
Hierarchically Tiled Array as a High-Level
Abstraction for Codelets

Chih-Chieh Yang∗, Juan C. Pichel†, Adam R. Smith∗, and David A. Padua∗
∗Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL, USA

Email: {cyang49, smith195, padua}@illinois.edu
†CITIUS

Universidade de Santiago de Compostela
Santiago de Compostela, Spain
Email: juancarlos.pichel@usc.es

Abstract—The move from terascale to exascale systems is
challenging in terms of energy and power consumption, resilience,
storage, concurrency, and parallelism. These challenges require
new fine-grain execution models to support the concurrent
execution of millions or even billions of threads on the exascale
machines. The most promising approaches are those based on the
codelet execution model, which provide a flexible programming
interface that allows the expression of all kinds of parallelism
with fine-tuning opportunities. We propose using Hierarchically
Tiled Array (HTA) as a high-level abstraction for codelets to
improve the programmability and readability of programs while
preserving the good performance and scalability provided by the
codelet execution model.

I. INTRODUCTION

The next challenge in the evolution of supercomputers will
be the transition to exascale systems. At first glance, this
goal seems reachable assuming Moore’s law continues to hold.
However, while the move from terascale to petascale process-
ing was evolutionary, the leap to exascale supercomputers will
require revolutionary advances. Simply scaling up the current
technology will not work. The projections for the exascale
systems indicate that applications may have to support up
to a billion separate threads to efficiently use the hardware,
while the amount of memory per functional unit will drop
significantly [1], [2]. This implies the need for exploiting fine-
grain parallelism which requires a programming model other
than the dominant message passing paradigm which makes use
of coarse-grain threads.

The codelet execution model [3]–[5] is a promising alter-
native to the message passing paradigm. The codelet model is
a fine-grain program execution model inspired by the earlier
work on dataflow machines [6] and its descendants such
as the EARTH execution model [7]. A codelet is a group
of machine instructions that are executed atomically. In an
application written following the codelet model, all the code
is partitioned into codelets. A codelet is fired (move to “ready
for execution” state) once all the data and resources required
become available. Codelets presuppose that all data and code
required for execution is local. In this way, the need to
explicitly program in the body of a codelet to hide latencies
from accesses to remote data is eliminated.

The codelet model was developed to maximize perfor-
mance and scalability. To achieve these goals, the program-
ming interface to codelets is designed to enable the expression
of different kinds of parallelism and give the control of how
to express parallelism to users. Because of all the information
needed to specify parallelism and synchronizations, it is often
difficult to program directly in terms of codelets. For this
reason, high-level abstractions built on top of codelets, which
increase the programmability and readability without sacrific-
ing performance and scalability, are of great importance.

In this paper, we propose using Hierarchically Tiled Arrays
(HTAs) as a high-level abstraction for writing programs to
execute on runtime systems based on the codelet model.
HTAs [8] are a class of objects that encapsulate tiled ar-
rays and data parallel operations on them. With HTAs, it
is possible to describe most classes of parallel computations
in a natural manner. The main motivation behind the design
of HTAs is that, for a wide range of applications, tiling is
universally used to control locality and parallelism. Our goal
in the project described here is to show that HTAs can be
efficiently mapped onto codelets without introducing global
synchronization barriers, and that at the same time they hide
the low level details of the runtime from the user. Note that
our data parallel abstractions may not be the only mechanism
for programming, they could coexist with other mechanisms
including explicit invocation of codelets.

The remainder of the paper is organized as follows: Sec-
tion II talks about the need for a high-level programming
abstraction for the codelet execution model and proposes
the HTA paradigm as a solution. Section III describes our
assumptions of the baseline codelet model used in our design.
Section IV explains how HTA programs can be mapped onto
the codelet execution model. Section V discusses a few design
decisions that can impact performance. Section VI provides an
example demonstrating how parallel algorithms can be written
with HTAs more easily. Section VII gives a brief description
of the related work. Finally, Section VIII concludes.



Fig. 1. HTA tree structure and accessing the contents of an HTA.

II. BACKGROUND

A. The Codelet Execution Model

The codelet execution model evolved from the dataflow
execution model, in which the unit of computation is very fine-
grained (often a single operation) and a program expressed in
this model requires hardware support for efficient execution.

In contrast, in the codelet model, the units of computation,
codelets, can be fine-grained computations but not as fine-
grained as a single operation. A codelet program contains the
definition of codelets and the dependences between codelets. A
software runtime system, required for program execution, is re-
sponsible for keeping a record of dependences and scheduling
codelets for execution when their dependences are satisfied.

Programmers do not have to explicitly specify the execu-
tion order of codelets or assign them to physical execution
units. Instead, the runtime system decides when and where
codelets are executed once their dependences are satisfied, so
that the workload can be balanced dynamically. In addition,
the codelet runtime system can make decisions to reduce
energy consumption. One way is to provide mechanisms that
proactively aim at reducing energy-consumption by applying
techniques such as percolation [3]. The other way to reduce
power consumption is to let the runtime system react to the
behavior when some nodes exceed the power threshold by
activating energy saving measures or migrating one or more
codelets to a different compute node.

