A Holistic Dataflow-Inspired System Design

Stéphane Zuckerman, Haitao Wei
Guang R. Gao
Dept. of Electrical. and Computer. Eng.
University of Delaware
Newark DE, 19716, USA
Email: {szuckerm, hwei, ggao} @udel.edu

Abstract—Computer systems have undergone a fundamental
transformation recently, from single-core processors to devices
with increasingly higher core counts within a single chip. The
semi-conductor industry now faces the infamous power and
utilization walls. To meet these challenges, heterogeneity in
design, both at the architecture and technology levels, will be the
prevailing approach for energy efficient computing as specialized
cores, accelerators, efc., can eliminate the energy overheads
of general-purpose homogeneous cores. However, with future
technological challenges pointing in the direction of on-chip
heterogeneity, and because of the traditional difficulty of parallel
programming, it becomes imperative to produce new system
software stacks that can take advantage of the heterogeneous
hardware. As a case in point, the core count per chip continues
to increase dramatically while the available on-chip memory per
core is only getting marginally bigger. Thus, data locality, already
a must-have in high-performance computing, will become even
more critical as memory technology progresses. In turn, this
makes it crucial that new execution models be developed to
better exploit the trends of future heterogeneous computing in
many-core chips. To solve these issues, we propose a cross-cutting
cross-layer approach to address the challenges posed by future
heterogeneous many-core chips.

Index Terms—Dataflow; Codelets; Streaming; Heterogeneous
architecture

I. INTRODUCTION

Computer systems have undergone a fundamental trans-
formation from the single processor devices of the early
2000s to today’s (and future) devices with increasingly higher
core counts connected within a single chip. Parallelism is
ubiquitous and found at many levels of the entire hardware-
software stack. However, because of the physical limits faced
by the semiconductor industry, and because our ability to
achieve predictable performance improvements through tra-
ditional processor techniques has ended, there is a concrete
need for a comprehensive rethinking of our approach to
algorithm design, programming models, architecture design,
and system software design if we are to successfully exploit
parallelism and deliver scalability. In other words, we need to
bring breakthrough technology to face a new era in parallel
computing.

We take the position that future extreme-scale systems must
be rethought from the ground-up, taking into consideration
the program execution model, the underlying hardware ar-
chitecture, and the system software which bridges both. In
this context, we consider applications whose computations can
be naturally expressed as streams. To meet our objectives of
efficiently exploiting parallelism and delivering scalability in
stream processing, a number of challenges must be overcome,
including exploiting multi-grain parallelism, heterogeneous
hardware and workloads, and developing efficient resource
management mechanisms. There are three main problems to

Howard Wong
Jean-Luc Gaudiot
The Henry Samueli School of Engineering
University of California, Irvine
Irvine, CA 92697-2625, USA
Email: {hwwong, gaudiot} @uci.edu

Ahmed Louri
University of Arizona
1230 E. Speedway Blvd.
P.O. Box 210104
Tucson, AZ 85721-0104, USA
Email: louri @ece.arizona.edu

solve. First, We need to exploit both coarse-grain and fine-
grain parallelism. Second, we need to handle the problem
of heterogeneity of the computation load, and heterogeneity
of the computation type. Finally, We need to maximize lo-
cality and minimize data movement. They have an impact
on both performance and energy efficiency: (a) Some data
are continuously streaming through the data channels in the
dataflow graph; and (b) Some data are not streaming; they
should be placed in the shared memory hierarchy in order
to exploit locality and minimize data movement. To address
these challenges, several inter-related research aspects must
be explored in a new framework, SPARTA (Stream-based
Processor and Run-Time Architecture), and which includes:
(a) a novel program execution model (PXM), (b) a novel
architecture model, and (c) the resulting system software stack.

