.
Since that root task enables all the descendent tasks, if none
of them is stolen from the thief, the whole tree is executed on
that thief. Therefore stealing one task is analogous to stealing
a subtree of a task tree. If (for the sake of this argument)
we assume the computational cost of tasks are uniform, for a
divide and conquer problem stealing the oldest task heuristic
leads to stealing almost half the work available on the victim.

�

�

�

�

�

Fig. 2. Snapshot of a stolen taskA and its immediate successors taskB and
taskC

In contrast, stealing a single task from an arbitrary DAG
may not result in getting a root of a tree of tasks. Pathologi-
cally, a stolen task may not dominate4 any of its descendant
tasks. Let us observe figure 2. If a taskA is stolen with
successors taskB and taskC , and if taskB and taskC each

4A noden dominates a nodem, if all the paths from the source of the
graph to nodem passes through noden.

Fig. 1. Possible decomposition and mapping of a divide and conquer problem, figure credit [10]

depends also on taskD and taskE respectively where taskD

and taskE are not taskA’s ancestors, based on a particular
schedule taskD and taskE may not yet be available. In that
case taskA would not lead to any new descendant computa-
tions at all, and would eventually lead to another steal attempt.

If we wish to translate the implicit steal half the work policy
for nested fork/join work-stealing models to macro-dataflow
work-stealing in order to minimize steal attempts, we will
need an explicit steal-half policy as in [11], [12]. For graph
algorithms, granularity optimization to achieve half through
batching can be employed [13].

For arbitrary DAG task graphs, one can still annotate or
calculate the number of dominated descendants for a task.
However, the number of descendants a task may lead to is
schedule dependent. A task can lead to descendant tasks only
if it satisfies their respectively last unsatisfied dependence, so
dominance relation is a function of a runtime schedule. In
contrast, for nested fork/join models, since tasks are roots
of trees of tasks, the values can be computed bottom up
or can be determined statically by counting the tasks they
dominate. For divide-and-conquer problems we would have
an almost balanced full binary tree, where stealing the oldest
task converges to stealing half the work.

Since we can not calculate half the tasks on a dynamically
unfolding task-graph with schedule dependent number of
descendants, we restrict our heuristic to static assumptions, just
like nested fork/join models. We explore two extremes of the
spectrum on the number of descendant tasks, one pessimistic
and one optimistic. A pessimistic heuristic assumes a task can
only lead to a number of tasks it statically dominates. On the
contrary, an optimistic heuristic assumes all the descendants
will have all their other dependences satisfied by the schedule
and a task can lead to all its descendants.

Experimental results for the granularity optimizations intro-
duced in this section are included in Section VI.

IV. LOCALITY OPTIMIZATIONS

In previous sections, we discussed why macro-dataflow par-
allel programming models support more general task-graphs
than nested fork/join models. The support for more general
task-graphs required us to address the granularity aspect of the

underlying runtime work-stealing algorithm, which we covered
in the previous section.

Work-stealing algorithms for series-parallel graphs not only
have inherent granularity benefits, but also locality benefits.
Let us recap the discussion on the granularity benefits of
restricting task-graphs to series-parallel graphs and stealing the
oldest task first. A thread exploring the task graph traverses the
data structure in a depth-first fashion and enables unexplored
paths to be stolen by idle threads. Series-parallel task graphs
are declaring control dependences between tasks because of
their imperative nature. Since data dependences have to have
been satisfied for a child task at creation time, the control
dependence graph is also a superimposed data-dependence
graph. So as tasks get further decomposed deeper on the
tree, these tasks’ input data are also getting decomposed, and
therefore the memory footprint is anticipated to get smaller.
As data footprint gets smaller, the data is likelier to fit
in the closest hierarchy in memory. As a thread traverses
the task graph in depth-first fashion, and leaving a last-in
first-out (youngest to oldest) trail of unexplored paths, the
thread is executing tasks that are closest on the task graph
topology. If the data decomposition closeness matches the task
decomposition, this algorithm has tight locality bounds with a
least-recently-used eviction policy. Additionally, since stolen
tasks are also sources of series-parallel graphs (i.e. roots of
task-trees), the properties hold for stolen sub-trees of tasks
recursively.

