
Determinacy and Repeatability
of Parallel Program Schemata

Jack B. Dennis
Computer Science and Artificial Intelligence Laboratory

MIT, Cambridge, Massachusetts
Email: dennis@csail.mit.edu

Guang R. Gao
University of Delaware

Newark, Delaware
Email: ggao@capsl.udel.edu

Vivek Sarkar
Rice University
Houston, Texas

Email: vsarkar@rice.edu

Abstract—The concept of “determinism” of parallel programs
and parallel systems has received a lot of attention since the dawn
of computing, with multiple proposals for formal and informal
definitions of deterministic execution. In this paper, we present
precise definitions of two related properties of program schemata
— determinacy and repeatability. A key advantage of providing
definitions for schemata rather than concrete programs is that
it simplifies the task for programmers and tools to check these
properties. The definitions of these properties are provided for
schemata arising from data flow programs and task-parallel
programs, thereby also establishing new relationships between
the two models. Our hope is that these sound definitions will
help provide a more precise framework for discussions of these
properties.

I. INTRODUCTION

The challenge of running applications on parallel systems
has received increased attention in recent years due to the
foreseeable growth of multicore and many-core processors.
There is widespread agreement that a major obstacle to
developing parallel software with comparable productivity
to that of sequential software arises from the potential for
programs written in current parallel programming models to
exhibit non-repeatable behavior for the same input. The term,
“nondeterministic”, is often used to refer to this behavior,
but without a sound definition of exactly what it means. In
Wikipedia we find these uses of “nondeterministic”:

“Nondeterministic algorithms are often used when
the problem solved by the algorithm inherently al-
lows multiple outcomes (or when there is a single
outcome with multiple paths by which the outcome
may be discovered, each equally preferable). Cru-
cially, every outcome the nondeterministic algorithm
produces is valid.”
“In computational complexity theory, nondetermin-
istic algorithms are ones that, at every possible step,
can allow for multiple continuations. . . . These algo-
rithms do not arrive at a solution for every possible
computational path; however, they are guaranteed to
arrive at a correct solution for some path.”

1This work was supported in part by the National Science Founda-
tion through grant CCF-0937832, CCF-0833122, CCF-0937907, and OCI-
0904534. This work was also partially supported by European FP7 project
TERAFLUX, id. 249013.

The terms “deterministic” and “nondeterministic” were used
in the classical switching theory of Finite State Machines
(FSMs). An FSM is defined by a state transition function
that specifies a next state for every combination of current
state and input symbol. If the transition function specifies a
unique next state for every combination, the FSM is said to
be deterministic. However, if the transition function specifies
several possible next states (being a relation rather than a
function), the meaning is that the actual next state may be
any one of those that are possible according to the transition
relation. Such an FSM is said to be a nondeterministic FSM or
an NDFSM. A well known result of switching theory is that
for any NDSM, one can construct an equivalent deterministic
FSM, possibly with a larger set of states.

In this paper, we review the original concept of determinacy
as applied by Richard Karp and Raymond Miller to their model
of Parallel Program Schemata (Section II). This motivates our
interest in the property we call repeatability, which captures
the informal notion of a parallel program having consistent
behavior in every run. We provide definitions of related
properties of determinacy and repeatability in the context of
parallel program schemata arising from data flow programs
(Section III) and task-parallel programs (Section IV). Section
IV also introduces two analytic tools, computation graphs and
function graphs, that help understanding the semantics and
behavior of task parallel programs. Section V discusses means
of ensuring repeatability of programs, illustrating ideas using
the Habanero Java programming language. Our hope is that
this knowledge will be of use in developing tools for easing
the programming burden for parallel computing and lead to
improved parallel programming languages.

II. DETERMINACY

Interest in repeatability of asynchronous parallel compu-
tations dates back to at least the 1960s. The concept of
determinacy of parallel program schemata was published by
Karp and Miller in a series of papers and reports from 1964
through 1969 [1], [2], [3]1. Karp and Miller studied a model of

1Karp and Miller published a version of their work in the IEEE Eighth
Annual Symposium on Switching and Automata Theory[4], where uses of
the terms “deterministic” and “nondeterministic” were well-established. We
believe they chose “determinate” to distinguish their new concept from the
established usage.

parallel computation they called parallel program schemata.
A parallel program schema is a set of memory locations, a set
of operators and a control. Each operator A is defined by two
functions:

1) A mapping (total function) FA from values in a domain
of memory locations to a set of values put into a range
of memory locations. The domain and range need not
be disjoint. Function FA is applied when the operator is
selected for execution by the control.

