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Abstract— Application tuning is the one of the major con-
cerns on the road towards exascale computing. This activity
is often directed at a specific architecture or towards some
specific tuning goals. As currently practiced, the tuning activity
requires serious expertise in the application domain, target
architecture and tuning goals. Keeping all these (sometimes
conflicting) concerns in mind at the same time while developing
a program is very difficult and error prone.

Dependence programming is a class of dataflow program-
ming in which both data and control flow are explicit, are
distinguished and are given equal weight. This paper gives
an overview of CnC, a dataflow dependence programming
model, from the perspective of the needs of exascale computing
and how CnC addresses those needs through a separation of
concerns. The goal of CnC is to enable a process that is
easier, less error-prone and more effective, by separating these
concerns into independent activities. Rather than proposing yet
another approach to tuning, CnC provides a way to specify
the application in a way that a) hides details not relevant to
tuning, b) includes as much detail as possible to support the
analysis and tuning process, and c) does not assume any specific
architecture, style of tuning or tuning goals.

This results in a specification of the application that can be
applied to any existing or future architectures and can use any
existing or future tuning approach. At the same time it can be
more efficient in human time spent on creating the application
and more effective in finding the best tuning.

I. MOTIVATION

In this section we first identify the needs of exascale
computing (and large-scale computing in general), then we
identify some existing approaches for addressing those needs
together with their strengths and weaknesses. Finally we
identify how CnC addresses the needs of large-scale com-
puting through its unique features.

A. Needs of exascale computing

The challenges for Exascale computing generally fall
under two basic categories: software engineering (ease of
development) and tuning (ability to meet performance goals).

1) Software engineering: Software engineering goals typ-
ically fall into one of the two categories: first, supporting the
separation of various distinct activities and ways of thinking
and second, improving reuse. We argue that increasing the
separation of concerns between designing the algorithm,
thinking about the target architecture, and thinking about the
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specific tuning goals also supports the separation of activities
and reuse. Specifically, for software engineering reasons the
following separations are beneficial:

• The computation from its use. Separating the definition
of the computation from the usage supports reuse of
the same computation in different applications and in
different places in the same application.

• The specification of the application from its tuning.
This supports reuse of the application spec for distinct
platforms and for distinct tuning approaches.

• Development of independent distinct architecture targets
within the same application. This supports reuse of
tuning approaches for other applications.

• Documentation for the domain expert from that for the
tuning expert. This supports the reuse of the documen-
tation of the domain spec for distinct tunings.

• The application specification from its support for re-
silience. This supports the reuse of the resilience support
across applications.

2) Tuning activity: In the context of large-scale (and es-
pecially exascale) computing, tuning the program consumes
the bulk of the time and energy. Tuning, as we refer to
it here, includes both static and dynamic approaches (and
therefore includes various runtime approaches). For software
engineering reasons alone, one would like to separate the
application development from its tuning. In the context of
large-scale computation tuning might consider: a wide range
of architectures (some of them yet unknown), targets with
faulty components (changing targets), heterogeneous targets,
a variety of distinct goals (time, energy, memory usage, etc.)
and trade-offs between the ease of achieving good perfor-
mance vs. the possibility of achieving great performance.

A goal of a successful programming model for exascale is
to support and simplify this wide range of tuning approaches.
Furthermore, making the tuning process easier enables ex-
ploration of more possibilities with fewer resources.

The distinction between software engineering activities
and tuning activities is roughly consistent with the distinction
between the domain expert (physicist, economist, bioengi-
neer etc.) and the tuning expert (computer scientist with a
focus on performance and parallel computing).

B. Some relevant current approaches

Here we identify the pros and cons of several existing
approaches to program development and tuning.

1) Starting with a serial or explicitly parallel program:
When creating the first version of the program, the pro-
grammer must know (and think about) all the program
dependencies to get to a correct serial or parallel app
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Every further modification of the program starts with the
current version. This version might be designed for some
different architecture or optimized for some different goal.
When making each further modification, the programmer
performs a variety of tasks. One is to figure out (again)
which dependencies are actually required and which were
introduced arbitrarily (to enable previous tuning, for exam-
ple). Another is to make sure the proposed change is legal. As
part of this process the programmer must determine if some
overwriting of data is getting in the way of an otherwise
legal code orderings.