We argued stealing the oldest task has granularity benefits
and it is expected on average to have the tasks available for
stealing from a thread are implicitly ordered from coarse to
fine grain. The same property can be extended to locality. The
newest tasks are likelier to consume data that is close to their
sibling task’s data that have left the cache favorably dirty for
the newest tasks. If the cache holds more data and uses least
recently used eviction policies, the cache is likelier to hold
data from closer levels of their pedigree than further ones.

As macro-dataflow models utilize data dependence as a first-
level construct, application programmers can declare com-
putations that are unstructured DAGs, which are a superset
of nested series-parallel graphs. Optimizing locality is more

challenging in the more general context of DAG parallelism,
relative to fork-join parallelism [14]. We discussed for figure 2
that we can not statically deduce the availability of predeces-
sors for a task, since in our model there can be more than one
successor per task. A task can only become ready when all of
its dependences are satisfied; the order these dependences may
be satisfied is schedule dependent and can only be deduced
at runtime. This impacts locality, because now the closeness
in the task graph is also schedule dependent. Additionally the
distance to a single predecessor, a constant, is sufficient for
a locality metric for series-parallel graphs, where the distance
metric is n-dimensional for a task with n predecessor tasks.

We will explore data-structures and policies adopted by
work-stealing runtimes and propose ameliorations for better
locality results for event-driven runtimes using work-stealing.

A. Explicitly prioritized data-structures

Work-stealing runtimes utilize deques for ready task data-
structures, which provides an implicit granularity and locality
prioritization for nested fork/join models. We argued that
deques do not implicitly order tasks for locality and granularity
for non-series-parallel graphs. Therefore, we postulate that we
need task graphs where the ordering, or classifying, of tasks
are more explicit and schedule dependent since locality metrics
are schedule dependent for DAG parallelism.

One possible locality measure for tasks, is the dynamically
calculated cost of bringing the data to consumer task. As our
models have explicit producer/consumer relationships through
dependences, and since shared data objects among tasks are
also explicitly expressed, we can keep track of these dynami-
cally at the runtime system. Therefore we can estimate where
the data, that a task depends on, are and how much it would
cost to bring all that data in at scheduling time for that task.
If we employ a priority queue, instead of a deque, and use the
cost of data movement per task as the priority, we will have
a task queue that has a most local to least local ordering of
tasks. These costs are computed when a task becomes ready
and remains constant as long as it stays on the same queue.
This simplifies the implementation at the cost of accuracy, but
saves us from the cost we would incur from simulating caches.

One major assumption here is knowing where dependences
have been satisfied and where the data that satisfies the depen-
dence is located. Since dependences are monotonic structures
that can be satisfied only once, we can deduce where the
dependences have been provided. However, what matters is
knowing where the data that satisfied the dependence lives.
For simplicity, a one-to-one correspondence can be assumed
initially, as if the ‘producer’ of the data is also the ‘creator’
or ‘allocator’ (or ‘over-writer’ if the dependence is a storage
dependence). On a cache-architecture, if a data is consumed
in two separate contexts, the data can be replicated to live in
more than one place, making the placement tracking more
complicated. For simplicity, we will initially focus on the
intrinsic data transfer effects of locality and assume that each
worker thread runs on a core with an unbounded eviction-free
cache. This ignores the impact of capacity and conflict misses.

This locality ordering for a task per thread is ‘dynamic’,
as it is delayed until creation time. However, another policy
decision to make is to decide if the costs (and therefore
priorities) should also change dynamically. One option is to
simplify the design at the cost of inaccuracy and not update the
cost of a task based on data eviction and replication, the other
is to simulate a cache in software to update costs accordingly
at runtime. Initially, we opt for not updating cost of a task
once it is enqueued.