2) A total function GA that determines which of a finite
number of possible “outcomes” occurs when operator
execution terminates.

The control of a schema is a nondeterministic state machine
and concerns a set of states and an alphabet of output symbols
containing an initiation symbol for each operator and a termi-
nation symbol for each possible outcome of each operator.
The control is specified by a transition function that assigns
a “next state” for each combination of state and symbol. It is
required that the transition function assign a next state for
every combination of state and termination symbol, but is
partial for the initiation symbols. One state q0 is specified
as the initial state.

A run of a “Parallel Program Schema”, starting from some
initial memory contents and the initial control state, yields
a sequence of operator initiations and terminations that Karp
and Miller call a computation, and a corresponding sequence
of memory states. In any state the control may allow many
choices of action, generating runs in which different inter-
leavings of operator execution occur. Karp and Miller defined
a schema as determinate if it satisfies the following property:

Given any two runs of the schema with the same
initial contents of memory and same initial control
state, the sequences of values for each memory
location in the two runs are identical, regardless of
the specific functions F and G chosen for mapping
and selection by each operator.

Thus, determinacy is a property of “uninterpreted program
schemata”, a kind of computation model studied by the
Russian scientist Ianov [5] and extended by Luckham, Park
and Patterson [6], [7].

The authors of computer programs are typically interested
in reproducibility of the results produced by their programs,
and are generally not concerned whether intermediate results
are the same in every run. This is what authors appear to mean
when they write that a program is deterministic. (For example,
see Blelloch [8]). This is the property we will call final value
repeatability:

A parallel program is final value repeatable if, for
a chosen specific interpretation of its operators this
condition is satisfied: For any given input set, and
for every execution of the program, the final value
of each variable is unique.

To contrast this property of a program with the notion of
determinacy, we introduce a weaker property that we call final
value determinacy:

Program: Schema:

cilk int foo (int x) cilk int foo (int x)
{ {

spawn { x = x + 1; } spawn { A; }
spawn { x = x + 2; } spawn { B; }

sync; sync;

return (x); return (x);
} }

Fig. 1. A simple parallel program in Cilk and its schema.

Fig. 2. Karp-Miller schema for a Cilk program. a. The control. b. Execution
sequences. c. Function composition graphs.

A parallel program schema is final value determi-
nate if, for any interpretation of its operators this
condition is satisfied: For any given input set, and
for every execution of the program, the final value
of each variable is unique.

Note that, to apply the ideas of Karp and Miller to programs,
we have substituted “variable” for “memory location”. Figure
1 provides an illustration using a simple parallel program
written in the Cilk language [9]. The abstraction made in the
schema is to replace the two statements with operators A and
B that have the following interpretations in the Cilk program:

Statement: Operator:
x = x + 1; A (x + 1 -> x);
x = x + 2; B (x + 2 -> x);

The control component of the schema is the simple non-
deterministic state machine in Figure 2a2. The computation
graph for this program schema is shown in Figure 2b. In it,
each vertical bar represents one task – the master task and the
two worker tasks spawned by spawn statements. Along each
bar is shown the sequence of operations performed by the task.
The horizontal arrows show each event that either initiates or
terminates a task. The master task, which has no operations
to perform, waits until the two worker tasks have completed.
Clearly, the computation graph is a directed acyclic graph
(DAG). We define an execution sequence of the schema to be
a total ordering of the operations of the computation graph.
For this simple schema there are just two execution sequences

2In fact, the control in the Karp-Miller schema can represent the intermedi-
ate states in which an operator has been initiated but not terminated. We omit
those intermediate states because the operators in this example are atomic.

– (A, B) and (B, A). For any execution sequence
of a schema, we may construct a graph, called a function
composition graph of the schema, that shows the composition
of operator functions evaluated by the execution to determine
the final values of each variable. Our simple schema has the
two FCGs shown in Figure 2c. This shows that the final value
of variable x may be either B(A(x0)) or A(B(x0)), where
x0 is the initial value of variable x. Because we can easily
choose interpretations of A and B such that the final value of
variable x is different, we conclude that this schema is not
determinate.

On the other hand, the parallel program is repeatable
because, for the specific interpretations of operators A and B
the final value of x will always be x0 + 3. Thus:

Any parallel program with a determinate schema
is repeatable. However, a schema of a repeatable
program is not necessarily determinate.

