
A Security Architecture for Computational Grids∗

Ian Foster1 Carl Kesselman2 Gene Tsudik2 Steven Tuecke1

1 Mathematics and Computer Science 2 Information Sciences Institute
Argonne National Laboratory University of Southern California

Argonne, IL 60439 Marina del Rey, CA 90292
{foster,tuecke}@mcs.anl.gov {carl,gts}@isi.edu

Abstract

State-of-the-art and emerging scientific applications require
fast access to large quantities of data and commensurately
fast computational resources. Both resources and data are
often distributed in a wide-area network with components
administered locally and independently. Computations may
involve hundreds of processes that must be able to acquire re-
sources dynamically and communicate efficiently. This pa-
per analyzes the unique security requirements of large-scale
distributed (grid) computing and develops a security policy
and a corresponding security architecture. An implemen-
tation of the architecture within the Globus metacomputing
toolkit is discussed.

1 Introduction

Large-scale distributed computing environments, or “com-
putational grids” as they are sometimes termed [4], cou-
ple computers, storage systems, and other devices to enable
advanced applications such as distributed supercomputing,
teleimmersion, computer-enhanced instruments, and distri-
buted data mining [2]. Grid applications are distinguished
from traditional client-server applications by their simulta-
neous use of large numbers of resources, dynamic resource
requirements, use of resources from multiple administrative
domains, complex communication structures, and stringent
performance requirements, among others.

While scalability, performance and heterogeneity are de-
sirable goals for any distributed system, the characteristics
of computational grids lead to security problems that are not
addressed by existing security technologies for distributed
systems. For example, parallel computations that acquire
multiple computational resources introduce the need to es-
tablish security relationships not simply between a client
and a server, but among potentially hundreds of processes

∗This work was supported in part by the Mathematical, Informa-
tion, and Computational Sciences Division subprogram of the Office
of Computational and Technology Research, U.S. Department of En-
ergy, under Contract W-31-109-Eng-38; by the Defense Advanced Re-
search Projects Agency under contract N66001-96-C-8523; and by the
National Science Foundation.

To appear in the 5th ACM Conference on Computer and
Communication Security

that collectively span many administrative domains. Fur-
thermore, the dynamic nature of the grid can make it im-
possible to establish trust relationships between sites prior
to application execution. Finally, the interdomain security
solutions used for grids must be able to interoperate with,
rather than replace, the diverse intradomain access control
technologies inevitably encountered in individual domains.

In this paper, we describe new techniques that overcome
many of the cited difficulties. We propose a security pol-
icy for grid systems that addresses requirements for single
sign-on, interoperability with local policies, and dynamically
varying resource requirements. This policy focuses on au-
thentication of users, resources, and processes and supports
user-to-resource, resource-to-user, process-to-resource, and
process-to-process authentication. We also describe a se-
curity architecture and associated protocols that implement
this policy. Finally, we present a concrete implementation of
this architecture and discuss our experiences deploying this
architecture on a large grid testbed spanning a diverse col-
lection of resources at some 20 sites around the world. This
implementation is performed in the context of the Globus
system [5], which provides a toolkit, testbed, and set of ap-
plications that can be used to evaluate our approach. How-
ever, we believe that the proposed techniques are general
enough to make them applicable outside the Globus con-
text.

In summary, this paper makes four contributions to our
understanding of distributed system security:

1. it provides an in-depth analysis of the security problem
in computational grid systems and applications;

2. it includes the first detailed formulation of a security
policy for grid systems;

3. it proposes solutions to specific technical issues raised
by this policy, including local heterogeneity and scal-
ability; and

4. it describes a security architecture that uses these so-
lutions to implement the security policy, and it demon-
strates – via large-scale deployment – that this archi-
tecture is workable.

2 The Grid Security Problem

We introduce the grid security problem with an example
illustrated in Figure 1. This example, although somewhat
contrived, captures important elements of real applications,
such as those discussed in Chapters 2–5 of [4].

1

Data

Data Data

Data

Data

1. Request data analysis

2. Contact resource broker

3. Initiate task farm

4. Access parameter values

A. Physicist

Kerberos
physicist

ssh
ap

SSL
guest29

plaintext
aphysicist

plaintext
ap6

plaintext
bcollab

Site A Site B Site C

Site D

Site ESite F

Site G

Figure 1: Example of a large-scale distributed computation:
user initiates a computation that accesses data and comput-
ing resources at multiple locations.

We imagine a scientist, a member of a multi-institutional
scientific collaboration, who receives e-mail from a colleague
regarding a new data set. He starts an analysis program,
which dispatches code to the remote location where the data
is stored (site C). Once started, the analysis program deter-
mines that it needs to run a simulation in order to compare
the experimental results with predictions. Hence, it contacts
a resource broker service maintained by the collaboration (at
site D), in order to locate idle resources that can be used for
the simulation. The resource broker in turn initiates com-
putation on computers at two sites (E and G). These com-
puters access parameter values stored on a file system at yet
another site (F) and also communicate among themselves
(perhaps using specialized protocols, such as multicast) and
with the broker, the original site, and the user.

This example illustrates many of the distinctive charac-
teristics of the grid computing environment:

• The user population is large and dynamic. Partici-
pants in such virtual organizations as this scientific
collaboration will include members of many institu-
tions and will change frequently.

• The resource pool is large and dynamic. Because indi-
vidual institutions and users decide whether and when
to contribute resources, the quantity and location of
available resources can change rapidly.

