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Abstract—The CUDA execution model of Nvidia’s GPUs is
based on the asynchronous execution of thread blocks, where
each thread executes the same kernel in a data-parallel fashion.
When threads in different thread blocks need to synchronise and
communicate, the whole computation launched onto the GPU
needs to be stopped and re-invoked in order to facilitate inter-
block synchronisations and communication.

The need for synchronisation is tightly connected with the un-
derlying data dependency pattern of the computation. For a good
range of algorithms, the underlying data dependency pattern is
static, scalable and shows some regularity. For instance, sorting
networks, the Fast Fourier Transform, stencil computations of
PDE solvers are such examples, but parallel design patterns like
scan, reduce, and alike can also be considered. In such cases,
much of the effort of devising and scheduling CUDA kernels for
the computation can be automatized by exposing the dataflow
representation of the computation in the program code using a
dedicated API.

We present a methodology to build a generic kernel scheduler
and related kernel parameterised by this API. A computation
formalised in the terms of this API then serves as the entry point
to these generic computational mechanisms, leading to direct
CUDA implementations.

I. Introduction
Over the last decade, Graphics Processing Units (GPUs),

originally developed to accelerate real-time graphics of game
applications, have matured into very powerful computing
devices. Non-graphics oriented communities soon realised the
huge potential of GPU computing power for general purpose
computations as well. This prompted graphics vendors to
search for higher level programming models that would enable
users to program GPUs without the need of wrapping their
code in graphics specific terminologies like texture, vertex,
framebuffer, shading, rendering, and alike. After several ini-
tiatives, for instance ATI’s CloseToMetal [1], Stanford Uni-
versity’s BrookGPU [2], or RapidMind’s Sh [3], Nvidia’s
CUDA [4] programming model set a lasting example after its
first appearance in late 2006 [5]. CUDA also influenced the
first release of OpenCL in 2009 [6], which is now supported by
many hardware vendors as an emerging language extension-
based open standard to program heterogeneous systems.

In this paper, we focus on the CUDA execution model of
Nvidia’s GPUs which is based on a single-program multiple-
data (SPMD) programming style. In CUDA terminology, a
single-program is called a kernel, and a kernel is executed
by thread blocks. Candidate computations to be executed on
a GPU are in general data-parallel and compute intensive.

The more computation-focused the kernel is, without the
need to synchronise threads, the better. Threads, however,
need to communicate and synchronise unless the computation
is embarrassingly parallel. Given the execution model of
CUDA based on the asynchronous execution of thread blocks,
when threads in different thread blocks need to synchronise,
the whole computation launched onto the GPU needs to
be stopped and re-invoked in order to facilitate inter-block
communication.

The need for synchronisation is tightly connected with
the underlying data dependency pattern of the computation.
After all, it is the flow of data and the presence or lack of
dependencies between computational steps which determine
any parallel execution. Looking at a computation as a whole,
it is often difficult to handcraft the exact time-steps when
synchronisation is needed. For instance, the bitonic sort is a
divide and conquer algorithm, not readily portable to GPUs.
When devising a data-parallel GPU execution for the bitonic
sort, we need to rigorously consider the underlying sorting
network determined by the algorithm. Based on that, we define
the kernel and determine when intra-block and inter-block
synchronisations are needed amongst the threads. The latter
requires the kernel to be re-invoked. The number of kernel
invocations also depends on the size of the thread blocks.

For a good range of algorithms much of this effort can
be automatised by exploiting the underlying data dependency
pattern of the computations. These are primarily computations
based on static, scalable data dependencies where the patterns
show some regularity. For instance, sorting networks, the Fast
Fourier Transform (FFT), stencil computations of PDE solvers
are such examples, but parallel design patterns like scan,
reduce, and alike can also be considered.