III. DATA FLOW PROGRAM SCHEMATA

Data flow models of parallel computation are often cited
as originating with work at MIT [10], [11]. However, several
versions of the data flow concept appeared in the late 1960s.
Bert Sutherland completed a PhD thesis on the “On-Line
Graphical Specification of Computer Procedures” in which he
demonstrated construction of data flow diagrams using the
display and light pen of the MIT TX-2 computer [12]. In
1968, Duane Adams completed a thesis at Stanford entitled
“A Computation Model with Data Flow Sequencing” which
was, to the best of our knowledge, the first use of the term
“data flow” to describe a model of computation. At MIT,
Jorge Rodriguez completed a PhD Thesis in 1967 (although
not published until 1969 [13]), entitled “A Graph Model of
Parallel Computations”. The work of Rodriguez had the most
direct influence on subsequent research on data flow in the
MIT Computation Structures Group.

A data flow schema [11], [10] is an interconnection of
components (actors) enabled by the presence of data items
at input ports; the components act by sending data items to
inputs of other components. The behavior of each component
is described by a function that defines output values in terms
of input values and determines on which output ports data
items are sent. Figure 3 shows a basic set of data flow actors.

For discussing determinacy of data flow schemata, we need
a broader definition than provided by Karp and Miller. There is
no memory with domain and range locations for the operators
in a data flow model. For these reasons, we discuss the
determinacy of a system with m input ports and n output ports
as shown in Figure 4. The system runs by accepting data items
from inputs, performing internal activity, and delivering data
items at outputs. The figure illustrates the system responding
to a set of sequences of data items presented at each input
port (the presented input). The ultimate output is the set of
sequences of output data items delivered to the output ports,
if the system is permitted to run as long as it chooses (perhaps
forever). We adopt the following definition for determinacy of
a system:

Fig. 3. A set of basic data flow actors. An operator applies a specified
function to its inputs, a decider performs a test of its inputs using a specified
predicate; a true or false gate actor passes a value if its control input is true or
false, respectively, otherwise absorbing the input value with no response; the
determinate merge uses its control input to pass one value from the indicated
side – if a value is present at the other input it is left for future action.

Fig. 4. A system having m inputs and n outputs. The inputs and outputs
are sequences of values.

A system is determinate if the same ultimate output
is produced for every run of the system for a
presented input, and this is true for all choices of
input and for all interpretations of operators.

It can readily be seen that the components of data flow
schemata are determinate when individually considered to
be systems. As in the case of Karp-Miller determinacy, the
property of determinacy applies to uninterpreted data flow
schemata – the property holds regardless of the specific func-
tions assigned as the behavior of operators, or predicates to
deciders. Patil showed that any interconnection of determinate
systems yields a system that also is determinate [14]. Conse-
quently any data flow schema constructed of components with
determinate (functional) behavior is itself determinate.

We may illustrate the distinction between determinate and
repeatable systems using data flow schemata. This requires use
of a nondeterminate merge actor, for otherwise, any system of
data flow actors is both determinate and repeatable. Figure 5
shows a schema that is not determinate, yet represents a
repeatable computation. If f and g are the same function, then
the two possible output sequences of the schema, f(x), g(x)
and g(x), f(x), will be the same.

IV. TASK PARALLELISM

For discussing the determinacy and repeatability of com-
puter programs, we will use the Habanero-Java (HJ) lan-
guage [15] as an exemplar of task-parallel languages. However,
similar ideas can be applied to other task-parallel programming
models including Cilk [9] and OpenMP 3.0 [16], and to global-
view PGAS languages including X10 [17] and Chapel [18].

Fig. 5. A data flow schema, using a non-determinate merge actor, that is
repeatable if the functions f and g are the same. The non-determinate merge
passes values to its output port, making an arbitrary choice if values are
present at both input ports.

In fact, HJ was derived from X10, with extensions to X10’s
task-parallel model that include data-driven tasks [19], finish
accumulators [20], phasers [21], and phaser accumulators [22].

A. Async/Finish statements in HJ

The basic primitives of task parallelism relate to creation
and termination of tasks. In HJ, this support is provided by
the async and finish statements of the X10 language.

async: The statement “async 〈stmt〉” causes the
parent task to create a new child task to execute
〈stmt〉 asynchronously with (i.e., before, after, or in
parallel with) the remainder of the parent task.

finish: The statement “finish 〈stmt〉” causes the
parent task to execute 〈stmt〉 and then wait until all
async tasks created within 〈stmt〉 have completed,
including transitively spawned tasks.