V. TASK SCHEDULING HEURISTICS

Series-parallel programming models that constrain the task
graphs expressed to trees, have a clear parent-child relationship
between the tasks. They may employ eagerly executing a child
task and leaving the continuation pending; this is labeled as
work-first work-stealing policy and is a left-most depth-first
traversal of the task graph. Alternatively, child tasks may be
left pending as the continuation is being executed; this is the
right-most depth-first traversal of the task graph, labeled the
help-first strategy.

In our work, we explore the effect of non-parent/child prede-
cessor/successor relationships and the challenge of scheduling
tasks with these more general relationships. In our previous
work [15], we did not provide an implementation to utilize
work-stealing on non-series-parallel graphs. The implementa-
tion for work-stealing support for tasks with multiple prede-
cessors is analogous to currying. Every predecessor of a tasks
perform a partial function application till all the dependences
are met. The last predecessor changes the descendant task
to a zero arity function, making it ready. We treat this as
if the last predecessor created a child task. Since we use a
help-first policy on OCR, the descendant task gets pushed
into the local ready task queue. The task graph frontier
for execution is schedule-dependent because this currying is
schedule dependent.

This simplification provides an implicit scheduling heuristic,
namely most recent satisfied dependence first. When a task
satisfies a dependence, for that dependence it walks through
all the awaiting tasks synchronization frontiers. If all other
dependences are satisfied for a task, that task is enabled and
scheduled to be executed. Hence the last satisfied dependence
is the enabling one, it leads to the enabled task to be enqueued
on the same worker. Though this may help with simplifying
the implementation and synchronization concerns, it may not
necessarily provide the best performance, as this choice may
not provide minimal data retrieval cost, and therefore locality
performance. For example, a task with n dependences may
have its first n − 1 dependences met at threadi, where the
last one is met at threadj , where i 6= j. If this task is
executed on threadj , all the necessary data may be replicated
on threadj , may incur possible cache misses and may evict
data that is local to tasks waiting to be executed on threadj .
In experimental results, we will include results comparing
pushes to ‘closest’ workers versus the most recent satisfied
dependence first worker.

A. Task stealing heuristics

The differentiator of work-stealing runtimes from the rest,
as the name implies, is utilizing the idle workers to do the load
balancing by letting them steal tasks from busy workers. There
are two-tiers of heuristics to stealing; first, victim selection
(from where) and secondly, which tasks to extract from the
selected victim.

1) Victim selection: A common implementation choice for
a victim selection heuristic is the random victim selection [16],
under the observation that a uniform random distribution
reduces the average number of steal attempts to find work and
is used to also to prove the theoretical bounds of work stealing.
Though random victim selection has proven guarantees for
load balance, it fails to address locality concerns. On a
machine with a deep memory hierarchy, it may be favorable
to prioritize the most local tier of workers to be the first set
of victims. Then, the workers that are further in the memory
hierarchy can be traversed as potential victims with lower
priority.

a) Hierarchical traversal: As we suggested before,
cache-based machines are mostly hierarchical, e.g. multiple
threads sharing a cache, on a multi-cache socket, on a multi-
socket machine. We can take this into account on our traversal
to replicate the locality inherent to this hierarchy by traversing
bottom-up for better locality as covered in [17]. Following the
aforementioned sample machine, initially, a thread would try
to steal from the threads it shares a cache with, then it would
traverse threads it only shares a socket with and then explore
threads on other sockets.

2) Task extraction: Once a victim is chosen, the second
policy aspect to pin down is to decide which tasks to steal.
We have argued for granularity optimizations in previous
sections, in the absence of locality concerns. Taking locality
optimizations into account does not invalidate the case for
granularity. So for now, let us assume that we are employing
the steal-half policy that we have been advocating.