In order to get the most out of the codelet model, the
existing applications have to be rewritten with the algorithms
redesigned in terms of codelets. Programmers need to analyze
the programs carefully and break down the computations into
codelets and their data dependences (as opposed to synchro-
nizations for control dependences) so that the parallelism can
be exploited by the codelet runtime system. While it allows
programs to be written in a way that retains great parallelism,
these requirements result in the need for programmers to write
low-level programs. This makes porting an existing application
or developing a new one an onerous activity.

B. Hierarchically Tiled Arrays

We believe the HTA programming paradigm is a great
solution to the programmability difficulties of codelets. HTAs
have been successfully implemented in Matlab and C++, and
have been studied for both distributed and shared memory
environments [9], [10].

Essentially, an HTA program can be seen as a sequential
program containing operations on tiled arrays. It has been
demonstrated that HTA code is expressive, concise, and easy
to reason about. It is also simple to start from a baseline se-
quential program and parallelize it with the HTA notations. The

S0: Tiling tiling = new Tiling(new Tuple(2, 2),
S1: new Tuple(4, 4));
S2: HTA h1 = new HTA(2, tiling, HTA_DOUBLE);
S3: HTA h2 = h1(0, : );
S4: double h3 = h1(0, 1)[3, 0];
S5: double *h4 = h1[4:7, 3:4];

Fig. 2. An example of HTA construction and accessing elements.

model provides a global view of data which lets tiles and scalar
elements be easily accessed through chains of index tuples
without explicitly specifying communication functions to fetch
the data required. These features improve programmability and
minimizes application development time.

Application codes written in the HTA notation are portable
across different classes of machines since low-level details are
not exposed to the users. For example, a map operation can be
implemented using a parallel for loop, or it can be implemented
as SPMD computations. Users write the same code using the
high-level constructs provided by the HTA paradigm and they
need not know the details of the underlying machines. Com-
pared with completely rewriting existing applications using
codelets, it can be preferable for application developers to use
the more familiar programming paradigm provided by HTA
while still enjoying the benefits of executing applications on
codelet runtime systems. In the remainder of this section, we
introduce the basic notations of the HTA programming model.

1) Data Representation: Regular arrays are flat, which
means that they are composed of scalar elements. HTAs are
hierarchically tiled so that an HTA tile can consist of not only
scalar elements but also smaller HTAs. The data structure used
to store hierarchical information is a tree (Fig. 1). At each level
of the tree, a tuple associated with the tree node stores the tiling
of the lower level. The root node is at level 0. Its children are
at level 1, and so on. We use the term leaf level to refer to
the tiles that are the lowest level tree nodes, and scalar level
to refer to the scalars within the leaf level tiles.

The data in an HTA consists of the metadata and the raw
data. The raw data contains the values used in the computation.
The metadata includes the hierarchy, the distribution, and all
the other information that are required for manipulation of
HTAs. In the example shown in Fig. 1, the black circles are
the raw data and everything else is the metadata.

2) Construction: There are several ways to create HTAs.
One way is by specifying the hierarchy of tiles in the form of
a sequence of N dimensional tuples. On distributed memory
machines, the desired distribution of the tiles and the layout are
also required arguments for the HTA constructor. An example
program in C++ syntax is shown in Fig. 2. S0 creates an object
tiling containing two tuples: 2×2 at the first level and 4×4
at the second level. It is then used in S2 to construct the two-
level HTA object h1. The limitation of the method is that
it can only create regular partitions—tiles of the same level
have the same shapes with the same number of dimensions
and same sizes along each dimension. Many flexible ways to
create irregular HTAs are described in [8].

3) Accessing Elements: To access the elements of an HTA,
two different access operators can be used: operator () for tile
accesses, and operator [] for scalar element accesses. The
operators accept a triplet of the form low:high or of the



form low:step:high for each dimension to indicate the
range of selected elements. If either the low (or high) of the
triplet is omitted, the corresponding minimum (or maximum)
index is used. An extra step value can be given to access
elements with strides other than 1.

By using access operators, programmers can construct new
HTAs from the existing ones easily. For example, at S3 of
Fig. 2, the operator () selects the 0th row of tiles in h1 to
create a new HTA h2 by copying data tiles from the row. S4
selects first the tile (0, 1) at level 1 in h1, and then [3,
0] selects a scalar element within the tile. S5 demonstrates the
use of triplets, and using the operator [] at a non-leaf level
tile results in a selection of a region across tile boundaries. In
this case, the return value is a 2-D scalar array instead of an
HTA. All the selected regions are illustrated in Fig. 1.

4) HTA Operations: These are either the high-level pro-
gramming constructs or the API functions provided by the
library for performing computations on HTAs conveniently.

Conformability is essential in HTA operations. In the HTA
paradigm, conformability is a generalization of conformable
arrays in Fortran90 to adapt the hierarchical and tiled nature
of the data structure. We say two HTAs are conformable when
they are of the same shape or when the smaller one of the
two can be expanded to a shape that allows it to be operated
on with the larger tile by tile. A scalar can be seen as an
HTA of a single tile that has a single element, and it is
always conformable to other HTAs. The detailed definition of
conformability can be found in [11].

