A Data-Flow Based Coordination Approach to
Concurrent Software Engineering

Frank Penczek
School of Computer Science
University of Hertfordshire, UK
Email: f.penczek @herts.ac.uk

Raimund Kirner
School of Computer Science
University of Hertfordshire, UK
Email: r.kirner@herts.ac.uk

SAP AG

Abstract—In this paper we present S-Net, a coordination
language based on dataflow principles, intended for design of
concurrent software. The language is introduced and then used
for programming a concurrent solver for a combinatorial optimi-
sation problem. We present the analysis and tracing facilities of
our S-Netruntime system and show how these aid programmers
in optimising the performance of their applications.

I. INTRODUCTION

Dataflow is a term that is commonly associated with an
execution model, where it tends to refer to an instruction
scheduling mechanism whereby actions are performed on data
when and as they arrive, which is how dataflow differs from
control flow, where instructions are scheduled when control is
passed over to them, and if the data required is not available
yet, then the instructions are delayed accordingly. It is rare
to see dataflow appreciated as a software glue, which enables
software composition without centralised control and which
thus makes software components interact with one another in
a scalable manner even within a very large system. Yet there
is no reason why the dataflow principle should be confined to
just the execution model, rather than the software engineering
concept as a whole. The latter at this time is entrenched in its
object-centric view, defining as it does object hierarchies and
actions taken on those. In a way, designing a large software
system nowadays is tantamount to defining and carefully
structuring a very large state machine, often with parts of it
operating concurrently, thus proliferating state transitions even
further. The authors of this paper see the dataflow principle as
a glue for combining components into systems whilst avoiding:

« centralisation of control and the cost of frequent nonlocal
synchronisation;

« unpredictable blocking due to having to pass control
to and from opaque components abstracted behind their
interfaces;

« having to make individual components aware of the over-
all system design by means other than shared namespace;

« insufficient separation between the communication and
computation concerns.

Wei Cheng
SAP AG
SAP Research, Germany
Email: wei.cheng@sap.com

Bernd Scheuermann

SAP Research, Germany
Email: bernd.scheuermann@sap.com

Clemens Grelck
Institute for Informatics
University of Amsterdam, Netherlands
Email: c.grelck@uva.nl

Alex Shafarenko
School of Computer Science
University of Hertfordshire, UK
Email: a.shafarenko@herts.ac.uk

The above four-prong challenge lends itself nicely to a
dataflow solution at the system level, but if taken all the way
through the component levels down to the executing substrate,
would necessitate a redesign of the existing application soft-
ware (and, perhaps, even hardware) base. Even if this were
justified for extreme scale computing, one would have to face
the fact that medium scale computing would use a different
software component base, and, certainly, legacy components
would not be directly reusable.

In order to improve software reuse, we propose to employ
the second concept, one of coordination. Namely, we have
developed, implemented and evaluated on some industry-
relevant examples a dataflow coordination language. In our
approach as opposed to codelets [1], the schedulable units of
computation are ordinary, imperative procedures, written in
a conventional programming language. We do not propose,
nor do we depend on any particular concurrency mechanism
that supports these procedures. They can use data parallelism
inside, or could be CDGs containing codelets under a codelet
management system. We can use both kinds of components as
well as ordinary sequential code.

The idea of coordination programming is not new, it goes
back to the 1980s, when first attempts were made to separate
concurrency concerns: spawning parallel threads, communicat-
ing between them and synchronising the various activities that
form an application — on the one hand, from the computational
concerns, which are phrased in terms of programming for
some outputs that functionally depend on inputs in a clear
and verifiable manner [2], [3] — on the other. Somehow this
idea never took off in the mainstream, having been replaced
(but not subsumed) by the much less comprehensive idea
of middleware [4]. The difference between the former and
the latter is similar to the difference between a procedural
language and an assembler. The former has (or can have)
a sophisticated software engineering layer: a type system,
a modularity mechanism and various means for ensuring
extensibility and software reuse. The latter is “bare metal™:
with a few exceptions the middleware provides a virtualisation

level under the control of its client program [5], [6], [7], [8].

That is theory. In practice, all attempts at coordination so
far have been oblivious of those software engineering concerns
and went conceptually no further than middleware. Compare,
for example, MPI for distributed array and task processing
(whose many versions are available for clusters, Grids and
Cloud) and the claimed coordination language Reo [9], which
offers, again, a library of “connectors”, to be used with client
components. A language as such is more or less absent, just
as it was absent in the mother of all coordination languages
Linda, whose constructs were little more than invocations of
special intrinsic functions.

One would argue though that putting a programming lan-
guage to the job of coordinating distributed applications might
be excessive. After all, the data concept is supposed to be
taken care of by the computational part. Why then have a
type system? Similarly, encapsulation, inheritance and other
aspects of software reuse might be assumed to belong in the
domain of the computational language, which the coordination
“language” is supposed to extend. Would it not be best to leave
the data concept completely opaque to coordination?