The remainder of this paper is as follows: Section
describes our proposed novel program execution model (PXM)
for streaming applications for extreme-scale systems; Sec-
tion describes our targeted architecture; Section m de-
scribes the system software required to bridge the PXM and
its underlying architecture; Section [V] describes work related
to our research; and we conclude in Section

II. THE SPARTA PROGRAM EXECUTION MODEL

Figure [I] presents an overview of a SPARTA system, from
the expression of a program to its execution on the type
of chip we envision in order to run highly efficient stream
programs. The remainder of this section decribes the PXM,
system architecture, and system software we believe is re-
quired to efficiently run stream programs on future extreme-
scale machines.

A. Extending the Codelet Model to Streams

Overall, we need to smoothly and optimally expose paral-
lelism by leveraging the power of asynchrony and developing
strategies to exploit its use in the Codelet Model into a
Streaming Codelet Model (SCM). Streaming Codelets are
codelets [1] with some key additional properties: An interface
must describe buffer sizes and latencies to ensure steady
state scheduling preferences in terms of resources. This is
required to implement software pipelining. The (Streaming)
Codelet Model favors “determinacy-by-default.” However, it
also allows for explicitly non-determinate behavior to deal
with inherently non-determinate situations, e.g., transaction
processing. In addition, an interface must be defined to express
interconnections between codelets, since some may be mapped
to different hardware parts in the system.

As a result, this PXM must help hide bulk data transfer
latency and scheduling channels, and reduce the complexity



Compiler

"
i - Gener zation
+  Gener
O

al Optimizatior
Streaming Codelet
Program + Hints

* Fine-grained
Parallelism

« Buffer Allocation

* Bandwidth
Allocation

assigned to Tile 1
Intra-tile
Runtime
System

Stream Module2

Stream Stream
Module1 Stream Module3 Modules

Stream Moduled

Optimization
Hints for
Runtime

Optimization Hints

Streaming Codelets Graph(SCG):
Circles represent stream modules of
codelets, arrows represent streams.

Stream Module2 (3 codelets):

o e
1 ™
m =
] © ES ©
=
Accslerator
z
Memony lerator2 - Tile3 Tiled,
T
% x SM1&5 sma
cceleratord %

Tile organization:
Each tile contains various compute capabilities,
a local NoC and local memory.

Global NoC

n
High-level Runtime
3 System: inter-tile

Coarse-grained Parallelism
- Stream Channel Mapping
«  Stream Buffer Allocation
+ Bandwidth Allocation
+  Energy Efficiency

Heterogeneous Tile-Based

Architecture: Each tile represents a

compute engine.

Fig. 1.

An overview of the SPARTA system. A program is written along with its compiler hints. The compiler generates the corresponding streaming codelet

graph, along with hints and goals for the runtime system (RTS). The graph is compiled into machine code. The RTS selects streaming codelet sub-graphs to
be mapped to specific hardware tiles. Within each tile, the RTS chooses how to allocate the streaming codelets that are contained in the module.

of the job scheduler. To this end, the appropriate abstractions
for hardware models must be defined, in order to simplify
the scheduler and runtime design. It results that other features
must augment the initial Codelet Model: a SCM program is
partitioned into modules which are connected by channels.
A module can be seen as a group of codelets connected by
intra-module stream channels within a module. Modules are
themselves connected through inter-module stream channels.
Each module contains at least one streaming codelet. A stream
channel is modeled as an abstract FIFO queue. Each stream
module is an autonomous computation unit which consumes
data at a given rate from the input channel and produces data
at a given rate to its output channel. At execution time, each
stream computation module is ready to run only if there are
enough data items in the input channels and enough buffer
space in the output channels.

Both the modules and the streaming codelets they contain
are event-driven, with the arrival of data as the primary event to
satisfy, thereby potentially exploiting both coarse-grained and
fine-grained parallelism. At the module level, pipelining and
task parallelism can be exploited between stream computation
modules. The channels are directly tied to the consuming
codelets that require them, and thus modules are only a logical
grouping of streaming codelets. Further, each module may
also contain any degree of parallelism. Streaming codelets
belonging to the same module can be mapped to different
compute engines within a given cluster. The need to pass data
between codelets may induce unreasonably long latencies, thus
requiring the use of intra-module stream channels to specify
buffer sizes, etc. On the other hand, within a given portion
of the machine, latencies will be essentially non-existent, thus
only requiring that codelets signal the availability of new data,
much like the original codelet model proposes.