For some operations, the computations being performed on
tiles of different HTAs do not require a strict ordering. These
operations can be implemented using parallel programming
constructs on a parallel machine. For example, in the con-
struction of an HTA, the memory space for its data tiles can
be allocated in parallel. On a sequential machine, it can still
be executed in serial. The application codes are the same in
both cases. The following list contains the classes of parallel
HTA operations:

• Construction/destruction: The allocation and deallo-
cation of memory space for HTA can be performed
in parallel along with the initialization of data values
within the tiles.

• Assignment Operation: The assignment operator = is
used to modify the values stored in the left-hand side
HTA. It performs conformability check before the
actual assignment, and it adjusts the shape of the right-
hand side HTA when needed.

• Arithmetic Operations: Basic arithmetic expressions
(+, -, *, /, negation, binary shift, . . . etc.) are sup-
ported in HTA. The operations are pointwise oper-
ations (i.e. they are performed at the scalar level,
element-by-element).

• Other Operations: Commonly used parallel opera-
tions are also supported. For example, map(h, op,
level) allows applying an operator op at the tiles
of the specified level of HTA h, and reduce(h,
op) performs reduction on HTA h using the asso-
ciative operation op. There are also operations that

change the distribution of tiles or move data values
around, including circshift, transpose, and
repmat.

5) Program Execution: The execution of an HTA program
can be divided into two parts. The sequential part includes
everything that is not parallel operations. For example, the
computation that updates the stack variables when calling a
subroutine, forms the sequential part. The parallel operations,
when executed, require multiple processes (or threads) working
on different tiles of the HTA, possibly in parallel.

A trivial implementation would be to use the fork-join
execution model, which uses one master process to execute
the sequential part, and spawns slave processes whenever a
parallel operation is encountered. The slave processes join
back to the master when they are done with their assigned
work, and the master process can proceed the execution of
the sequential part until the next parallel operation happens.
However, this approach would result in implicit barriers for
all parallel operation invocations and hinders the execution
performance.

The other option is to implement HTA in the SPMD exe-
cution model. The program execution starts with all available
processes redundantly executing the sequential part. Since the
sequential part is redundantly computed, all the processes have
identical program state and thus a global view of data (i.e. they
know how to acquire data tiles owned by the others). When
an HTA operation is executed, a process examines whether
the computation is owned (owner-computes: the owner of
computation is the owner of the output data) by it. If so, the
process gathers the input operands and executes the operation.
Otherwise, it might still act as the producer and supply the data
tiles to the consumer processes. When the parallel operation
is completed, it can proceed to the subsequent sequential part
of the program.

The major benefit of executing HTA code in SPMD fashion
is that the implicit barriers are no longer required, since the
owner of computation synchronizes with the producers of the
input operands right before performing a parallel operation.
This is exactly the minimal amount of synchronization needed
due to actual data dependences. The execution can proceed
once the data dependences are satisfied without having to wait
for all other processes at a centralized synchronization point
as opposed to the fork-join model.

III. THE BASELINE CODELET EXECUTION MODEL

In the codelet execution model, program execution is
described as a collection of non-preemptive units of com-
putation—codelets, and their dependences. Dependences of
a codelet are specified when it is created; they cannot be
changed during the execution of a codelet. If some work
requires changing dependences dynamically, it must be broken
into a chain of codelets where each codelet in the chain
depends on its predecessor and as well as on some extra other
codelets. This continuation based computation is referred to
as split-phase computation in [3]. We use “continuation” and
“phase” interchangeably in the later description. Codelets are
scheduled to execute when dependences are satisfied. Since the
execution is dependence-driven without a linear program-order
restriction, the parallelism can be exploited.



Several assumptions are made concerning the codelet exe-
cution model:

• Proximity-aware: Codelets are associated with data
and are assigned to certain proximity groups. Codelets
assigned to the same group can share data with
each other quickly or even directly through shared
memory accesses. In contrast, codelets assigned to
different groups suffer a higher latency when they
need to interact. Unless the user explicitly changes the
group assignment, the runtime system has to ensure
the closeness (in the sense of interaction speed) of
codelets in a group. The idea is a generalization of
the Threaded Procedure proposed in [3].

• Uniquely-identifiable: Each execution instance of the
codelet has a unique identifier assigned to it by the
user at creation time. To satisfy a dependence, only
this identifier is needed. The operation satisfying the
dependence does not need to know the location of the
codelet. The feature can be supported on a distributed
system efficiently if the underlying runtime system
implements a distributed registry with mechanisms
similar to dynamic hash table.

• Dependences are data dependences. Each dependence
involves a pair of producer-consumer codelets and a
data item. At the consumer’s end, the dependence
is one of the slots of dependences allocated at the
codelet creation time. At the other end, the producer
codelet satisfies the dependence with the identifier of
the consumer, the slot index, and the dependent data
item. The action causes a synchronization between the
pair. The consumer codelet is fired when all slots are
filled, and it can then acquire the dependent data items
from the slots.