Such arguments are fundamentally flawed. Indeed the data
concept of the computational language is external to the co-
ordination infrastructure. Nevertheless, hierarchical structures
exist inside as well as outside the coordinated components. The
topology of the component connections is itself an (abstract)
object that can possess all features of a “normal” object:
abstraction, encapsulation and inheritance, even without hav-
ing a state. Certain patterns of communication, such as long
pipelines, give rise to additional structuring needs as well:
one might see a section of a pipeline as a pipeline in its
own right, as well as seeing the process of extending the
section by a further stage as something that may require an
inheritance mechanism. It is those structuring needs associated
with a distributed application topology that make a proper
coordination language highly desirable. Also, a fully-fledged
coordination language could achieve a much deeper separation
of concerns, something that the coordination agenda has been
promoting from the start [10].

Topology: The concept of application topology is at
the centre of our approach. While original Linda used a
completely unstructured tuple-space and while MPI commu-
nication is similarly dynamic, we observe that static features
of an application’s internal connectivity are as important as
static knowledge of class structures and data types. Both have
the power to enable compiler intelligence, both are useful for
optimisation and, last but not least, early detection of program-
ming errors. How is one to handle component connectivity
while honouring the engineering concerns identified above?

Conventionally, component networks are conceptualised as
directed graphs where the components are placed at the ver-
tices and where the communication channels are represented
as arcs. While being a good model for the data streams flowing
between the code units, such an approach does not lend itself
easily to hierarchical treatment. The reason is the lack of
locality in an arbitrary communication graph, similarly to the

lack of locality in an arbitrary control graph, something that
prompted Dijksstra’s famous “goto considered harmful” all
those years ago [11]. The solution to the lack of this locality
can be similar to the solution proposed for goto: a network
entity should have one input and one output, and if that is too
much of a constraint, any multiple inputs or outputs can be
tied together, just as gotos were in a nest of control structures.
When this idea, hereinafter referred to as the Single-Input-
Single-Output (SISO) principle is taken on board fully, it gives
rise to almost all features of our approach: the combinators that
combine arbitrary SISO entities into compound SISO entities,
the type system that provides subtyping and inheritance over
SISO structures, the use of nondeterminism in order to be
able to merge multiple connections into one and our specific
synchronisation solution in the form of a SISO synchrocell.

Dynamic networks: While static structuring results in a
great deal of separation between components and the coordi-
nation program that controls them, dynamic topologies effect
a similar separation between a coordinated program and the
distributed platform on which it runs. Indeed, even with the
best heuristic agility compilers cannot statically predict the
behaviour of a component network when it is mapped on a
distributed platform with variable resource utilisation, such as
Cloud. Fully automatic adaptation deprives the (coordination)
programmer of the means of expressing domain-specific dis-
tribution intelligence. When the coordination programmer is
able to express dynamic network behaviour: extensions/con-
tractions as more or less resources are needed, this utilises
domain specific knowledge of the application. This is not
merely an implementation concern since dynamic networks
create dynamic hazards for the match between component
interfaces. However, here as well, a disciplined approach is
possible. We support statically heterogeneous, dynamically
homogeneous networks, where expansion is possible but only
in the way of replicating something that has been statically
defined.

Contribution: This paper gives an introduction to the
proposed programming methodology by means of an example
application. We begin with section 2, where we introduce our
coordination language S-Net developed at the University of
Hertfordshire and implemented by a consortium of European
universities. Subsequent sections describe the optimisation
problem that was brought forward by one of our industrial
partners and we present a performance evaluation. Finally
there are some conclusions and thoughts for the future.

II. S-NET IN A NUTSHELL

S-Net is a high-level, declarative coordination language
based on stream processing and data flow principles. As
such S-Net promotes functions implemented in a standard
programming language into asynchronously executed stream-
processing components, coined boxes. Both imperative and
declarative programming languages qualify as box implemen-
tation languages for S-Net, but we require any box imple-
mentation to be free of state on the coordination level, i.e. no
information may be carried over between two consecutive box

activations. Implementation-wise, S-Net supports (a subset of)
ISO-C and the functional array language SAC[12].

Each box is connected to the rest of the network by two
typed streams: one for input and one for output. Messages on
these typed streams are organised as non-recursive records,
i.e. sets of label-value pairs. The labels are subdivided into
fields and tags. Fields are associated with values from the box
language domain; they are entirely opaque to S-Net. Tags are
associated with integer numbers; they are accessible on both
the coordination and box levels.

Following the data flow principle, a box is triggered by
receiving a record on its input stream. When this happens, the
box applies its function to the record. During execution the
box may send records to its output stream. As soons as the
function has finished, the box is ready to receive and process
the next record on the input stream. On the S-Net level a box
is characterised by a box signature: a mapping from an input
type to a disjunction of output types. For example,

((a,) => (c) | (c,d,<e>));

declares a box foo that expects records with a field labelled
a and a tag labelled b. Tag labels are distinguished from
field labels by angular brackets. The box responds with an
unspecified number of records that either have just field c or
fields ¢ and d as well as tag e. The associated box function
foo is supposed to be of arity two: the first argument is of type
void~ to qualify for any opaque data; the second argument
is of type int as the joint interpretation of tag values by the
coordination and the box/application layer.