The proposed methodology is based on a programming style
in which data dependencies are defined in the source code
as implementations of a specific Application Programming
Interface (API), the Data Dependency Algebra (DDA) spec-
ification [7]. The data dependency pattern can be referenced
trough its API allowing computations to be defined explicitly
in terms of their local data dependencies. The DDA abstraction
in the program code naturally entails code generation based on
dataflow principles. This has been presented for various back-
ends, from shared- and distributed-memory model computers,
via GPUs to Field Programmable Gate Arrays (FPGAs) [8],
[9], [10].
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Further exploiting the use of DDA API, the contribution of
this paper consists of the presentation of:
• a kernel scheduler which automatically schedules CUDA

kernels, and
• a data-dependency driven kernel body.
The paper is organised as follows. The next section briefly

describes the CUDA programming model. In Section III, we
show how to define a computation to explicitly reference its
local data dependencies in the code, illustrating this on the
Fast Fourier Transform as a canonical example. In Sections IV
and V, we present the kernel scheduler and the kernel body,
respectively, based on the DDA API. Section VI discusses the
performance model. Finally, in section VII, we present some
related work, before we conclude in section VIII.

II. The CUDA ProgrammingModel

In CUDA [4], the GPU operates as a Co-processor to the
main CPU. The GPU is capable of handling a huge number
of parallel threads each executing the same kernel. The total
number of CUDA threads that execute a kernel is configured
by the main program running on the host when the kernel is
launched onto the device. The threads are organised in grid
of thread blocks. A thread block contains a limited number
of threads, but a grid of blocks may contain any (reasonable)
number of blocks. The actual figures are device dependent.
Newer GPUs are as a general rule capable of handling an
increased number of threads due to the gradual developments
in the device architecture.

Each thread executing the kernel is automatically assigned
a unique thread and block ID accessible through built-in
variables. Through these, threads can access/write specific
segments of the GPU memory.

The cores on the GPU device are organised in multiproces-
sors (MP). Each thread block is run on one and only one MP.
Threads within one block therefore can synchronize and share
data through fast on-chip shared memory. The CUDA run-
time is responsible for scheduling the thread blocks for parallel
execution on the multiprocessors. There is no guarantee as to
which blocks run physically in parallel at a time, or in which
order blocks are sequenced. Therefore, threads in different
blocks can only communicate asynchronously via the main
GPU memory, and in practice are unable to exchange informa-
tion within the same kernel. However, since the GPU memory
is persistent across kernels, inter-block communications can
always be attained by ending and re-invoking the kernel. The
GPU memory is also a means for initialising computations and
obtaining results.

We can abstract over this execution model by introducing a
CUDA Space-Time API. We denote by T and B the number
of threads per block, and the number of blocks that execute
the kernel, respectively. The type CudaT presents us with a
space-time thread, in which a thread is considered at a given
time-step along the kernel execution.

1 struct CudaT {
2 ThreadT thread;
3 unsigned int time;

4 };
5

6 struct ThreadT {
7 unsigned int blockIdx;
8 unsigned int threadIdx;
9 };

10

11 bool DI (ThreadT t) {
12 return ((t.blockIdx < B) && (t.threadIdx < T)); }

In order to abstract over when space-time threads can
synchronise within a block or outside block boundaries, we
can use conveniently the thread type ThreadT to identify
ingoing and outgoing communication channels between space-
time threads along consecutive time-steps:

1 CudaT in(CudaT t, ThreadT ch) {
2 return {ch, t.time-1};
3 }
4

5 CudaT out(CudaT t, ThreadT ch) {
6 return {ch, t.time+1};
7 }

Whenever
in(t, ch).thread.blockIdx == t.thread.blockIdx;

the ingoing communication channel at space-time thread t

from space-time thread ch in the previous time-step is within
block boundaries. Otherwise it crosses block boundaries, in-
dicating the need for a new kernel invocation.

Likewise, whenever
out(t, ch).thread.blockIdx == t.thread.blockIdx;

the outgoing communication channel at space-time thread t
to space-time thread ch in the next time-step is within block
boundaries, otherwise crosses block boundaries.

III. Programming with Static Data Dependencies
In this section, we present the DDA API as a means of

data dependency based programming [11]. The Fast Fourier
Transform (FFT), being one of the most important numerical
algorithms of many engineering applications, will serve as an
illustration. Central to this approach is that the underlying data
dependency graph of a computation is defined in terms of a
specific API rather than a graph data structure stored in the
memory.