• A computation (or processes created by a computa-
tion) may acquire, start processes on, and release re-
sources dynamically during its execution. Even in
our simple example, the computation acquired (and
later released) resources at five sites. In other words,
throughout its lifetime, a computation is composed of
a dynamic group of processes running on different re-
sources and sites.

• The processes constituting a computation may com-
municate by using a variety of mechanisms, including
unicast and multicast. While these processes form a

single, fully connected logical entity, low-level commu-
nication connections (e.g., TCP/IP sockets) may be
created and destroyed dynamically during program ex-
ecution.

• Resources may require different authentication and au-
thorization mechanisms and policies, which we will
have limited ability to change. In Figure 1, we indi-
cate this situation by showing the local access control
policies that apply at the different sites. These include
Kerberos, plaintext passwords, Secure Socket Library
(SSL), and secure shell.

• An individual user will be associated with different lo-
cal name spaces, credentials, or accounts, at different
sites, for the purposes of accounting and access con-
trol. At some sites, a user may have a regular account
(“ap,” “physicist,” etc.). At others, the user may use
a dynamically assigned guest account or simply an ac-
count created for the collaboration.

• Resources and users may be located in different coun-
tries.

To summarize, the problem we face is providing security
solutions that can allow computations, such as the one just
described, to coordinate diverse access control policies and
to operate securely in heterogeneous environments.

3 Security Requirements

Grid systems and applications may require any or all of the
standard security functions, including authentication, access
control, integrity, privacy, and nonrepudiation. In this pa-
per, we focus primarily on issues of authentication and ac-
cess control. Specifically, we seek to (1) provide authentica-
tion solutions that allow a user, the processes that comprise
a user’s computation, and the resources used by those pro-
cesses, to verify each other’s identity; and (2) allow local
access control mechanisms to be applied without change,
whenever possible. As will be discussed in Section 4, au-
thentication forms the foundation of a security policy that
enables diverse local security policies to be integrated into
a global framework.

In developing a security architecture that meets these
requirements, we also choose to satisfy the following con-
straints derived from the characteristics of the grid environ-
ment and grid applications:

Single sign-on: A user should be able to authenticate
once (e.g., when starting a computation) and initiate com-
putations that acquire resources, use resources, release re-
sources, and communicate internally, without further au-
thentication of the user.

Protection of credentials: User credentials (passwords,
private keys, etc.) must be protected.

Interoperability with local security solutions: While our
security solutions may provide interdomain access mecha-
nisms, access to local resources will typically be determined
by a local security policy that is enforced by a local security
mechanism. It is impractical to modify every local resource
to accommodate interdomain access; instead, one or more
entities in a domain (e.g., interdomain security servers) must
act as agents of remote clients/users for local resources.

Exportability: We require that the code be (a) exportable
and (b) executable in multinational testbeds. In short, the
exportability issues mean that our security policy cannot
directly or indirectly require the use of bulk encryption.

2

Uniform credentials/certification infrastructure: Inter-
domain access requires, at a minimum, a common way of
expressing the identity of a security principal such as an ac-
tual user or a resource. Hence, it is imperative to employ
a standard (such as X.509v3) for encoding credentials for
security principals.

Support for secure group communication. A computation
can comprise a number of processes that will need to coordi-
nate their activities as a group. The composition of a process
group can and will change during the lifetime of a compu-
tation. Hence, support is needed for secure (in this context,
authenticated) communication for dynamic groups. No cur-
rent security solution supports this feature; even GSS-API
has no provisions for group security contexts.

Support for multiple implementations: The security pol-
icy should not dictate a specific implementation technology.
Rather, it should be possible to implement the security pol-
icy with a range of security technologies, based on both pub-
lic and shared key cryptography.

4 A Grid Security Policy

Before delving into the specifics of a security architecture, it
is important to identify the security objectives, the partic-
ipating entities, and the underlying assumptions. In short,
we must define a security policy, a set rules that define the se-
curity subjects (e.g., users), security objects (e.g., resources)
and relationships among them. While many different secu-
rity policies are possible, we present a specific policy that ad-
dresses the issues introduced in the preceding section while
reflecting the needs and expectations of applications, users,
and resource owners. To our knowledge, the following dis-
cussion represents the first such grid security policy that has
been defined to this level of detail.

In the following discussion, we use the following termi-
nology from the security literature:

• A subject is a participant in a security operation. In
grid systems, a subject is generally a user, a process
operating on behalf of a user, a resource (such as a
computer or a file), or a process acting on behalf of a
resource.

• A credential is a piece of information that is used to
prove the identity of a subject. Passwords and certifi-
cates are examples of credentials.

• Authentication is the process by which a subject proves
its identity to a requestor, typically through the use
of a credential. Authentication in which both par-
ties (i.e., the requestor and the requestee) authenticate
themselves to one another simultaneously is referred to
as mutual authentication.

• An object is a resource that is being protected by the
security policy.

• Authorization is the process by which we determine
whether a subject is allowed to access or use an object.

• A trust domain is a logical, administrative structure
within which a single, consistent local security policy
holds. Put another way, a trust domain is a collec-
tion of both subjects and objects governed by single
administration and a single security policy.

With these terms in mind, we define our security policy
as follows:

1. The grid environment consists of multiple trust do-
mains.

Comment : This policy element states that the grid se-
curity policy must integrate a heterogeneous collection
of locally administered users and resources. In general,
the grid environment will have limited or no influence
over local security policy. Thus, we can neither require
that local solutions be replaced, nor are we allowed to
override local policy decisions. Consequently, the grid
security policy must focus on controlling the interdo-
main interactions and the mapping of interdomain op-
erations into local security policy.