The box signature naturally induces a fype signature.
Whereas a concrete sequence of fields and tags is essential
for specifying the box interface, we use sets of labels in by
curly brackets for types. Hence, box foo has type

{a,} -> {c} | {c,d,<e>}

We call the left hand side of this type mapping the input type
and the right hand side the output type. To be precise, this
type signature makes foo accept any input record that has at
least field a and tag , but may well contain further fields
and tags. The formal foundation of this behaviour is structural
subtyping on records: Any record type t; is a subtype of ¢,
iff ¢t C t;. This subtyping relationship extends to multivariant
types, e.g. the output type of box foo: A multivariant type
x is a subtype of y if every variant v € x is a subtype of
some variant w € y. S-Net introduces the concept of flow
inheritance: excess fields and tags from incoming records
are attached to any outgoing record produced in response
to that record. Subtyping and flow inheritance prove to be
indispensable features when it comes to make boxes that were
designed in isolation collaborate in a streaming network.

It is a distinguishing feature of S-Net that it neither intro-
duces streams as explicit objects nor defines network connec-
tivity as explicit wiring. Instead, it uses algebraic formulae for
describing streaming networks. The restriction of the boxes
to SISO is essential for this. S-Net provides four network
combinators: static serial and parallel composition of two
networks and dynamic serial and parallel replication of a single
network. These combinators preserve the SISO property: any

box foo

net X connect A..B net X connect AlB
8]
(a) Serial composition (b) Parallel composition
net X connect A*{stop} net X connect Al<T>
—> Il.l > —» ﬂ >
{stop} “

(c) Serial replication (d) Parallel replication

Fig. 1: Illustration of the four S-Net network combinators

network, regardless of its complexity, again is an SISO entity.

Let A and B denote two S-Net networks or boxes. Serial
composition (A..B) constructs a new network where the
output stream of A becomes the input stream of B, and the
input stream of A and the output stream of B become the input
and output streams of the combined network, respectively.

Parallel composition (A|B) constructs a network where
incoming records are either routed to A or to B; their output
streams are merged to form the compound output stream.
The type system controls the flow of records. Each operand
network is associated with a type signature inferred by the
compiler. Any incoming record is directed towards the operand
network whose input type is better matched by the type of the
record. If both operand networks’ input types match equally
well, either alternative is selected non-deterministically.

The serial replication combinator Axtype constructs an
infinite chain of replicas of box or network A connected by
serial combinators. The chain is tapped before every replica
to extract records that match the type specified as the second
operand. More precisely, the type acts as a so-called fype
pattern; pattern matching is defined via the same subtype
relationship as defined above. Hence, a record leaves a serial
replication context as soon as its type is a subtype of the type
specified in the type pattern.

The parallel replication combinator A!<tag> also repli-
cates A, but this time the replicas are connected in parallel.
All incoming records must carry the tag <tag> whose value
determines the replica to which the record is routed.

In practice, we often see boxes introduced for housekeeping
purposes, such as: renaming, duplication or elimination of
fields and tags or simple arithmetic on tag values. Using a
fully-fledged box for such tasks is unduly cumbersome. As a
convenient alternative, S-Net features built-in filter boxes that
let us express housekeeping tasks on the level of S-Net. The
simplest filter is the empty filter [], that accepts any record
and forwards it to the output stream. It serves the definition
of bypass routes, as shown in the next section. A complete
coverage of filters can be found in [13].

While any box can split a record into parts, we also require
means to merge two records into one. For this quintessential

synchronisation task S-Net features dedicated synchrocells,
denoted as [|type, typel]. Similar to serial replication
the types act as patterns for incoming records. A record that
matches one of the patterns is kept in the synchrocell. As
soon as a record that matches the other pattern arrives, the two
records are merged into one, which is sent to the output stream.
Incoming records that only match previously matched patterns
are immediately forwarded. This bare metal semantics of syn-
chrocells captures the essential notion of synchronisation in the
context of streaming networks. More complex synchronisation
behaviours, e.g. continual synchronisation of matching pairs in
the input stream, can easily be expressed using synchrocells
and network combinators; details can be found in [14]. A
full account on S-Net is given in [13], references to other
application studies and access to the source code of the entire
system may be found at http://www.snet-home.org.

III. PROGRAMMING IN S-NET

As already discussed, writing an application using S-Net
involves two almost independent stages, the implementation
of base-layer functions and the implementation of concurrency
management code. The former can be done in a variety
of programming languages and even in a manner neutral
to hardware or execution platforms. The implementation of
the coordination code lies at the other end of the spectrum.
The specifics of the application’s functionality are irrelevant.
The focus is solely on the orchestration of the application’s
building blocks: to design a coordination scheme for the
application that exposes its exploitable concurrency to the
underlying machine and its parallel computing resources.

We will illustrate our approach by an example, suggested by
the industry authors of this paper and which is motivated by
the business of SAP AG: production scheduling by ant-colony
optimisation. We will deal with both aspects, functionality and
coordination, but will only briefly sketch out the internals of
the application (Section III-A) and devote most attention to
the data flow concurrency engineering aspects (Section III-B).

