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Abstract—The objective of this paper is to analyze, develop
and evaluate the tile LU Decomposition using the FREDDO
framework. FREDDO is a C++ framework, based on the DDM
model of execution, that supports efficient data-driven execution
on conventional processors. The performance evaluation shows
that FREDDO scales well and tolerates scheduling overheads and
memory latencies effectively. The LU implementation is evaluated
in both single-node and distributed execution environments. In
both cases our framework achieves very good speedups, especially
in the larger problem sizes. Particularly, our framework achieves
up to 97% of the maximum possible speedup on a single-node
and up to 90% of the maximum possible speedup on a 4-node
cluster with a total of 128 cores.

Index Terms—Data-Driven Multithreading, Multi-core Sys-
tems, Distributed Systems, Tile LU Decomposition

I. INTRODUCTION

Contemporary systems, like High Performance Computers
and Supercomputers, are now based on multi-core and many-
core architectures. Programming of such machines is mainly
done through parallel extensions of the sequential models like
MPI [1] and OpenMP [2]. These extensions do facilitate high
productivity parallel programming, but also suffer from the
limitations of the sequential synchronization and their inability
to tolerate long latencies [3], [4], [5]. Thus, as the number
of cores increases in the future, new parallel programming
models and architectures must be developed to overcome these
limitations.

The components of the traditional software stack, like
numerical libraries, that are used by the scientific applications,
should be redesigned to take advantage of the new chip
architecture (hundreds of thousands of computing nodes, a
million or more cores, etc.). High performance dense linear
algebra software libraries, like LAPACK [6], have shown
limitations on multi-core architectures [7], [8], [9]. This is
because the parallelism is based on the expensive fork-join
paradigm [8]. As such, several projects, like PLASMA [10],
DPLASMA [11] and FLAME [12], developed new algorithms
for dense linear algebra based on tile algorithms.

Tile algorithms can be represented by Directed Acyclic
Graphs (DAGs), where nodes are the tasks and edges are the
dependencies between the tasks [8]. The paramount key is to
implement a runtime system to efficiently schedule the DAG

across a parallel architecture. Such a runtime system can be
provided by the Data-Driven Multithreading (DDM) model
[13].

DDM is an execution model that combines the benefits
of the data-flow model in exploiting concurrency with the
efficient execution of the control-flow model. DDM decouples
the execution from the synchronization part of a program
and allows them to execute asynchronously, thus, tolerating
synchronization and communication latencies efficiently. The
core of the DDM model is the Thread Scheduling Unit (TSU)
[14] which is responsible for scheduling threads/tasks at run-
time based on data-availability on conventional processors.

The DDM model was evaluated in the past by several
implementations. The first implementation of DDM was tar-
geting Networks of Workstations [13], called the Data-Driven
Network of Workstations (D2NOW). That was followed by
two other implementations, TFlux [15] and the Data-Driven
Multithreading Virtual Machine (DDM-VM) [16], [17], [18].
DDM was also evaluated by a hardware implementation [19],
[20] where the TSU was implemented as a hardware peripheral
for sequential multi-core systems. Finally, the latest software
implementation of DDM, FREDDO [21], [22], is a C++
framework that supports efficient data-driven execution on
conventional processors through object-oriented programming.

This work presents the implementation details, perfor-
mance and scalability of the tile LU decomposition, using
the FREDDO framework (version 0.89.0). LU decomposition
(also called LU factorization) is an important algorithm used
for solving systems of linear equations efficiently [23]. The
LU kernel factors a dense matrix into the product of a lower
triangular L and an upper triangular U matrix [24]. The dense
n×n matrix A is divided into an N×N array of B×B tiles (n
= NB). This helps to exploit temporal locality on sub-matrix
elements.

LU has been evaluated on different number of cores and
problem sizes, on a 32-core AMD processor. The evaluation
showed that the FREDDO implementation of LU scales very
well and achieves very good speedups. For an 8192 × 8192
matrix size, FREDDO achieves an average speedup of 3.94
out of 4, 7.86 out of 8, 15.63 out of 16 and 30.09 out of 31.