Each dynamic instance TA of an async task has a unique
Immediately Enclosing Finish (IEF) instance F of a finish
statement during program execution, where F is the dynamic
innermost finish containing TA [21]. The IEF of TA is
always contained in an ancestor task of TA. There is an
implicit finish scope surrounding the body of the program,
so program execution will only end after all async tasks have
completed.

Figure 6 shows an HJ program for multiplying a matrix A
by vector X using async and finish to compute the dot products
in separate concurrent tasks. We may convert an HJ program
into a Karp-Miller parallel program schema by replacing
statements with operators. For our example a possible schema
for the HJ program is shown in Figure 7.

In this schema, operators C, D, and E model operations on
variable i for the outer for loop, and operators P, Q, and R
model operations on variable j for the inner loop; note that
operators D and Q have two outcomes: true and false. The
remaining operators model the actual computations performed
on elements of matrix A and vector X and have a single
outcome.

It is evident that the definitions of final value determinate
and repeatable in Section II apply to schemata of HJ programs.

int[] multiplyByVector (int [][] A, int [] X) {
int m = A.length;
int n = X.length;
finish {

int [] Y = new int [m];
for (int i = 0; i < m; i++) {
async {

int sum = 0.;
for (int j = 0; j < n; j++) {

sum += A [i][j] * X [j];
}
Y [i] = sum;

} // async
} // finish
return Y;

}

Fig. 6. HJ program for matrix-vector multiplication. The use of finish
here is redundant because an HJ program is treated as though it is enclosed
in a finish statement.

int[] multiplyByVector (
int [][] A, int [] X) {

B (-> m, n);
finish {

L (-> Y);
// scheme of the outer ’for’ statement
C (-> i);
outer:
if (D (i, m)) {

async {
M (-> sum);
// scheme of the inner ’for’ statement
P (-> j);
inner:
if (Q (i,n)) {

F(A, X, i, j, sum -> sum)
R (j -> j);
goto inner;

}
G(Y, i, sum -> Y);

}
E (i -> i);
goto outer;

}
}
return Y;

}

Fig. 7. Schema of the HJ program in Figure 6.

B. Execution Sequences

To gain further understanding of the semantics of task
parallelism in HJ, it is useful to define the execution sequences
an HJ program may generate in execution.

An execution sequence is a sequence of events s0, s1, . . .
where each event is one of the following kinds of events that
can occur during execution of an HJ program.

• A statement: An assignment statement that evaluates
application of an operator to values from a domain
of memory locations and updates a range of memory
locations.

• Beginning of the scope of a finish statement (including
the implicit finish statement that encloses the entire
program).

• Start of execution of an async statement.

• End of execution of an async statement.
• End of the scope of a finish statement.

Note that we are no longer using the term “operator” in
the sense of “transformation of memory”, as in the work on
program schemata, but in the usual mathematical sense of
simply a function from a domain of values to a range of
values. This distinction between “operator” and “statement”
will be important for the discussion in Section V.

The execution sequence for a run of an HJ program for
specific values of input variables contains all events that occur
in each task during execution, arbitrarily interleaved into a
single sequence while maintaining the order in which they
occur in the tasks they came from. A large number of distinct
execution sequences are possible. Instead of exhibiting one,
we will introduce the computation graph which represents the
collection of execution sequences of an HJ program or schema.

C. Computation Graphs for HJ Programs

A Computation Graph is a directed acyclic graph (DAG)
that captures the meaning of execution of a program as a
partial order. Specifically, a Computation Graph (CG) for an
HJ program consists of:

• A set of nodes, where each node represents an event oc-
curring in some task during execution of the HJ program.

• A set of directed edges that represent ordering con-
straints [23]:

1) Continue edges represent the ordering of events
within a task, drawn as vertical bars.

2) A spawn edge connects an async begin event in a
parent task to the start of the sequence of events in
a new child async task. A spawn edge is drawn
as a horizontal arrow from the async begin event in
the parent task to the start of the event sequence of
the child task.

3) A join edge connects the termination of a task to
the task executing its immediately enclosing finish
(IEF) statement.

A computation graph for an HJ program may be constructed
for any execution sequence w by following this procedure:

• Draw a vertical bar to represent the outermost (top level)
task.

• Consider the next event in sequence w. It is either a
statement, or one of the four concurrency control events:

– statement: Place its operator symbol on the current
task bar.

– begin finish: Place a “begin finish” marker on
the current task bar containing a count of the number
of async tasks for which this task is the IEF.

