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Abstract—In this paper, we explore data-driven execution of
the adaptive fast multipole method by asynchronously scheduling
available computational tasks using Cilk, C++11 standard thread
and future libraries, the High Performance ParalleX (HPX-5)
library, and OpenMP tasks. By comparing these implementations
using various input data sets, this paper examines the runtime
system’s capability to spawn new task, the capacity of the tasks
that can be managed, the performance impact between eager
and lazy thread creation for new task, and the effectiveness of
the task scheduler and its ability to recognize the critical path of
the underlying algorithm.
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I. INTRODUCTION

The fast multipole method (FMM) [1], [2] is recognized
as one of the top ten algorithms of the last century. The
algorithm is capable of computing the pairwise interaction of
N particles in O(N) arithmetic operations to any prescribed
accuracy requirement. As a result, it has been widely applied
to accelerate many N -body problems in molecular dynamics
simulation [3]. It has also been applied to accelerate the
iterative solver in discretized systems resulting from boundary
element or boundary integral formulations of problems in
the field of computational electromagnetics [4], computational
fluid dynamics and solid mechanics [5].

The execution of the FMM can be analyzed as traversing
a directed acyclic graph (DAG), where a node represents the
computation associated with a particular spatial location and
a directed edge indicates the dependency from a predecessor
node to a successor node. Scheduling policies for DAGs have
been well studied [6], [7]. The effectiveness of a variety of
DAG schedulers adopted in different runtime systems has been
examined both theoretically [8], [9] and empirically using
simple benchmark tests [10], [11]. What has not been studied,
however, is the capability and effectiveness of task schedulers
when they handle a more sophisticated algorithm like the
FMM. This paper attempts to address this issue and considers
four different runtime systems, including Cilk [6], [12], C++
thread and future libraries [13], the High Performance ParalleX
(HPX-5) library [14], and OpenMP tasks. Here, we use runtime
for ease of reference because strictly speaking, C++ thread
and future libraries are not a runtime system. In the paper,
Cilk refers to the implementation of CilkPlus provided by
Intel. HPX-5 is a research level runtime system implementing
the ParalleX execution model [15], which is an experimental
execution model designed to mitigate the key sources of
performance decay identified by the SLOWER performance
model [16].

There are several features of the DAG corresponding to the
FMM execution that challenge the capability and effectiveness
of the runtime systems. In the DAG, each node has different in-
degree and out-degree that cannot be known quantitatively until
execution time. The input data for each node becomes ready at
different times and each requires different amounts of process-
ing time. Partial input data can be processed at each node, but
to avoid increasing the algorithm’s arithmetic complexity, the
output of the node cannot be released to its successor nodes
until all inputs have been processed. As a result, at any time in
the course of execution, there are potentially a large number
of tasks for the scheduler to consider. Not all of these tasks are
on the critical path of the execution. Moreover, a task created
at an earlier time does not necessarily represent more work
than the one created at a later time.

Overall, this paper makes the following contributions. 1) It
shows how to asynchronously schedule tasks to achieve a data-
driven FMM execution using Cilk, C++11 standard thread and
future libraries, HPX-5, and OpenMP task. 2) It compares the
runtime system’s ability to create new tasks and the capacity of
the tasks that can be managed. 3) It compares the performance
difference between a compiler-based approach and a library-
based approach, and measures the performance impact caused
by eager and lazy thread creation. 4) It tests the effectiveness
of the task scheduler and examines its ability to recognize the
critical path of the algorithm.

The remainder of this work is structured as follows. We
describe the general structure of FMM and special feature of
the version used in this paper in Section II. We summarize
the related work in Section III. We show how to schedule
tasks asynchronously to achieve the data-driven execution of
the FMM and some implementation details in Section IV.
We examine the implementations using various input sets, and
compare the performance, capability, and effectiveness of the
runtime systems in Section V. We give our conclusion and
directions for future work in Section VI.

II. OVERVIEW OF THE FAST MULTIPOLE METHOD

This section provides an abstract description of the algo-
rithmic structure of the FMM. Mathematical details are beyond
the scope of this paper and can be found in Refs [1], [2], [17].