These decisions take time and effort (cognitive load).
Further, they are opportunities to make mistakes. If a tuning
approach is too optimistic it might create an error in the
program, but if it is too pessimistic some tuning opportunities
might be lost.

2) Dependence analysis generates an internal representa-
tion of dependence graph: Since a generated dependence
graph is not directly accessible the user it is not very
helpful for detecting errors. Further it may have to be too
conservative since it has no domain knowledge.

3) White board drawing: The evidence that the white
board drawing is close to how we think about applications is
that its how we explain our applications to one another. The
dependencies are explicit. One does not have to deduce them
from the code when one wants to modify the application.
One serious drawback, of course, of the white board drawing
approach is that it is not executable.

Each of these three approaches has their advantages, but
each also has real problems.

II. CNC

Application tuning, while critical for performance, is time
consuming, error prone and not portable. The goal of CnC
is to make this process simpler and more effective. In this
section we introduce the CnC concepts showing how they
support the needs of exascale shown in the previous section.
These concepts are discussed here at an abstract level. In
the next section we show, through an example, how those
concepts are used in programming CnC.

First, we present the CnC characteristics that support
application development and then those that support tuning.

Application development is centered on the CnC graph.
We refer to this graph as the domain spec. It is developed
from the perspective of the domain expert. It includes exactly
and only the constructs required to specify the meaning of
the application and the semantically required constraints on
tuning without including any tuning or arbitrary decisions.
The goal of this language is to create an ideal starting
point for analysis and optimizations (the focus of the tuning
expert).

Tuning might be static (compiler-based) or dynamic
(runtime-based). It might focus on a specific target archi-
tecture and/or on a specific optimization criteria (energy,
memory usage, time, etc.). There are two aspects by which
CnC supports tuning: software engineering and analyzability.

a) Software engineering support makes tuning simpler:
CnC separates the ordering requirements of the application
from the tuning decisions, separates the details of the data
structures and the computation code from the ordering re-
quirements, and avoids polluting the application with arbi-
trary ordering decisions.

b) Some CnC language features make tuning more
effective: CnC provides the information needed to perform
analysis, optimization and tuning of any style by explicitly
defining the relationships between pieces of data (that we
will refer to as data items from now on) and pieces of
computation (that we will refor to as computation steps from
now on) in the program.

For some applications and platforms the CnC domain spec
results in acceptable performance on its own. In general,
a domain spec will be paired with a tuning for a specific
architecture and a specific tuning goal. However, there is
no CnC-specific runtime style and there is no CnC-specific
tuning style, and a wide variety of runtime approaches and
tuning approaches have been built by the CnC community.
Some of these are presented in Section IV. We now introduce
the concepts of CnC by showing how they support the needs
of large scale computing. We will refer to our example graph
here (shown later in Figure 1 to present the concepts. The
actual application will be covered in Section III.

A. Represent the ordering requirements but no arbitrary
orderings.

CnC makes the required orderings among the computation
steps explicit. There are exactly two types of required order-
ings: if one computation step produces data that another con-
sumes, the producer must execute before the consumer; if one
computation step determines if (or which) other computation
steps will execute, the controller must execute before the
controllee. These ordering constraints indicate the minimal
coordination that must be maintained for correctness.

The ordering requirements in the application are repre-
sented as a graph with nodes corresponding to computation
steps (e.g., (T)), data items (e.g., [U]) and control (e.g.,
<IR> ) with edges among them representing the control
and data dependencies. There are no arbitrary orderings.

B. Separate the details of the computations and the data
structures from the ordering requirements (dependences)
among them

The details of the computation steps (e.g., (T)) and
data items [U]) are hidden within these graph nodes. We
currently support various programming languages for imple-
menting the computation including C, C++, Java, Haskell,
Scala, Babel and Python. The granularity of the computation
steps is arbitrary and depends on the domain expert defining
the domain spec.