A. Ant-Colony Optimisation for Scheduling Problems

We are interested in solving the following scheduling
problem: n jobs (items) need to be scheduled on a single
machine. Associated with each job j is its processing time
p;j, a weight (its importance) w; and a due date d;. The goal
is to find a job sequence 7, i.e. a permutation of the job
numbers (1, ..., n) that minimises the total weighted tardiness
TW = 30" wag) - Trs), where Tj = max{0,C; — d;}
denotes the tardiness and C; defines the completion time of
job j = m(i).

The problem, which is commonly known as the “Single
Machine Total Weighted Tardiness Problem” or SMTWTP
for short, has been shown to be A/P-hard [15]. Thus, exact
algorithms often fail to calculate the optimal solution in
acceptable computation time [16]. Heuristic approaches aim
at near-optimal solutions by employing different techniques.
Among these, ant-colony based algorithms (ACO) belong to
the best performing meta-heuristics [17] for solving SMTWTP.

1 initialize;

2 while rermination condition not met do
3 foreach ant do

4 ‘ constructSolution;
5 end

6 pickBest;

7 update;

8 end

Algorithm 1: Top-Ievel structure of a typical, generic ACO
algorithm

We limit ourselves to a bird’s eye view of ACO, see [18]
for more background information. The typical sequential ACO
algorithm is shown in Alg. 1. The algorithm starts with an
initialisation step. For SMTWTP this phase reads in n job
items, weights and deadlines, sets up a pheromone matrix
with initial values and prepares other data structures such as
the selection set S that contains all unscheduled jobs, and
an empty solution vector to hold the scheduling result in the
end. This is followed by an iterative body where m ants
repeatedly construct solutions (Line 4) by making a sequence
of local decisions. Every decision is made randomly according
to a probability distribution over the so far unchosen items in
selection set S and depending on pheromone information and
heuristic information. The pheromone information is encoded
in an n x n pheromone matrix [7;;]. Pheromone value 7;;
expresses the desirability to assign an item j to place ¢ in
the solution vector. Ant decisions are further supported by
problem-specific heuristic information 7);;. For this paper we
chose the Apparent Urgency (AU) heuristic [19] to derive
these 77;; := 1/au;. The AU-heuristics sorts the jobs in non-
decreasing order of its apparent urgency au; = (w;/p;) -
exp (—max{d; — C;,0}/kp) with p expressing the average
processing time of the unscheduled jobs and k a parameter
chosen as suggested in [19]. AU exhibited a competitive
performance in prior evaluations [17].

At the end of an iteration, when m solutions have been
generated, the best solution 7* of all iterations (global-best
solution) is determined (Line 6) which is used to update the
pheromone matrix (Line 7): 7;; = (1 — p) - 7i; + p - Ayj.
Commonly, increment A;; reinforces pheromones along the
trail of the best solution, i.e. A;; > 0if 7*(i) = jand A;; =0
otherwise. Parameter 0 < p < 1 models the pheromone evap-
oration rate. During the update process pheromone increments
are calculated as A;; = n/TW* with TW* denoting the total
weighted tardiness of the best schedule 7*.

The algorithm executes a number of iterations until a
specified stopping criterion has been met, which in our case
is a predefined maximum number of iteration steps (Line 2).

B. ACO for SMTWTP in S-Net

There are many ways to design an S-Net. For the application
at hand we have opted for a straight-forward solution that
may not be optimal in terms of performance, but that gives us

the opportunity to step-wise construct a network show-casing
many of the S-Net features in an accessible way.

The starting point for the S-Net implementation of the ACO
solver for SMTWTP is existing C code that implements a fully
functional solver, following the algorithmic structure shown in
Alg. 1. We aim to reuse as much of the existing C code as
possible, and consequently we follow the function abstractions
of the original implementation to determine the set of boxes
on the S-Net level. Each step of Alg. 1 is represented by a
separate box. In expressing the control flow of the original
algorithm in the data-flow programming paradigm of S-Net,
the signatures that we define for each box, and consequently
for each step of the algorithm, play a vital role.

To get things off the ground we define this set of boxes and
their signatures:
box Initialize(

(problem_descr) —>

(ant_data, <ant_id>, <num_ants>,
| (best_result, <seen_ants>));

<max_it>)

box ConstructSolution (
(ant_data, <ant_id>) —>
(ant_data, <ant_id>));

box PickBest (
(ant_data, best_result,
<ant_id>, <num_ants>, <seen_ants>) ->
(best_result, <seen_ants>)

| (ant_data, best_result, <num_ants>));

box Update (
(ant_data, best_result, <num_ants>, <max_it>) ->
(ant_data, <ant_id>, <num_ants>, <max_it>)