The FMM first determines the smallest bounding box
that contains all the interacting particles as its computational
domain and then performs a hierarchical partition by dividing
the box equally along each dimension repeatedly. Boxes with
no particles are pruned in this process. The partition is called
uniform if one specifies the maximum refinement level and
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adaptive if one stops partitioning a box when it contains
fewer than a prescribed number of particles. The partition
process naturally results in a tree structure and boxes without
children are called leaf boxes. Strictly speaking, this tree is
a fusion of two spatial partitions in one spatial hierarchy:
one partitions the source ensemble and the other partitions
the target ensemble. Target points are locations where the
force field or potential needs to be computed. Depending
on the applications, the source and target ensembles may be
identical, partially overlapping, or completely disjoint in the
spatial domain. As a result, the source and target trees can be
identical, partially overlapping, or completely different. The
FMM algorithm introduces extra edges to the trees that offer
direct path between boxes on the source and target trees.
Specifically, a box Bs on the source tree is connected with
a box Bt on the target tree if: (1) Bs and Bt are of the same
refinement level and the spatial volume enclosed by the two
boxes are disjoint, referred to as non-adjacent; and (2) the
parent boxes of Bs and Bt are adjacent. When such an edge
exists between Bs and Bt, box Bs is also said to be in the
interaction list region of box Bt.

·····
···

·····
···

·····
···

·····
···

·····
···

·····
···

·····
···

·····
···

S2M

················M2M

M2L

·
M2L L2L

·
L2T

Fig. 1. An example of two-dimensional GFMM results from a four-level
uniform partition. Nodes corresponding to the root level and the first partition
level are not drawn. In the figure, a blue (red) shaded node represents a cluster
of source (target) points while a blue (red) dot represents the multipole (local)
expansion of the corresponding source (target) node. There are two inter-
scale traversals in GFMM. One traversal occurs on the source tree, using
the source-to-multipole (S2M ) operator at the leaf node and multipole-to-
multipole (M2M ) operator at the non-leaf node to generate all the multipole
expansions. The other traversal occurs on the target tree, using the local-to-
local (L2L) operator to pass down local expansions from ancestor nodes to
their descendants and the local-to-target (L2T ) operator to evaluate the local
expansions at the leaf target nodes. GFMM also contains level-wise intra-
scale traversals. For each target node, the multipole expansions of the source
nodes in its interaction list region are translated into local expansions. The
gray shaded region on the target tree depicts the interaction list region for two
different target nodes.

The DAG for the FMM execution, denoted by GFMM,
have three major components: the source tree, the target tree,
and level-wise bipartite graphs connecting the trees. Figure 1
shows an example of GFMM in two dimensions resulting from
a four-level uniform partition. To avoid confusion, we will use
box(es) to refer to the spatial cluster of particles and node(s)
to refer to the vertices in GFMM. When the source and target
ensembles are identical, there are two nodes in GFMM—one on
the source tree and the other on the target tree—corresponding
to the same box. Data movement in GFMM is from the
source tree (blue, shown on the left) to the target tree (red,
shown on the right), involving both inter-scale tree traversal
and intra-scale traversal. On the source tree, the inter-scale
traversal generates the multipole expansion for all the nodes.
The multipole expansion for each node is a truncated series that
approximates the far-field influence of the particles contained

in the node up to a prescribed accuracy requirement. At a
leaf node, the multipole expansion is generated from particle
information using the source-to-multipole (S2M ) operator.
At a non-leaf node, the multipole expansion is generated by
shifting the multipole expansions of the child nodes, using the
multipole-to-multipole (M2M ) operator. On the target tree,
the operations are associated with local expansion, resulting
from shifting the center of the multipole expansions. On the
target tree, the inter-scale traversal passes the local expansions
from the ancestors to their descendants using the local-to-
local (L2L) operator and evaluates the local expansions at leaf
nodes using the local-to-target (L2T ) operator. During intra-
scale traversal, the multipole expansions of the nodes on the
source tree for a given target node’s interaction list region are
converted into local expansions using the multipole-to-local
(M2L) operator. Conventionally, the traversals are executed
level by level in two passes, starting with an upward pass on
the source tree, followed by a downward pass on the target
tree. Intra-scale operations are usually carried out during the
downward pass.