A computation step in CnC must be able to execute by
getting its input, executing and then putting is output, i.e. it
should behave as a pure function. Internally it can choose to
interleave inputs and outputs but the results can not require
that interleaving. In other words, CnC computation steps
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cannot be co-routines. One implication of this is that the
ordering requirments among the computation steps allow for
serial execution.

Hierarchical dependence graphs can be used to express
multiple distinct granularities in the same program. In the
hierarchical representation a coarse grain computaton step is
decomposed into a finer grain CnC graph and a coarse grain
data item is decomposed into finer grain data items.

This separation of the computation steps from the de-
pendences among them has software engineering benefits.
For example, the computation step code can be modified
without modifying the dependence graph. As long as the pro-
ducer/consumer and controller/controllee relationships are
maintained, static analysis and optimization on the depen-
dence graph is unaffected by modifications to the code within
the individual computation steps.

A computation step may consume and produce multiple
data items, e.g. (U) consumes [T] and [U] and produces
[U]. It may produce multiple control tags. A computation
step is controlled by exactly one control tag (more on control
later).

The inputs and outputs to the CnC graph are represented
as producer and consumer relationships. Input to the whole
application is produced by the environment of the graph (e.g.,
the environment produces [U]). Output of the whole pro-
gram is consumed by the environment (e.g., the environment
consumes [T]). This view simplifies reuse, for example, in
libraries and supports separate development of graphs that
are later merged in a larger application.

Domain spec defines the application as a graph consisting
of the computation steps and data items and the explicit
dependencies among them.

C. Separate the tuning of the application from the ordering
requirements of the untuned application.

Tuning a given application and modifying the semantics of
that application should be two separate and distinct activities.
One shouldn’t be forced to weed through one in order to
modify the other. Distinct tunings of a given application
should be isolated from the specification of the application
and then applied as is appropriate.

Keeping the tuning separate from the application makes
it much simpler to evolve the application itself without
introducing bugs caused by assumptions made by the various
tunings.

Since the domain spec is a separate and distinct untuned
specification of the application it facilitates the communi-
cation about the algorithm among humans and serves as
an excellent documentation tool. Since the domain spec
captures the constraints of the algorithm implemented by
the application and only those constraints, it represents the
algorithm at a high level and is much easier to communicate
and understand than the whole program with all its low level
details.

D. Support the ability to identify, place, schedule and track
individual instances

In CnC, all instances of data, computation and control are
identified by a unique identifier, called a tag. These tags will
often have meaning in the application. In our example an
integer tuple (row, column, iteration) is used to identify the
specific computation step (U:row, col, iter) that is
processing a specific row and column in a matrix, during a
specific iteration.

The ability to identify the individual computation steps,
individual data items, and the relationships among them,
greatly helps in the tuning of CnC programs. For example,
the knowledge that a computation step tagged with (row, col-
umn, iteration) reads data item for (row-1, column, iteration)
and produces data item for (row+1, column, iteration+1) can
help the tuner (a person or a compiler) decide where to place
the data items and how to schedule the computation steps in
order to take advantage of the memory hierarchy.

Dynamically, these tag components take on distinct values
so, for example, [itemName: row, col, iter] corresponds to
a set of instances called a collection. The nodes in our
dependence graph are computation step collections, data item
collections and control tag collections.

E. Maximize analyzibility

a) Dynamic single assignment (DSA): By default the
core language assumes that the data is identified at the
level of values and not memory (dynamic single assignment
DSA). This does not imply that there is memory storage
associated with each value. It does mean that the specification
is at a higher level, the level of identifying values rather than
storage locations.

Reuse of memory is a vital aspect of tuning but it is not
part of the semantics of the application. For example, the
best reuse of memory may depend on the target architecture
and the goals for tuning.

DSA form makes analyzing and optimizing the use of
memory both easier and more effective. For example, it
removes anti-dependencies that either constrain reordering
or require analysis to undo the overwriting.

The association of a tag with a unique value facilitates
debugging as well. Since CnC programs are serializable and
there are no race conditions, it is easy to replay the execution
and reproduce the exact error one is searching for.