2. Operations that are confined to a single trust domain
are subject to local security policy only.

Comment : No additional security operations or ser-
vices are imposed on local operations by the grid se-
curity policy. The local security policy can be imple-
mented by a variety of methods, including firewalls,
Kerbero,s and SSH.

3. Both global and local subjects exist. For each trust
domain, there exists a partial mapping from global to
local subjects.

Comment : In effect, each user of a resource will have
two names, a global name and a potentially different
local name on each resource. The mapping of a global
name to a local name is site-specific. For example, a
site might map global user names to: a predefined local
name, a dynamically allocated local name, or a single
“group” name. The existence of the global subject
enables the policy to provide single sign-on.

4. Operations between entities located in different trust
domains require mutual authentication.

5. An authenticated global subject mapped into a local
subject is assumed to be equivalent to being locally
authenticated as that local subject.

Comment : In other words, within a trust domain, the
combination of the grid authentication policy and the
local mapping meets the security objective of the host
domain.

6. All access control decisions are made locally on the
basis of the local subject.

Comment : This policy element requires that access
control decisions remain in the hands of the local sys-
tem administrators.

7. A program or process is allowed to act on behalf of a
user and be delegated a subset of the user’s rights.

Comment : This policy element is necessary to support
the execution of long-lived programs that may acquire
resources dynamically without additional user inter-
action. It is also needed to support the creation of
processes by other processes.

8. Processes running on behalf of the same subject within
the same trust domain may share a single set of cre-
dentials.

Comment : Grid computations may involve hundreds
of processes on a single resource. This policy compo-
nent enables scalability of the security architecture to
large-scale parallel applications, by avoiding the need
to create a unique credential for each process.

3

Protocol 1:
Creation of a
User Proxy

Resource Proxy

Process

Site 1

Local policy
and mechanisms

Site 2

User
User Proxy

Protocol 2:
Allocation of a
remote resource

Protocol 3:
Resource allocation

from a process

Protocol 4:
Creation of a global-

to-local mapping

Resource Proxy

Global-to-local
mapping table

Process

Local policy
and mechanisms

Process

Process

Host computer

�CP

�CP

CRP

�CP

�CP

CRP

�
CUP

CU

Global-to-local
mapping table

��
��

Long-lived
credential

Temporary
credential

Figure 2: A computational grid security architecture.

We note that the security policy is structured so as not
to require bulk privacy (i.e., encryption) for any reason.
Export control laws regarding encryption technologies are
complex, dynamic and vary from country to country. Con-
sequently, these issues are best avoided as a matter of design.
We also observe that the thrust of this policy is to enable
the integration of diverse local security policies encountered
in a computational grid environment.

5 Grid Security Architecture

The security policy defined in Section 4 provides a context
within which we can construct a specific security architec-
ture. In doing so, we specify the set of subjects and objects
that will be under the jurisdiction of the security policy and
define the protocols that will govern interactions between
these subjects and objects. Figure 2 shows an overview of
our security architecture. The following components are de-
picted: entities, credentials, and protocols. The thick lines
represent the protocols described later in the paper. The
curved line separating the user from the rest of the figure
signifies that the user may disconnect once the user proxy
has been created; the dashed lines represent authenticated
interprocess communication.

We are interested in computational environments. Con-
sequently, the subjects and objects in our architecture must
include those entities from which computation is formed. A
computation consists of many processes, with each process
acting on behalf of a user. Thus, the subjects are users
and processes. The objects in the architecture must include
the wide range of resources that are available in a grid en-
vironment: computers, data repositories, networks, display
devices, and so forth.

Grid computations may grow and shrink dynamically,
acquiring resources when required to solve a problem and
releasing them when they are no longer needed. Each time
a computation obtains a resource, it does so on behalf of
a particular user. However, it is frequently impractical for
that “user” to interact directly with each such resource for
the purposes of authentication: the number of resources in-
volved may be large, or, because some applications may run

for extended period of time (i.e., days or weeks), the user
may wish to allow a computation to operate without inter-
vention. Hence, we introduce the concept of a user proxy
that can act on a user’s behalf without requiring user inter-
vention.

Definition 5.1 A user proxy is a session manager process
given permission to act on behalf of a user for a limited
period of time.

The user proxy acts as a stand-in for the user. It has
its own credentials, eliminating the need to have the user
on-line during a computation and eliminating the need to
have the user’s credentials available for every security op-
eration. Furthermore, because the lifetime of the proxy is
under control of the user and can be limited to the dura-
tion of a computation, the consequences of its credentials
being compromised are less dire than exposure of the user’s
credentials.

Within the architecture, we also define an entity that
represents a resource, serving as the interface between the
grid security architecture and the local security architecture.

Definition 5.2 A resource proxy is an agent used to trans-
late between interdomain security operations and local in-
tradomain mechanisms.

Given a set of subjects and objects, the architecture is
determined by specifying the protocols that are used when
subjects and object interact. In defining the protocols, we
will use U, R, and P to refer to a user, resource, and process,
respectively, while UP and RP will denote a user proxy and
resource proxy, respectively. Many of the following proto-
cols will rely on the ability to assert that a piece of data
originated from a known source, X, without modification.
We know these conditions to be true if the text is “signed”
by X. We indicate signature of some text text by a subject
X by SigX{text}. This notation is summarized in Table 1.