• Send-buffered, read-deferred: When a codelet satisfies
a dependence, it is possible that the consumer codelet
has not been created yet. A possible strategy is to
buffer the data item associated with the dependence,
since we do not wish to have the producer codelet
blocked waiting. (This wait would be necessary if the
codelet later modifies again the data item associated
with the dependence. This situation would create an
anti-dependence which might force the codelet to wait
before the assignment until the data is consumed.) The
runtime system rejects the send request by raising an
exception when the system resource is not enough. On
the other hand, when the consumer is ready to receive
data, it is simply queued by the runtime system and
will be fired when the dependences are satisfied.

In order to describe our design more clearly, several funda-
mental operations for the codelet model are defined here. We
use codelet to refer to an execution instance and we explicitly
say it when we refer to the code definition.

• codelet_create(state, codelet_def,
codelet_id, dep_count):
The runtime system creates a codelet and associates to
it a unique codelet_id specified by the user. The
codelet is then queued and waits for the dependences
to be satisfied. The runtime system scheduler is

responsible for scheduling the execution of a codelet
when all its incoming dependences are satisfied.
A codelet_def is a function pointer referring to
the code to be executed by the codelet. dep_count
is the total number of dependence slots that need to
be satisfied before the codelet can start execution.
The parameter state represents the initial execution
state of the codelet, which includes the stack, the
register file, and the program counter. When state
is null, the codelet executes the codelet_def
from an empty initial state. In our approach, all
codelets execute the same code and we use the
operation differently by copying the program state
and the codelet_def of the creator codelet so that
the created one starts executing in the same code as
the creator immediately after the codelet_create
operation. Our usage is described in the next section.
Semantically, it is similar to the UNIX fork()
system call.

• dep_satisfy(consumer_id, slot, item):
The producer invokes this operation to satisfy a
dependence slot of the consumer with a data item.
consumer_id is the identifier of the consumer. It
is assumed that the runtime system can efficiently
locate and communicate with the consumer with
the identifier. slot is the index number of the
dependence slots of the consumer. item is the object
encapsulating the dependent data.

IV. MAPPING HTA ONTO CODELETS

In this section, we describe the design to map HTA
programs to the codelet execution model. Let us first consider
HTA creation which requires a distribution function D that,
when invoked, returns the name of the owner codelet of the
tile. The function is many-to-one. Tiles of either the same HTA
or from different HTAs can belong to the same codelet and a
single tile never belongs to two different codelets.

owner = D(HTA name, indices)

Tiles are distributed to the same owner usually because the
computation of the owner require fast access to these tiles,
so associating ownership implies binding the data tiles to a
locus (location). Note that binding to a locus is conceptually
different from assigning a hardware compute node since the
number of different loci is not limited by physical resources.

We call binder a codelet that serves as the locus of the
set of tiles and root a codelet that acts as the entry point of
the program and is responsible for the creation and deletion
of binder codelets. The root does not own any tiles.

We propose an approach that implements HTAs as a library
on top of codelets (it is possible to enhance the support by
building a compiler but that is beyond the scope of this work).
An HTA program executes a sequence of statements, some
of which operate on HTAs. The program can be conceived as
sequential although it typically executes in parallel. Parallelism
can be achieved in one of the following two ways:

1) The non-HTA part executes like any sequential pro-
gram and the operations on HTAs execute in parallel.
This form resembles a fork-join OpenMP program.



2) The program is executed in SPMD form. Each task
owns a collection of tiles and executes the non-
HTA part redundantly and only the part of the HTA
operations that involves the tiles it owns. This is the
mode we use in the implementation described in this
paper.

Determinate program execution is guaranteed since an HTA
program has sequential semantics although as we said the
execution is typically in parallel.

To describe the work of the codelets, we only need to
consider assignment statements (consisting of an expression
at the right-hand side and a variable at the left-hand side),
HTA_create and HTA_destroy statements, since the other
HTA constructs can be converted to combinations of these
statements.

00: HTA_create(name, numtiles, ownerlist, dist){
01: /* build HTA metadata in program state */
02: for (i = 0; i < numtiles; i++){
03: owner = dist(name, i);
04: if(isroot()){
05: if(!exists(owner))
06: codelet_create(mystate,mycode,owner,0);
07: }
08: if(isbinder()){ // one of the binders
09: if(owner == myid)
10: allocate_tile(name, i, mylocus);
11: /* perform any other necessary actions */
12: }
13: }
14: }

Fig. 3. Implementation of HTA_create in terms of codelet operations.

Fig. 3 shows an exemplary implementation of
HTA_create. The HTA program execution starts from
the root codelet. Whenever the root finds HTA_create, it
calls codelet_create (Line 06) if the binder codelet
that owns the tile has not been created yet. The new binder
codelet starts execution with a state that is identical to
the execution state of the root right after the corresponding
codelet_create statement (Line 07) and allocates the
memory space required for the tiles locally in the same locus
(Line 10). On the other hand, when the codelets who do not
own the tiles (including the root) execute an HTA_create
statement, they simply gather the information about the
creation (Line 01) so they are “aware” of it.