It is important to point out that non-DSA data is also
supported in CnC.

b) Deterministic computation: CnC is deterministic by
default [5]. This also makes the analyses and transformations
simpler and more effective. For example it is always legal
to execute a deterministic computation multiple times, which
greatly simplifies debugging. There are some extensions to
CnC that support some inherently non-deterministic compu-
tations as well.

c) Data and control dependencies are represented ex-
plicitly and at the same level: They both imply ordering
constraints but they have different implications and are used
differently in a generic runtime and in the context of analysis
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and optimization. For example, control dependencies might
indicate that distinct computation steps occur exactly under
the same conditions. Data dependencies might indicate that
distinct computation steps input the same data items.

Another use of this distinction supports speculative exe-
cution. If the data items for a computation step have arrived
but its control has not, then the step can be speculatively
executed.

d) Optional dependence functions: Some functions in-
dicate what data items a computation step consumes and
produces. Others indicate what computation steps a data item
is produced-by and consumed-by. These have many uses. For
example, backward propagation through these dependence
functions supports demand-driven execution. Also analysis
of the control and data dependence with the dependence
functions can identify when a data item becomes garbage.

The exact features that support analysis and optimization
also support the development process. For example, DSA
item where a given tag is associated with a given data value,
simplifies debugging.

These analyses and optimizations can be applied statically
or dynamically, making them particularly useful in the large-
scale environments. Explicit functions may also allow us to
statically check that they are accurate (either code or tag
function might be the culprit) and dynamically check those
that are not statically checkable. The domain spec graph
that includes the optional dependence functions is highly
analyzable. It separates the details of the computation and
data structures from the dependence graph indicating the
ordering constraints. It separates the ordering constraints
from use of those constraints for any tuning.

III. THE MEANING OF A CNC APP VIA AN EXAMPLE

Here we show the details of a CnC via an example,
Cholesky factorization. The graph is small and easy to follow
but the dependence are complicated enough that tuning this
application is not at all trivial [6]. Then we discuss the
semantics of a CnC program.

A. Cholesky factorization in CnC

Figure 1 shows a graphical version of the domain spec-
ification for Cholesky factorization. Figure 2 illustrates the
data dependencies in the Cholesky factorization.

A CnC graph has three kinds of nodes
Computation: (name:...)
Data: [name:...]
Control: <name:...>

Each name corresponds to a static collection of
dynamic instance, e.g.,[x:j] is a static collection
of data items. [x:3] is a dynamic instance in
that collection. These tags are most often meaning-
ful within the application, e.g., (foo:row, column,
iteration) or [employees:department, year,
employeeID].

A collection is simply a set of instances distinguished by
the values of the tags. CnC tags are the analog of array

indices or database keys. The application needs to determine
what instances of each of these computations will execute.
Each computation step collection is controlled by exactly one
control tag collection. A control tag collection is an analog of
an iteration space, but there is no assumed ordering among
the tags in a control collection. A specific ordering might
unfold as part of the execution.

The Cholesky application works on a 2-D NxN matrix of
tiles over N iterations. A given iteration performs a lower
triangular computation. In CnC, the distinct instances of
the computation steps are distinguished by row, column and
iteration. Iteration I, works on a lower triangle of tiles with
columns I to N and rows I to N.

There are three distinct computations in our application:
cholesky, trisolve, and update. These three distinct compu-
tations are represented in CnC by three distinct computation
step collections: (C), (T) and (U).

For each iteration, I, we execute the cholesky computation
for the tile where row = I, col = I, iter = I. The different
instances of (cholesky) are distinguished only by iter,
i.e., (c:iter). For a given interation there is exactly one
instance of (cholesky).

For each tile in that same column and iteration, we execute
an instance of trisolve. Since the column and the iteration are
identical it is represented as (t:iter,row).

The rest of the lower triangular matrix for this it-
eration is processed by update. An update computation,
identified by all three tag components is represented as
(U:iter,row,col).

This version of the application distinguishes among three
distinct data item collections [C], [T] and [U]. [U] is
used as input and for intermediate values. [C] and [T] are
outputs.

We also have three distinct control collections,
<I:iter>, <IR:iter, row> and <IRC:iter,
row, col>. These act as control flow by indicating
which instances of each computation will be executed. This
is part of the meaning of the application. The control tags
do not indicate when the computations will occur. That is a
tuning concern.