The DDA API specification consists of two generic types:
Point to define the graph points, and Branch to differentiate

between all producer and all consumer arcs at each point
using branch indices. In addition, the API specifies two sets of
function declarations on these types. These are to define point-
to-point dependencies in both the request (consumer) and
supply (producer) directions along a dependency arc. The re-
quest function Point rp(Point,Branch) is to be called only
when the guard bool rg(Point,Branch) holds. The guard
bool rg(Point,Branch) determines which branch indices are

in particular used at a point to differentiate amongst all the
request directions at the point. The supply component of the
API defines the opposite direction, being dual of the request.

The underlying data dependency graph of the Radix-2 FFT
is the butterfly dependency pattern, see Fig. 1. Using the
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Fig. 1. FFT data dependency for h=5. The direction of the arrows corresponds
to the request (consumer) directions. The FFT progresses bottom-up along this
data dependency graph.

DDA API specification, we define the butterfly pattern by
implementing all components of the API as follows:

1 unsigned int h;
2

3 typedef unsigned int Branch;
4

5 struct Point {
6 unsigned int row;
7 unsigned int col;
8 };
9

10 bool DI (Point p) {
11 return ((p.row<=h) && (p.col<2ˆh));
12 }
13

14 bool rg (Point p, Branch b) {
15 return ( ((b==0) || (b==1)) && (p.row>0) );
16 }
17

18 Point rp(Point p, Branch b) {
19 if (b==0) return {p.row-1, p.col};
20 else return {p.row-1, flip(p.row, p.col)};
21 }
22

23 bool sg (Point p, Branch b) {
24 return ( ((b==0) || (b==1)) && (p.row<h) );
25 }
26

27 Point sp(Point p, Branch b) {
28 if (b==0) return {p.row+1, p.col};
29 else return {p.row+1, flip(p.row+1, p.col)};
30 }

where flip(i, m) flips the i-th bit in the h-bit binary
representation of m.

The variable h (line 1) defines the height of the graph which
ultimately determines the size of the underlying grid. The
shape of the grid is controlled by the data-invariant DI (line
10) which for a given h restricts the values of the type Point
to the actual grid points. Branch directions are considered local
at each point in the graph. In the FFT, 0 denotes all vertical
directions, and 1 all directions across.

The computations performed by the FFT are defined in
terms of the DDA API at each point. Let v be an array of

complex numbers such that the elements of v are uniquely
indexed by the type Point . First, v is initialised at the
indices corresponding to the bottom row in the FFT. Explicitly
utilising the local dependencies at each point given by rp , the
rest of v can be computed by repeatedly calling the following
function on points for which the local dependencies are met
(we introduced the shortcuts row = p.row; col = p.col ):

1 complex fft(Point p){
2 return ((col < rp(p,1).col) ?
3 v[rp(p,0)] + v[rp(p,1)]*w(rev(col>>h-row)):
4 v[rp(p,1)] + v[rp(p,0)]*w(rev(col>>h-row)));
5 }

where rev(m) reverses the bits-order in the h-bit binary
representation of m, and w(m) denotes ωm, where ω is the
primitive 2h-th root of unity.

The order in which fft is called to fill in the values of v
is now a matter of how the dataflow information provided in
the DDA is utilised.

In order to execute the FFT in CUDA, we need to embed the
FFT DDA into the CUDA Space-Time API. This is facilitated
by embedding FFT points to space-time CUDA threads, and
data dependency arcs to communication channels between
space-time threads.

1 CudaT em(Point p){
2 ThreadT t = {idiv(p.col,T), mod(p.col,T)};
3 return {t, p.row};
4 }
5

6 ThreadT emR(Point p, Branch b){
7 return em(rp(p,b)).thread;
8 }
9

10 ThreadT emS(Point p, Branch b){
11 return em(sp(p,b)).thread;
12 }

We control the granularity of the embedding. We could
assign the same space-time thread to a group of DDA points in
a row. However, to keep our presentation simple, we assume
that our embedding is injective, i.e., each DDA point is
assigned uniquely a space-time thread. We discuss granularity
issues in Section VI.