<seen_ants>)
<finished>));

| (best_result,
| (best_result,

Box Initialize requires the initial problem description, i.e.
the number of jobs and their attributes, the amount of ants
and the upper bound for the iteration counter. From this input
the box produces a data structure ant_data that holds the
intermediate data of each ant, such as the current result and
its tardiness and a (conceptual) copy of the pheromone matrix.
The box outputs this structure for each ant together with a
tag <ant_id> that uniquely identifies each ant, the number
of total ants <num_ants> and the iteration bound <max_it>.
The initialization box also outputs a record to keep track
of the overall best result best_result and the number of
ants <seen_ants> that have already contributed their result
in each iteration. The constructSolution box computes a
result for one ant as discussed in Sect. III-A and updates
the ant_data structure accordingly. Box pickBest inspects
the ant_data of each ant and compares it to the current best
result best_result. If an ant’s result is better than the current
best result, best_result is updated accordingly. The box also
keeps track of the number of ants that have delivered a result
in each round by updating <seen_ants>. After the box has
seen all ants in one round it outputs one record containing
the overall best result of the current iteration and an updated
ant_data structure that is used for the set of ants in the next
round. The update box uses the updated ant_data to produce
a new set of ants for the next round, if the maximum number

of iterations as stored in <max_it> compared to an iteration
counter in the ant data has not been reached yet. If the number
has not been reached yet, the box also outputs one record
containing the best result of the previous round and resets the
counter of seen ants <seen_ants> to zero. Otherwise, the box
outputs the best result tagged with <finished> to terminate
the algorithm. In the latter case the box does of course not
produce a new set of ants.

With the box definitions in place it is the next step to build
the network that connects the boxes and provides the desired
behaviour. For our ACO SMTWTP we will achieve this step-
wise by implementing

e concurrent solver instances, one for each ant,

« a merge phase that collects and picks the best result,

o a recursive application of the process until the maximum

number of iterations is reached.

For structuring purposes we implement the solving and the
merge stage as sub-networks. Sub-networks can be referred to
by name in the connect expression of the enclosing network.
This provides an opportunity to break down the specification of
complex topologies, i.e. large connect expressions, into more
maintainable and easily understandable units.

The implementation of concurrently executing ants is pos-
sible by using multiple instances of the constructSolution
box. Maximal concurrency exploitation is achieved if we allow
one instance of the box for every ant. The Initiliaze box
already tags every ant with an integer value <ant_id>. We can
use this tag in conjunction with the split combinator !:

net solve connect (ConstructSolution!<ant_id> | []);

Here, the key word net defines a new network named
solve as given by the combinator expression following the
key word connect. The empty filter [] in parallel to the
ConstructSolution box implements a bypass, i.e. [] is a
special case of the filter implementing an identity function with
no restrictions on the acceptable input types. This is important
because Initialize has two output variants, but only the first
variant matches the input of constructsolution. The bypass,
however, lets the second variant flow around the box. We need
the second variant in the merge phase once the first results are
constructed.

The basic idea for the merge phase is this: Take the current
best result and one result produced by an ant, compare and
update the best result if necessary and repeat until all results
have been inspected. We achieve this by using a combination
of a synchrocell, the pickBest box and the star combinator.
net merge connect

([l {ant_data, <ant_id>},

{best_result, <seen_ants>} |]

(PickBest | [])) * {ant_data, best_result};

Initially, the synchrocell stores the mock best result that
is produced by box Initialize and the first result that is
produced by one of the constructSolution boxes. After the
two records have been merged by the synchrocell pickBest
processes it and outputs a new record of variant one, i.e.
{best_result, <seen_ants>}. As this record does not match

the star pattern it travels on to a new instance of the star
operand where a new synchrocell stores it. This synchrocell
keeps the record until the next result from the solver instances
arrives; since the synchrocell in the previous instance of the
operand has disappeared no merging takes place and the
record does not match the input requirements of the pickBest
box. The bypass around the box makes sure that the record
is forwarded unaltered to the new operand instance and its
synchrocell. This process repeats until pickBest has seen the
results of all ants in which case it outputs its second variant
record. This variant matches the pattern of the star and hence
the record leaves the network.

The final ingredient to the application is the implementation
of the repeated application of the solve and merge stages
until the maximum number of iteration is reached. We use a
technique that is similar to that of the merge network involving
a star pattern that matches only the last variant of the update
box. The fully defined network including the Initialize box
may be written as follows:

net aco_smtwtp {
/+ box definitions as above =/

/* networks "solve" and "merge" as above */
} connect
Initialize
(solve .. merge .. Update) x {<finished>};
The operand of the outer star combinator, i.e.

Update), 1is unfolded as long as
tag <finished> is not present in the output of box Update.
The first two output variants of the box which do not
contain the tag are identical to the two output variants of the
Initialize box: From the star operand’s perspective there
is no difference between accepting an input of the initializer
box and an input that is in fact the output of the update box
in a previous operand instance.

(solve .. merge ..

Construct

™ Solution 5
Initialize . I PickBest >
Construct

Solution

—| Update

Fig. 2: The ACO SMTWTP network

The network aco_smtwtp essentially implements Alg. 1; a
graphical representation of the network is shown in Fig. 2.
Although this network implements a particular functionality
the ideas behind it are quite generic and reusable. In the
presented case the network implements a fork-join pattern
that we can easily adapt to other applications that can be
parallelised using the same pattern.