– end finish: If the termination count of the match-
ing “begin finish” event is greater than zero, begin
a dashed section of the task bar indicating a waiting
period.

– begin async: Place a “begin async” mark on the
current task bar; draw a right horizontal arrow to the

Fig. 8. Computation Graph for example HJ program of Figure 6

start of a new bar representing a child of the current
task; make the child task the current task.

– end async: End the current task bar and draw a left
horizontal arrow to the bar representing the parent
task; decrement the termination counter of the IEF
at its begin marker; if the termination count is now
zero, and the parent task is not waiting, place an “end
finish” marker on the parent task bar and make it
the current task; otherwise: make the parent task of
the async task the current task.

In general, many execution sequences of an HJ program
will generate the same computation graph due to the variety
of interleavings of events that task parallelism allows. Com-
putation graphs will differ for execution sequences in which
the action of control operators for conditionals and loops alter
the pattern of task creation. For example the outer loop in the
program schema of figure 7 determines the number of tasks
created to execute the inner loop.

Figure 8 shows a computation graph for this HJ program
when executed with inputs m = 2 and n = 2. In fact, the
computation graph in the figure is unique for this input. (This
property holds for HJ programs with parallelism restricted to
async and finish, and a further condition that no data race
occurs for the given input [24].)

D. Function Composition Graphs

A Function Composition Graph (FCG) is a DAG showing
the composition of function applications resulting from pro-
gram execution.

Each operator node of the DAG represents an application
of the operator of a statement. To construct the FCG for an
execution sequence of an HJ program, we will use a map
M that assigns an operator node to each memory location,
specifically, the operator responsible for the most recent value
in the location. The method constructs the graph G as follows:

• Step 0. Initialize G with a single root node r. The initial
map M assigns root node r to every memory location.

Fig. 9. A function composition graph for the HJ program of Figure 6

• Step 1. Choose the next operator s in the execution
sequence.

• Step 2. Add a node labeled s to G. Add a dependence
arc to s from each node of FCG that is the mapping by
M of any location in the domain of s.

• Step 3. Update M to map each location in the range of
s to node s.

• Step 4. If there are further operators in the program
execution sequence, return to Step 1. Otherwise the
construction is complete.

Figure 9 shows a function execution graph for our example
HJ program with the same input values as for the computation
graph of Figure 8. This is one of two FCGs that correspond
to the computation graph. The other FCG differs from the one
shown in the order in which the two instances of the G operator
update the array variable Y.

We see that although the chosen input values lead to a
unique computation graph, they do not necessarily produce
output values that are a unique function of input values.
Nevertheless the computed result computed by the HJ Program
is the same in both cases because the addition operator is
commutative and associative. Thus, this program is repeatable
even though it is not determinate (because other interpreta-
tions of the addition operator might not be associative and
commutative).

V. CONDITIONS FOR DETERMINACY AND REPEATABILITY

As we have noted, determinacy of a parallel program
implies execution of the program is repeatable, regardless of
the interpretation given to the operators; for any arbitrary input
and arbitrary interpretation of operators, all runs of the pro-
gram will produce the same result. However, as our program
examples have shown, repeatable interpreted programs need
not be determinate. We would like to take advantage of this
observation to devise rules that would ensure repeatability of
task parallel programs.

In 1990 Guy Steele published his paper “Making Asyn-
chronous Parallelism Safe for the World” containing the fol-
lowing statement:

“The minimal restriction that guarantees that the
unpredictability of ordering will not affect the be-
havior of a program is then that, for any possible
serialization order for the operations performed by
a program, any two consecutive operations of the
program that are not causally related must commute
with respect to the memory state that precedes
the first. (Note that exchanging such commutative
operations produces another possible serialization
order.)”

He goes on to note that requiring commutativity with respect
to all possible memory states simplifies the condition to “any
two operations that are not causally related must commute.”
The paper later discusses situations where commutativity can
be used in safe parallel programming.

It is possible to formulate a relaxed condition for repeatabil-
ity by exploiting the idea of commuting statements. Statements
x = f(x,u) and x = g(x,v) commute, where x is a
shared variable and u and v are private variables of concurrent
tasks containing the two statements, respectively, if their
operators f and g satisfy the following condition:

let x’ = f(u,g(v,x))
x’’ = g(v,f(u,x))

then x’’ = x’

That is, it makes no difference for the ending state of the
shared variable x in which order the two statements containing
f and g are executed.

A sufficient condition for repeatability can now be stated
as:

A parallel program is repeatable if every pair of
concurrent statements commute.