B. The Streaming Codelet Abstract Machine Model

To make our PXM reflect the pervasive heterogeneity we
envision in future extreme-scale architectures, we propose

a two-level abstract machine model (AMM). The original
Codelet Model relies on an AMM which is hierarchical and
distributed, and provides two types of engines: the computing
units (CUs, which perform the actual work) and the synchro-
nization units (SUs, which ensure the correct scheduling and
resource allocation across the machine). This AMM must be
extended, adding to it concepts such as Memory/Compute De-
coupled architectures [2]. The high-level layer of our proposed
AMM is visible to the application programmer, and consists
of clusters of (heterogeneous) compute engines on which
streaming codelets are to be mapped. Depending on the state
of the AMM at run time (e.g., if there are faulty components,
highly-contended ones, etc.), the available parallelism will
vary. Additional properties must be added to the initial codelet
AMM to reflect these states. Specific SUs are dedicated to the
distribution of work among the clusters. The second layer of
the AMM is a low-level abstract machine model, visible to
both the compiler and the runtime system. It must identify
the type of capabilities embedded in clusters. This allows it
to generate the adequate code variants. The compute engines
contained in a cluster range from specific functions provided
by a low-level component of the cluster to fully general
purpose CUs. They also feature SUs to map streaming codelets
to portions of a module to the available CUs.

III. THE SPARTA SYSTEM ARCHITECTURE

The system architecture implements an abstract machine on
the hardware for the PXM. While architectural trends tend
to favor multi/many-core chips as a commodity architecture,
their current design does not scale well due to severe power
limitations, which may require that parts of the chip may
have to remain inactive [3]]. This results in the utilization
wall [4]] which limits the fraction of a chip that can be used. In
order to improve performance/power efficiency by an order of
magnitude, we propose a cross-layer cooperatively designed
system that includes a structure consisting of a heterogeneous
set of adaptive computational resources, a hybrid memory



organization, a high-bandwidth, low-power and scalable re-
configurable interconnect, and compiler and operating system
directives to harness the promises of heterogeneity.

A. Heterogeneous Computing Engines for Streaming Codelets

To achieve end-to-end energy efficiency, we must optimize
both on- and off-chip memory systems that feed the compute
engines and the communication structure that transports the
streams. These two elements introduce energy overhead orders
of magnitude higher than the overhead of the compute engines.
To lay the foundation for further research, we propose a
tile-based architecture with a wide range of customizable
computing elements, from coarse-grain cores to fine-grain ac-
celerators and field-programmable circuit fabrics, and scalable
reconfigurable high-performance interconnects. At the highest
level, different tiles are interconnected by a reconfigurable
global NoC (GNoC). The tiles represent the compute engines.
Each consists of customizable accelerators, general-purpose
cores, GPUs, a tile shared-memory (TSM), a Bulk Memory
Transfer Unit (BMTU), and an intra-tile local NoC (LNoC).
The combination of tiles, memory structure, and a hierarchical
NoC will provide adequate heterogeneous hardware support
for the proposed Streaming Codelet Model.

B. Exploiting Dataflow Concepts with Heterogeneous Memory

In order to fetch an entire codelet and its associated data
all at once, we need bulk memory access as opposed to
word-at-a-time access throughout the memory hierarchy, hence
requiring a change in the ISA. We therefore propose TSM as
a scratchpad memory (to store codelet contexts) and BMTU
to speed up bulk transfer. The BMTU will act much like a
DMA engine, albeit with a much simpler implementation.
Other memory models will be explored. For instance, split-
phase operations are important primitives of message passing
operations: they allow a request to be asynchronously placed
by a consumer in the memory. Should the data element in
question already be present where it was expected, the memory
can simply satisfy the request. Otherwise, the request is held
in the memory itself. Eventually, the codelet producing the
element writes it into the memory system. Upon recognizing
the existing pending request(s), the memory system forwards
the data to (all) pending consumer(s), thus enabling producer-
consumer parallelism. Hence designing the right memory
system for streaming is crucial, and could be based on efficient
implementations of I-Structures [5]]. The presence of a TSM
and LNoC enforces locality of computation within the tile
needed for the proposed streaming codelet model. On the
technology side, technology scaling of SRAM and DRAM is
increasingly constrained by fundamental technology limits to
somewhat alleviate the problems due to the power and memory
walls Emerging non-volatile memory (NVM) technologies
have combined the speed of SRAM, the density of DRAM, and
the non-volatility of Flash memory [6]. Thus, there is a need
to design a memory hierarchy using different technologies so
that it is more power-efficient and provide higher performance
than a hierarchy based on conventional technologies.