Furthermore, we have evaluated the LU implementation



on a 4-node multi-core cluster with a total of 128 cores.
For this configuration we are using a preliminary distributed
implementation of the FREDDO framework. Our results show
that our framework scales well in the distributed environment,
achieving 90% of the maximum possible speedup, for a
32768× 32768 matrix size.

The performance results show that Data-Driven/Data-Flow
based systems, like FREDDO, effectively leverage the de-
coupling of synchronization and execution for the maximum
tolerance of synchronization overheads. Thus, these systems
can be used for the efficient implementation of dense linear
algorithms, like LU, where in most of the cases they have
high-complexity Dependency Graphs.

The remainder of the paper is organized as follows. Sec-
tion II describes the FREDDO framework. Section III de-
scribes and analyses the tile LU algorithm and its dependency
graph, and also it represents the DDM code for the algorithm.
Finally, Section IV gives the experimental results and Sec-
tion V provides the conclusions and future work.

II. THE FREDDO FRAMEWORK

FREDDO [21], [22] is an efficient object-oriented imple-
mentation of the Data-Driven Multithreading (DDM) model
[13]. It is a C++ framework that supports efficient data-
driven execution on conventional multi-core and many-core
processors. In FREDDO, a program consists of several threads
of instructions (called DThreads) that have producer-consumer
relationships. A DThread is scheduled for execution after all of
its required data have been produced, thus, no synchronization
or communication latencies are experienced after a DThread
begins its execution. The DThreads’ instructions are fetched
by the CPU sequentially in control-flow order, thus, exploiting
any optimization available by the CPU hardware.

A. DThread Instances

FREDDO allows multiple instances of the same DThread
to co-exist in the system. Each DThread instance is identified
uniquely by the tuple: Thread ID (TID) and Context. Re-
entrant constructs, such as loops and function calls, can be
parallelized by mapping them into DThreads. For instance, the
iterations of a parallel loop can be executed by the instances
of a specific DThread.

This idea was based on the U-Interpreter’s tagging system
[25] which provides a formal distributed mechanism for the
generation and management of the tags at execution time.
This system was used in Dynamic Data-flow architectures to
allow loop iterations and subprogram invocations to proceed
in parallel via the tagging of data tokens [26].

B. The FREDDO API

FREDDO provides a C++ API (Application Programming
Interface) that enables the programmers to develop DDM
applications. The API includes a set of runtime functions and
classes which are grouped together in a C++ namespace called
ddm. The user creates and manages DThreads by creating and

accessing objects of special C++ classes. Seven basic C++
classes are provided:

1) SimpleDThread: indicates a DThread with only one
instance. It can be used to execute code without loops
and/or recursion.

2) MultipleDThread: indicates a DThread with multiple
instances which is used to parallelize one-level loops.

3) MultipleDThread2D: indicates a DThread with multiple
instances which is used to parallelize two-level nested
loops.

4) MultipleDThread3D: indicates a DThread with multiple
instances which is used to parallelize three-level nested
loops.

5) RecursiveDThreadWithContinuation: a special template
class which provides functionalities for algorithms with
multiple recursion. It is used when the number of
instances of a recursive function is known at compile
time.

6) RecursiveDThread: a special class that allows paralleliz-
ing recursive functions that their number of instances is
not known at compile time. This class allocates/deallo-
cates the arguments and the return values of the instances
at runtime. It can be used for different types of recursion,
such as, linear, tail, and so on.

7) ContinuationDThread: it can be used in combination
with the RecursiveDThread to implement algorithms
with multiple recursion (or any similar algorithms).

C. The FREDDO Components

FREDDO allows efficient DDM execution by utilizing three
different components: the TSU, the Kernels and the Runtime
Support.

1) The Thread Scheduling Unit (TSU): The TSU is respon-
sible for the management of DThreads. For each DThread,
the TSU collects meta-data (also called Thread Templates)
that enable the management of the dependencies among the
DThreads and determine when a DThread instance can be
scheduled for execution.

In particular, TSU schedules a DThread instance for exe-
cution when all its producer-instances have completed their
execution. This ensures that all the data that this DThread
instance needs are available. The ready DThread instances are
dispatched to the Kernels for execution.