Given that we are pursuing locality optimizations by classi-
fying and ordering tasks in ready task queues, which changes
task queue choices, which in turn changes how a steal-half
heuristic would work. Secondly, another policy to consider is
which half to steal. Granularity optimizations offered before
did not differentiate between subsets of tasks, as long as they
are half the size of the queue. With locality optimizations, we
have an opportunity to decide which half.

a) altruistic stealing: Locality optimizations are pursued
through ordering (partially or totally) ready tasks by how much
data retrieval cost they would incur. By default and historical
convention, in order to reduce the synchronization cost on the
task queue, stealing is done from the alternate end of the
queue, rather than the end the owner thread uses. So when
a thief extracts half the work from the other end of an ordered
queue, they are likely to get the tasks with high data retrieval
costs to the victim, hence the name altruistic. This policy is
achieved implicitly, just by using ordering for locality and by
stealing with a coarse grain.

VI. EXPERIMENTAL RESULTS

A. Fibonacci

We addressed how divide-and-conquer algorithms and lan-
guages that express series-parallel task graph match, and
competitive performance can be achieved even with this ease
of expression. We want to show that divide-and-conquer
problems can also be easily expressed through declaring this
restricted subset of possible directed acyclic graph and also
provide competitive performance.

We will use an inefficient (non dynamic-programming)
approach to calculating the N th element of the Fibonacci se-
quence. The Fibonacci sequence can be described inductively
as follows for non-negative values of n:

fib(n) =
{

fib(n− 1) + fib(n− 2) n ≥ 2
n n < 2

#core 1 2 4 8 18 36
Cilk

time(s) 68.43 35.41 19.15 10.87 4.93 2.51
speedup 1.93 3.57 6.30 13.87 27.24
OCR

time(s) 68.60 35.18 19.16 10.89 4.99 2.51
speedup 1.95 3.58 6.30 13.76 27.32

Fig. 3. fib(50) with cut-off 25 for the Xeon

#core 1 4 8 16 48 60
Cilk

time(s) 78.65 19.69 10.07 5.05 1.76 1.44
speedup 3.99 7.81 15.59 44.79 54.54
OCR

time(s) 78.69 19.70 9.91 4.95 1.67 1.34
speedup 3.99 7.94 15.91 47.15 58.60

Fig. 4. fib(45) with cut-off 25 results for the XeonPhi

Figures 3 and 4 show the comparable performances of OCR
and Cilk in execution time and scaling.

We argued that for a series-parallel task graphed benchmark
our explicit steal half heuristics would converge to the default
work-stealing algorithm. Our experimental results show that
to be case within a 10% error margin for median number
of steals. As there is no locality to be exploited for this
application, we do not address locality heuristics for this
benchmark.

B. Sequence Alignment

This benchmark is used in bioinformatics field to match
amino-acid sequences of proteins, or nucleotide sequences of
sites for local and global alignment to trace evolutionary paths,
homology and etc. We see this benchmark frequently in the
parallelism, high performance computing literature to show-
case non-series-parallel graphs, and are known colloquially as
the diamond graph. We can see the dependence graph of a
string matching benchmark of 2 strings sized 4, or 2 strings

{0,0} {0,1}

{1,0} {1,1}

{0,2}

{1,2}

{2,0} {2,1} {2,2}

{0,3}

{1,3}

{2,3}

{0,4}

{1,4}

{2,4}

{3,0} {3,1} {3,2} {3,3} {3,4}

{4,0} {4,1} {4,2} {4,3} {4,4}

Fig. 5. Dependence graph for a 4 by 4 tiled string matching

with square tiles of quarter the size of the original string on
figure 5. The first row and column is to keep track of the
alignment with a gap instead of a nucleotide at the beginning
of the first or the second string, hence the need for a fifth row
and column.

In order to introduce some granularity to the leaf com-
putation tasks, we tile the strings, so that a task calculates
the values of a tile rather than a single entry. We performed
a sweep for tile sizes to choose which tile size achieve the
highest operations per second, and the results reported below
use those tile sizes.