C. Binding It All with Reconfigurable Interconnect Fabric

On top of the above, the system architecture must provide
low-latency, high-bandwidth, and reconfigurable interconnects
for data sharing within and between the tiles: On- and off-chip
communications are projected to become a major bottleneck

in terms of performance, energy consumption, and reliability
when hundreds of heterogeneous compute engines are inte-
grated [7]. Compiler analysis can be used to (partly) address
communications optimization in message passing and shared
memory systems [8]. Through hardware sensing, traffic loads
and communication behavior can be dynamically monitored at
run time, as well as network resource usage, power consump-
tion, and resource health. Such information can be used to de-
vise dynamic reconfiguration algorithms to adapt the hardware
to the current application needs. thus improving performance
and energy efficiency. These algorithms must also provide
robustness and fault-tolerance by avoiding faulty channels and
faulty routers. On the architecture side, the reconfigurable NoC
should be augmented with the hardware capability of estab-
lishing fast and energy efficient channels between frequently
communicating sources and destinations [9]]. Such architecture
must be built upon energy-efficient and fault-tolerant NoC
architectures for multicore systems, which includes exploring
the use of novel interconnect technologies, in particular 3-D
stacking, optical interconnects, and RF interconnects [10].

IV. THE SPARTA SYSTEM SOFTWARE

The SPARTA runtime system (RTS) should manage paral-
lelism, memory, energy usage, network traffic, erc. As Figure/[l]
shows, the SPARTA RTS schedules the stream modules of
a given application to the tiles and creates stream channels
for the communications between the modules. Then, the
RTS needs to schedule the codelets to the CUs in order to
exploit the fine-grained parallelism. The outcome in terms
of load balance, throughput, and communication contention
must also be considered. The allocation of stream modules
to the appropriate tile in the system must be based upon
a set of compiler “hints:” Indeed, the compiler should be
aware of the requirements of each task before it can allocate
it to a tile with the proper computational capabilities. As a
results important program patterns such as data parallelism,
pipelining, efc., must be considered, along with computa-
tion, memory allocation and communication optimization.
Based on this information, the runtime code will perform
dynamic resource management and optimization to ensure
that processing and memory resources are not left idle when
there are tasks/codelets available for execution. We believe
that extremely significant gains in performance and energy
savings are possible by building the most critical features of
the runtime API into the hardware of a massively parallel
heterogeneous chip.

A. Establishing an Efficient Communication Scheme

We must address the important challenge of runtime allo-
cation and utilization of bandwidth provided by the hierar-
chical interconnection networks in a SPARTA machine: both
within a chip and across compute nodes. Resolving this adds
two more challenges: channel assignment to support stream
communication and bandwidth allocation within a (potentially
shared) channel. A balance must thus be found between
the hardware and system software in the SPARTA system.
Further, we must be capable of identifying the parameters of
computation and communication requirements: The compiler
should be able to “direct” the various pieces of codes to the
computationally most efficient engine. This would result in
better load balancing, code placement according to detected
or otherwise statically set communication patterns, efc.



B. The Need for Fast and Efficient Queues

As we explained earlier, a trade-off must be found be-
tween the system software and the hardware. Among critical
components that are part of it are queues, which are a
fundamental data structure to support scheduling in parallel
environments. Most likely, software queues relying solely on
compare-and-swap instructions won’t be scalable enough
given the expected amount of tasks that will be generated in
such systems: Hardware queues may be the only efficient way
to handle such massive parallelism.