The FMM implemented in this paper has one special
feature called merge-and-shift technique [17]. The technique is
developed to reduce the number of M2L operations performed
on nodes of the same parent since there exists a significant
overlap of their individual interaction list regions. Particularly,
if there are M1 nodes sharing M2 nodes in their interaction
list regions, instead of doing M1 × M2 translations, one
can first merge the M2 multipole expansions into one and
then shift it to M1 nodes using only M1 +M2 translations.
Figure 2 shows a simple demonstration of this technique.
By applying this technique, the average number of M2L
translations performed on each node can be reduced from
189 to 40. The mathematical foundation for this technique
is the use of exponential expansion, multipole-to-exponential
(M2E) operator, exponential-to-exponential (E2E) operator,
and exponential-to-local (E2L) operator. This means, the
M2L translation is done in three steps. The multipole expan-
sions of the source nodes are first translated into exponential
expansions. Afterwards, merging and shifting the expansions
involves component-wise manipulation only. Finally, the ex-
ponential expansion formed at each target node is translated
back to the local expansion.

· · · ···· ····
Fig. 2. Illustration of the merge-and-shift technique employed in the FMM
tested in this paper. Each of the four shared nodes on the right side needs to
convert the multipole expansions of the seven shaded nodes on the left side
into local expansions. Instead of doing 7 × 4 translations, the 7 multipole
expansions can be merged into 1 and then shifted to the four nodes on the
right, using 7+4 translations. In three dimensions, this technique could reduce
the average number of M2L operations performed for each target node from
189 to 40.

III. RELATED WORK

Parallel FMM implementations often apply the so-called
“MPI + X” approach. That is, the entire problem is partitioned
and distributed over a cluster of compute nodes and MPI is



used for communication. Within each compute node, the work
is executed in a multi-threaded way to utilize the parallelism
provided by the multicore processors or many-core accelera-
tors.

The most common approach used to partition the work
on distributed memory architectures is based on the locally
essential tree (LET) method originally developed by Warren
and Salmon [18]. The method uses a space-filling curve to
index all the leaf nodes in GFMM, partitions the curve into seg-
ments and distribute them evenly among available processes.
On each process, the LET is defined as the union of all the
nodes needed in the computation for all the owned leaf nodes
and their ancestors. The LET provides the communication
pattern for each process. It is usually constructed before the
traversal on GFMM happens. With the LET ready, care is often
taken to hide communication within computation. Historically,
LET was constructed in a top-down fashion and became the
bottleneck in parallel execution when the number of available
processes increases. A bottom-up approach [19] was developed
to address this issue.

Another interesting approach on distributed memory ar-
chitectures is the one used in PetFMM [20]. It partitions
GFMM into smaller components such that the number of
components is more than the number of available processes
but much smaller than the number of nodes in GFMM. Next,
it builds a new weighted graph to represent the computation
within each component and communications between different
components. The derived weighted graph is divided into as
many equally weighted parts as the number of available pro-
cesses, and the result is used to assign components to available
processes. We point out that this approach has the advantage of
considering intra-scale traversal cost in distributing the work.
However, the size of the derived weighted graph grows when
the number of available processes increases, which makes
the partitioning decision more difficult to compute and the
resulting algorithm possibly less scalable.

On shared memory architecture, parallel FMM often adopts
relatively simple strategies. When implemented in a level-wise
fashion, one can simply process all the nodes of the same
level in parallel loops [21]. A slightly complicated approach
is the costzone method [22]. The method estimates a cost for
each node and partitions GFMM into different branches of
approximately equal costs. Each branch is then assigned to
one available core or thread.

There are certain limitations of the above approaches. First,
they are less dynamic than one would ideally expect. This
means, once the data partition is completed, each process has
a somewhat static assignment until the data is repartitioned.
Second, they all rely on weight estimation. Without prior
information, initial weights for each node are often identical or
proportional to the number of particles contained in the node.
In an iterative setting, these weights need to be adjusted in
the subsequent steps. This is often done by inserting extra
instructions to track execution time or number of certain
operations occurred at each node at the current step so that
they can be used to estimate a new cost for the next step.
This not only introduces additional overhead, but also may
not reflect the actual execution accurately. By contrast, data-
driven approaches seem promising to address these issues, such

as the ones in Refs. [23]–[25], and the several versions to be
discussed in Section IV.

IV. DATA-DRIVEN PARALLEL FMM

Unlike coarse-grained data partition approaches used in
conventional parallel FMM implementations, data-driven ap-
proach can be interpreted as creating sufficient fine-grained
tasks that reveal the structure of GFMM and using the run-
time system to schedule these tasks to available processing
resources while obeying all dependency constraints. In this
section, we show how to implement data-driven FMM using
Cilk, C++11 standard thread and future libraries, HPX-5
library, and OpenMP tasks.