Table 1: Notation used in the rest of the paper

U, R, P user, resource, process
UP, RP user proxy, resource proxy

CX credential of subject X
SigX{text} “text” signed by subject X

The range of interactions that can occur between entities
in a computational grid is defined by the functionality of the
underlying grid system. However, based on experience and
the current grid systems that have been built to date, it is
reasonable to assume that the grid system will include the
following operations:

• allocation of a resource by a user (i.e., process cre-
ation),

• allocation of a resource by a process, and

• communication between processes located in different
trust domains.

(We use the term allocation to denote the operations re-
quired to provide a user with access to a resource. On some
systems, this will involve interaction with a scheduler to ob-
tain a reservation [3].) We must define protocols that control
UP-RP, P-RP, and P-P interactions. In addition, the intro-
duction of the user proxy means that we must establish how
the user and user proxy (U-UP) interact.

4

Within our architecture, we meet the above requirement
by allowing a user to “log on” to the grid system, creating a
user proxy using Protocol 1. The user proxy can then allo-
cate resources (and hence create processes) using Protocol 2.
Using Protocol 3, a process created can allocate additional
resources directly. Finally, Protocol 4 can be used to define
a mapping from a global to a local subject.

We now describe each of these protocols in more detail.
We note that to minimize problems with export controls,
the protocols are all designed to rely on authentication and
signature techniques, not encryption. Furthermore, our de-
scriptions do not talk about specific cryptographic methods.
In fact, as we shall see below, our implementation uses the
Generic Security Services application programming interface
to achieve independence from any specific security technol-
ogy.

5.1 User Proxy Creation Protocol

Recall that a user proxy is an entity within our architecture
that acts on behalf of a user. In practice, the user proxy is a
special process started by the user which executes on some
host local to that user. The main issue in the user proxy
creation protocol is the nature of credentials given to the
proxy and how the proxy can obtain these credentials.

A user could enable a proxy to act on her behalf by giv-
ing the proxy the appropriate credentials (e.g., a password
or private key). The proxy could then use those creden-
tials directly. However, this approach has two significant
disadvantages: it introduces an increased risk of the creden-
tials being compromised and does not allow us to restrict the
time duration for which a proxy can act on the user’s behalf.
Instead, a temporary credential, CUP , is generated for the
user proxy; the user indicates her permission by signing this
credential with a secret (e.g., private key). CUP includes the
validity interval as well as other restrictions imposed by the
user, e.g., host names (where the proxy is allowed to operate
from) and target sites (where the proxy is allowed to start
processes and/or use resources.)

The actual process of user proxy creation is summarized
in Protocol 1. As a consequence of this protocol, the user
proxy can use its temporary credential to authenticate with
resource proxies.

1. The user gains access to the computer from which the user
proxy is to be created, using whatever form of local authenti-
cation is placed on that computer.

2. The user produces the user proxy credential, CUP , by using
their credential, CU , to sign a tuple containing the user’s id, the
name of the local host, the validity interval for CUP , and any
other information that will be required by the authentication
protocol used to implement the architecture (such as a public
key if certificate-based authentication is used):

CUP = SigU {user-id, host, start-time, end-time, auth-info,
. . . } .

3. A user proxy process is created and provided with CUP . It is
up to the local security policy to protect the integrity of CUP

on the computer on which the user proxy is located.

Protocol 1: User proxy creation

The concept of a user proxy is not unique to our archi-
tecture. For example, Kerberos generates a limited-lifetime
ticket to represent a user. Various public key systems [7, 12],
use techniques similar to ours in which temporary creden-
tials (i.e., a public and private key pair) are used to generate

a limited lifetime certificate which is then signed by the user
to indicate that this certificate represents, or is a proxy for,
the user. What distinguishes our architecture from these ap-
proaches is the way that a user proxy interacts with the re-
source proxy to achieve single sign-on and delegation, which
is discussed in the next section.

5.2 Resource Allocation Protocol

In discussing resource allocation, we decompose the problem
into two classes: allocation of resources by a user proxy and
allocation of resources by a process. As process allocation
is a generalization of user proxy allocation, we will start our
discussion with allocation by a user proxy.

Recall that operations on resources are controlled by
an entity, called a resource proxy, which is responsible for
scheduling access to a resource and for mapping a compu-
tation onto that resource. The resource proxy is used as
follows. A user proxy requiring access to a resource first de-
termines the identity of the resource proxy for that resource.
It then issues a request to the appropriate resource proxy.
If the request is successful, the resource is allocated and a
process created on that resource. (The procedure would be
similar if our goal was simply to allocate a resource, such as
network or storage, with which no process was to be asso-
ciated. However, for brevity, we assume here that process
creation always follows resource allocation.)

The request can fail because the requested resource is
not available (allocation failure), because the user is not
a recognized user of the resource (authentication failure),
or because the user is not entitled to use the resource in
the requested mode (authorization failure). As discussed
above, it is up to the resource proxy to enforce any local
authorization requirements. Depending on the nature of the
resource and local policy, authorization may be checked at
resource allocation time or process creation time, or it may
be implicit in authentication and not be checked at all.

We define as Protocol 2 the mechanism used to issue a re-
quest to a resource proxy from a user proxy. The verification
in Step 3 may require mapping the user’s credentials into a
local user id or account name if the policy of the resource
proxy is to check for authorization at resource allocation
time. Alternatively, authorization checks can be delayed
until process creation time. The mechanism by which this
mapping is performed is discussed in Section 5.4. Notice
that the ability to have a resource proxy create credentials
on behalf of the process it creates relies on a process and its
resource proxy executing in the same trust domain.