V. RELATED WORK

Program execution models centered on streams have been
studied by many researchers and have been an active field
of research for the past 30 years [L1l], [12]]. The most rele-
vant early work on streams is the dataflow execution model
pioneered by Dennis [13|], and the synchronous dataflow
model of Lee [14]. Other work includes software pipelining
for streaming programs [15]. However, these models do not
address the main problems we are addressing in this proposal,
such as targeting a highly heterogeneous and hierarchical chip.

Heterogeneous multicore architectures and specialization
of the functions are being heralded as the solutions to the
dark silicon and utilization wall issues and provide the most
compelling architectural path to mitigate these problems,
while providing continued performance scaling [16], [17]].
Heterogeneous architectures have been studied by a number
of researchers but many of these efforts are only targeted
at isolated dimensions of heterogeneity, either the cores, the
memory, or the interconnects in isolation. We believe that
heterogeneity can be harnessed at a much larger cross-cutting
scope, spanning heterogeneous cores, heterogeneous hybrid
memory hierarchies of different technologies, heterogeneous
interconnect technologies and architectures, and software.

Several compiler and runtime techniques have been pro-
posed in the past to optimize stream programs on specific
architectures, e.g., on special stream processors [18]. Further,
several techniques were proposed to map streaming languages
to multithreaded processors [19], [20]. However, none of these
solutions target a highly heterogeneous system, nor were they
designed with additional constraints such as power and energy
efficiency in mind. As a consequence, we developed a strategy
to solve the thorny problem of trading off performance vs.
power and energy efficiency through the SPARTA runtime
system.

VI. CONCLUSION AND FUTURE WORK

This paper presents the SPARTA framework, and takes
the position that extreme-scale systems require a complete
overhaul at the compute node level in order to handle ex-
treme parallelism. This in turn requires that novel dataflow-
based programe execution models be specified, along with
heterogeneous hardware. A trade-off must be found between
software and hardware, and the resulting co-design effort will
be bridged by some efficient system software, combining
compiler and runtime systems.

VII. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation, under awards CCF-1439142, CCF-
1439165, and CCF-1439097.

[1]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

REFERENCES

S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using
a “Codelet” program execution model for exascale machines,” in In
Proceedings of the 1st International Workshop on Adaptive Self-Tuning
Computing Systems for the Exaflop Era, EXADAPT ’11, 2011, pp. 64—
69

W. Ro and J.-L. Gaudiot, “A complexity-effective microprocessor design
with decoupled dispatch queues and prefetching parallel computing,”
Parallel Computing, vol. 35, no. 5, pp. 255-268, May 2009.

S. Borkar, “Thousand Core Chips: A Technology Perspective,” in
Proceedings of the 44th Annual Design Automation Conference, ser.
DAC ’07. New York, NY, USA: ACM, 2007, pp. 746-749. [Online].
Auvailable: http://doi.acm.org/10.1145/1278480.1278667

G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation
Cores: Reducing the Energy of Mature Computations,” SIGPLAN
Not., vol. 45, no. 3, pp. 205-218, Mar. 2010. [Online]. Available:
http://do1.acm.org/10.1145/1735971.1736044

W.-Y. Lin, J.-L. Gaudiot, J. Amaral, and G. R. Gao, “Performance Anal-
ysis of the I-Structure Software Cache on Multi-Threading Systems,”
in Proceedings of the 19th IEEE International Performance, Computing
and Communication Conference, IPCCC2000, Phoenix, Arizona, Febru-
ary 2000, pp. 83-89.

S. A. Wolf, J. Lu, M. Stan, E. Chen, and D. Treger, “The Promise
of Nanomagnetics and Spintronics for Future Logic and Universal
Memory,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2155-2168,
Dec 2010.

R. Weiss, “NSF Workshop on Emerging Models and Technologies in
Computing: Bio-Inspired Computing and the Biology and Computer
Science Interface.” Ph.D. dissertation, United States Naval Academy,
2008.