A CnC graph has three kinds of relationships among
the nodes: consumer, producer and controller. The producer
relationships in Cholesky are:
(C:iter) → [c:iter]
(T:iter,row) → [T:iter,row]
(U:iter,row,col) → [U:iter,row,col]
While the producer relationships are trivial in this par-

ticular example, the consumer relationships are a bit more
interesting:
[C:iter-1] → (C:iter)
[T:iter-1,row] → (T:iter,row)
[C:iter] → (t:iter,row)
[U:iter-1,row,col] → (U:iter,row,col)
[T:iter,row] → (U:iter,row,col)
[T:iter,col] → (U:iter,row,col)
In addition to producers and consumers among graph

nodes, we view input and output as a producer and consumer
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(C:	iter)	 (T:	iter,	row)	 (U:	iter,	row,	col)	[C:	iter]	 [T:	iter,	row]	 [U:	iter,	row,	col]	

<I:	iter>	 <IR:	iter,	row>	 <IRC:	iter,	row,	col>	

Fig. 1. Domain specification for Cholesky factorization.

relationships where the program environment (a special con-
cept indicating the world outside of the program specified by
the CnC graph) is the producer of input and the environment
is the consumer of output. This approach makes it easier to
compose distinct graphs. Figure 1 shows inputs and outputs
for Cholesky as squiggly arrows.

So far we have expressed dependencies among collections
but CnC allows us to express explicitly the dependencies
between individual instances of data items and computation
steps. For example, consider the consumer relationships in
Cholesky :
[U:iter-1,row,col] → (U:iter,row,col)
[T:iter,row] → (U:iter,row,col)
[T:iter,col] → (U:iter,row,col)
These specify that the CnC step (U:iter,row,col)

produces the item [U:iter,row,col] and con-
sumes the values of items [U:iter-1,row,col],
[T:iter,row] and [T:iter,col].

Cholesky	  

Trisolve	   Update	  

Fig. 2. Data dependencies in the Cholesky factorization.

In addition to the dependencies shown in Figure 2, each
of the three computations ((Cholesky), (Trisolve),
(Update)), consumes the value from iter-1 (with the same
row and col).

A control tag collection is a set of tag instances. The mean-
ing of the relationship between a computation step collection
and its control tag collection is that for each tag instance in

the control collection, an instance in the computation step
collection with that exact same tag value will execute. This
is very similar to an iteration space but the order that the
instances are put into the control collection is constrained
only by the dynamic order in which they are produced and
the order that the corresponding computation will execute is
constrained by when the control is produced and when the
inputs are also available. In our example, if <C:5> is put
into the control collection <C:t>hen (C:5) will execute
sometime after after this control tag becomes available and
after its input data item is also available. In this example,
each control collection controls exactly one computation step
collection. This is not a language restriction. <tag:J,
K> might control both (foo:J, K) and (bar:J, K).
In this case the arrival of <tag:12, 7> would mean
that (foo:12, 7) and (bar:12, 7) will execute.
When exactly will each be executed is limited by when its
input data items are available. In this Cholsky application,
<C:iter> controls (C:iter). <IR:iter, row>
controls (IR:iter, row) and <IRC:iter, row,
col> controls (IRC:iter, row, col). The control
is known from the beginning for this application as it is a
function of N. So these tag collections are simply input to the
application. It is common for a tag instance to be produced
by a step instance. This way a step can determine if another
will execute by conditionally putting its tag (the analog of an
IF statement). A step can determine which other steps will
execute by computing a set of tag values to put based on its
input data (the analog of generating an iteration space). A
step can determine which control collection to put tags into
(the analog of an If-THEN-ELSE). These are analogs, not
precise equivalents. The CnC versions are less constrained.
There are no assumptions about which tags will be generated
in what order and further there is no implied association
between the order in which the tags are generated and the
order in which the controlled step executes. The computation
that produces the tag and the computation controlled by that
tag are each constrained by their dependences. In an extreme
case the application might be required to produce all the tags
in forward order but the controlled computation might be
required to execute in exactly the reverse order.