IV. PERFORMANCE EVALUATION

Analysing the performance of an application is often a com-
plex and time-consuming task. Measuring the total runtime of
one execution can easily be done using the time command,

which is available on many systems, but finding the factors
that influence the time requires both thought and effort. Only
if we understand how individual parts of a program impact
the runtime do we stand a chance to tune the right parameters
of the program to improve its overall performance. With
concurrent software the problem becomes even more complex,
since it is factors such as scheduling and placement, not just
the base-layer functions’ algorithmic complexity that may have
considerable influence on the performance.

The S-Net runtime system is designed with these consider-
ations in mind. It provides us with tracing data that guides the
performance analysis and tuning process. The threading back-
end of S-Net, named LPEL [20], actively manages S-Net com-
ponents as non-preemptive tasks with low-overhead scheduling
to a fixed number of Posix threads for effective utilisation of
multi-core processors. The Pthreads are referred to as “worker
threads”, or just workers. Each worker is statically pinned to
a core or CPU of the host machine. If no further configuration
parameters are passed to an S-Net executable at startup, LPEL
creates one worker for each core and assigns the tasks that
are created during the execution of an S-Net to these workers
in a round-robin fashion. A distinguishing feature of LPEL
is its low-overhead tracing and monitoring subsystem which
records execution times of individual tasks, scheduling events
and message traces for subsequent performance analysis and
optimisations.

In order to properly illustrate these features we shall limit
our performance data exploration to comparing the original
C implementation, both sequential and multi-threaded, with a
few configurations of the data flow, S-Net application.

The measurements presented here are based on execution
runs on a 48-core (4 sockets with 12 cores each) AMD Opteron
6174 machine with 256 GB of main memory running Linux
with kernel version 2.6.35.11. The compilation of source code
is done using gcc version 4.5.1 with optimisation level -03.

WS Netextraworker BS-Net static placement E15-Net RR placement t ECPthread

Fig. 3: Runtimes of multi-threaded C and S-Net with different
placement strategies

All measurements represent runs of solving the same opti-
misation problem of 1000 jobs using 45 ants for 500 iterations.
Fig. 3 shows the median of the recorded runtimes of 12 runs
of the original C implementation of the application which uses
Pthreads to implement concurrently working ants. Each ant is
mapped onto one thread, i.e. the application uses 45 threads for
the ants, and the median of the runtimes is 55.95 seconds with
a standard deviation of o = 0.68. We compare this to runtimes
of the S-Net application as presented in the previous section
(“S-Net RR placement” in Fig. 3). The median of the runtimes
is 88.8 seconds, o = 1.14. Why is the S-Net implementation

more than 30 seconds slower than the C implementation?
Several factors play a role here: The C implementation works
by using globally allocated data-structures that are accessed
by all threads concurrently. This allows for an efficient pick-
best/update phase after each iteration as all ants have placed
their result in one location. The S-Net application implements
this phase using a consecutive reduce operation over all results
which is carried out sequentially. Also, although the S-Net
runtime system was initialised with 45 worker threads the
internal placement strategy uses a round-robin assignment of
tasks, i.e. box instances, onto these threads as they occur.
This means in particular that it is possible for concurrent
ConstructSolution box instances to be mapped onto the same
worker thread if an ant produces a result that is processed by
the pickBest box before all other ants have been mapped.

As a language for concurrency engineering S-Net allows for
user-defined mappings of tasks to worker threads, and in fact
to specific cores since worker threads are pinned to individual
cores at startup. S-Net provides the @ combinator for this pur-
pose, which takes an S-Net expression as its left operand and
an integer as its right operand. The integer value determines
the worker thread that the tasks of the expressions are mapped
to. The combinator may also be used in conjunction with the
split combinator, as in !e<n>, to implement dynamic mapping
based on the tag value that is observed by the split combinator
(see [21] for details). To see if the above mentioned mapping
effects have a negative influence of the runtime we have used
a user-defined mapping for the solver instances:

net solve connect (ConstructSolution!@<ant_id>|[]);

The runtime for this modified network is also shown in Fig. 3
as “S-Net static placement”. The median of the runtimes is
86.1 seconds, 0 = 0.79, which is marginally faster than the
round-robin version.

In order to further analyse, and ideally improve, the per-
formance of the S-Net implementation we use the monitoring
and tracing facilities of the S-Net runtime system [22]. The
obtained trace files contain (among other data) information
on execution times for individual task instances, grouped by
worker threads.

Fig. 4: Lifetime of all constructsolution tasks on one
specific worker

Fig. 4 shows the lifetime of instances of box
ConstructSolution on one worker thread. The lifetime
is measured from the creation of the task until its removal
including all suspension times which may occur after reads
and writes to and from empty and full buffers. In total we
see 500 individual instances of the box, one in each iteration.
The lifetimes of the tasks show some periodic fluctuation.