There are several issues to consider in a data-driven parallel
FMM implementation. One issue is how to express these tasks.
The simplest way would be to start from every leaf node on
the target tree where the final result is rendered and trace
backwards the entire history of data flow to create tasks. This,
however, is undesirable because it could create many redundant
tasks that ultimately increase the overall arithmetic complexity.

Notice that a node in GFMM can be processed even if only
a subset of its input data is available. This generates a series
of questions in a data-driven implementation. Do we create
new tasks for them? Can the tasks be created easily using the
runtime system? When created eagerly, many of these tasks
are not on the critical path of the execution until a later time.
Can the task scheduler of the runtime system recognize this
fact? If the scheduler fails to do so, what impact will it have
on the performance?

As an extension to the C/C++ language, Cilk introduces
three new keywords to implement task parallelism. Tasks
can be spawned using cilk_spawn and cilk_for and
synchronization is supported using cilk_sync. To avoid
creating redundant tasks, one could use locks. Each thread
that attempts to create a new task needs to grab the lock first
to check whether the task has already been created. If the
task has not been created, the thread spawns the new task and
uses cilk_sync to wait for its completion. Otherwise, the
thread has to grab the lock from time to time to check the
status of this dependent task itself. This introduces significant
overhead to the program and reduces scheduling opportunities
from the task scheduler of the Cilk runtime. Alternatively,
one could use hyperobjects since operations on each node
are essentially reductions. However, there are two difficulties
with this approach. First, both the input and output of the
reduction are associated with vectors of double precision
complex numbers. Second, the in-degree of the nodes in the
target tree is usually large. These could potentially limit the
problem size that can be handled.

A better strategy to use Cilk is to divide GFMM into disjoint
components such that at the cost of introducing synchroniza-
tion barriers between components, one can eliminate the need
of locks (or hyperobjects) and let Cilk’s runtime handle all the
synchronization points. Fortunately, this goal can be accom-
plished by dividing GFMM into only two components: one
component is the source tree and the remainder of GFMM is
the other component. It is clear from Figure 1 that completing
work within the first component provides all the required input
to the second component. Within each component, tasks can



be created during a pre-order traversal of the source and target
tree using cilk_for. The pre-order traversal guarantees that
no redundant task will be created. The code snippet of the
corresponding implementation is shown in Figure 3. We point
out the OpenMP implementation considered in this paper
basically replaces cilk_for inside the Aggregate and
DisAggregate functions with for, task, taskwait
directives.

1 void FMMCompute(void) {
2 Aggregate(&snodes[1]);
3 DisAggregate(&tnodes[1]);
4 }
5

6 void Aggregate(const Node *snode) {
7 if (snode == NULL)
8 return;
9

10 if (snode->nchild) {
11 // spawn tasks at a nonleaf source node
12 cilk_for (int i = 0; i < 8; i++)
13 Aggregate(snode->child[i]);
14

15 // generate multipole expansion using M2M operator
16 MultipoleToMultipole(snode);
17 } else {
18 // generate multipole expansion using S2M operator
19 SourceToMultipole(snode);
20 }
21 // convert multipole into exponential expansion using

M2E operator
22 MultipoleToExponential(snode);
23 }
24

25 void DisAggregate(const Node *tnode) {
26 if (tnode == NULL)
27 return;
28

29 // translate parent’s local expansion using L2L operator
30 LocalToLocal(tnode);
31 ProcessList4(tnode); // for adaptive fmm only
32 if (tnode->nchild) {
33 // complete M2L operation using merge-and-shift
34 ExponentialToLocal(tnode);
35 // spawn new tasks at a nonleaf target node
36 cilk_for (int i = 0; i < 8; i++)
37 DisAggregate(tnode->child[i]);
38 } else {
39 // evaluate local expansion using L2T operator;
40 LocalToTarget(tnode);
41 ProcessList13(tnode); // for adaptive fmm only
42 }
43 }

Fig. 3. A data-driven parallel FMM implementation. GFMM is partitioned
into two separate components, equivalent to not spawning new tasks for the
target nodes when they have partial input to process. The runtime system used
is Cilk.

