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Abstract—In this paper we discuss a new type of core called
the Dataflow-core. This core provides data processing based on
data flow instructions rather than control flow instructions. Data
flow instructions serve both to describe a program and to dynam-
ically change the context of a dataflow program graph inside the
accelerator of the Dataflow-core–on-the-fly. Our intended design
aims to combine the performance of a fine-grained dataflow archi-
tecture with the flexibility of reconfiguration, without requiring
a partial or new bit-stream for re-programming it, as is the case
with FPGAs. The potential of the dataflow implementation of
a function or functional program can be exploited simply by
relying on its description through the dataflow instructions that
re-program the core. Besides, inside the core both temporary data
and instructions are eliminated as traffic over the memory.

I. INTRODUCTION

Spatial reconfigurable computing with FPGAs, massively-
parallel systems based on soft-cores, and Coarse-Grained
Reconfigurable Arrays cores accelerate applications by dis-
tributing operations across many parallel computational re-
sources [1]. However, these cores have the disadvantages of
reduced processor performance, higher power consumption
and larger size [2] compared to a configurable dataflow core.
While configurable computing has revealed its effectiveness
over parallel systems based on conventional core processors
[3], how to efficiently organize resources available at 14-nm
technology or less in terms of programmability and low power
consumption in more generally parallel architectures remains
an open question [4].
Dataflow configurable architectures were proposed by Miller
and Cocke [5]. Unlike in a von Neumann-based machine,
this class of ”configurables” used data flow as a method for
configuring a computer to directly execute dataflow graphs –
the Interconnection and Search Mode Configurables – where
the natural and inherent parallelism of a program was ex-
ploited during its execution, forming, thus, the basic model
for dataflow machines [6]. Even though several dataflow
architectures [7] have been proposed, most of them fall into
the search mode configurable [8]. Only one is partially of an
interconnection mode type and partially of a search mode type
[9], whereas our configurable Dataflow-core (hereinafter DF-
core) proposal is of the interconnection mode architecture type.
Here we discuss a new concept of core that eliminates both
temporary data and instructions as traffic over the memory, that
can be effectively and efficiently supported also by FPGAs,
with adequate interconnect resources, or ASICs.

The idea is to make available a core that provides data
processing after loading dataflow instructions, according to the
demand-data driven co-design approach [10] rather than con-
trol flow instructions. In addition, dataflow instructions serve
here both to describe a program and to change its structure on-
the-fly, without the need for a partial or full reconfiguration.
Our intended design aims to provide the performance of an

TABLE I. DF-CORE OPERATOR SET

Arithmetic ADD SUB MULT
Comparison EQ NEQ GE GT LE LT
Special ABS LST SL SR

interconnection mode dataflow architecture and the flexibility
of reconfiguration without the need for passing a new bit-
stream like in FPGAs.
The remainder of this paper is organized as follows. Section II
presents the DF-core ISA; Section III describes the DF-core
architecture, Section IV provides our conclusions.

II. THE DF-CORE INSTRUCTION SET

In contrast to a conventional core processor that is mainly
based on a RISC architecture, the DF-core has a custom
architecture derived from the co-design process between the
functional programming and the dataflow execution principles,
given their strict relationship. The former creates a dataflow
program graph by demanding a function for its operands (lazy
evaluation) driven by the need for the function values. The
latter executes such a graph in dataflow mode by consuming
operands (eager evaluation). In our case we used an FP-based
programming language [11] together with the homogeneous
High Level Dataflow System (hHLDS) model [12].

A. hHLDS overview

Briefly, in hHLDS a dataflow program graph (DPG) is a
directed fine-grain graph where nodes are operators (actors) or
links (places to hold tokens) with homogeneous I/O conditions
on actors–they can only have exactly one output and two
input arcs and can consume and produce only data tokens–
while links represent only connections between arcs rather
than pointers to other dataflow instructions. To preserve the I/O
condition homogeneity, merge, switch and logic-gate actors are
not present, therefore actors cannot produce control tokens.
Links can be: i) Joint, where two or more input arcs can
coexist; ii) Replica, where the output is reproduced over more
than one arc. While actors are determinate, joint links are not
determinate. Despite the model simplicity, with the hHLDS
it is always possible to obtain determinate DPGs including
data-dependent ones (proofs are given in [12]). Furthermore,
the DPG evaluation is strict [13] but actors only fire when
two input tokens are valid1. So no feedback interpretation
or synchronization mechanism is needed to execute a DPG
correctly, and its execution is completely asynchronous.