One example of the sufficient condition for repeatability is
as follows. Consider a parallel loop in which each iteration i
computes a value and writes it as the ith element of an array.
This computation is repeatable because statements writing
values into an array commute so long as the writes are
for different index values. A simpler example of commuting
statements is two concurrent writes of the same value to
the same location. Other examples of commutative operators
include data parallel blocks that combine results using a
commutative and associative reduction operator, and multiple
threads making contributions to building a histogram.

However, as indicated earlier, these properties of commuting
statements cannot be used to establish determinacy, since they
constrain the interpretation assigned to operators.

A. Data Races and Atomicity

In practice it may be desired to use a compound statement
to code an action that is expected to commute with other such
actions to ensure repeatability of a parallel program. Consider
the following HJ code fragment as an example:

async {r1 = X; r1 = r1 + 1; X = r1;} // A1

async {r2 = X; r2 = r2 + 1; X = r2;} // A2

In this example, actions A1 and A2 conflict with each other
because they are concurrent and both read and write location
X. Since actions A1 and A2 commute, we might conclude that
the program is repeatable because of the sufficient condition
just discussed. However, even a beginner in parallel program-
ming recognizes that this program is not repeatable because
the instructions executed within actions A1 and A2 can be
arbitrarily interleaved.

A solution to this problem is to ensure that such interleaving
is not permitted by making actions A1 and A2 atomic. Often
this is done with locks, which are prone to misuse. In HJ this
can be accomplished by defining each of the above async
tasks to be isolated [15]. Such an approach precludes the
possibility of interleavings of statement execution discussed
above.

B. Language Design for Parallel Programming

A sound goal for language design for parallel computation
is that following some simple syntactic rules should provide
the programmer with a guarantee that a program is repeatable.
It was observed in [15] that any HJ program that restricts
its use of parallelism to the async, finish, future,
phaser, and data-driven task parallel constructs is
guaranteed to be determinate if the program is guaranteed
to be data-race-free [24] for all inputs i.e., if all concurrent
steps are guaranteed to be conflict-free. Like many other
publications in the field, the term “determinism” was used
in [15] without making a distinction between determinacy and
repeatability. However the intended use was for “determinism”
to represent determinacy, since the computation graph and
function composition graphs are guaranteed to be the same
for the same input, for any program in this data-race-free
subset, regardless of the interpretation given to the steps [25].
The addition of isolated statements (and actors) to the set
of HJ programs under consideration breaks this determinacy
guarantee.

A limited form of the commutativity principle was applied
in the design and implementation of the Sisal programming
language [26] where the data parallel for expression per-
mits parallel reductions to be expressed using commuta-
tive/associative operators. Here is an example.

A, s = for i in 0, m 1 do
x = calculate (i);
return array of x, value of sum x;

endfor

This for expression constructs a tuple of values from a
set values of the variable x calculated for values of i over
a contiguous range. The result tuple consists of the vector A
containing the x’s as elements and the sum s of all of the x’s.

Sisal supports construction of a class of parallel programs
that includes much of what one desires from going beyond
strictly determinate programs. However, Sisal is incomplete
in its lack of support for expressing the full possibilities of
producer/consumer patterns and dynamic DAGs of tasks such

as supported by Habanero Java. Sisal evolved from the Val
language [27] which already included the data parallel for
expression as described above.

VI. RELATED WORK

In the main body of this paper, we have already intro-
duced past work on determinacy and repeatability that directly
influenced the main subject of this paper as well as their
related citations. The concept of “determinism” of parallel
programs and parallel systems has received a lot of attention,
with multiple proposals for formal and informal definitions of
deterministic execution. The importance of this concept has
been increasingly well recognized, and the challenges have
been forecasted and studied in [28], [29], [30]. Many forms of
deterministic parallelism have been described and investigated.
A good source of references related to determinism can be
found in a recent publication by Blelloch et al [8].

This paper explores application of the observations of Stelle
to nested parallel programs to enlarge the class of computation
that can be expressed with assurance of repeatable behavior.
Their “control flow DAG” and “trace” concepts are closely
related to our Parallel Execution Graph and Function Compo-
sition Graph respectively. According to the Blelloch paper, a
program is “internally deterministic” if all runs of the program
for given input generate the same control flow DAG and trace.
This property is at once weaker than determinacy and stronger
than repeatability. It is weaker than determinacy because it
applies to a specific interpretation of operators, whereas a
parallel program is determinate if it is internally deterministic
for all interpretations of operators of the program. On the
other hand, being internally deterministic is a sufficient but
not necessary condition for a program to be repeatable, so it
is stronger than repeatability. The authors of [8] apply their
concepts to show how commuting operators may be used
to write repeatable parallel programs for several challenging
applications.