The above partition decision on GFMM has a few conse-
quences for the second concern mentioned at the beginning
of this section. It is shown in Figure 1 that the completion of
work along the source tree provides partial input to the nodes
on the target tree. The partition adopted here prevents such
tasks to be created and subsequently considered by the task
scheduler. As a result, at the end of processing tasks within
the first component, some resources could become idle due to
insufficient work at the top portion of the source tree. However,
we argue that the pros outweigh the cons. First, the work near
the top of the source tree usually requires minimal processing
time. Second, with fewer tasks to consider, the scheduler has
an easier decision to make. Third, the partition allows the
scheduler to focus on tasks on the critical path of the execution
first.

1 void fmm::FMMCompute(void) {
2 for (int i = 1; i <= nsboxes; i++)
3 future_expo[i] = async(launch::async, &fmm::Aggregate,

this, graph.getsbox(i));
4

5 for (int i = 1; i <= ntboxes; i++)
6 future_local[i] = async(launch::async, &fmm::

DisAggregate, this, graph.gettbox(i));
7

8 for (int i = 1; i <= ntboxes; i++)
9 future_local[i].wait();

10 }
11

12 void fmm::Aggregate(const Node & snode) {
13 if (snode.getnchild()) {
14 // wait for multipole expansions of the child nodes.
15 for (int i = 0; i < 8; i++) {
16 int child = snode.getchild(i);
17 if (child) future_mpole[child].wait();
18 }
19 MultipoleToMultipole(snode);
20 } else {
21 SourceToMultipole(snode);
22 }
23 promise_mpole[snode.getnodeid()].set_value();
24

25 MultipoleToExponential(snode);
26 promise_expo[snode.getnodeid()].set_value();
27 }
28

29 void fmm::DisAggregateconst Node & tnode) {
30 if (tnode.getnchild()) {
31 // wait for exponential expansions needed in the merge-

and-shift operation
32 const vector<int> & mslist = tnode.getmergeshiftlist();
33 for (auto it = mslist.begin(); it != mslist.end(); it++)
34 future_expo[*it].wait();
35 ExponentialToLocal(tnode);
36 }
37 future_local[tnode.getparent()].wait();
38 LocalToLocal(tnode);
39 ProcessList4(tnode);
40 if (tnode.getnchild() == 0) {
41 LocalToTarget(tnode);
42 ProcessList13(tnode);
43 }
44 promise_local[tnode.getnodeid()].set_value();
45 }

Fig. 4. Data-driven parallel FMM implementation using future and promise
objects in C++11. The implementation does not partition GFMM, equivalent
to creating a new task for every node in GFMM if it has partial input to
process.

C++11 provides future and promise objects to manage
asynchrony. A promise object is the asynchronous provider and
is expected to set a value for a shared state at some point. A
future object is an asynchronous return object that can retrieve
the value of the shared state, waiting for it to be ready if
necessary. The library further provides the shared_future
object if the shared state needs to be retrieved multiple times
once ready. These features offer more freedom to examine a
variety of implementation choices. In addition to the approach
adopted in the Cilk version, we can express every directed
edge in GFMM using a promise-shared future pair. This is
equivalent to creating a new task for every node if the node
has some partial input to process. Figure 4 shows the code
snippet of this implementation. Here, at each source (target)
node, the Aggregate (DisAggregate) function describes
the input data the node depends on and the output data the
node will produce. At each target node, the corresponding
promise is set when all the related computation completes.
When all the promises on the target tree are set, the entire
computation terminates. We point out that inside the async



call, in addition to launch::async which creates a new
thread to execute the task asynchronously, there is another
option called launch::deferred which executes the task
on the calling thread the first time the result is requested.

HPX-5 is a research level runtime, implementing the Par-
alleX execution model. The ParalleX execution model makes
use of lightweight threads and an active global address space
that allows both code and data to move freely across the system
in order to adapt to rapidly changing computational needs
as well as environmental factors such as system load, power
utilization, real-time events, and network performance. Unlike
Cilk, C++11 and OpenMP, threads in HPX-5 are intended to
work on distributed memory architectures as well. The HPX-5
library is being actively developed at Indiana University and
the complete set of thread functionalities is being realized.