B. The elemental operator set

The operator set we obtained in co-design, shown in
Table I, is both functionally complete – more complex func-

1The validity is the intrinsic token’s property that allows an actor to fire.
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Fig. 1. Example of a program DPG: (a) the DF-core assembly language, (b)
the graphical representation.

tions (higher order) are created combining such operators by
means of the metacomposition rule [11] – and consistent with
hHLDS. When compiled with a program written in FP style
that includes such operators, the produced DPG, or a context2
of it, can be directly executed by the DF-core. As the set does
not include logical operators (and, or, xor) because hHLDS
does not support control tokens, their functionality can be
expressed by higher order functions. For the division operation,
when the divisor is a constant value, its reciprocal is computed
at compile time, but a general solution is work in progress.
The special operator ABS , prefixed to an arithmetic operator,
produces the absolute value of the corresponding operation.
LST is the loop start operator employed in data-dependent
cycles [14], and SL and SR are the operators that select the
left or right actor token respectively.

C. The assembly language

The DF-core provides programming in a custom assembly
language which is the same graphical representation language
that describes the dataflow graph of a program. A program in
this assembly language is a collection of standard instructions
named expressions that form a DPG. Each expression refers
to an actor and specifies its functionality:

αi Ω τL τR δO

where αi represents the actor identifier, Ω is the operation the
actor performs, τL and τR are the left and right input tokens,
and δO is the actor or actor list of identifiers separated by the
- (dash) character that has/have to receive its operation result.
If the result is final, δO is tagged out. Regarding τL and τR,
the language distinguishes external and internal data values.
External data: if the data is known at compile time, its
value starts with the % character. Once consumed, it becomes
invalid, i.e., unable to fire an actor. If it is known at run time
(e.g., produced by an external event), its value is represented
with two % characters. If it is a constant value in the program,
its value ends with the % and remains valid until the context
changes.
Internal data: This is the value produced by a previous actor
for another actor. It remains valid until the producer actor fires
again. It is an integer that represents the numeric identifier of
the actor that produced such data.
As an example, consider a sample program that receives in

streaming couples of a and b values in order to compute their
absolute value. If the value is greater than 0.1, the token 5
is selected, otherwise the token 8. Finally, the result is scaled
by a factor of 3. The code and its graphical representation
are shown in Fig. 1.(a) and Fig. 1.(b) respectively. We would

2With the term context we call a DPG that fits in the accelerator. Larger
DPGs are partitioned in suitable contexts.

like to point out that the two actors GT (greater) and LE
(less or equal) are mutually exclusive, so only an actor that
satisfies the predicate produces a valid token whose value is
0, while the other produces a non-valid (don’t care) token.
This feature simplifies the design of the DF-core accelerator
making it possible to use only identical Dataflow Functional
Units (DFUs) and only data wires to connect them.
During the translation of an assembly code, the assembler
generates three machine codes that describe a DPG operation:
the graph interconnect code, which defines the interconnection
between actors; the actor operating code, which defines, for
each actor, its operation and role in the DPG; and the input
token code, which defines the tokens assigned to initial actors
to start the computation. Unlike with conventional instructions,
this split makes it feasible to run a DPG by first configuring
the accelerator within the DPG context and then activating its
execution via the program input tokens. It is possible to overlap
an execution and a new context preloading.

III. THE DATAFLOW-CORE ARCHITECTURE
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Fig. 2. (a) the Dataflow-core, (b) the Management Module.

Several reasons shaped the design of the Dataflow-core
(DF-core). First, we wanted to map dataflow graphs onto
hardware in a more flexible way than traditional HLS tools
allow. Second, we wanted to combine straightforward data flow
control with an actor firing mechanism at a minimal hardware
cost. Third, we wanted to avoid the traffic generated by load
and store instructions in order to improve performance. Finally,
we wanted to explore the possibility of using primitive func-
tions of a functional language for a more effective translation
into data-flow assembly.
The DF-core consists of two main modules (Fig. 2.(a)):

- Management Module, dedicated to managing the DPG
contexts and/or the data tokens list for execution on
the Accelerator Module;

- Accelerator Module, dedicated to executing DPG con-
texts.