There is exactly one instance of the cholesky computation
for each iteration. For each iteration, I, we execute cholesky
with row = I, col = I, iter = I. So, in CnC, the different
instances of (cholesky) are distinguished only by iter,
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i.e., (cholesky:iter).
For each tile in that same column and iteration, we

execute an instance of trisolve. So trisolve is represented
as (trisolve:iter, row).

The rest of the lower triangular matrix for this iteration is
processed by (update:iter, row, col).

B. An abstract execution model for CnC

Here we discuss the semantics of a CnC domain spec.
These address the required orderings. We will address tuning
in section IV. Tunings are critical to exascale computing but
they are isolated from the semantics of the application in
CnC and are not addressed here.

As data item instances and control tag instances are
produced we consider them as available. Notice that if no
control tags are produced by the environment, no computa-
tion steps will execute.

When a control tag instance and the data item input
instances for a specific step instance are available, that
step instance is considered ready. When a computation step
instance is ready it can execute. In the process of executing,
a computation step may create more data item and control
tag instances. These will then become available. Once a step
instance completes it is considered executed.

A CnC graph terminates when
• No steps are executing
• No unexecuted steps are ready
• No more input will arrive from the environment
We can distinguish between two distinct states upon ter-

mination. The normal case is that all ready steps are also
executed. It may be the case that the input for some ready
has not arrived. This might be considered an error or not but
it is a distinct termination state.

There are some interesting implications of this very sim-
ple semantics. For example, it means that by tracking the
available item and tag instances (with the contents of the
items) and tracking which step instances have executed we
have the entire relevant state of the application. The forward
progress of an application can be tracked by these attributes.
Depending on the execution model, we might or might not
want to actually maintain this state during execution. If
we do maintain the state, we can clean up irrelevant state
details by removing items and tags that are dead and steps
that have executed. This small, simple state supports simple
development for debugging, tracing, performance analysis
and continuous, asynchronous, automatic checkpointing.

IV. TUNING APPROACHES

The crux of CnC is that the ordering requirements are
specified explicitly as a dependence graph that is totally
isolated from any tuning. This allows for serious flexibility.
There is no CnC-specific runtime or CnC-specific tuning.
In this section we refer to both as tuning. The tuning may
vary dramatically with the architecture, the application class,
the target platform and the tuning goals. This has serious
ramifications for both productivity and performance.

There is only one rule for a valid tuning: The execution
must obey the dependences of the domain spec. A tuning
expert can tune the next application by using a combination
of these existing techniques or by developing new ones
crafted for a very specific architecture, application class or
a tuning goal.

Here we present some CnC tuning approaches that have
already been built, some that are under development and
some ideas for future tuning directions.

The ”tuning expert” focuses on analysis and optimization.
This might be a person or an automatic analyzer/optimizer.
The tuning might be static or dynamic. The focus might be
on mapping DSA values to memory locations, scheduling
computation in time, mapping computation or data to the
platform. The platform might be shared memory, distributed
memory, or a heterogeneous mix of CPUs, GPUs and
FPGAs. The goals might be to minimize time, minimize
energy, minimize the memory footprint, support resilience
or some yet undiscovered concern. The starting point is
always the CnC domain spec that describes application’s
constraints in terms of data and control dependences. The
schedule and placement of computation and the mapping of
data to memory might each be determined either statically
or dynamically. A full tuning system might involve some
combination of static and dynamic approaches.

A. Static tunings

There are several examples of static systems. Some focus
on mapping the DSA data items onto non-DSA memory.
Others focus on scheduling the work across time and/or
placing the work across the platform.

A CnC runtime can be completely based on a static
distribution and schedule. Each rank executes a program
paramaterized by the worker ID. The program encodes the
distribution and schedule. It waits to receive the input data
items the next step will consume. It executes that step.
It send the data items it produces to the ranks that will
execute the consumers of that data. The runtime overhead
is extremely low, making this approach be very effective for
applications with predictable schedules. Static distribution
and scheduling is not an appropriate choice for applications
with unpredictable behavior.

One example is polyhedral tiling, which uses a constrained
version of CnC, in which it must be statically known which
data items will be input to each tiled polyhedral step [14],
[16], [17]. Another project involves investigating automatic
conversion of element-level stencil applications to tiled ver-
sions.