2) The Kernels: A Kernel is a POSIX Thread (PThread)
that is pinned in a specific core until the end of the DDM ex-
ecution. This eliminates the overheads of the context-switching
between the Kernels in the system. The Kernel is responsible
for executing the ready DThread instances that are received
from the TSU.

In FREDDO, m Kernels are created, where m is the max-
imum number of DThread instances that can be executed in
parallel in a system. Usually, m is equal to N-1, where N is
the number of cores of the system. This is because one of the
cores is reserved for the execution of the TSU code.



Fig. 1: Example of a FREDDO Dependency Graph.

3) The Runtime System: The Runtime system enables the
communication between the Kernels and the TSU through
the Main Memory. It is also responsible for loading the
Thread Templates in the TSU, for creating and running the
Kernels, and for deallocating the resources allocated by DDM
programs.

D. The FREDDO Dependency Graph

In DDM implementations, the Dependency Graph is a
directed graph where the nodes represent the DThreads and
the arcs represent the data-dependencies amongst them. Each
instance of a DThread is paired with a special value called
Ready Count (RC) that represents the number of its producers.

An example of a Dependency Graph is shown in Figure 1
which consists of four DThreads (T1-T4). The RC values are
depicted as shaded values next to the nodes. For example, the
instance 3 of T3 has RC=2 because it has two producers. Also,
all the instances of T2 have RC=1 because they are waiting
for only one producer, the instance 0 of T1. Notice that the
number inside each node indicates its Context value.

The RC value is initiated statically and is dynamically
decremented by the TSU each time a producer completes its
execution. A DThread’s instance is deemed executable when
its RC value reaches zero. In FREDDO, the operation used for
decreasing the RC value is called Update. Update operations
can be considered as tokens that are moving from the producer
to consumer instances through the arcs of the graph.

Multiple Updates are introduced in order to decrease mul-
tiple RC values of a DThread at the same time. This reduces
the number of tokens in the graph. For instance, DThread T1
sends a Multiple Update to DThread T2 in order to spawn all
its instances, instead of sending 32 single Updates.

Moreover, T4 is a MultipleDThread2D object and consists
of 64 instances (with Contexts from <0,0> to <7,7>). In this

case, a Context value contains two parts, the leftmost (or outer)
which holds an index of the outer loop and the rightmost (or
inner) which holds an index of the inner loop. Recall that a
MultipleDThread2D object is used to parallelize a two-level
nested loop. Similarly, the instances of a MultipleDThread3D
object have Contexts values with three parts: outer, middle and
inner.

III. TILE LU DECOMPOSITION

In this section we describe and analyze the tile LU algo-
rithm. After that, we provide the DDM Dependency Graph of
the algorithm as well as the DDM code based on the FREDDO
framework. The code of the original tile LU Decomposition
is shown in Listing 1. The code is composed of five nested
loops that perform four basic operations on a tiled matrix.

For demonstration purposes we choose the following indica-
tive names for the operations: diag, front, down and comb.
The presented algorithm is based on the LU implementation
of the SPLASH-2 Application Suite [24]. However, the four
operations can also be replaced by the following LAPACK and
BLAS routines: DGETRF, DTSTRF, DGESSM, DSSSSM [11],
[9].

A. Benchmark Analysis

In every iteration of the outermost loop, the diag operation
takes as input the diagonal tile that corresponds to the iteration
number to produce its new value. The front operation produces
the remaining tiles on the same row as the diagonal tile. For
each one of those tiles, it takes as input the result of the diag in
addition to the current tile to produce its new value. Similarly,
the down operation produces the remaining tiles on the same
column as the diagonal tile.

The comb operation produces the rest of the tiles for that
LU iteration. For every tile it produces, it takes as input three



double AOrig [ n∗n ] ; / / The o r i g i n a l m a t r i x
double ∗A[N] [N ] ; / / Each e n t r y o f A i s a

p o i n t e r t o a t i l e

f o r ( kk = 0 ; kk < N; kk ++) { / / Loop 1
/ / A[ kk ] [ kk ] : i n o u t
d i a g (A[ kk ] [ kk ] ) ;

f o r ( j j = kk + 1 ; j j < N; j j ++) / / Loop 2
/ / A[ kk ] [ kk ] : i n p u t
/ / A[ kk ] [ j j ] : o u t p u t
f r o n t (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;

f o r ( i i = kk + 1 ; i i < N; i i ++) / / Loop 3
/ / A[ kk ] [ kk ] : i n p u t
/ / A[ i i ] [ kk ] : o u t p u t
down (A[ kk ] [ kk ] , A[ i i ] [ kk ] ) ;

f o r ( i i = kk + 1 ; i i < N; i i ++) / / Loop 4
f o r ( j j = kk + 1 ; j j < N; j j ++) / / Loop 5