When HTA_Destroy is executed, the binder codelets
containing the tiles of the HTA have to deallocate the memory
space for the tiles. All the other codelets who do not own any
tiles of the HTA being destroyed also execute the function to
remove the metadata from the program state. When a binder
codelet does not own any living tiles anymore, it can be
terminated to release system resources.

Assignment statements are handled differently depending
on their types. For our strategy, there are four types of
assignment statement:

1) Assignment statements involving no HTAs are exe-
cuted sequentially by all codelets.

2) Assignment statements involving an HTA on the left-
hand side (LHS) but not on the right-hand side (RHS)
are neither executed by the root codelet nor the binder

codelets that do not own any tiles referenced on the
LHS of the statement. Any binder codelet containing
at least one tile of the LHS HTA is the owner of
computation and will carry out the assignment to the
owned tiles directly, since the RHS expression can be
evaluated locally.

3) An assignment statement containing HTA references
on the RHS and non-HTA variable (either stack vari-
able or local heap variable) on the LHS is an update
to the program state. Since all codelets maintain
identical program state, all codelets (including the
root codelet) depend on the evaluation result of the
RHS expression.
In this case, all of the binder codelets containing
referenced tiles are the producers and they have to
satisfy all other codelets which are the consumers. To
accomplish this, each codelet creates a continuation
codelet associated with the same set of tiles and
its num_deps equal to the number of owners of
the referenced tiles. Finally, the continuation codelets
start execution when the dependent tiles are received
and evaluate the RHS expression and then store the
result to update the program state.

4) Assignment statements involving HTAs on both sides
is slightly more complex. In this case, the root codelet
skips these statements. The binder codelets containing
at least one tile any of referenced HTAs on the RHS
are the producers. In contrast, the binder codelets
containing at least one tile of the HTA on the LHS
are the consumers.
Each producer containing some tiles of the referenced
HTAs on the RHS has to collect the sets of tiles
required by the consumers and satisfies them cor-
respondingly. Each consumer creates a continuation
codelet, and the num_deps is equal to the number
of producers who are responsible for supplying its
dependent data. When the producer of some tile is
the same as the consumer, as an optimization, the
dependence can be implicitly satisfied.

Next we show some examples of the program execution.
Before we start, our naming conventions for codelets are
described. A name is associated with each codelet at creation
time. The rules to generate names for binder codelets and the
root codelet are as follows:

• The root codelet is named R with an superscript num-
ber indicating the continuation phase. For example,
the first instance of the root is R1, the continuation of
it is R2, and so on.

• Each binder codelet is named T concatenated with a
number representing the index of the locus and a su-
perscript number representing its phase. For example,
T53 means the binder codelet who lives at the 5th locus
is at the 3rd phase of execution.

Fig. 4 is an example program showing the HTA program
execution, and the interactions between codelets during exe-
cution are shown in Fig. 5. The execution starts from the root
codelet R1. When it executes HTA_create at S2, it knows
the HTA B is to be created with four tiles cyclicly distributed to
two loci (0 and 1). At this point, there are no binder codelets



S0: double x, y, z; // R1

S1: HTA B, G;
S2: HTA_create(B, 4, [0,1], CYCLIC); // T01, T11

S3: HTA_create(G, 4, [0,1], CYCLIC);
S4: x = sin(y) * cos(z);
S5: B = x;
S6: z = reduce(B + G); // R2, T02, T12

S7: G = B(-1: ); // T03, T13

S8: B(0) = pow(B(1), 10); // T04

S9: G(2) = pow(G(3), 10); // T05

Fig. 4. An example of HTA program. Fig. 5. The execution of codelets for the example in Fig. 4.

in the system. Thus, R1 invokes codelet_create which
creates T01 and T11, passes its current program state as input,
and proceeds to S3, where R1 does not create new binder
codelets since tiles of HTA G are distributed to the existing
binder codelets.

Now that T01 and T11 are created, their executions start
at S2 and they allocate tiles of B locally. At S3, they both
allocate tiles of G without having to interact. The next few
lines demonstrate the different types of assignment statements.
S4 is an assignment statement which is evaluated locally since
no HTAs are involved (type-1). Next, S5 involves all tiles of
B on the LHS, thus T01 and T11 both have to execute. T01

assigns to B(0) and B(2) and T11 assigns to B(1) and B(3),
but no interaction is needed (type-2).

S6 is a type-3 assignment with an update to the stack
variable living in the program state. Everyone including the
root codelet has to enter a new phase, and the producers satisfy
everyone with the tiles involved in the RHS expression. When
the dependences are satisfied, T02 assigns to B(0) and B(2),
and T12 assigns to B(1) and B(3).

At S7, the RHS is a permutation of tiles (circular shift)
in B and the result is assigned to the tiles of G. The RHS
and the LHS both involve HTA references, so it is a type-4
assignment. In this case, since R2 does not own tiles, it omits
the statement. T02 sends copies of B(0) and B(2) to T13, and
T12 sends copies of B(1) and B(3) to T03. After the sending,
T02 and T12 both enter new phases since they require new
incoming dependences.