HPX-5 unifies the promise, future, and shared future ob-
jects in C++ into a single future object. It creates a lightweight
thread by calling the hpx_thread_create function. This
function takes four input parameters and two output param-
eters. The input parameters include a thread container as a
context structure, thread option, thread entry function, and
arguments to the entry function. The output parameters are
the future representing the result and a handle of the thread.
Unlike C++, HPX-5 does not provide a deferred option and
all threads are created eagerly. However, the stack for the
thread is only allocated when the thread is scheduled. The
HPX thread calls hpx_thread_exit function to terminate
its execution, at which time the future object specified in
the hpx_thread_create function is automatically set. By
using the future object and HPX-5 keywords, it is easy to
implement one parallel FMM similar to the one shown in
Figure 3 and another version similar to the one shown in
Figure 4.

V. PERFORMANCE TESTS AND ANALYSIS

The FMM implemented in this paper computes the three
dimensional electrostatic potential φi and force field fi of N
charged particles

φi =

N∑
j=1,j 6=i

qj
‖xj − xi‖2

, fi = ∇φi.

All the codes were written in C/C++, restructured from the
Fortran code available at [26].

The machine used for all the tests has two eight-core Xeon
E5-2670 processors with hyper-threading disabled running at
2.6 GHz and 32 GB of RAM. Intel compiler version 13.0.1
was used to compile the HPX-5 library. The same compiler
was also used to compile the Cilk, OpenMP, and HPX-5 FMM
implementations with -fast flag. However, this version of
the intel compiler does not support the launch::deferred
option. Therefore, for the C++11 FMM implementation, the
code was compiled using GNU compiler 4.8.1 with -O3
option.

We used two types of data sets to test the performance
of various implementations. For type I data, particles are
uniformly distributed inside a cubic box of side length 1
and centered at the origin. For type II data, particles are
distributed over the surface of a sphere of radius 1 and

TABLE I. DURATION OF EACH BASIC FMM TRANSLATION OPERATOR
MEASURED IN MICROSECONDS. THE RESULTS FOR S2M AND L2T
OPERATORS ARE THE TIME CAUSED BY ONE PARTICLE. THE OTHER

RESULTS ARE THE TIME SPENT ON PROCESSING ONE EXPANSION OF THE
RESPECTIVE INPUT TYPE.

Accuracy S2M M2M M2E E2L L2L L2T
3 0.56 3.24 9.01 2.80 3.79 0.88
6 1.81 15.2 62.7 15.3 18.3 3.32

TABLE II. VARIOUS INFORMATION OF THE GFMM USED IN THE TEST.
IN ALL CASES, THE MAXIMUM NUMBER OF PARTICLES ALLOWED IN A

LEAF NODE IS SET TO BE 40. IN THE TABLE, N IS THE NUMBER OF
PARTICLES IN THE COMPUTATION; L IS THE LEVELS OF PARTITIONS

PERFORMED, OR THE LEVELS OF SOURCE (TARGET) TREE IN GFMM ; |G|
IS THE NUMBER OF NODES IN GFMM ; Cavg IS THE AVERAGE NUMBER OF
CHILD NODES A NON-LEAF NODE HAS; Pavg IS THE AVERAGE NUMBER OF

PARTICLES A LEAF NODE HAS; THE LAST THREE COLUMNS GIVE THE
MINIMUM, MAXIMUM, AND AVERAGE NUMBER OF M2L OPERATIONS

PERFORMED FOR NODES OF THE SAME PARENT USING MERGE-AND-SHIFT
TECHNIQUE.

Type N L |G| Cavg Pavg M2L : (min,max, avg)

I

1e4 3 585 8.0 19.5 68 324 199.5
5e4 4 4681 8.0 12.2 68 324 253.8
1e5 5 4729 8.0 24.2 68 324 252.0
5e5 5 37449 8.0 15.3 68 324 286.7
1e6 6 47779 8.0 23.9 56 324 241.2

II

1e4 7 837 5.4 14.7 24 111 79.7
5e4 9 4771 5.0 13.1 24 143 80.1
1e5 10 7936 4.9 15.9 27 143 80.8
5e5 12 40987 4.7 15.5 23 147 80.2
1e6 13 90130 4.8 14.0 23 147 81.3

centered at the origin. For both data types, charges {qi} are
distributed uniformly from the interval [−0.5, 0.5]. For each
data distribution, we chose five different problem sizes, ranging
from 104 to 106.