This may be explained by the presence of other tasks on
the same worker. Since all other tasks of the application
are still mapped round-robin to all workers there is periodic
competition for compute time between the tasks on a worker.
In order to eliminate competition we have also run an
experiment in which we use two additional workers for the
other tasks of the application:

net aco_smtwtp { /% as above */ }

connect

(Initialize

(solve .. merge@46 .. Update) * {<finished>})@45;

This experiment uses 47 worker threads. Threads 0 — 44 are
dedicated to instances of the constructSolution box, thread
46 runs the merge phase and thread 45 hosts all other tasks.
This setup gets us much closer to the runtimes of the original
C implementation as can be seen in Fig. 3 “S-Net extra
worker”. The median of the runtimes for this experiment is
59.45 seconds and o = 0.89.

As a final measurement we also compared the multi-
threaded C code and the S-Net application using extra workers
against optimised sequential C code to get an impression of the
scaling behaviour of the different concurrent implementations.
We used the same problem size and number of ants for
which the median of the runtimes of the sequential C code is
2193.4 seconds, 0 = 0.21. The speed-up of the multi-threaded
C code calculates to 39.2, and the speed-up of the S-Net
implementation comes to 36.9. Considering that the maximal
speed-up lies at 45 for C and 47 for S-Net these numbers leave
some room for improvement but we are confident that further
analysis and optimisations, especially for the merging phase,
will improve these numbers.

V. RELATED WORK

Data-flow and stream processing has been rediscovered
and is currently being evolved into a complete programming
paradigm, resulting in various approaches that combine data-
flow ideas with software engineering methods.

CnC (Concurrent Collections) [23] are based on the same
observations as those underlying S-Net, realising that splitting
up the development process between a domain expert and
a concurrency engineer allows both parties to work more
efficiently. Another shared insight is that treating a program as
a collection of coarse-grained data-flow blocks provides a very
intuitive programming approach that almost naturally leads to
a parallel execution strategy.

Similar observations underly TALM and the Couillard com-
piler [24]. The approach is based on annotated C to mark code
blocks for parallel execution and to expose such a block’s
data dependencies. Being a dedicated language rather than
embedded into C source S-Net with its type inference engine
allows for more checking and static correctness guarantees,
and probably a more high-level approach to engineering a con-
current software project. However, we believe that Couillard
is a very interesting compilation target. A combination of the
two projects may exploit significant synergy effects, bringing
together the efficient execution machinery of Couillard with

the high-level semantics analysis of S-Net for consistency
checks and optimisations.

Another promising target is the codelet-based execution
model proposed in [1]. The approach uses much smaller-
grained code blocks than S-Net provides through its box
abstraction, however, we see great potential in using the
proposed technology to map the task-parallelism exposed by
an S-Net program as well as the box-internal data-parallelism
onto future chips with much larger core-counts than today,
where we can expect the issues of power-efficiency, cost for
data movement and task migration to be of major importance.

Worth mentioning are also approaches in the embedded
computing domain where various synchronous strictly time-
triggered approaches are in use that are based on the same
principles, if with a different focus, such as Giotto [25],
Scade [26], or Streamlt [27]. WaveScript is an example of
a stream-based programming language in this domain that
does not follow the concept of a coordination language,
as stream-based communication and logic programming are
interwoven [28].

VI. CONCLUSION

The paper focuses on a particular form of combinatorial
technique called Ant Colony Optimisation, which is known
to be useful for solving various graph-based problems of
practical significance. Using an application of ACO as an
example of a highly irregular, distributed problem, we have
demonstrated that a data-flow-style, stream-processing compo-
nent technology called S-Net facilitates both the development
and distribution/parallelisation of the code, while keeping the
performance in the same league as the hand-coded solutions
utilised by industry. The paper has briefly outlined S-Net and
has explained its features relevant to the task in hand. It
has also presented an analysis of the code performance and
discussed the main challenges as well as the extent to which
they are met in the current tool chain.

Future steps include producing a variety of stream pro-
cessing schemes for ACO, coded in S-Net, and investigating
their relative efficacies. At the same time the example being
reported here is instructive for future S-Net development
efforts as a source of usability and performance requirements.

REFERENCES

[1] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G. R. Gao, “Using
a “codelet” program execution model for exascale machines: position
paper,” in Proceedings of the Ist International Workshop on Adaptive
Self-Tuning Computing Systems for the Exaflop Era, ser. EXADAPT "11.
New York, NY, USA: ACM, 2011, pp. 64-69.

[2] D. Gelernter and N. Carriero, “Coordination languages and their signif-
icance,” Commun. ACM, vol. 35, pp. 97-107, February 1992.

[3] J.-P. Banitre and D. L. Metayer, “A New Computational Model and its
Discipline of Programming,” INRIA, Tech. Rep. RR0566, Sep. 1986.

[4] K.-K. Lau and Z. Wang, “Software component models,” IEEE Trans.
Softw. Eng., vol. 33, pp. 709-724, October 2007.

[5] M. Henning, “A new approach to object-oriented middleware,” Internet
Computing, IEEE, vol. 8, no. 1, pp. 66 — 75, jan-feb 2004.