For Distributed memory systems, the tuning expert can
provide functions [8] that map data items to nodes in a cluster
as a function of their tags and then determines where the
computation is executed based on this data distribution. In
addition the tuning expert can provide functions that map
the computation steps to a node in the cluster based on tags
and then determines where the data is needed based on this
computation distribution. These functions cam have a serious
impact the performance of the application. In this system the
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distribution of the computation or data among the distributed
memory nodes (where) is static but the schedule of execution
within a node is dynamic.

B. Dynamic tunings

Here we briefly describe a few of the dynamic mecha-
nisms that have been developed for CnC. A straightforward
dynamic CnC runtime for shared memory will keep a track
of all the steps that are ready to execute, and keep a pool of
worker threads to execute available tasks.

We currently have dynamic runtimes that are based on
the Open Community Runtime (OCR) [4], Thread Building
Blocks (TBB), Babel, and Haskell.

The basic dynamic runtimes addresses load balance in that
any worker can execute any available task. One example of
an enhancements to this basic runtime takes advantage of the
cache hierarchy with a scheduler that can prioritize execution
of the steps that access the same data on the same worker
thread [8].

In the tuning described above that provides static mapping
of the work and/or the data across a distributed memory
system, the current placement (space and time) within a
shared memory node is still dynamic.

Another version of dynamic tuning CnC programs is
designed for heterogeneous hardware platforms [18]. It sup-
ports dynamic decisions that determine which type hardware
a comptuation step should use based on input from the
tuning expert. This input specifies for each computation step
collection which platforms it can run (CPU, GPU, FPGA),
what is the preference (i.e. performance) of that step for
running on each of these platforms, and provides an appro-
priate variant of the step code for each platform. The runtime
will dynamically attempt to make the best match among the
available computation steps, available computation resources,
and overall program execution balance.

One tuning approach attempts to maximize locality and
reuse in CnC programs by providing support for representing
a hierarchy of affinities for a given CnC domain-spec [13]. A
tuning spec in this language is declarative, and very similar
in syntax and semantics to the CnC spec language. The
tuning expert specifies a hierarchical affinity grouping of the
computation steps based on their access to common data
items. Intuitively, a low level affinity group will include a set
of computation steps that exibit significant reuse of the same
data items. Lower level affinity groups are merged at a higher
level if they reuse some of the same data items. The runtime
then executes the domain spec obeying its required ordering
constraints but also guided by this affinity-based tuning spec.
In this approach the affinity groups are available statically but
the current implementation uses it to dynamically guide the
placement across both the platform and time.

Since CnC is a dynamically a single-assignment language,
tuning for memory usage is one of the most important aspects
of tuning. One approach for reusing memory locations in
streaming applications is to use the tag functions to determine
when the specific items are no longer needed and then reuse
the memory that was occupied by those items [20]. Another

approach involves an inspector phase execution of the CnC
graph to determine the memory usage patters in the program
for the given input, then to create a schedule that minimizes
the memory usage [19].

While the tunings above aim to reduce the execution time,
consumed energy or the amount of storage used for the appli-
cation itself, we can also reduce the runtime overhead for a
specific application. Some activities that the runtime must do
in general are not required for a given application. Consider
the attributes available, ready and executed described as part
of the CnC abstract execution model in Section II. A runtime
can track these changes in state to know when a step can
be scheduled. Lowering the application graph to make these
state changes explicit allows this lowered graph to then
be optimized resulting in application-specific runtime with
lower overhead [12].

C. Future tunings

1) Out-of-core computation: Consider a hierarchical CnC
app where the computation, data and control at different
levels in the hierarchy are of different grains. The domain
spec itself doesn’t specify if the data input is coming from
a register, cache, memory, another node in a cluster, etc.
One option is that it’s out-of-core. In this case the code to
bring out-of-core data into core and the reverse is just part of
the dynamic runtime. Just as the runtime now manages the
communcation among nodes in a cluster with no involvement
by the domain-expert, the out-of-core runtime would manage
this out-of-core communication. Just as the tuning expert for
the distributed system might provide distribution, the tuning
expert might indicate the level in the hierarchy at which this
data movement ought to occur but.