S8 and S9 are also type-4 assignments. They both select
some tile owned by T1, and assign it to a tile owned by
T0. The consumer T0 has to enter new phases in order to
get new dependent data tiles, but the producer T1 stays at
phase 3. Notice that a producer codelet may want to satisfy a
consumer codelet at different phases. If we do not distinguish
the different phases of the consumer using unique identifiers
in dep_satisfy, when the satisfactions arrive out-of-order,
the consumer may receive incorrect values.

From the example, we can see how the proposed approach
can successfully map the HTA program execution to the
codelet execution model. In the next section, we propose
mechanisms to further extend and improve the design for
execution performance.

V. PERFORMANCE CONSIDERATIONS

The previously described approach to map HTA programs
to the codelet execution model works, but we have not ad-
dressed much about its performance. Here we point out the

possibilities for optimizing the execution performance of HTA
programs on the codelet model.

A. Exploiting Finer-grain Parallelism

Letting each binder codelet perform all the computations
associated with its owned tiles does not exploit the parallelism
fully. For instance, in Fig. 5, S8 and S9 do not have to be
executed in order since they work on different HTAs. But the
current approach can not exploit this parallelism because the
binder codelet sequentially performs all the work associated
with its tiles.

Performance can be further improved if we exploit finer-
grain parallelism of the computations owned by each binder
codelet. One possibility is to let the binder codelet create a new
type of worker codelet that performs part of the computations
associated with the tiles owned by the binder. These workers
execute in parallel with the binder, and do not perform the
redundant computation required to maintain identical program
state, since they only need the information necessary for the
fine-grain computation and terminate when the computation
is finished. The nested parallelism can be exploited in a
way similar to the hybrid MPI and OpenMP programming
paradigm.

B. Reuse and Locality

In the proposed approach, each binder codelet processes
statements one-after-another dynamically. Thus, it cannot de-
tect the reuses across multiple statements in the HTA program.
One possibility for exploiting the locality across statements
is to implement a cache of remote data tiles in the HTA
library with some support from the underlying codelet runtime
system. When an incoming dependence is deemed required
for the continuation, the binder codelet looks up in its local
cache for the tile of the specific revision (a revision counter
associated to each tile would be necessary for this purpose). If
it hits in the cache, the local cache replaces the remote binder
who produces the tile to satisfy this particular dependence
locally. On the other hand, a binder codelet producing data
tiles works the same way as proposed, but the runtime system
at its end performs a handshake with the consumer’s end before
actually sending data. During the handshake, the runtime at the
consumer’s end looks up its cache to see if the tile has been
received before. If there is a hit, it notifies the producing end
and cancel the communication.

VI. EXAMPLE

LU decomposition is one of the fundamental methods for
solving systems of linear equations. Block LU decomposition



S0: for k = 0 to n-1
S1: lu(A(k, k))
S2: A(k, k+1:) = mldivide(A(k, k).lt, A(k, k+1:))
S3: A(k+1:, k) = mrdivide(A(k+1:, k), A(k, k).ut)
S4: A(k+1:, k+1:) = A(k+1:, k+1:) - A(k+1:, k)

* A(k, k+1:)

Fig. 6. LU Decomposition in HTA notation.

Statement Input Output
S1 IN(S1) = {Akk} OUT (S1) = {Akk}
S2 IN(S2) = {Akk, Akj} OUT (S2) = {Akj}
S3 IN(S3) = {Akk, Aik} OUT (S3) = {Aik}
S4 IN(S4) = {Aij , Aik, Akj} OUT (S4) = {Aij}

Fig. 7. Sets used to calculate the dependence relationship for LU decompo-
sition. k is a fixed value in each iteration of the for loop, and the values of i
and j are replaced by the owned tile indices.

is the tiled version of it. The algorithm can be easily written
in HTA notation as Fig. 6 shows. The matrix operations are
implemented in HTAs with the same names as Matlab routines.
The algorithm takes an HTA A as input which consists of n×n
tiles, and performs the block LU decomposition in place.

In Fig. 6, S1 calls lu to perform a sequential LU de-
composition on one tile Akk in each iteration k. Next, S2
uses the HTA method lt to fetch the lower triangular part
of Akk, and performs mldivide(A, B) (which returns x
for Ax = B) for all tiles in the kth row with column index
j > k. Similarly, S3 invokes ut on Akk to take the upper
triangular part, and then uses it in the mrdivide(A, B)
operations (which returns x for xA = B) with all tiles in the
kth column with row index i > k. Finally, the last statement S4
can be seen as two forall loops with iteration space k < i < n
and k < j < n, and the innermost loop body performs
Aij = Aij −Aik ∗Akj to update the tiles in the submatrix.

Fig. 7 shows the sets used in dependence computation. Let
the tiles of A be distributed to a 2D array of loci in a one-
to-one mapping so that each tile Aij is owned by the locus
with index (i, j). In each iteration, k is a fixed value, and the
values used for i and j in the IN and OUT sets are the locally
owned tile indices (same as the locus indices in this mapping).
Fig. 8 illustrates the dependence relationship of applying the
block LU decomposition algorithm to a 3 × 3 block matrix
at k = 0. Each binder codelet waits for only minimal data
dependences before starting execution. For example, A11 can
start the computation of S4 once A01 and A10 have been
produced. No global barriers are required between statements.