/ / A[ i i ] [ kk ] : i n p u t
/ / A[ kk ] [ j j ] : i n p u t
/ / A[ i i ] [ j j ] : oupu t
comb (A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;

}

Listing 1: Tile LU Decomposition (Original Code).

tiles: the current tile, the tile produced by the front operation
and the tile produced by the down operation. It multiplies the
second and third tiles and adds the result to the first tile to
produce the final resulting tile. This computational pattern is
repeated in the next LU iteration on a subset of the resulting
matrix that excludes the first row and column and continues
for as much iterations as the diagonal tiles of the matrix.

Figure 2 depicts the tiles produced by the four operations for
the first iteration of LU decomposition on a 4× 4 tile Matrix.
Each tile is labeled with the first letter of its operation. The
tile produced by the diag operation is labeled as diag. The
arrows in the figure indicate the input tiles needed by each
operation to produce its result.

Fig. 2: LU Decomposition: dependencies between operations
for the first iteration.

B. Dependency Graph

The loops implementing the control-flow in the original ap-
plication are mapped into five DThreads, called loop 1 thread,
diag thread, front thread, down thread and comb thread.

The first DThread implements the outermost loop of the
algorithm while the other DThreads are responsible for ex-
ecuting the four operations. The following data dependencies
are observed:

• The DThreads that execute the operations depend on the
loop 1 thread since the index of the outermost loop is
used in the four operations.

• The front thread and down thread DThreads depend on
the diag thread.

• The comb thread depends on the front thread and
down thread DThreads.

• The next LU iteration depends on the results of the
previous iteration. Particularly, the results produced by
the comb thread invocations, in the current iteration,
are consumed by the invocations of the diag thread,
front thread, down thread and comb thread, of the next
LU iteration.

The Dependency Graph shown in Figure 3 illustrates the
dependencies among the instances of the DThreads for the first
two iterations of LU. For simplicity, we show the operations
on only two tiles of the matrix. Each DThread’s instance is
labeled with the value of its Context.

C. The DDM Code

Listing 2 depicts the code of the five DThreads that imple-
ment the algorithm. In FREDDO, the code of the DThreads
can be embodied in any callable target (called DFunction)
like: (i) standard C++ functions, (ii) Lambda expressions
and (iii) functors. Each DFunction has one input argument,
the Context value. Different Context structures (ContextArg,
Context2DArg and Context3DArg) are provided based on the
type of the DThread class. In this example we place the code
of the DThreads in standard C/C++ functions.

Firstly, the DThread objects are declared in lines 5-7 (will
be created/allocated later in the main function of the program).
Each call of an Update command in the DThreads’ code
corresponds to one dependency arrow in Figure 3.

Each DThread object (DObject) can call several different
types of Update commands [22]. A DObject is able to Update
itself or all its consumers. In both cases a user is able to
specify a Context (Single Update) or a range of Contexts
(Multiple Update). For example, the Update operation in
line 11 indicates a Single Update which decrements the RC
value of the instance kk of the diag thread by one.

Furthermore, in line 25, a Multiple Update is used to decre-
ment the RC value of multiple instances of the front thread by
one. In this case the following instances will be updated: <kk,
kk+1>, <kk, kk+2>, ..., <kk, N-1>. Moreover, the Update
operations at the end of the comb thread code implement a
switch actor, which depending on the Context of the instance,
it updates a different consumer-instance.

Listing 3 illustrates the main function of the DDM program.
The init runtime function (line 7) initializes the DDM execu-
tion environment and it starts NUM OF KERNELS Kernels.