The protocol creates a temporary credential for the newly
created processes. This credential, CP , gives the process
both the ability to authenticate itself and the identify of
the user on whose behalf the process was created. A sin-
gle resource allocation request may result in the creation of
multiple processes on the remote resource. We assign all
such processes the same credential, as allowed by security
policy element 8. An advantage of this decision is that in
the situation when a user allocates resources on large par-
allel computers, scalability is enhanced. A disadvantage is
that it is not possible to use credentials to distinguish two
processes started on the same resource by the same alloca-
tion request. However, we do not believe that this feature
is often useful in practice.

The existence of process credentials enables us to imple-
ment a range of additional protocols that allow a process to
control access to incoming communication operations on a

5

1. The user proxy and resource proxy authenticate each other us-
ing CUP and CRP . As part of this process, the resource proxy
checks to ensure that the user proxy’s credentials have not ex-
pired.

2. The user proxy presents the resource proxy with a signed re-
quest in the form SigUP {allocationspecification}.

3. The resource proxy checks to see whether the user who signed
the proxy’s credentials is authorized by local policy to make
the allocation request.

4. If the request can be honored, the resource proxy creates a
RESOURCE-CREDENTIALS tuple containing the name of the
user for whom the resource is being allocated, the resource
name, etc.

5. The resource proxy securely passes the RESOURCE-
CREDENTIALS to the user proxy. (This is possible from
step 1.)

6. The user proxy examines the RESOURCE-CREDENTIALS re-
quest, and, if it wishes to approve it, signs the tuple to produce
CP , a credential for the requesting resource.

7. The user proxy securely passes CP to the resource proxy. (This
is again possible due to step 1.)

8. The resource proxy allocates the resource and passes the new
process(es) CP . (The latter transfer relies on the fact that the
resource proxy and process are in the same trust domain.)

Protocol 2: Resource allocation (and process creation)

per-subject basis. For example, one can use the process cre-
dentials to authenticate a sending process to a destination
process, negotiate a session key, and then sign all point-
to-point communication, guaranteeing the identity of the
sender. The authentication process is simple, since we need
simply to check that the other process’ credentials are valid,
i.e., in the same group.

5.3 Resource Allocation from a Process Protocol

While resource allocation from a user proxy is necessary to
start a computation, the more common case is that resource
allocation will be initiated dynamically from a process cre-
ated via a previous resource allocation request. Protocol 3
defines the process by which this can be accomplished.

1. The process and its user proxy authenticate each other using
CP and CUP .

2. The process issues a signed request to its user proxy, with the
form

SigP {“allocate”, allocation request parameters }
3. If the user proxy decides to honor the request, it initiates a

resource allocation request to the specified resource proxy using
Protocol 2.

4. The resulting process handle is signed by the user proxy and
returned to the requesting process.

Protocol 3: Resource allocation from a user process

Admittedly, this technique lacks scalability because of its
reliance on a single user proxy to forward the request to the
resource proxy. However, this protocol offers the advantage
of both simplicity and fine-grained control. While the former
is self-evident, fine-grained control requires some elabora-
tion. Consider the obvious alternative of allowing a process
(running remotely on behalf of a user) to allocate further re-
sources and create other processes unilaterally. This would
have two limitations:

• A user must be able to encode and embed arbitrary
policy into each process so as to support individual
criteria for resource allocation.

• A security breach or a compromise at a remote site can
result in malicious and fraudulent resource allocation
purportedly on behalf of an unsuspecting user.

The creation of process specific credentials in protocol
3 results in a delegation of a set of rights from the user to
the process. The use of delegation for distributed authen-
tication has been addressed in the security literature (e.g.,
[7]). What sets our approach apart from delegation-based
authentication schemes is the role played by the resource
proxy. Approaches such as those proposed by [7] require
that additional inter-resource trust relationships be estab-
lished to enable delegation between processes running on
those resources. In our protocols, authentication is always
between a user proxy and a resource proxy. Consequently,
our single sign-on protocol leverages the existing trust rela-
tionship between a user and a resource that was established
when the user was initially granted access to the resource.

5.4 Mapping Registration Protocol

A central component of the security policy and the resulting
architecture is the existence of a “correct” mapping between
a global subject and a corresponding local subject. We
achieve this conversion from a global name (e.g., a ticket or
certificate) into a local name (e.g., login name or user ID) by
accessing a mapping table maintained by the resource proxy.
While a mapping table can be created by the local system
administrator, this approach imposes a certain administra-
tive burden and introduces the possibility for error.1 Hence,
we have developed a technique that allows a mapping to be
added by a user.

The basic idea behind this technique, presented as Proto-
col 4, is for a user to prove that he holds credentials for both
a global and local subject. This is accomplished by authen-
ticating both globally and directly to the resource using the
local authentication method. The user then asserts a map-
ping between global and local credentials. The assertion is
coordinated through the resource proxy, since it is in a posi-
tion to accept both global and local credentials. In the first
two steps, we show the different activities performed by user
as it authenticates globally (1.a and 1.b) and to the resource
(2.a and 2.b).

Matching MAP-SUBJECT-P and MAP-SUBJECT-UP
requests must be issued from both the user proxy and map-
ping process. This ensures that the same user is in posses-
sion of both global and local credentials. If the results of
the mapping protocol are stored in a database accessible to
the resource proxy, then the user need execute the mapping
protocol only once per resource. The duration of time for
which a mapping remains valid is determined by local sys-
tem administration policy. However, we would hope that a
mapping will remain in place for the lifetime of either the
global credentials or the user’s local account.