VII. CONCLUSION

The revolution in computer systems arising from the tran-
sition to multicore and many-core processors has created
an urgent need for programming models that support mas-
sively parallel computation. Of particular interest are means
for avoiding the hazards of concurrency that lead to non-
repeatable behavior of programs and the attendant difficulties
of debugging and establishing correctness. In this paper we
have sought to clarify the meanings commonly expressed
in the terms “deterministic” and “nondeterministic”, which
frequently appear in discussions of problems of writing correct
programs for parallel computation without precise definition.
We have shown that the two properties “determinacy” and
“repeatability” can be given precise meaning for data flow and
task-parallel program schemata, and are useful in the study of
strategies for structuring and transforming parallel programs
to avoid harmful data races.

Determinacy requires that a program schema produce the
same results for given input regardless of the specific functions

assigned to its operators. A program, with specified operations,
is repeatable if any run of the program for a given input
produces the same result. Determinacy implies repeatability
for any interpretation of the operators, but the converse does
not hold. We note that use of commuting operators is a
powerful tool for building parallel programs that are repeatable
even though the schema of the program is not determinate.

To avoid confusion, we strongly recommend that authors
of future papers related to parallel program behavior use the
terms “determinate” and “repeatable” when referring to those
precise properties, and avoid “deterministic” when there is
ambiguity about whether it is intended to denote determinacy
or repeatability in a given context.

ACKNOWLEDGMENTS

The authors would like to express their sincere appreciation
to Dr. Chen Chen, post-doctoral researcher at the University
of Delaware, for his assistance in researching prior work,
especially for his efforts in working with us to achieve a
deep understanding of past work by Karp and Miller. We
also thank Robert Pavel from University of Delaware for his
assistance in preparing this document, and Raghavan Raman
from Rice University for clarification about properties related
to determinacy in his Ph.D. dissertation [25].

This work was supported in part by the National Science
Foundation through grant CCF-0937832, CCF-0833122, CCF-
0937907, and OCI-0904534. This work was also partly sup-
ported by European FP7 project TERAFLUX, id. 249013.

REFERENCES

[1] R. M. Karp and R. E. Miller, “Properties of a model for parallel com-
putations: Determinacy, termination, queueing,” IBM Research Center,
Tech. Rep., 1964, RC 1285.

[2] R. Karp and R. Miller, “Properties of a model for parallel computa-
tions: Determinancy, termination, queueing,” SIAM Journal on Applied
Mathematics, pp. 1390–1411, 1966.

[3] R. Karp and R. Miller, “Parallel program schemata,” Journal of Com-
puter and system Sciences, vol. 3, no. 2, pp. 147–195, 1969.

[4] R. M. Karp and R. E. Miller, “Parallel program schemata: A mathe-
matical model for parallel computation,” in SWAT (FOCS), 1967, pp.
55–61.

[5] Y. Ianov, “The logical schemes of algorithms,” Problems of cybernetics,
vol. 1, pp. 82–140, 1960.

[6] D. Luckham, D. Park, and M. Paterson, “On formalised computer
programs,” Journal of Computer and System Sciences, vol. 4, no. 3,
pp. 220–249, 1970.

[7] M. Paterson and C. Hewitt, “Comparative schematology,” in Record
of the Project MAC Conference on Concurrent Systems and Parallel
Computation. ACM, 1970, pp. 119–127.

[8] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, and J. Shun,
“Internally deterministic parallel algorithms can be fast,” in
Proceedings of the 17th ACM SIGPLAN symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’12. New
York, NY, USA: ACM, 2012, pp. 181–192. [Online]. Available:
http://doi.acm.org/10.1145/2145816.2145840

[9] R. D. Blumofe et al., “CILK: An efficient multithreaded runtime
system,” PPoPP’95, pp. 207–216, Jul. 1995.

[10] J. Dennis, “First version of a data flow procedure language,” in Lecture
Notes in Computer Science 19: Programming Symposium. Springer,
1974, pp. 362–376.

[11] J. Dennis, J. Fosseen, and J. Linderman, “Data flow schemas,” in
International Symposium on Theoretical Programming. Springer, 1974,
pp. 187–216.

[12] W. R. Sutherland, “The On-Line Graphical Specification of Computer
Procedures,” Ph.D. dissertation, Massachusetts Institute of Technology,
1966.