For each DObject we specify its DFunction, its RC value
and the number of its instances. The RC value specified in the



Fig. 3: The LU’s DDM Dependency Graph.

constructor of a DObject indicates that all its instances will
have this RC value. For instance, the diag thread has DFunc-
tion=diag thread code, RC=2 and N number of instances. No-
tice that for the MultipleDThread2D and MultipleDThread3D
objects we specify the number of instances in each level. For
example, the comb thread has N*N*N number of instances.

After the creation of the DObjects we are sending the initial
updates to the TSU (lines 17-21). These updates correspond to
the arrows of Figure 3 that describe dependencies on initialized
data. The run() function starts the DDM scheduling. When the
scheduling finishes, the DThreads are removed from the TSU
(lines 26-30) and all the resources allocated by the FREDDO
framework are deallocated (line 33).

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

The LU decomposition benchmark is evaluated in both
single-node and distributed execution environments using the
FREDDO framework (version 0.89.0).

The compute node is an HP server machine with 2 AMD
Opteron 6276 processors running at 1.4GHz that supports 32
hardware threads. Each processor is an 8-core 64-bit Clustered
Multi-Threaded (CMT) architecture with the capacity of run-
ning 16 threads simultaneously. Each core has a 16KB 4-way
set associative L1 data cache, a 64K 2-way set associative L1
instruction cache and a 2MB 16-way set associative L2 cache.
Also, each processor utilizes a 6MB 64-way set associative
L3 cache. The server is equipped with a shared 48GB DDR3
RAM clocked at 1333MHz. Out of the 32 threads, one is used

to run the TSU, while the rest are used for executing DThreads.
The server runs the Ubuntu 14.04 OS (server edition).

For the distributed execution a 4-node cluster is used with a
total of 128 cores (hardware threads). The nodes are connected
using an off-the-shelf Gigabit Ethernet switch. Although the
description of the distributed FREDDO implementation is
outside the scope of this paper, we briefly describe two
additional components that are needed for the distributed
DDM execution:

• Network Manager: Each node is equipped with the
Network Manager. This module is responsible for the
communication with the other nodes of the system. It
forwards/receives Updates and data packets to/from the
other nodes. The Network Manager reserves another one
core of the system. As such, a node is able to utilize up
to 30 cores for computation.

• Distributed Shared Memory (DSM): A DSM is imple-
mented across the nodes. Part or all of the main memory
address space on each node is mapped to the Global
Address Space (GAS) of the DSM.

The FREDDO framework and the LU source code were
compiled with g++ 4.8.4. Table I depicts the average sequential
execution time (in seconds) of five executions for each matrix
size of the LU benchmark. The last two matrix sizes are very
large and thus they are used only for the evaluation of the
distributed execution. The execution time measurements were
collected using the gettimeofday system call. Notice that for
each matrix size we are using 32× 32 tiles (i.e. B=32).

For the performance evaluation, all the experimental results



1 # i n c l u d e <f r e d d o / d t h r e a d s . h>
2 us ing namespace ddm ; / / Use t h e ddm name−s p a c e
3
4 / / DThread O b j e c t s
5 Mul t i p l e DThread ∗ l o o p 1 t h r e a d , ∗ d i a g t h r e a d ;
6 Mul t ip leDThread2D ∗ f r o n t t h r e a d , ∗down thread ;
7 Mul t ip leDThread3D ∗ comb thread ;
8
9 / / The code o f t h e l o o p 1 t h r e a d DThread

10 void l o o p 1 t h r e a d c o d e ( Contex tArg kk ) {
11 d i a g t h r e a d−>u p d a t e ( kk ) ;
12
13 i f ( kk < N − 1) {
14 f r o n t t h r e a d−>u p d a t e ({ kk , kk +1} , {kk , N−1}) ;
15 down thread−>u p d a t e ({ kk , kk +1} , {kk , N−1}) ;
16 comb thread−>u p d a t e ({ kk , kk +1 , kk +1} ,