Since the algorithm works on tiles with both column and
row indices larger than the iteration count k, there is a load
imbalance for the computations associated with tiles to the
upper left are less than the ones to the lower right. The problem
can be relieved by distributing the tiles cyclicly to the loci. This
can be easily achieved by changing the distribution specified at
HTA creation without having to modify the algorithm. When
the loci are load-balanced, it is easier for the codelet runtime
to map them to hardware computation resources.

If we attempt to implement the same algorithm directly
using codelets, we will have to implement the distributed
algorithm and orchestrate the creation and the dependences of
codelets in the program manually. With an algorithm of this

Fig. 8. Example of block matrix for LU decomposition.

scale, programming codelets is still reasonably tamable, but it
will definitely take more than the five lines of code used in the
HTA notation. Consequently, it takes more time to write and is
harder to maintain. While introducing reasonable overhead and
redundancy, the high-level programming constructs provided in
the HTA paradigm greatly reduce software development time.

VII. RELATED WORK

One of the most promising execution models that have
begun to address the exascale challenges is the codelet model
[3]–[5]. This model is inspired by previous works on dataflow
models. A comprehensive survey on the classical dataflow
execution models can be found in [12]. In particular, the
codelet model incorporates some of the ideas and advantages
of the macro-dataflow models [13], where the granularity is not
defined at the instruction level but a coarser grain, and also of
the hybrid dataflow/Von Neumman EARTH system [7]. Re-
cently, several runtime systems have been proposed to exploit
the codelet execution model, ETI’s SWift Adaptive Runtime
Machine (SWARM) [4], Delaware Adaptive Run-Time System
(DARTS) [14], and the Open Community Runtime (OCR) [15].

In addition to the codelet model, we can find in the
literature noticeable efforts to develop new efficient execution
and programming models. A dataflow inspired programming
and execution model was adopted as part of the TERAFLUX
project [16]. In the TERAFLUX framework, OmpSs [17] tasks
are translated to finer dataflow threads (DF-Threads) to be
executed on a dataflow architecture. The codelet and DF-
Threads models are very close in such a way that codelets
can be mapped to DF-Threads. In particular, the authors ported
DARTS [14] to the TERAFLUX infrastructure. The operations
we described in Section III can also be implemented using
DF-Threads. Another example is Intel Threading Building
Blocks [18], which is a library implemented in C++ that allows
expressing parallelism using high-level program constructs.
The parallelism is obtained by defining tasks that can be
performed concurrently, relying on the runtime system to split
and map tasks to available hardware threads. Cilk [19] is an
extension to the C language that uses a finer-grain execution
model to take advantage of the asynchronous task creation
for expressing parallelism. The Habanero execution model
[20] also relies on expressing programs as a collection of
asynchronous tasks. The Concurrent Collection (CnC) model
[21] is a high-level programming model implemented upon
Habanero, and it is inspired by dynamic dataflow.

The programming interface to codelets is often low-level
since it provides maximum flexibility and fine-tuning opportu-
nities. To deal with this problem, in this work we propose the
use of the HTA library as a high-level abstraction for codelets.
HTAs emphasize the concept of tiling both to express locality
and parallelism. In the previous work, the advantages of using



HTAs were shown on shared and distributed memory multipro-
cessors [9], [10]. Several other similar libraries that provide a
global view of the data structures exist, such as Global Arrays
[22] and POET [23]. Both require SPMD programming style
and explicit synchronizations which complicate programming.
POOMA [24] also provides a global view of the data, but it
lacks mechanisms to manipulate tiles easily and to decompose
them hierarchically. From the languages side, we find PGAS
(Partitioned Global Address Space) languages as Co-Array
Fortran [25], UPC [26] and X10 [27], which offer a global
view of the data as well as locality information to distinguish
between remote and local accesses. These languages only
provide information to the compiler about arrays to be tiled in
a certain way in order to be distributed, but they do not allow
to manipulate those tiles.

VIII. CONCLUSION

Our ongoing work is implementing the HTA library on
two promising codelet runtime systems —ETI SWARM and
OCR. We plan to evaluate the performance on x86 64 systems
and explore more applications such as graph algorithms and
larger-scale scientific applications.

The work we present in this paper is among the first
attempts to build a high-level abstraction upon the codelet ex-
ecution model. We propose a design which lets HTA programs
be executed in terms of codelets efficiently without any global
barriers, and it provides a good base for further exploration and
research opportunities. We point out the features of the codelet
runtime system that are required for us to realize the design,
and we also suggest several possible components that can be
implemented in the runtime system which will help to not
only mitigate the difficulties in implementing the HTA library
but also reduce the overhead and thus increase the execution
performance. We discuss many design choices and their perfor-
mance implications, which provide useful insights to runtime
system and compiler developers, and application programmers
whose work involves the codelet execution model.

ACKNOWLEDGMENT

This material is based upon work supported by the De-
partment of Energy [Office of Science] under Award Numbers
DE-SC0008716 and DE-SC0008717. This work has been also
supported by the Xunta de Galicia (Spain) grant EM2013/041.