In general, the DDA concept yields dependency-driven
computational mechanisms for various parallel hardware based
on dataflow principles [9]. These are parameterised by:

• the DDA API, together with
• a function ElementT f(Point) which defines how the

value at a DDA point of some type ElementT is to be
computed utilising the DDA API (like the funciton fft ),
and

• an embedding of the DDA into the execution model of
the hardware abstracted away as a Space-Time API.

For any algorithm expressed in this formalism, the compu-
tational mechanisms can be instantiated to yield the desired
executable.

The embedding is only useful if it consistently maps
request/supply directions of the DDA to incoming/outgoing



communications channels in the hardware, across the whole
DDA:
• em(rp(p,b)) == in(em(p),emR(p,b))

• em(sp(p,b)) == out(em(p),emS(p,b))

One can easily verify that the embeddings defined for the
FFT above satisfy these requirements.

We are now ready to define the body of a kernel utilising
the DDA API. Such a kernel, instantiated for the FFT, will
be executed by 2h number of threads gradually filling in the
missing parts of a device version of v . Since in the general
case threads require cross-block communication, we first build
a kernel scheduler. This is directly related to the embedding.

IV. CUDA Kernel Scheduler

In general, the CUDA execution of a computation is based
on repeated kernel invocations, unless the particular problem
we are dealing with is embarrassingly parallel (no dependency
exists between the parallel parts), or it is small enough to be
executed by a single thread block. Kernels should only run as
long as intra-block communication is guaranteed, otherwise
they need to be ended and re-invoked. The exact time-steps
for invoking and ending a kernel is an inherent property of the
embedding of the DDA into the CUDA Space-Time and is in
fact independent from the actual computations performed at a
point. This property is made concrete next.

We denote by tmax the maximum time-step of the embed-
dings, i.e., em(p).time<=tmax for all DDA points. (In case
of the FFT embedding, tmax = h .) The kernel scheduler will
use a support array K , the schedule-array, which contains
all time-steps when a kernel has to be ended. Algorithm 1
presents the pseudo-code for computing K .

1 i=0;
2 t=0;
3 while t<tmax do
4 onlyWithinBlock=True;
5 forall the DDA points s.t. em(p).time=t do
6 if for some b
7 (em(p).thread.blockIdx !=

em(sp(p,b)).thread.blockIdx) then
8 onlyWithinBlock=False;
9 end

10 end
11 if onlyWithinBlock==False then
12 K[i]=t;
13 i++

14 end
15 t++;
16 end
17 K[i] = tmax;

Algorithm 1: Computing the schedule-array.

The algorithm computing K is parsing all DDA point
embeddings. For all points embedded with the same time
component (line 5), it is checked whether any of these have

a supply direction leading to a DDA point embedded into a
different thread block (line 7). If so, then we record this time-
step in K , indicating that the kernel has to be ended here.

The CUDA Kernel Scheduler (Algorithm 2) is run on the
host. It will systematically invoke CUDA kernels of dimension
B*T , one at a time, based on the schedule-array K . The start

and end time-steps of the kernel are specified int the kernel
argument-list, fetched from K . The other parameters in the
argument-list, d and ig are specified when discussing the
kernel body.

The first kernel is invoked at time-step 0 , and runs until
time-step K[0] . When a kernel is ended at some time-step
K[i] , it is re-invoked at the next time-step K[i]+1 , unless
K[i]=tmax , and runs until time-step K[i+1] . If the length

of K is tmax+1 , the kernel is ended at every time-step and
re-invoked at the next time-step. When the length of K is 1 ,
i.e., when K[0]=tmax , the kernel is invoked once.

1 kernel<<B,T>>(d,ig,0,K[0]);
2 if K[0]<tmax then
3 i=1;
4 while K[i]<=tmax do
5 kernel<<B,T>>(d,ig,K[i-1]+1,K[i]);
6 i++;
7 end
8 end

Algorithm 2: CUDA Kernel Scheduler.