2) Checkpoint-continue: Checkpointing, as is usually im-
plemented in today’s systems, saves the state of the data
values at specific points during execution. In CnC, in addition
to these values, the system records a few execution attributes,
such as ready, executed etc. This enables an automatic,
continuous, asychronous checkpoint-continue system for a
non-hierarchical CnC spec. [21]. For future work we plan a
hierarchical version, in which the granularity of the check-
points varies with the hierarchical level. At any fault in the
platform at any level, the current checkpoint for that node
can be moved without stoping the rest of the application.
This might be used not only for failure recovery but for also
for dynamic remapping of the application for other reasons.

3) Collaborating runtimes: For some applications differ-
ent parts of the application have different requirements. CnC
can allow combining different parts of an application or even
multiple CnC programs running on distinct runtimes together
to form a single larger heterogeneous application. Different
runtimes might have different representations for collections
while the combined application will know how to access
them for each of the runtimes.

4) Inspector-executor: A system the performs dynamic
distribution and scheduling based on inspection of previous
execution costs [19] is also under consideration.
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5) Demand-driven and speculative execution: This can be
achieved using on a few additional execution attributes, for
example, a step might be demanded if its result is needed,
or it might be speculatively executed if its data is ready but
has not been prescribed yet.

V. RELATED WORK

A. CnC as a dataflow language

In contrast to the traditional dataflow languages [9], CnC
isolates specification of the flow (required orderings) from
the actual computation and from any tuning. While there
are fine-grain dataflow and macro-dataflow, CnC is closer to
macro dataflow not because of the granularity but because
it isolates the computation from the ordering constraints.
CnC also adds unique tags to computation, data and control
instances to maximize analyzability.

B. CnC and task-based languages

Task-based parallel programming languages such as
Habanero-C [1], Habanero-Java [2], Cilk [10] and OCR [4]
are typically harder to analyze even than serial programs and
harder still than CnC. CnC computation steps are at a higher
level. The dynamic runtime or static tuning is responsible for
tracking when a task is ready, not the domain expert. Because
a CnC computation step just puts control tags (no spawning
of a specific other step) it is easier to put together new apps
from existing pieces since connection between tasks is not
explicit in the code.

C. CnC and serial or high performance parallel languages

Many of the high-performance parallel languages [2], [1],
[15] can be used as a language for the computation within
CnC computation steps, as long as the code within the
step respects the step-like behavior. Some high-performance
parallel languages [7] make good tuning languages. The
computation code would be replaced by CnC computation
step invocations. The aspects of the language that addresses
placement and scheduling would be used to tune the applica-
tion. Other models such as Legion [3] and Charm++ [11] go
a long way towards separating the algorithm dependencies
from tuning decisions but they still do not completely and
explicitly separate the two as CnC does.

VI. CONCLUSIONS

In this paper we give an overview of CnC, a dataflow
dependence programming model that is very attractive as
the programming model for exascale systems. CnC separates
program dependence specification from tuning the program
for a specific architecture or for specific tuning goals. CnC
is deterministic and race-free, its data has the dynamic
single assignment property, and all its computation and data
is tagged with unique identifiers with optional functions
between tags that greatly simplify analysis and optimization.
CnC does not assume a specific target platform, style of
parallelism, computation language or granularity.

In addition to simplifying the tuning process, CnC also has
significant software engineering benefits as CnC programs
are easy to analyze, maintain, debug, port and evolve.
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[19] D. Sbı̂rlea, Z. Budimlić, and V. Sarkar. Bounded memory scheduling
of dynamic task graphs. In Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation, PACT ’14,
pages 343–356, New York, NY, USA, 2014. ACM.

[20] D. Sbı̂rlea, K. Knobe, and V. Sarkar. Folding of tagged single
assignment values for memory-efficient parallelism. Euro-Par’12,
pages 601–613, Berlin, Heidelberg, 2012. Springer-Verlag.

[21] N. Vrvilo. Asynchronous Checkpoint/Restart for the Concurrent
Collections Model. Master’s thesis, Rice University, Aug 2014.

8