#core 1 2 4 8 18 36
time(s) 39.69 20.35 11.14 6.34 2.15 1.52
speedup 1.95 3.56 6.27 18.44 26.06

Fig. 6. Matching strings of size 135K with tile size 576 for the Xeon using
OCR v0.7

#core 1 4 8 16 48 60
time(s) 135.32 34.02 17.13 8.68 3.23 2.74
speedup 3.98 7.90 15.59 41.96 49.4

Fig. 7. Matching strings of size 67.5K with tile size 432 for the XeonPhi
using OCR v0.7

Explicit steal-half heuristics with totally/partially-ordered
ready task queues do not have a drastic impact on the execution
time and steal attempts for this benchmark.

One improvement is employing hierarchical work stealing
by stealing amongst sockets first and across sockets after
approach on a multi-socket Xeon machine. This provides at
least a 17% decrease in L3 cache misses controlling for other
parameters as in steal granularity or ready task queue data
structure. Using data retrieval cost as a priority for tasks cut L2
misses 1%-2% for the minimum case and shortens execution
time by 1% for the minimum of 10 runs. The impact of
hierarchical work-stealing on this case ranged between -1% to
8% fewer L3 misses. Pushing tasks to the most local worker
rather than the one enabling it, can provide 1%-2% percent
reduction in L2 misses compared to the base case.

Putting all these together, minimum result for the median
values for L2 misses are achieved by using priority queues

using data retrieval cost as the priority metric, with flat
victim selection for work-stealing and stealing half the work
according to pessimistic descendance. The minimum result for
execution time is achieved by using sorted priority queues,
with hierarchical victim selection for work-stealing and steal-
ing half the work according to optimistic descendance.

C. Cholesky Decomposition

iteration 0

iteration 1

iteration 2

iteration 3

iteration 4

dpotrf

dtrsm

dtrsm

dtrsm

dtrsm

dsyrk

dgemm

dgemm

dgemm

dgemm

dgemm dgemm

dsyrk

dsyrk

dsyrk

dpotrf

dtrsm

dtrsm

dtrsm

dsyrk

dgemm

dgemm dgemm

dsyrk

dsyrk

dpotrf

dtrsm

dtrsm

dsyrk

dgemm dsyrk

dpotrf

dtrsm dsyrk

dpotrf

Fig. 8. Dependence graph for a 5 by 5 tile cholesky factorization

Given a symmetric, positive definite matrix A, cholesky
decomposition calculates a lower triangular matrix L such
that A = LLT and can be considered a special case of LU
factorization where the upper triangular matrix is the lower
triangular matrix’s conjugate transpose. The computational
complexity of the calculation is O(n3) and for a serial, in-
place implementation the memory footprint is O(n2). Our
parallel implementation through array-expansion, exposes the
iteration-space as the third dimension and gets rid of the
antidependences to expose further parallelism, which increases
the memory footprint to O(n3).

The dependence graph of a 5 by 5 blocked cholesky factor-
ization is depicted on figure 8 with tasks annotated with the
LAPACK routines applied on said tiles. On a given iteration
the top-left most tile has a sequential cholesky(dpotrf)
applied, where that result enables a column of triangular
solves(dtrsm) below it. A trisolve indexed i feeds data to
triangular(dsyrk) or square(dgemm) matrix multiplications
on row or column i. The resulting matrices of these matrix
multiplications feeds in to the next iterations domain, depicted
as vertical arrows crossing the iteration boundary on the figure.

As it can be seen on the figure, the dependence graph is an
unstructured directed acyclic graph, and does not remotely re-
semble a series-parallel computation. Hence it is a motivating
example for our macro-dataflow model.

We have implemented the benchmark with tasks serving
as a wrapper to serial Intel Math Kernel Library(MKL) calls.
Since MKL library calls are destructive writes to their input
data, we use events to synchronize these writes on to the same
data-block. Additionally, to provide coarser granularity into the
tasks, we use a blocked version of the cholesky decomposition,
where the tile size is a user provided runtime parameter. As
auto-tuning and providing performance models for different
architectures are not within the scope of this work, we do
a tile sweep to calculate the tile size that gives the highest
floating point operations per second(flops).