Fig. 2 illustrates the conceptual overview of the kernel
scheduler for FFT embedded into the CUDA Space-Time. The
length of K depends on the embedding, and ultimately on
B and T . Larger the T , less inter-block communication is

involved.
A more elaborate kernel scheduler instead of pre-computing

the entire array K would compute every next entry in the
schedule array on-the-fly right after a kernel has just been
invoked. This could speed up the accumulated total execution
time, since CUDA allows concurrent execution between host
and GPU device, i.e., control is returned to the host before
the device has completed the requested task. On the other
hand, building the schedule array can always be considered
fixed and shipped with the embedding. It is independent of
the computations performed at the DDA points or any input
data.

V. Kernel Body

The kernel is invoked by the scheduler in lines 1 and 5. In
previous work [9], we described a kernel that explicitly utilises
the supply component of the DDA API, following dataflow
principles [9]. Here, we present an alternative kernel which
utilises the request component instead.

CUDA differentiates between host and device memory. The
GPU can only write/access data stored on the GPU. The
host manages the memory spaces visible to kernels (e.g. its
arguments) through calls to the CUDA run-time. This includes



device memory allocation and deallocation as well as data
transfer between host and device memory. We will, therefore,
skip presenting the fine details of this memory management,
they are being specific to CUDA and straightforward in the
context of a given kernel.

The kernel has 4 arguments: (d, ig, start, end) , where
d is a device array which prior to the first kernel invocation

is a copy of the host array v . Some elements of v (and
hence of d ) will be defined, these representing the initial
values from which the computation start. (In the FFT, these
will be the elements corresponding to the bottom row, but in
order to maintain generality, we assume that the computation
can be initialised anywhere in the DDA graph.) Since, from a
computational point of view, d (and v also) are partially
defined (not all values are computed yet), we assume a
guard will keep track of that: ig(i)=true whenever d[i]
is defined. Both d and its guard ig are device arrays and
are updated on the GPU memory by the threads across all
kernels. We consider the result of the whole computation to
be the device array d together with its guard. The last two
arguments, start and end will mark the time-steps for
starting and terminating the kernel, respectively.

Let f be the function describing how the values of v are to
be defined. The CUDA run-time requires any function callable
on the GPU to be explicitly declared as a device function,
preceded by the __device keyword. Therefore, we assume a
device version of f , and a device version of the DDA API
implementation, in our further discussion.

The request-based kernel execution will gradually fill the
elements of the device array d as follows.

The device array is distributed in the GPU memory such
that thread em(p).thread will compute d[p] at time-step
em(p).time , using f instantiated for d .

All thread across ThreadT will execute in parallel the
body of the kernel described in Algorithm 3.

Proposition. When the kernel scheduler of Algorithm 2 using
the kernel body of Algorithm 3 finishes, the device array d
will be filled with all values that can possibly be computed

K[0]=0

K[1]=1

K[2]=2

K[3]=4

blockIdx = 0

0 1 2 3 0 1 2 3 0 1 2 30 1 2 3

blockIdx = 1 blockIdx = 2 blockIdx = 3 Kernel
Scheduler

GPU CPU

Fig. 2. FFT embedded into the CUDA Space-Time API with B=4 and T=4.

1 t = thread.blockIdx * T + thread.threadIdx;
2 i = start;
3 while i<=end do
4 Point p={t, i};
5 if DI(p) then /* p is a valid DDA point */

6 if !ig[p] && (ig[rp(p,b)] whenever rg(p,b))
then /* d[p] is ready to be computed */

7 d[p]=f(p);
8 ig[p]=True;
9 end

10 end
11 __syncthreads();
12 i++;
13 end

Algorithm 3: Kernel body utilising the request component
of the DDA.

from its initial values.

Proof. We assumed that in our embedding each DDA point is
assigned to exactly one space-time thread. Therefore line 4 in
Algorithm 3 ensures that (1) all DDA points will be served
by a thread at some point in time, and (2) we can uniquely
identify which DDA point the current space-time thread should
deal with. As the embedding may not be surjective, we need
the data invariant test in Line 5 to keep only those space-time
threads busy that has in fact been assigned a DDA point.