Part of the mapping protocol requires that the user log
into the resource for which the mapping is being created.
This requires that a user authenticate themselves to the
local system. Consequently, the mapping protocol is only

1However, as will be discussed in Section 6.3, some sites actually
want to manage the mapping table explicitly as part of their account
creation process. Such sites consider protocol 4 as an optional feature.

6

1.a User proxy authenticates with the resource proxy.

1.b User proxy issues a signed MAP-SUBJECT-UP request to re-
source proxy, providing as arguments both global and resource
subject names.

2.a User logs on to the resource using the resource’s authentication
method and starts a map registration process.

2.b Map registration process issues MAP-SUBJECT-P request to
resource proxy, providing as arguments both global and re-
source subject names.

1. Resource proxy waits for MAP-SUBJECT-UP and MAP-
SUBJECT-P requests with matching arguments.

2. Resource proxy ensures that map registration process belongs
to the resource subject specified in the map request.

3. If a match is found, resource proxy sets up a mapping and sends
acknowledgments to map registration process and user proxy.

4. If a match is not found within MAP-TIMEOUT, resource proxy
purges the outstanding request and sends an acknowledgment
to the waiting entity.

5. If acknowledgment is not received within MAP-TIMEOUT, re-
quest is considered to have failed.

Protocol 4: Mapping global to local identifier.

as secure as the local authentication method. Clearly, re-
sources with strong authentication (for example based on
Kerberos [14], S/KEY, or Secure Shell [22]) will result in a
more secure mapping.

6 An Implementation of the Grid Security Architecture

In this section, we describe the Globus Security Infrastruc-
ture (GSI), an implementation of our proposed grid secu-
rity architecture. GSI was developed as part of the Globus
project [5], whose focus is to

• understand the basic infrastructure required to sup-
port the execution of wide range of computational grid
applications,

• build prototype implementations of this infrastructure,
and

• evaluate applications on large-scale testbeds.

As part of the Globus project, we have built GUSTO, a
testbed that spans over twenty institutions and couples over
2.5 teraflops of peak compute power. This testbed has been
used for a range of compute- and communication-intensive
application experiments.

As specified by our security architecture, GSI provides
support for user proxies, resource proxies (the Globus re-
source allocation manager (GRAM) [3]), certification au-
thorities, and implementations of the protocols described
above. We describe here selected aspects of this implemen-
tation, focusing on our use of the Generic Security Services
application programming interface (GSS-API), the Secure
Socket Layer (SSL), and our experiences deploying the im-
plementation in a large testbed.

6.1 Use of the Generic Security Services Application Pro-
gramming Interface

The protocols defined above are expressed in terms of ab-
stract security operations, such as signature and authenti-
cation, rather than in terms of specific security technologies,
such as DES or RSA. Hence, these protocols can be imple-
mented by using any of a number of modern security tech-
nologies and mechanisms, such as shared secrets and tick-
ets (e.g., Kerberos), public key cryptography (e.g., SSL), or

Protocol 2Protocol 1 Protocol 3 Protocol 4

GSS-API

plaintext SSL Kerberos . . .

Figure 3: Use of GSS-API in Globus

smart-cards. This separation of protocol and mechanism is a
desirable property in an implementation as well, since it en-
hances the overall portability and flexibility of the resulting
system.

To achieve the desired separation, GSI is implemented
on top of the Generic Security Services application program-
ming interface (GSS-API) [16]. As the name implies, GSS-
API provides security services to callers in a generic fashion.
These services can be implemented by a range of underlying
mechanisms and technologies, allowing source-level porta-
bility of applications to different environments.

GSS-API allows us to construct GSI simply by transcrib-
ing the grid security protocols into GSS calls. We can then
exploit various grid-level security mechanisms without al-
tering the GSI implementation. The relationship between
Globus and GSS-API is shown in Figure 3.

GSS-API is oriented toward two-party security contexts.
It provides functions for obtaining credentials, performing
authentication, signing messages, and encrypting messages.
GSS-API is both transport and mechanism independent.
Transport independence means that GSS-API does not de-
pend on a specific communication method or library. Rather,
each GSS-API call produces a sequence of tokens that can
be communicated via any communication method an ap-
plication may choose. Currently, GSI uses raw TCP sock-
ets and the Nexus communication library [6] to move to-
kens between processors, although other transports can be
easily used as well. Mechanism independence means that
the GSS does not specify the use of specific security proto-
cols, such as Kerberos, SESAME, DES, or RSA public key
cryptography. In fact, a GSS-API implementation may sup-
port more than one mechanism and use negotiation-specific
mechanisms when the parties in the GSS operation initially
contact one another.

GSS-API bindings have been defined for several mech-
anisms. To date, we have worked with two: one based on
plaintext passwords, and one based on X.509 certificates. (In
addition, a proof-of-concept Kerberos V5 implementation
has been recently completed.) The plaintext password im-
plementation was designed to support system debugging and
small-scale deployment, while the certificate-based imple-
mentation is used for wide-area “production” use. The flex-
ibility of our GSS-API implementation allows us to switch
between public key and plaintext versions of Globus without
changing a single line of Globus code.
Remark: While the use of GSS-API has proven to be a
significant benefit, the interface is not without limitations.
GSS-API does not offer a clear solution to delegation2, nor
does it provide any support for group contexts. The former
is needed to allow temporary and limited transfer of user’s
rights to a process in the event that the user trusts the site

2The delegation flag in the gss init sec context() notwithstanding.

7

(and resource) hosting this process enough to forgo an au-
thentication/authorization handshake with the user proxy
each time a new process needs to be created. Group con-
text management is needed to support secure communica-
tion within a dynamic group of processes belonging to the
same computation (or even the same user).