{kk , N−1, N−1}) ;
17 }
18 }
19
20 / / The code o f t h e d i a g t h r e a d DThread
21 void d i a g t h r e a d c o d e ( Contex tArg kk ) {
22 d i a g (A[ kk ] [ kk ] ) ; / / Execu te Diag O p e r a t i o n
23
24 i f ( kk < N − 1) ) {
25 f r o n t t h r e a d−>u p d a t e ({ kk , kk +1} , {kk , N−1}) ;
26 down thread−>u p d a t e ({ kk , kk +1} , {kk , N−1}) ;
27 }
28 }
29
30 / / The code o f t h e f r o n t t h r e a d DThread
31 void f r o n t t h r e a d c o d e ( Context2DArg c o n t e x t ) {
32 auto kk = c o n t e x t . Outer , j j = c o n t e x t . I n n e r ;
33
34 / / Execu te F r o n t O p e r a t i o n
35 f r o n t (A[ kk ] [ kk ] , A[ kk ] [ j j ] ) ;
36 comb thread−>u p d a t e ({ kk , kk +1 , j j } ,

{kk , N−1, j j } ) ;
37 }
38
39 / / The code o f t h e down thread DThread
40 void down thread code ( Context2DArg c o n t e x t ) {
41 auto kk = c o n t e x t . Outer , j j = c o n t e x t . I n n e r ;
42
43 / / Execu te Down O p e r a t i o n
44 down (A[ kk ] [ kk ] , A[ j j ] [ kk ] ) ;
45 comb thread−>u p d a t e ({ kk , j j , kk +1} ,

{kk , j j , N−1}) ;
46 }
47
48 / / The code o f t h e comb thread DThread
49 void comb thread code ( Context3DArg c o n t e x t ) {
50 auto kk = c o n t e x t . Outer , i i = c o n t e x t . Middle ,

j j = c o n t e x t . I n n e r ;
51
52 / / Execu te Comb O p e r a t i o n
53 comb (A[ i i ] [ kk ] , A[ kk ] [ j j ] , A[ i i ] [ j j ] ) ;
54
55 / / Upda tes f o r t h e Next LU I t e r a t i o n
56 i f ( i i == kk + 1 && j j == kk + 1)
57 d i a g t h r e a d−>u p d a t e ( kk +1) ;
58 e l s e i f ( i i == kk + 1)
59 f r o n t t h r e a d−>u p d a t e ({ i i , j j } ) ;
60 e l s e i f ( j j == kk + 1)
61 down thread−>u p d a t e ({ j j , i i } ) ;
62 e l s e
63 comb thread−>u p d a t e ({ kk +1 , i i , j j } ) ;
64 }

Listing 2: The code of the LU’s DThreads.

1 i n t main ( ) {
2
3 / / I n i t i a l i z e s t h e d a t a ( m a t r i c e s , e t c . )
4 i n i t i a l i z e D a t a ( ) ;
5
6 / / I n i t i a l i z e s t h e FREDDO’ s e x e c u t i o n e n v i r o n m e n t
7 i n i t (NUM OF KERNELS) ;
8
9 / / C r e a t e s t h e DThread O b j e c t s

10 l o o p 1 t h r e a d = new Mul t i p l e DThread (
l o o p 1 t h r e a d c o d e , 1 , N) ;

11 d i a g t h r e a d = new Mul t i p l eD Thread ( d i a g t h r e a d c o d e
, 2 , N) ;

12 f r o n t t h r e a d = new Mult ip leDThread2D (
f r o n t t h r e a d c o d e , 3 , N, N) ;

13 down thread = new Mult ip leDThread2D (
down thread code , 3 , N, N) ;

14 comb thread = new Mult ip leDThread3D (
comb thread code , 4 , N, N, N) ;

15
16 / / Upda tes r e s u l t i n g from d a t a i n i t i a l i z a t i o n
17 l o o p 1 t h r e a d−>u p d a t e ( 0 , N−1) ;
18 d i a g t h r e a d−>u p d a t e ( 0 ) ;
19 f r o n t t h r e a d−>u p d a t e ({0 , 1} , {0 , N−1}) ;
20 down thread−>u p d a t e ({0 , 1} , {0 , N−1}) ;
21 comb thread−>u p d a t e ({0 , 1 , 1} , {0 , N−1, N−1}) ;
22
23 run ( ) ; / / S t a r t s t h e DDM s c h e d u l i n g
24
25 / / Remove t h e DThreads
26 d e l e t e l o o p 1 t h r e a d ;
27 d e l e t e d i a g t h r e a d ;
28 d e l e t e f r o n t t h r e a d ;
29 d e l e t e down thread ;
30 d e l e t e comb thread ;
31
32 / / S t o p s t h e K e r n e l s and r e l e a s e s t h e r e s o u r c e s
33 f i n a l i z e ( ) ;
34 }

Listing 3: The main program: initializations and Dependency
Graph creation/execution.



are reported as average speedups. The average speedup of a
certain configuration is defined by the following formula:

average speedup =
average sequential execution time

average parallel execution time
,

where the average parallel execution time indicates the aver-
age of five parallel executions.