At every time-step, each thread executing the kernel com-
putes a new value in d , provided that the dependencies are
met at the point (line 6). The explicit synchronization in line
11 works across all the threads of a block, and for all blocks
individually (as allowed by the CUDA run-time). This and
the way the kernel scheduler is built ensure race-condition free
execution between threads of the same and of different blocks.
So the test whether all relevant dependencies of d[p] have
been computed, in line 6, is guaranteed to be correct. Even if
one of the dependencies is across block boundaries and has
not been computed by the time-step of the test, then it will
not be computed at all. (A very plausible scenario for this is
when d is “under”-initialised. Such undefined behaviour is
then further propagated along the dependencies.)

When the last kernel ends, the result of the computation
will be the entire device array d , with as many defined values,
indicated by ig , as possible computed from the initial values.

�

The FFT DDA is very regular, with initial values at the
bottom row, and with a computation proceeding in a data
parallel fashion from one row to the next. Other computations
may have less regular DDAs, and the computation might be
initialised at arbitrary DDA points. Nonetheless, the presented
computational mechanism, even for such less regular DDAs,
will compute all values that can be possibly computed given
the DDA and the initial values, in a controlled manner.



The kernel scheduler, suitably modified, may suspend
the kernel invocations prior to reaching the kernel sched-
ule entry tmax . To discuss this, we introduce tspan ,
the maximum number of time-steps spanned by a request:
em(p).time-em(rp(p,b)).time<=tspan for any DDA point.
This is a property of the embedding. (In case of the FFT
embedding tspan=1 .)

Using tspan , the scheduler can keep track of whether there
has been computed any new value in d over the last tspan
consecutive time-steps. If not, it checks whether all initial
values have already been consumed. This can be determined by
checking for all point p where d[p] , prior to the first kernel
invocation, was initialised whether em(p).time<K[i]-tspan
for the current kernel schedule entry K[i] . If so, then
the kernel scheduler can safely suspend the computation, as
nothing more can be computed from the initial values either.

The mechanism can deal with any computational DDA
embedded into the CUDA Space-Time API. Depending on
structural properties of the DDA, the mechanism may be fine-
tuned for better performance. For instance, if tspan=1 , and
all input points are embedded to the time-step marking the start
of the computation, a more efficient kernel could be devised.
Some of these issues will be discussed in the next section.

VI. PerformanceModel
Based on our experiments, the presented dependency-driven

computational mechanism raises several issues related to per-
formance and resource utilisation that need to be addressed.
We consider several alternatives in order to improve on these.
A thorough profiling of these to actually gain insight into
which technique suits best a certain setting is on the go.

A. Memory Usage
The computational model has control over storage space

utilisation on the GPU. The size of the arrays d and ig is
the same as the number of DDA points. Having this size makes
sense in a computation where all values computed along the
DDA are useful. In other computations, however, we might
be interested only in the final result, and not so much in the
intermediate values.

Considering the FFT, the target points are the ones corre-
sponding to the top row of the graph, where we read the result
of the computation:

1 bool target(Point p){
2 return (p.row == h);
3 }

The intermediate values computed up to row h-1 can
be casted once they have been used up as the computation
proceeds. This can be controlled by tspan .

We first modify the kernel’s argument list:
• introduce a new device array t dedicated to record the

computed target values,
• instead of d we use a window array and its guard of

size T*B*(tspan+1) , meant to act as a sliding window
over DDA points, where tspan+1 represents the height
of the window.

Accordingly, the body of the kernel is modified to let a
thread compute the value at point p (line 4) in terms of the
data recorded in the window array. A DDA point p={t,i}
corresponds to the point pp={t, mod(i,tspan+1)} in the
window array. If p is a target value, then the computed value

in window is recorded in t as well.
In CUDA, the host manages the main GPU memory, such

as allocation, deallocation, data movement between host and
device, and device and device. Hence the kernel scheduler
is responsible to “slide” the window over the DDA, thereby
casting the intermediate values that have been used. This
comes at the additional cost of device memory management.