S. Shao, A. Jones, and R. Melhem, “A compiler-based communication
analysis approach for multiprocessor systems,” in Parallel and Dis-
tributed Processing Symposium, 2006. IPDPS 2006. 20th International,
April 2006, pp. 10 pp.—.

A. K. Kodi, A. Louri, and J. M. Wang, “Design of Energy-Efficient
Channel Buffers with Router Bypassing for Network-on-Chips (NoCs),”
in ISQED, 2009, pp. 826-832.

D. DiTomaso, A. Kodi, and A. Louri, “QORE: A Fault-Tolerant
Network-on-Chip Architecture with Power-Efficient Quad Function
Channel (QFC) Buffers,” in Accepted to appear in 20th IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA),
Orlando, FL, February 15-19, 2014, February 15-19 2014.

J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40-53, Mar.
2008. [Online]. Available: http://doi.acm.org/10.1145/1365490.1365500
S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and
K. Skadron, “A performance study of general-purpose applications
on graphics processors using CUDA,” Journal of Parallel and
Distributed Computing, vol. 68, no. 10, pp. 1370-1380, Oct.
2008. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0743731508000932

J. B. Dennis, “First version of a data flow procedure language,” in
Programming Symposium, Proceedings Colloque sur la Programmation.
London, UK: Springer-Verlag, 1974, pp. 362-376.

E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans. Comput-
ers, vol. 36, no. 1, pp. 24-35, 1987.

R. Govindarajan, G. Gao, and P. Desai, “Minimizing Memory Re-
quirements in Rate-optimal Schedules,” in In ASAP ’94: Proceedings
of the 1994 International Conference on Application Specific Array
Processors, 1994, pp. 75-86.

M. Suleman, O. Mutlu, J. Joao, K. Khubaib, and Y. Patt, “Data
Marshaling for Multicore Systems,” Micro, IEEE, vol. 31, no. 1, pp.
56-64, Jan 2011.

H. Najaf-abadi and E. Rotenberg, “Architectural Contesting,” in High
Performance Computer Architecture, 2009. HPCA 2009. IEEE 15th
International Symposium on, Feb 2009, pp. 189-200.

U. J. Kapasi, P. Mattson, W. J. Dally, J. D. Owens, and B. Towles,
“Stream Scheduling,” in in Proceedings of the 3rd Workshop on Media
and Streaming Processors, 2001, pp. 82-92.

P. Mattson, W. J. Dally, S. Rixner, U. J. Kapasi, and J. D.
Owens, “Communication scheduling,” SIGARCH Comput. Archit.
News, vol. 28, no. 5, pp. 82-92, Nov. 2000. [Online]. Available:
http://doi.acm.org/10.1145/378995.379005

M. Kudlur and S. Mahlke, “Orchestrating the execution of stream
programs on multicore platforms,” SIGPLAN Not., vol. 43, no. 6, pp.
114-124, Jun. 2008. [Online]. Available: http://doi.acm.org/10.1145/
1379022.1375596


http://doi.acm.org/10.1145/1278480.1278667
http://doi.acm.org/10.1145/1735971.1736044
http://doi.acm.org/10.1145/1365490.1365500
http://www.sciencedirect.com/science/article/pii/S0743731508000932
http://www.sciencedirect.com/science/article/pii/S0743731508000932
http://doi.acm.org/10.1145/378995.379005
http://doi.acm.org/10.1145/1379022.1375596
http://doi.acm.org/10.1145/1379022.1375596

	Introduction
	The SPARTA Program Execution Model
	Extending the Codelet Model to Streams
	The Streaming Codelet Abstract Machine Model

	The SPARTA System Architecture
	Heterogeneous Computing Engines for Streaming Codelets
	Exploiting Dataflow Concepts with Heterogeneous Memory
	Binding It All with Reconfigurable Interconnect Fabric

	The SPARTA System Software
	Establishing an Efficient Communication Scheme
	The Need for Fast and Efficient Queues

	Related Work
	Conclusion and Future Work
	Acknowledgements
	References