REFERENCES

[1] S. Ashby et al., “The Opportunities and Challenges of Exascale
Computing – Summary Report of the Advanced Scientific Computing
Advisory Committee (ASCAC) Subcommittee,” 2010.

[2] P. Kogge et al., “ExaScale Computing Study: Technology Challenges
in Achieving Exascale Systems,” 2008.

[3] G. R. Gao, S. Zuckerman, and J. Suetterlein, “Toward an execution
model for extreme-scale systems – runnemede and beyond,” CAPSL
Tecnhical Memo 104, Department of Electrical and Computer Engi-
neering, University of Delaware, May 2011.

[4] C. Lauderdale and R. Khan, “Towards a codelet-based runtime for
exascale computing: Position paper,” in Proc. of the 2nd Int. Workshop
on Adaptive Self-Tuning Computing Systems for the Exaflop Era, 2012,
pp. 21–26.

[5] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using
a ”codelet” program execution model for exascale machines: Position
paper,” in Proc. of the 1st Int. Workshop on Adaptive Self-Tuning
Computing Systems for the Exaflop Era, 2011, pp. 64–69.

[6] J. B. Dennis, “First version of a data flow procedure language,” in
Programming Symposium, LNCS, 1974, pp. 362–376.

[7] K. B. Theobald, “EARTH: and effcient architecture for running threads,”
Ph.D. dissertation, McGill University, Montreal, Canada, 1999.

[8] B. Fraguela et al., “The Hierarchically Tiled Arrays programming
approach,” in Proc. of the 7th Workshop on Languages, Compilers, and
Run-time Support for Scalable Systems (LCR), 2004, pp. 1–12.

[9] J. C. Brodman, B. B. Fraguela, M. J. Garzarn, and D. A. Padua, “Design
issues in parallel array languages for shared memory,” in Proc. of the
8th Int. Workshop on Systems, Architectures, Modelling and Simulation,
ser. Lecture Notes in Computer Science, vol. 5114, 2008, pp. 208–217.

[10] J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, and D. Padua,
“Programming with tiles,” in Proc. of the 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP),
2008, pp. 111–122.

[11] G. Bikshandi, “Parallel programming with hierachically tiled arrays,”
Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2007.

[12] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM Computing Surveys, vol. 36, no. 1, pp.
1–34, Mar. 2004.

[13] V. Sarkar and J. Hennessy, “Partitioning parallel programs for macro-
dataflow,” in Proc. of the ACM Conference on LISP and Functional
Programming, 1986, pp. 202–211.

[14] J. Suettlerlein, S. Zuckerman, and G. R. Gao, “An implementation of the
codelet model,” in Proc. of the 19th Int. Conf. on Parallel Processing
(Euro-Par), 2013, pp. 633–644.

[15] “Open Community Runtime,” https://01.org/open-community-runtime,
accessed: 2014-06-30.

[16] R. Giorgi et al., “TERAFLUX: Harnessing dataflow in next generation
teradevices,” Journal of Microprocessors and Microsystems, April 2014.

[17] A. Duran et al., “OmpSs: a proposal for programming heterogeneous
multi-core architectures.” Parallel Processing Letters, vol. 21, no. 2, pp.
173–193, 2011.

[18] J. Reinders, Intel Threading Building Blocks, 1st ed. O’Reilly &
Associates, Inc., 2007.

[19] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime sys-
tem,” in Proc. of the 5th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 1995, pp. 207–216.

[20] R. Barik et al., “The Habanero multicore software research project,” in
Proc. of the 24th ACM SIGPLAN Conf. Companion on Object Oriented
Programming Systems Languages and Applications, 2009, pp. 735–736.

[21] Z. Budimlic et al., “Concurrent collections,” Scientific Programming,
vol. 18, no. 3-4, pp. 203–217, 2010.

[22] M. Krishnan, B. Palmer, A. Vishnu, S. Krishnamoorthy, J. Daily, and
D. Chavarria, The Global Arrays Users Manual, 2012.

[23] R. Armstrong, “POET (Parallel Object-oriented Environment and
Toolkit) and frameworks for scientific distributed computing,” in Proc.
of the 30th Hawaii Int. Conf. on System Sciences: Software Technology
and Architecture, 1997, pp. 54–63.

[24] J. Reynders et al., “POOMA: A framework for scientific simulations on
parallel architectures,” in Parallel Programming in C++. MIT Press,
1998, pp. 547–588.

[25] R. W. Numrich and J. Reid, “Co-array fortran for parallel program-
ming,” ACM SIGPLAN Fortran Forum, vol. 17, no. 2, pp. 1–31, 1998.

[26] W. Carlson, J. Draper, D. Culler, K. Yelick, E. Brooks, and K. Warren,
“Introduction to UPC and language specification,” CCS-TR-99-157,
IDA Center for Computing Sciences, 1999.

[27] P. Charles et al., “X10: An object-oriented approach to non-uniform
cluster computing,” in Proc. of the ACM SIGPLAN Conf. on Object-
oriented Programming, Systems, Languages, and Applications, 2005,
pp. 519–538.