In addition, a new schedule-array will be required, since
a kernel shouldn’t run longer than tspan consecutive time-
steps. In case of FFT, this would require the kernel to be
re-invoked at every time-step in order to let the scheduler to
advance the window. In other cases, several kernel invocations
may take place across large tspan time-steps. Therefore
we may choose to work with a sliding window of at least
tspan+1 high, but increase the height to balance out the

overhead caused by the additional kernel invocations.
In summary, device memory usage can be decreased at the

cost of increased workload on the kernel scheduler, increased
device memory management, and by possibly increasing the
number of kernel invocations.

B. Global vs. Shared Memory on the GPU

The CUDA memory model differentiate between high-
latency device memory (managed by the host) and low-latency,
on-chip shared memory available for threads within a thread
block.

The threads executing our kernel continuously access slow
GPU memory locations instead of fast on-chip memory.

When a kernel spans over 1 time-step, this is reasonable,
since the results need to be recorded in the device memory
to be ready for the next kernel. However, when the kernel
spans over several time-steps, and we are not interested in
keeping intermediate values, threads could do most of their
computations using local shared memory within the thread
block.

There is an efficient solution using this technique for DDAs
with tspan=1 , where initial values are provided at time-step
0, and target points are in the last time-step. The FFT DDA is
such, but most algorithms that we are targeting here have this
property: sorting networks, stencil computations, binary trees,
etc. In this case, instead of employing a sliding window, we use
two device arrays of size T*B : In and Out . The initial/inter-
mediate values are provided in the array In at the beginning
of the kernel, which in turn updates the array Out at the end
of the kernel with the new intermediate/final values. When
the kernel runs over several time-steps, i.e, end-start > 1 ,
threads first read the elements of the array In into the shared
memory, and continue with the computation described in the
kernel body (line 3-12) instantiated on shared-memory. After
the last time-step, threads update the array Out . The scheduler
then swaps the addresses of the arrays In and Out so that the



array In is updated with the new intermediate values in the
next kernel, but without the need of expensive device-to-device
copies. Due to fast memory accesses, this alternative gives
better execution time while device memory usage is reduced
to the minimum.

C. Granularity

We have seen that embeddings are programmable through
the presented APIs. Here we discuss some basic principles of
the embeddings which ultimately determine the granularity of
the computation, affecting overall execution time.

1. The proposed Space-Time API that abstracts over CUDA,
can be extended to abstract over a multi-GPU system. Assum-
ing we have a system with N CUDA GPUs, we allow kernels
to run on the GPUs with a non-uniform number of threads and
blocks across the GPUs, specified by the arrays T and B of
size N :

1 struct CudaT {
2 GpuT thread;
3 unsigned int time;
4 };
5

6 struct GpuT {
7 unsigned int gpuIdx;
8 unsigned int blockIdx;
9 unsigned int threadIdx;

10 };
11

12 bool DI (GpuT t) {
13 return ((t.gpuIdx<N) && (t.blockIdx < B[t.gpuIdx]) &&
14 (t.threadIdx < T[t.gpuIdx])); }

Embedding a DDA into this execution model follows the
same principle as the one presented earlier on which both the
kernel scheduler and kernel were built. Here we are able to
determine the exact time-step for inter-GPU communication
as well as inter-block communication within a GPU.

Whenever:
em(p).thread.gpuIdx == em(sp(p,b)).thread.gpuIdx

p and sp(p,b) are embedded onto the same GPU, oth-
erwise the scheduling need to facilitate a safe communication
between them. This abstraction obviously calls for a new
kernel scheduler which is now able to orchestrate kernels
and threads over a multi-GPU system in a controlled manner.
However, the principles are the same.

2. We can easily define different embeddings for the same
DDA into the same hardware in a flexible way. According to
the results of [12], well-chosen (injective) embeddings lead
to less kernel invocations which is considered desirable in
CUDA programming, and it is therefore worth considering
in this context.

3. By coarsening the embedding, the computational through-
put of a thread increases. This is achieved by embedding DDA
points into the CUDA space-time API such that a space-time
thread computes N values at a given time-step, instead of just
one value.