We imposed two different accuracy requirements in the
tests, requiring three and six digits of accuracy of the com-
puted potentials [17, Eq.(57)]. Higher accuracy requires longer
expansions and will effectively increase the granularity of each
node in GFMM. Table I shows the duration of each basic FMM
operators using the three and six digit accuracy requirements,
measured in microseconds. In the table, the results for S2M
and L2T operators are the time caused by one particle. The
results for M2M , M2E, E2L, and L2L operators are the time
spent on processing one expansion of the input type.

The execution time of the FMM relies on an integer
parameter denoted by s that specifies the maximum number
of particles allowed in a leaf node. For each implementation,
one could tweak the value of s for each input data (in terms
of distribution and size), and each accuracy requirement to
achieve the fastest execution time. Here, we choose to use the
same s and set it to be 40 to create the same DAG in all the
test cases in order to compare all the runtime systems. Table II
summarizes various properties of GFMM used in all the tests.
For type I data, each non-leaf node has an average of eight
child nodes, which makes the tree almost complete, except
possibly at the finest partition level. The critical path, reflected
by the levels of partition, for this distribution is short. For type
II data, each non-leaf node has an average of five child nodes
and the critical path is longer. The last three columns of the
table report the minimum, maximum, and average number of
M2L operations performed among nodes of the same parent
using the merge-and-shift technique. The wide range of the
number of such operations is a major source of asynchrony
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Fig. 5. The average execution time of various parallel FMM implementations for different problem size. Type I data is uniformly distributed inside a cubic
box with side length 1 and centered at the origin. Type II data is distributed over the surface of a sphere of radius 1 and centered at the origin.

during the execution of the algorithm.

Following the discussion in Section IV, we consider eight
different parallel FMM implementations in our tests, including
one version using Cilk, one version using OpenMP task, two
version using HPX-5, and four versions using C++11. The
HPX-5 and C++11 versions are first differentiated by whether
or not to create tasks for nodes having partial input to process.
As this decision is equivalent to whether or not to partition
GFMM, we label the cases using P and NP , respectively. The
C++ implementations are further categorized by the options
used in the async function. In this way, the eight versions
are referred to as Cilk, OpenMP, HPX-5(P ), HPX-5(NP ),
C++(P , async), C++(P ,deferred), C++(NP , async),
and C++(NP , deferred). Figure 5 shows the performance
of the eight implementations. All the cases were run ten times
using all the sixteen cores and the average execution time is
reported here.

We make a few comments on the missing data points for
C++11-based implementations. The curve for the C++(NP ,
deferred) version is unavailable because the execution
hangs even at the smallest problem size 104, implying that the
entire structure of GFMM is too complicated for the runtime
to figure out. For the C++(NP , async) version, the missing
data is because the number of threads to be created exceeds
C++’s capability. For the C++(P , async) version, the missing
data is because the program stalled for the given problem size.

Among all the C++11-based implementations, the versions
using async option often run faster than the versions using
deferred option. This shows the additional overhead associ-
ated with determining the first time the result of a deferred task
is needed. However, such advantage can only be achieved at
very small problem size before the async versions exceed
C++’s thread creation limitation. The C++(P , deferred)
version is the only one able to complete all the tests but its
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Fig. 6. Speed-up result of the Cilk and HPX-5(P ) versions.

performance is the worst among all versions in most of the
test cases. The curve for the C++(NP , async) version has a
very similar trend as the one for the HPX-5(NP ) version.
For type I data, the HPX-5(NP ) version runs faster than
C++(NP , async) version for cases requiring three digits
accuracy whereas the C++(NP , async) version performs
better for cases requiring six digits accuracy. For type II data,
the performance difference between the two versions is quite
small.

For the OpenMP version, we tested multiple values of
OMP_MAX_ACTIVE_LEVELS and the best execution times
reported here were obtained by setting the value to two. The
curves clearly reveal the task creation overhead. For type
I data, the curves show no observable scaling trend, which
suggests that there is insufficient computation to compensate
the overhead. For type II data, we observe some scaling
behavior when the problem size is over 105.