TABLE I: Average sequential execution time for each problem
size (B=32).

Matrix Size (n× n) Serial Time (sec)
1024× 1024 1.23
2048× 2048 9.9
4096× 4096 79.39
8192× 8192 636.01
16384× 16384 5138.01
32768× 32768 41575.05

Fig. 4: LU Decomposition: Performance scalability for differ-
ent number of computation cores (Kernels) and problem sizes.

B. Performance Evaluation - Single Node Execution
In this work we performed a scalability study of the perfor-

mance for the LU benchmark using the FREDDO framework.
We have evaluated the performance of our framework on
different number of Kernels and problem sizes (Figure 4). Four
different Kernel configurations are used: 4, 8, 16 and 31.

The evaluation shows that FREDDO scales very well and
achieves very good speedups, especially in the largest problem
size (8192 × 8192). Particularly, the LU benchmark achieves
the following speedups: 3.94 out of 4, 7.86 out of 8, 15.63 out
of 16 and 30.09 out of 31. This is justified by the fact that, as
the benchmark’s execution time increases, the parallelization
overhead is amortized.

Fig. 5: Performance evaluation of the distributed LU imple-
mentation for Matrix Size=8192× 8192.

Fig. 6: Performance evaluation of the distributed LU imple-
mentation for Matrix Size=16384× 16384.

Fig. 7: Performance evaluation of the distributed LU imple-
mentation for Matrix Size=32768× 32768.

C. Performance Evaluation - Distributed Execution

Figures 5 to 7 illustrate the performance evaluation of the
FREDDO framework in our cluster for three large matrix sizes:
8192 × 8192, 16384 × 16384 and 32768 × 32768. In each
figure, IDEAL indicates the maximum speedup that a parallel
application is able to achieve based on the number of nodes of
the system. FREDDO IDEAL indicates the maximum speedup



that a parallel FREDDO application is able to achieve based
on the number of nodes of the system. For instance, for a
4-node cluster, IDEAL=128 and FREDDO IDEAL=120. This
is because in the latter case we reserve two cores from each
node for the TSU and the Network Manager.

According to our preliminary results, FREDDO scales well
and achieves very good speedups. For the 8192×8192 matrix
we achieved an average of 78% of the maximum possible
speedup (FREDDO IDEAL) for the 4-node configuration. For
the same configuration, FREDDO achieves 84% and 90% of
the maximum possible speedup, for the 16384 × 16384 and
32768 × 32768 matrix sizes, respectively. Thus, larger input
sizes and possibly larger granularities (tiles) are needed for
the system to scale due to the additional latencies introduced
by the network data and synchronization messages transfer.

V. CONCLUSIONS AND FUTURE WORK

Dense linear algebra software libraries, such as LAPACK
and ScaLAPACK, have shown limitations on multi-core ar-
chitectures due to their inability to fully exploit thread-level
parallelism. Several researchers proposed the use of tile al-
gorithms and their execution using the data-flow/data-driven
model of execution.

In this work we are using the FREDDO framework, an
object-oriented software implementation of the Data-Driven
Multithreading (DDM) model, to implement and evaluate the
tile LU Decomposition benchmark. The presented algorithm
has been evaluated on a 32-core server as well as on a 4-node
multi-core cluster with a total of 128 cores. The evaluation
shows that data-driven based models, like FREDDO, can scale
very well and achieve very good speedups, on algorithms with
high-complexity Dependency Graphs.

Future work will be focused on implementing more dense
linear algebra algorithms, such as, the Cholesky factorization
and the QR factorization. Additionally, we will compare
our framework with other frameworks that are based on
the data-flow/data-driven model, like, OmpSs, SWARM and
DPLASMA.
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