A. The Management Module Architecture

It is constituted by three fundamental submodules
(Fig. 2.(b)):

- Context Configuration Manager (CCM). Once the
contexts generated by the compiler are stored in
the Context Configuration Memory (a small local
memory), they can be loaded dynamically into the
accelerator as soon as the SNC signal (Send-Next-
Configuration) is activated by the Context Scheduler
submodule.
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- Parallel Memory Processor (PMP). It takes care of the
initial input data and collects the final output data that
are processed by the accelerator. Once the scheduler
enables the SID (Send-Initial-Data) signal, the PMP:
(i) Prepares the transfer of the initial data tokens to the
accelerator module; (ii) Collects the result data tokens
as soon as they are ready at the output buffer registers;
(iii) Sends a termination signal to the scheduler when
the computation ends.

- Context SCheduler (CSC): (i) Implements the schedul-
ing policy (defined after the partitioning and mapping
activities) for the contexts allocated on the CCM; (ii)
Sends enabling signals to the CCM and to the PMP;
(iii) Manages the interaction with the Host.

B. The Accelerator Module Architecture

The accelerator, shown in Fig. 3.(a), is composed of a DF-
Code Memory, a custom crossbar switch (DFU Interconnect)
and k = 64 identical and thin DFUs3 (a possible instance).

DF-Code Memory. It stores the contexts ready for execu-
tion. The DFU interconnect code memory is a register that is
dedicated to storing the interconnect code (2 × k × ⌈log2 k⌉
bits). The DFU operating code memory is a register collection
(k × 10-bits) that stores the operating code for each DFU.
To simplify the transfer of information from the Management
Module to the accelerator there is a dedicated bus under the
supervision of the Management module.

Dataflow Functional Unit. A DFU (Fig. 3.(b)) implements
any hHLDS actor. It consumes two 33-bit (32-bit data and 1-bit
validity) valid tokens (DFUIn1 and DFUIn2) and produces one
33-bit token (DFUOut). If the token is invalid, its validity bit
is set to 0. A DFU is composed of an extended ALU (eALU)
(arithmetic, multiplier, and etc.) that implements the operator
set, a firing unit that ensures the right behavior, and of a 10-
bit operating code register, which holds 5-bit for the eALU

3The actual number of DFUs, the associated DFU Interconnect, and the
DF-Code memory can vary according to the available on-chip resources.
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Fig. 5. DF-core organization for the inner products. Device-2: (a) n = 32,
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operations and 5-bit for the firing unit that specify the DFU
context (constant token, token streaming, loop, pipelining, and
conditional participation).
Firing unit and DFU operation. When a valid input data-token
reaches the DFU, the firing unit catches its validity bit to match
the partner operand. As soon as the match occurs, an enabling
signal activates the DFU inputs to acquire the two data tokens
(DFUIn1 and DFIn2) so that the operation stored in the register
can take place – we call this self-scheduling of the operator.
After the (fixed) known time for the eALU operation, the firing
unit generates the validity bit for the output token, enables the
output (if the validity is 1) making thus available the result
token, and resets the values of the two validity bits previously
caught. Afterwards, a new firing process can start.

DFU Interconnect. It consists of a custom crossbar grid
of wires connected by switching elements (Fig. 4) that allow
for the connection of any DFU output to any DFU input,
except itself, or to the PMP in the Management Module.
All switches along a column are controlled by a ⌈log2 k⌉-
to-k decoder whose control-signals come directly from the
dedicated registers of the DFU Interconnect code memory.
Across a row only a valid token can exist.This feature is
essential for implementing conditional and cyclic structures
in conformance with the hHLDS model.
Because the interconnect handles a large number of inputs
and outputs, it is a crucial component of this architecture.
Therefore, its sizing is chosen based on chip capabilities. Nev-
ertheless, it is possible to implement a crossbar interconnecting
128 tiles with an area cost of 6% of the total [15].

C. DF-core characterization

Our DF-core instance consists of k = 64 DFU units
and executes operations on 32-fixed-point operands. For its
implementation we used a custom board demonstrator with two
Altera APEX20K1500E devices. Device-1 is dedicated to the
implementation of the Context module plus 32 DFUs. Device-
2 is dedicated to the implementation of the Accelerator module
with 32 DFUs and the custom crossbar Interconnect (due to the
Interconnect area penalty). Please note that in a previous paper
[14] we evaluated the latencies of a DFU, register-to-register,
and the context switch which are 30 ns, 7 ns (device-to-device
registers) and 4 ns (internal registers), and 32 ns respectively.