6.2 Support for Public Key Technology in GSI

The GSI implementation currently uses the authentication
protocols defined by the Secure Socket Library (SSL) pro-
tocol [10]. At first glance, this may seem like an odd choice,
since SSL defines a communication layer while GSS explic-
itly does not. However, in principle, it is possible to separate
the authentication and communication components of SSL.
To avoid confusion between the SSL authentication proto-
col and the SSL communication library, we use the term
SSL Authentication Protocol or SAP to refer specifically to
the authentication elements of SSL. We refer to our GSS
implementation using SAP as GSS/SAP.

The use of SAP was motivated by several factors. First,
there exists a high-quality, public-domain implementation of
the SSL protocol (SSLeay), developed outside of the United
States and hence avoiding export control issues. Second,
SSLeay is structured in a way that allows a token stream
to be extracted easily, thus making the GSS implementa-
tion straightforward. Third, SSL is widely adopted as the
method of choice for authentication and secure communi-
cation for a broad range of distributed services, including
HTTP servers, Web browsers, and directory services [11].
By combining GSS/SAP with TCP sockets, we can, in fact,
reconstitute the entire SSL protocol. Consequently, a com-
putation can use GSI to access not only Globus services, but
also generic Web services.

6.3 Deployment

GSI has been deployed in GUSTO, a grid testbed spanning
some 20 sites [5] in four countries. GUSTO includes NSF su-
percomputer centers, DOE laboratories, DoD resource cen-
ters, NASA laboratories, universities, and companies.

The initial deployment in late 1997 was limited to the
password implementation of GSI and involved installation
of the GRAM resource proxy described previously and the
establishment of a globusmap file that describes the global-
to-local mapping applicable at a particular site. Since Pro-
tocol 4 above has not yet been implemented, this file is
currently maintained manually by site administrators. (We
note that, in practice, site administrators often seem to want
to maintain this file manually, using it as a form of access
control list.) The GRAM resource proxy runs as root so
as to implement the appropriate mapping for each incoming
request.

As mentioned earlier, GSS/SAP is intended to be the
default method for Globus applications. After obtaining ex-
port approval and license in early 1998, GSS/SAP imple-
mentation has been deployed on a wide-scale (both national
and international) basis starting in Spring 1998. The pass-
word implementation is no longer in production use.

We are also operating a Globus certification authority
to support certificate generation for users and resources.
To date, resource proxies have been developed that provide
gateways to local Kerberos and cleartext/rsh authentication
mechanisms.

Our (admittedly limited) experience with GSI deploy-
ment offers some confidence that the techniques proposed

in this paper are workable. Particularly interesting in this
regard is the experience of installing resource proxies at var-
ious sites. Because it runs as root, resource proxy code was
subject to careful review by security administrators at differ-
ent sites. The result to date has been unanimous approval.

7 Related Work

We distinguish among two main classes of related work:
traditional distributed systems security solutions and tech-
niques geared specifically towards large, dynamic, and high-
performance computing environments. Not surprisingly, there
has been comparatively little work in the latter area.

There are many general-purpose solutions for distributed
systems security. Notable examples are Kerberos, DCE,
SSH, and SSL. We now review them in brief.

Kerberos has been widely used since the mid-1980s.
Although it has evolved considerably during that time, the
current MIT release still relies heavily on conventional cryp-
tography and the on-line AS/TGS combination. Recently,
optional Kerberos extensions have been proposed to support
the use of public key cryptography for certain tasks, includ-
ing initial user login (PKINIT) [20], interdomain authentica-
tion and key distribution (PKCROSS) [19], and peer-to-peer
authentication (PKTAPP) [17]. We note that the last two
have not progressed past Internet Drafts (expired) and no
implementations are available. Although these extensions
make Kerberos more attractive (since public key cryptogra-
phy lends itself to greater security and scalability), Kerberos
still remains a fairly heavyweight solution best suited for in-
tradomain security.

DCE is a mature product developed by the Open Group
with the security component derived largely from Kerberos.
DCE authorization service is much richer and more effective
than that of plain Kerberos. In addition to security ser-
vices, DCE includes a time service, a name service, and a
file system. All this is both a blessing and a curse: a bless-
ing since DCE sites get a bundled solution, and a curse,
since it is hard to use only selected components of DCE.
Furthermore, because of its Kerberos legacy, DCE is based
on conventional, shared-key cryptography with trusted third
parties (TTPs) such as authentication, ticket granting, au-
thorization, and credential servers. Interdomain security is
possible albeit with some complications: on-line presence of
TTPs in all domains is assumed. The latest DCE release
does support the option of using public keys for initial lo-
gin. However, the AS/TGS are still assumed to be on line,
and public key cryptography is not used for peer-to-peer
authentication. Moreover, MIT Kerberos and DCE are not
compatible, in particular, where public key use is concerned.

SSH has been developed as a replacement for (mostly
UNIX-flavored) remote login, file transfer, and remote exe-
cution commands. It is geared primarily for the client-server
model. Unlike DCE/Kerberos, SSH is fully public key en-
abled; that is, all authentication and session key distribution
is public key based. SSH supports X.509v3, PGP, and SPKI
certificate formats. Also unlike DCE/Kerberos, SSH is ori-
ented toward interdomain communication security. This is a
definite plus. However, SSH is essentially an all-or-nothing
solution. It provides a secure pipe between the connection
end-points and leaves out important elements such as autho-
rization and delegation. SSH does not provide a well-defined
API and does not allow decoupling of communication and
security services. In addition, SSH’s use of bulk encryption
is problematic with respect to the overall performance.