#core 1 2 4 8 18 36
OCR&MKL

time(s) 16.58 8.41 4.25 2.37 1.25 0.67
speedup 1.97 3.91 6.98 13.29 24.95
|| MKL
time(s) 13.87 6.85 3.48 1.94 1.07 0.75
speedup 2.03 3.99 7.14 13.02 18.47

Fig. 9. Cholesky decomposition results for a 12K by 12K matrix for the
Xeon

#core 1 4 8 16 48 60
OCR&MKL

time(s) 27.85 7.04 3.57 1.83 0.72 0.64
speedup 3.96 7.80 15.19 38.78 43.37
|| MKL
time(s) 11.64 3.93 2.16 1.11 0.43 0.35
speedup 2.96 5.38 10.53 27.39 33.55

Fig. 10. Cholesky decomposition results for a 6K by 6K matrix with Intel
MKL for the XeonPhi machine

Figure 9 shows that with a tile parameter tuned for the
maximum core case, serial MKL kernels scheduled by OCR
can out-perform a parallel MKL implementation in Xeon and
get to half the flops for XeonPhi. The parallel MKL version
has dynamic tiling which makes the speedup results look
less stellar as it chooses the best tiles per available cores for
execution.

For the Xeon runs of this benchmark, using a steal half
the amount of ready work according to pessimistic or opti-
mistic descendance relations lead to 4% or 5% improvement
in throughput respectively for the 36 core case for median
execution times of 10 runs. Number of steals are consistently
fewer but by a 10% or 6% margin for the 36 core case for
partially ordered task queues.

We did not observe a huge impact of steal half heuristic
on XeonPhi for the highest throughput providing tile size.
However we show that a smaller tile size which would burden
the runtime more with more tasks show improvements when
steal half heuristics are employed but not enough to surpass the
highest throughput providing tile size for the default settings.
We argue these heuristics will allow smaller tile size to be
employed which will be more helpful as cores get smaller,
simpler and plentiful.

Introducing hierarchical work-stealing cuts L3 misses by
8%-11% compared to the default settings. When we introduce
data locality as priority, we see a -2% to 2% reduction for
the median values for L2 misses. We also see a -3% to 3%
reduction in median execution times for all cases but one. The
overhead and contention introduced by priority maintenance
could not be amortized by stealing a single task, so any
competitive execution time utilizes a steal half heuristic.

If pushing tasks to most local workers, with retrieval cost as
priority for task queues, are employed all at once, we see a 4%
to 24% reduction in median values for L2 misses compared to
the default case. For partially ordered task queues with data
retrieval cost metric the median execution times are slowed
down between 27% to 49% when compared to the default case.
The results where totally sorted priority queues (and hence
more precision) are used, fare much better. We observe an
increase in execution time between 1% to 4% when compared
to the default case.

VII. CONCLUSIONS

We propose macro-dataflow models as a general approach
to expose parallelism by explicitly declaring dependences
between tasks. In our former work on data-driven tasks [15],
we built our model on top of work-sharing systems which may
suffer from contention because of their centralized approach
compared to the OCR-based work-stealing implementations
studied in this paper.

In this work, we built our macro-dataflow model on top of
a work-stealing runtime which implies decentralized schedul-
ing and load-balancing. First, we show our macro-dataflow
approach can declare programs both with simple dependence
structures without a performance penalty, and also declare
complicated dependence structures and surpass hand-coded
parallel libraries in execution time tuned to the specific ap-
plication.

We observe that the underlying assumptions of work-
stealing runtimes on the nature of a program’s task graph
do not necessarily apply to complex dependence graphs. We
address the granularity challenges by employing heuristics
on the schedule-dependent descendance relations. We show
reductions on number of steals to showcase better load bal-
ance and possible reduction in bandwidth for simple micro-
benchmarks and also reduction in execution time for cholesky
decomposition.

Lastly, we propose heuristics to the default work-stealing
runtime to address locality concerns that arises with employing
complex dependence structures. For a simple benchmark, we
show that L3 cache misses can be reduced by employing a
hierarchical work-stealing algorithm leading to a reduction
in execution time. For a more complex dependence graph
like cholesky decomposition, using all heuristics proposed
we observe up to 22% reduction of total L2 cache misses
with only a 4% increase in execution time. We argue that
these optimizations would translate to energy savings that are
becoming more and more important as the energy budget is
increasing in importance for extreme scale systems.