Excluding the C++(P , deferred) and OpenMP versions,
the Cilk and HPX-5(P ) versions that partitioned GFMM have
clear advantage over the versions not making this choice. To
some extent, this reflects the limitation of the task sched-
uler’s ability to recognize tasks along the critical path. The
Cilk version is the clear winner among the eight versions
in all the test cases, and is approximately 2X∼3X faster
than the second fastest version, the HPX-5(P ) version. This
performance difference clearly manifests the different overhead
levels of the Cilk and HPX-5 runtime systems. There exist
a few reasons contributing to the different overhead level
between Cilk and HPX-5 runtime system. To begin, as a
compiler-based runtime, Cilk is capable of performing deep
static analysis for parallel execution, such as the fast-clone
feature in Cilk [27]. Moreover, the runtime scheduler of Cilk
creates a worker thread for each core present on a system
and each worker maintains a deque for storing tasks yet to
execute. When a worker thread executes a cilk_spawn or
cilk_for statement, it simply pushes new tasks onto the tail
of its deque and this does not involve any call into the OS nor
involve the OS thread scheduler. In contrast, threads in HPX-5

have more states and need to be globally addressable and this
inevitably increases the creation overhead. It is also important
to point that that Cilk is an industry-level product and HPX-5
is still a research-level system at present.

Figure 6 shows the speed-up results for the Cilk and HPX-
5(P ) versions. Versions based on C++11 are not considered
here because most of the versions could not complete in all
the test cases and the C++(P ,deferred) version is almost
two orders of magnitude slower than the Cilk version. The
OpenMP version is excluded because most test cases seem
to be dominated by the overhead. The HPX-5(P ) version is
chosen because its performance is better than the HPX-5(NP )
version. For smaller problem size, the speed-up result is close
to 8X for the Cilk version and about 3X for the HPX-5(P )
version. As the problem size grows larger, the speed-up gets
close to 15X for the Cilk version and about 6X∼7X for the
HPX-5(P ) version. Recall that we chose to use the same value
of s in all the test cases and the speed-up results obtained here
should be interpreted as a lower bound of the optimal speed-up
for each individual version.

We point out that the problem sizes chosen to compare
different runtimes were quite small compared to real FMM
applications. The reason is because that C++’s implementation
of standard thread library on Linux is done through the use of
kernel thread. In comparison, Cilk and HPX-5 provide their
own M:N libraries, and OpenMP provides API to control
MAX_ACTIVE_LEVELS. It is worth mentioning that Cilk,
HPX-5, and OpenMP versions can handle problem sizes up
to 60 millions, which is the largest size one can fit in the
testing machine. For larger problem size, the parallel efficiency
of Cilk version remains above 90%; the HPX-5(P ), HPX-
5(NP ), and OpenMP versions are roughly 3X, 10X, and 6X
slower, respectively. We point out the OpenMP implementation
considered here focus on testing the use of OpenMP tasks. One
could develop more efficient OpenMP version. Nonetheless,
this shows the promise of data-driven parallel FMM imple-
mentation provided the implementations uses the strengths of
the runtime and the runtime itself has an appropriate level of



overhead.

VI. CONCLUSION

In this paper, we discuss how to achieve a data-driven
execution of the adaptive FMM by asynchronously scheduling
available computational tasks. An important design decision
to make is whether or not to create a new task for each
node in GFMM if the node has partial input to process. We
choose four runtime systems—Cilk, C++11 standard thread
and future libraries, HPX-5 library, and OpenMP tasks—as
candidates to implement the parallel algorithm. By examining
the features supported by each runtime, we developed eight
different implementations of parallel FMM.

The performance evaluation of the eight versions provides
answers to many questions quantitatively. As a compiler-based
runtime, the Cilk version demonstrates the best performance
in all the test cases, and is approximately 2X∼3X faster than
the next best version. The OpenMP version is dominated by
overhead for small problem size. Versions using deferred task
creation run slower most of the time. However, for C++11,
eager task creation could quickly exceed the capacity of
the runtime. The comparison between versions that partition
GFMM and the versions without partitioning GFMM reveals the
scheduler’s difficulty with recognizing tasks along the critical
path. Among all the versions, the Cilk version achieved 15X
speed-up on the sixteen-core machine when the problem size
is 106, without tuning the parameter s for different accuracy
requirements and data distributions, showing the promise of
the data-driven approach.

Although all the tests were performed on shared memory
architectures, the results offer some measurements for the
future development of the HPX-5 runtime that targets the
distributed memory architecture. A few strategies that could
improve its performance include preallocating a pool of threads
and futures on startup instead of on demand, reducing the
amount of work done during a context switch, using more
efficient data structure for queuing and helping scheduler to
recognize the critical path.
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