[6] R. Armstrong, G. Kumfert, L. C. Mclnnes, S. Parker, B. Allan, M. Sot-
tile, T. Epperly, and T. Dahlgren, “The CCA component model for
high-performance scientific computing,” Concurrency and Computation:
Practice and Experience, vol. 18, no. 2, pp. 215-229, 2006.

[7]

[8]

[9]

[10]

(11]
[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

G. Blair, T. Coupaye, and J.-B. Stefani, “Component-based architecture:
the Fractal initiative,” Annals of Telecommunications, vol. 64, pp. 1-4,
2009, 10.1007/s12243-009-0086-1.

M. Berzins, Q. Meng, J. Schmidt, and J. Sutherland, “DAG-based
software frameworks for PDEs,” in Euro-Par 2011: Parallel Processing
Workshops, ser. LNCS, M. Alexander et al., Eds. Springer Berlin /
Heidelberg, 2012, vol. 7155, pp. 324-333.

F. Arbab, “Reo: a channel-based coordination model for component
composition,” Mathematical. Structures in Comp. Sci., vol. 14, no. 3,
pp- 329-366, 2004.

A. Omicini and M. Viroli, “Review: coordination models and languages:
From parallel computing to self-organisation,” Knowl. Eng. Rev., vol. 26,
pp. 53-59, 2011.

E. W. Dijkstra, “Letters to the editor: go to statement considered
harmful,” Commun. ACM, vol. 11, no. 3, pp. 147-148, Mar. 1968.

C. Grelck and S.-B. Scholz, “SAC: A functional array language for
efficient multithreaded execution,” IJPP, vol. 34, pp. 383-427, 2006.
F. Penczek, C. Grelck, H. Cai, J. Julku, P. Holzenspies, S. Scholz,
and A. Shafarenko, S-Net Language Report 2.0, ser. Technical Report
499, C. Grelck and A. Shafarenko, Eds. Hatfield, UK: University of
Hertfordshire, School of Computer Science, 2010.

C. Grelck, “The essence of synchronisation in asynchronous data flow,”
in IPDPS’11, Anchorage, USA. 1EEE Computer Society Press, 2011.
J. Lenstra, A. Rinnooy Kan, and B. P., “Complexity of machine
scheduling problems,” Annals of Discrete Mathem., pp. 343-362, 1977.
H. A.J. Crauwels, C. N. Potts, and L. N. Van Wassenhove, “Local search
heuristics for the single machine total weighted tardiness scheduling
problem,” Informs J. On Computing, vol. 10, no. 3, pp. 341-350, 1998.
M. den Besten, T. Stiitzle, and M. Dorigo, “Ant colony optimization for
the total weighted tardiness problem,” in Parallel Problem Solving from
Nature: 6th international conference, ser. LNCS, M. Schoenauer et al.,
Eds., vol. 1917. Berlin: Springer Verlag, September 2000, pp. 611-620.
M. Dorigo and T. Stiitzle, Ant Colony Optimization. Bradford Book,
2004.

C. N. Potts and L. N. Van Wassenhove, “Single machine tardiness
sequencing heuristics,” IIE Transactions, vol. 23, pp. 346-354, 1991.
D. Prokesch, “A light-weight parallel execution layer for shared-memory
stream processing,” Master’s thesis, Technische Universitdt Wien, Vi-
enna, Austria, Feb. 2010.

C. Grelck, J. Julku, and F. Penczek, “Distributed s-net: Cluster and grid
computing without the hassle,” in CCGrid’12, Ottawa, Canada. 1EEE
Computer Society, 2012.

V. Nguyen, R. Kirner, and F. Penczek, “A multi-level monitoring frame-
work for stream-based coordination programs,” in [2th International
Conference on Algorithms and Architectures for Parallel Processing,
Fukuoka, Japan, 2012, to appear.

K. Knobe, “Ease of use with concurrent collections (CnC),” in Proc. of
First USENIX conference on Hot topics in parallelism, ser. HotPar’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 17-17.

L. A. J. Marzulo, T. A. O. Alves, E. M. G. Franca, and V. S.
Costa, “Couillard: Parallel programming via coarse-grained data-flow
compilation,” CoRR, vol. abs/1109.4925, 2011.

T. A. Henzinger, C. M. Kirsch, and S. Matic, “Composable code
generation for distributed Giotto,” in Proc. ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES). ACM Press, 2005.

F.-X. Dormoy, “Scade 6: A model based solution for safety critical
software development,” in Proc. 4th ERTS, Toulouse, France, 2008.

B. Thies, M. Karczmarek, and S. Amarasinghe, “Streamlt: A language
for streaming applications,” in Proc. 11th International Conference on
Compiler Construction. London, UK: Springer, 2002, pp. 179-196.
R. Newton, L. Girod, M. C. abd Sam Madden, and G. Morrisett,
“WaveScript: A case-study in applying a distributed stream-processing
language,” Massachusetts Institute of Technology Computer Science and
Artificial Intelligence Laboratory, Cambridge, USA, Technical Report
MIT-CSAIL-TR-2008-005, Jan. 2008.