REFERENCES

[1] S. Taşırlar, “Optimized event-driven runtime systems for programmabil-
ity and performance,” Ph.D. dissertation, Rice University, 2015.

[2] “The arm cortex-a9 processors,” http://www.arm.com/files/pdf/
ARMCortexA-9Processors.pdf, accessed: 2014-08-28.

[3] “Intel 64 and ia-32 architectures optimization reference manual,”
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf, accessed:
2014-08-28.

[4] M. G. Ricken, “A framework for testing concurrent programs,” Ph.D.
dissertation, Rice University, 2007.

[5] J. Mellor-Crummey, “On-the-fly detection of data races for programs
with nested fork-join parallelism,” in Proceedings of the 1991
ACM/IEEE Conference on Supercomputing, ser. Supercomputing ’91.
New York, NY, USA: ACM, 1991, pp. 24–33. [Online]. Available:
http://doi.acm.org/10.1145/125826.125861

[6] S. Chatterjee, S. Taşırlar, Z. Budimlic, V. Cave, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism
with mpi,” Parallel and Distributed Processing Symposium, Interna-
tional, vol. 0, pp. 712–725, 2013.

[7] “Ocr github repository,” https://github.com/01org/ocr, accessed: 2014-
08-28.

[8] J. Reinders, Intel threading building blocks, 1st ed. Sebastopol, CA,
USA: O’Reilly & Associates, Inc., 2007.

[9] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 conference on Programming language design and
implementation, ser. PLDI ’98. New York, NY, USA: ACM, 1998,
pp. 212–223. [Online]. Available: http://doi.acm.org/10.1145/277650.
277725

[10] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr, “Lazy task creation: a
technique for increasing the granularity of parallel programs,” in 1990
ACM Conference on LISP and Functional Programming. New York,
New York, USA: ACM Request Permissions, May 1990, pp. 185–197.

[11] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha, “Scalable work stealing,” in Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis,
ser. SC ’09. New York, NY, USA: ACM, 2009, pp. 53:1–53:11.
[Online]. Available: http://doi.acm.org/10.1145/1654059.1654113

[12] D. Hendler and N. Shavit, “Non-blocking steal-half work queues,”
in Proceedings of the Twenty-first Annual Symposium on Principles
of Distributed Computing, ser. PODC ’02. New York, NY, USA:
ACM, 2002, pp. 280–289. [Online]. Available: http://doi.acm.org/10.
1145/571825.571876

[13] G. Cong, S. Kodali, S. Krishnamoorthy, D. Lea, V. Saraswat, and T. Wen,
“Solving large, irregular graph problems using adaptive work-stealing,”
in Parallel Processing, 2008. ICPP ’08. 37th International Conference
on, Sept 2008, pp. 536–545.

[14] T. Gautier, J. Lima, N. Maillard, and B. Raffin, “Xkaapi: A runtime sys-
tem for data-flow task programming on heterogeneous architectures,” in
Parallel Distributed Processing (IPDPS), 2013 IEEE 27th International
Symposium on, May 2013, pp. 1299–1308.

[15] S. Taşırlar and V. Sarkar, “Data-Driven Tasks and Their Implementa-
tion,” in 2011 International Conference on Parallel Processing. IEEE
Computer Society, Sep. 2011.

[16] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” J. ACM, vol. 46, pp. 720–
748, September 1999. [Online]. Available: http://doi.acm.org/10.1145/
324133.324234

[17] J.-N. Quintin and F. Wagner, “Hierarchical work-stealing,” in
Proceedings of the 16th International Euro-Par Conference on Parallel
Processing: Part I, ser. EuroPar’10. Berlin, Heidelberg: Springer-
Verlag, 2010, pp. 217–229. [Online]. Available: http://dl.acm.org/
citation.cfm?id=1887695.1887719