1 CudaT em(Point p){
2 unsigned int n = idiv(p.col, N);

3 ThreadT t = {idiv(n, T), mod(n, T)};
4 return {t, p.row};
5 }

Such embedding obviously changes the schedule-array,
leads to less kernel invocations, and requires the kernel body
to be adapted to allow a space-time thread to compute multi-
values of d .

VII. RelatedWork

Our focus on data dependency graphs makes as closely
related to approaches exploiting dataflow principles. This
framework calls for a micro dataflow representation of the
computation, separating computations from their local data
dependencies, and requires an abstract representation of the
hardware. In this paper, we focused on CUDA, as an inter-
mediate programming layer between the user and GPU, but
other layers such as OpenCL should also suit the approach. In
principle, any hardware that can be abstracted as a Space-Time
API, e.g., distributed-, shared-memory systems, can serve as
target platforms, offering a deterministic and data-race free
computational mechanism for them.

The programming model is restricted to computations that
can be represented as a static dataflow graph. This makes
the framework less general than more advanced dataflow-
focused approaches which can deal with dynamic graph rep-
resentations and are more general programming models for
heterogeneous platforms, such as CnC [13], [14], the Codelet
Model [15], Liquid metal [16] and Lime [17], Flexstream [18],
OmpSs [19], and STAPL [20], just to mention a few repre-
sentatives.

CnC’s separation of concerns based on graphs describing
the dependencies between serial pieces of code, in particular,
shows familiarity to our framework. CnC is a general macro
dataflow model, wheres the DDA-approach is based on a fine-
grained dataflow representation. STAPL’s skeleton framework
allows dataflow graphs to be built using parametric depen-
dencies propagated into a global dependency pattern. Our
focus on a dedicated API to represent data dependency graphs
also allows the building of larger graphs by the means of
combinators applied on DDA implementations. Currently, we
are investigating this technique to enhance the programming
model, enabling it to deal with dynamic dataflow graphs as
well.

VIII. Conclusion

This paper presents a general methodology to automatically
port computations with static scalable data dependencies to
the CUDA programming model of NVIDIA GPUs. This is
formalised around a fine-grained dataflow-based representation
of the computation using a dedicated API. The methodology
describes how to build a kernel scheduler and a related kernel
parameterised by this API.

A thorough profiling embracing a large set of examples for
the proposed computational mechanism and its alternatives is
on the go. The initial results show that there is a distinct
overhead caused by the additional machinery that drives the



computation via calls to the API and related embeddings when
compared to fine-tuned hand-coded CUDA versions. How-
ever, the early experiments also show that the computational
mechanism scales with the number of threads, making the
framework a promising approach to generate for a good range
of computations scalable CUDA code.
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Declarative programming for GPUs,” in Proceedings of the 23rd
international conference on Languages and compilers for parallel
computing, ser. LCPC’10. Berlin, Heidelberg: Springer-Verlag, 2011,
pp. 230–245. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1964536.1964552

[15] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using
a ”codelet” program execution model for exascale machines: Position
paper,” in Proceedings of the 1st International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, ser. EXADAPT
’11. New York, NY, USA: ACM, 2011, pp. 64–69. [Online]. Available:
http://doi.acm.org/10.1145/2000417.2000424

[16] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah, “Liquid
metal: Object-oriented programming across the hardware/software
boundary,” in Proceedings of the 22Nd European Conference on
Object-Oriented Programming, ser. ECOOP ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 76–103. [Online]. Available: http://dx.doi.
org/10.1007/978-3-540-70592-5 5

[17] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah, “Lime:
A java-compatible and synthesizable language for heterogeneous
architectures,” in Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications,
ser. OOPSLA ’10. New York, NY, USA: ACM, 2010, pp. 89–108.
[Online]. Available: http://doi.acm.org/10.1145/1869459.1869469

[18] A. H. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge,
and S. Mahlke, “Flextream: Adaptive compilation of streaming
applications for heterogeneous architectures,” in Proceedings of the
2009 18th International Conference on Parallel Architectures and
Compilation Techniques, ser. PACT ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 214–223. [Online]. Available:
http://dx.doi.org/10.1109/PACT.2009.39

[19] V. K. Elangovan, R. M. Badia, and E. Ayguadé, “Scalability and
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