[13] J. Rodriguez, “A graph model for parallel computations,” Ph.D. disser-
tation, MIT; Electronic Systems Lab, 1969.

[14] S. Patil, “Closure properties of interconnections of determinate systems,”
in Record of the Project MAC conference on concurrent systems and
parallel computation. ACM, 1970, pp. 107–116.

[15] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar, “Habanero-Java: the New
Adventures of Old X10,” in PPPJ’11: Proceedings of the 9th Interna-
tional Conference on the Principles and Practice of Programming in
Java, 2011.

[16] “OpenMP Application Program Interface, version 3.0, May 2008.”
[Online]. Available: http://www.openmp.org/mp-documents/spec30.pdf

[17] P. Charles, C. Donawa, K. Ebcioglu, C. Grothoff, A. Kielstra, C. von
Praun, V. Saraswat, and V. Sarkar, “X10: an object-oriented approach to
non-uniform cluster computing,” in OOPSLA, NY, USA, 2005, pp. 519–
538. [Online]. Available: http://doi.acm.org/10.1145/1094811.1094852

[18] C. Inc., “The Chapel language specification version 0.4,” Cray Inc., Tech.
Rep., Feb. 2005.

[19] S. Taşırlar and V. Sarkar, “Data-Driven Tasks and their Implementation,”
in ICPP’11: Proceedings of the International Conference on Parallel
Processing, Sep 2011.

[20] J. Shirako, V. Cavé, J. Zhao, and V. Sarkar, “Finish Accumulators:
a Deterministic Reduction Construct for Dynamic Task Parallelism,”
in WoDet’13: Proceedings of The 4th Workshop on Determinism and
Correctness in Parallel Programming, Mar 2013.

[21] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phasers:
a unified deadlock-free construct for collective and point-to-point syn-
chronization,” in ICS ’08: Proceedings of the 22nd annual international
conference on Supercomputing. New York, NY, USA: ACM, 2008, pp.
277–288.

[22] J. Shirako, D. M. Peixotto, V. Sarkar, and W. N. Scherer, “Phaser
accumulators: A new reduction construct for dynamic parallelism,” in
IPDPS ’09: Proceedings of the 2009 IEEE International Symposium
on Parallel&Distributed Processing. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 1–12.

[23] Y. Guo, “A Scalable Locality-aware Adaptive Work-stealing Scheduler
for Multi-core Task Parallelism,” Ph.D. dissertation, Rice University,
Aug 2010.

[24] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav,
“Scalable and precise dynamic datarace detection for structured
parallelism,” in Proceedings of the 33rd ACM SIGPLAN conference on
Programming Language Design and Implementation, ser. PLDI ’12.
New York, NY, USA: ACM, 2012, pp. 531–542. [Online]. Available:
http://doi.acm.org/10.1145/2254064.2254127

[25] R. Raman, “Dynamic Data Race Detection for Structured Parallelism,”
Ph.D. dissertation, Rice University, August 2012.

[26] J. McGraw, S. Skedzielewski, S. Allan, R. Oldehoeft, J. Glauert,
C. Kirkham, B. Noyce, and R. Thomas, “SISAL: Streams and Iteration
in a Single Assignment Language Reference Manual Version 1.2,”
Lawrence Livermore National Laboratory, Tech. Rep., 1985, no. M-146,
Rev. 1.

[27] W. Ackerman and J. Dennis, “Val: Value-oriented algorithmic language:
Preliminary reference manual,” Cambridge, MA, USA, Tech. Rep., 1979.

[28] P. B. Gibbons, “A more practical PRAM model,” in Proceedings of the
first annual ACM symposium on Parallel algorithms and architectures,
ser. SPAA ’89. New York, NY, USA: ACM, 1989, pp. 158–168.
[Online]. Available: http://doi.acm.org/10.1145/72935.72953

[29] R. Halstead, JR., “Multilisp: A Language for Concurrent Symbolic Com-
putation,” ACM Transactions of Programming Languages and Systems,
vol. 7, no. 4, pp. 501–538, October 1985.

[30] F. Putze, P. Sanders, and J. Singler, “Mcstl: the multi-core standard
template library,” in Proceedings of the 12th ACM SIGPLAN symposium
on Principles and practice of parallel programming, ser. PPoPP ’07.
New York, NY, USA: ACM, 2007, pp. 144–145. [Online]. Available:
http://doi.acm.org/10.1145/1229428.1229458