D. Potentiality of the DF-core: an evaluation test case

The test case evaluates the product of matrices C(n, n) =
A(n, n) × B(n, n) [16]. In the dataflow assembly it consists
of n2 independent inner products (IPs) whose DPGs are
organized in identically reversed binary-trees, each formed of
n multiplications and n−1 additions sequenced in ⌈log2n⌉+1
levels. By virtue of its DPG shape, the inner product is well



suited for a naturally pipelined execution. Anyway, thanks to
the DF-core architecture and the assembly language, pipelined
execution can be used for any DPG computation if initial
data occurs in streaming manner. Here we do not discuss this
because out of our purpose.
For the test we used n = 32 and n = 64, with all matrix
elements reside in the local data memory of the Context
Management module. For n = 32 the inner product (IP) DPG
is wholly mapped onto the DF-core, by means of 63 of the 64
DFUs available (Fig. 5.(a)). For n = 64 we first split the DPG
into two sub-DPGs as in n = 32, then we execute the two inner
products IP’= na′

i/2
× nb′

j/2
and IP”= na′′

i/2
× nb′′

j/2
, and use

the DFU #64 to add the two results as shown in Fig. 5.(b). We
would like to point out that this decomposition does not hinder
the throughput of the pipeline because the DPG in Fig. 5.(b)
behaves as if all the required DFUs were in the DF-core but
the number of IPs to execute doubles.

1) Matrix multiplication execution: The parallel execution
of the 32 multiplications on the Management module requires
the transfer of 2 × 32 = 64 tokens (In1 and In2) from
the PMP local memory to the 32 DFUs. As a token is 33
bits, the total number of bits to transfer to the 32 DFUs is
33 × 64 = 2112. By using the internal FPGA interconnect,
we transfer 2 × 4 tokens (264 + 264 bits) at a time. In total
this takes 8× internal register-to-register transfers and has a
latency equal to 8 × 4 = 32 ns, while the multiplication
needs 30 ns. Transferring 32 × 33-bit tokens of the product
from the Management module to the accelerator requires 4×
external register-to-register transfers and latency of 4×7 = 28
ns, whereas inside the accelerator the transfer from the input
buffers to the first 16 DFUs requires latency of 4×4 = 16 ns.

When n = 32, we need 30 ns for each additional level
(log2(32) + 1 = 6 total levels) and 11 ns to transfer cij
back to the management module. Therefore, the pipeline
requires a number of stages ns = 11 to fill the pipeline
with a stage latency τs = 32 ns (clock rate 31,2MHz) with
τs = Max(τsi). The total number of cycles nc required for
the matrix multiplication is nc = 322 + 11 = 1035.
When n = 64, the DFSC processor requires the same latencies
as with n = 32 up to the DFU #63. Then the DFU #64, through
the two cascaded latches L1 and L2 in Fig. 5.b, produces
cij . In this case we add the first latch latency (4ns) to the
DFU #63 latency while the second latch latency is added to
the DFU #64 latency. Consequently, we have τs = 34 ns,
nl = log2(64) + 1 = 7 number of levels in the accelerator,
and ns = 13, while the number of IPs doubles. The total
number of cycles nc required for the matrix multiplication, in
this case, is nc = 2× 642 + 13 = 8205.
As we can see, the results show that a DF-core really flushes
out traffic over the memory during a computation and reduces
its complexity to O(n2) in comparison with a conventional
core where the computation complexity of the matrix multi-
plication algorithm is O(n3) included the number of memory
operations.

IV. CONCLUSIONS

This paper presented a new type of core, named Dataflow-
core (DF-core), which executes dataflow program graphs by
means of a dataflow computing module commanded by an
ad hoc memory module, instead of control flow instructions.
As well as dataflow architectures proposed till now, which
eliminate the program counter, this new concept of core

eliminates both temporary data and instructions as traffic over
the memory, as well. This feature is obtained through a
configurable interconnection that connects identical and thin
dataflow functional units. Moreover, such units are able to
execute any operator of a set of them originated in co-design
between the homogeneous High Level Dataflow System and
a programming language in Backus-style FP. We believe that
this concept needs further development but represents a first
step toward a more flexible execution of generic programs on
a scalable, reconfigurable platform. The DF-core introduces
a new level of programmability that enhances the utility of
FPGA platforms through the use of dataflow program graphs
rather than pretending to convert Control-Flow instructions.
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