SSL is Netscape’s secure communication package. It

8

is used primarily for securing HTTP-based Web traffic, al-
though the software is general enough to secure any type of
above-transport-layer traffic. SSL supports X.509v3 certifi-
cates and uses public key cryptography (RSA) for authen-
tication and key distribution (the latter can be done with
either RSA or Diffie-Hellman). Like SSH, SSL is a “secure
pipe” solution. Communication and security services are in-
tertwined; SSL assumes a stream-oriented transport layer
protocol underneath, for example, TCP. However, we note
that SSL allows authenticated, yet nonencrypted, commu-
nication.

We now turn to more recent and more specialized solu-
tions aimed at large-scale, wide-area distributed computing.

CRISIS is the security component of Web-OS, an oper-
ating system developed for use in wide area distributed com-
puting [21, 1]. Web-OS and Globus are similar in that both
aim to provide seamless access to files and computational re-
sources distributed throughout a wide-area network. CRI-
SIS, like GSI, employs SSL for point-to-point secure data
transfer and X.509 for certificates.

CRISIS is both a more intrusive and a more complete
security architecture. Although it supports local site auton-
omy insofar as policy, it does not accommodate local security
mechanisms. As mentioned earlier, one of our primary goals
is to provide a thin layer of homogeneity to tie together dis-
parate and, often incompatible, local security mechanisms.
On the other hand, CRISIS encompasses more than just
authentication; it also includes extensive access control pro-
visions, caching of credentials, and a secure execution envi-
ronment, Janus [8].

Unlike Globus, CRISIS does not treat a process as a re-
source or an entity. This is an important difference because
our security architecture allows processes to act indepen-
dently, for example, to request access to other resources or
start another process elsewhere. This makes a running pro-
cess a temporary principal and, at the same time, a resource
jointly owned by the user it belongs to and the local host
site.

A further distinction is that we view a grid computation
as a dynamic group of peer processes running on different
resources in different sites. (Therefore, security in dynamic
peer groups is a fundamental issue.) Because of its origins,
CRISIS is a more Web-oriented architecture that, although
quite suitable for remote execution, is not aimed at (or suit-
able for) a typical grid computation.

The Legion ([9, 15] project also has goals similar to
those of Globus, focusing on object-based software technolo-
gies for application in grid systems. An object-oriented ar-
chitecture provides much flexibility with respect to, in par-
ticular, security mechanisms. Every object (e.g., file) con-
tains a number of “hooks” allowing security services to be
added/extended on a very granular level. However, Legion
defines a rather high-level security model without an actual
architecture and protocols. In fact, the Globus toolkit can
be used to construct an implementation of the Legion’s se-
curity model.

To summarize, existing distributed computing security
technologies are concerned primarily with problems that
arise in client-server computing and do not adequately ad-
dress the issues of creating N-way security contexts, very
large (as well as diverse) user and resource sets, or local
mechanism/policy heterogeneity.

8 Conclusions and Future Work

We have described a security architecture for large-scale
distributed computations. This architecture is immediately
useful and, in addition, provides a firm foundation for inves-
tigations of more sophisticated mechanisms. We have also
described an implementation of this architecture; this im-
plementation has been deployed on a national-scale testbed.

Our architecture and implementation address most of the
requirements introduced in Section 3. The introduction of
a user proxy addresses the single sign-on requirement and
also avoids the need to communicate user credentials. The
resource proxy enables interoperability with local security
solutions, as the resource proxy can translate between inter-
domain and intradomain security solutions. Because encryp-
tion is not used within the associated protocols, export con-
trol issues and hence international use are simplified. Within
the implementation, the use of GSS-API provides for porta-
bility. Group communication is one major requirement not
addressed.

The security design presented addresses a number of
scalability issues. The sharing of credentials by processes
created by a single resource allocation request means that
the establishment of process credentials will not, we expect,
be a bottleneck. The fact that all resource allocation re-
quests must pass via the user proxy is a potential bottle-
neck; this must be evaluated in realistic applications and,
if required, addressed in future work. One major scalabil-
ity issue that is not addressed is the number of users and
resources. Clearly, other approaches to the establishment
of global to local mappings will be required when the num-
ber of users and/or resources are large: on example is the
use-condition approaches to authorization [13]. However, we
believe the current approach can deal with this.

We hope to develop the techniques described in this pa-
per in four major directions: more flexible policy-based ac-
cess control mechanisms, based for example on use condi-
tions [13]; representation and implementation of interdo-
main access control policies; secure group communication,
building for example on work in the CLIQUES project [18];
and delegation mechanisms to support scalability to large
numbers of resources and users.

Acknowledgments

We gratefully acknowledge Doug Engert’s assistance with
the development of the SSL implementation of the Globus
security architecture, Stuart Martin’s contributions to the
implementation of the Globus Resource Allocation Manager,
and Bill Johnston’s comments on a draft of the paper. We
also thank the anonymous referees for their insightful cri-
tique.

9

References

[1] E. Belani, A. Vahdat, T. Anderson, and M. Dahlin.
The CRISIS wide area security architecture. In Usenix
Security Symposium, January 1998.

[2] C. Catlett and L. Smarr. Metacomputing. Communi-
cations of the ACM, 35(6):44–52, 1992.

[3] K. Czajkowski, I. Foster, C. Kesselman, S. Martin,
W. Smith, and S. Tuecke. A resource management
architecture for metacomputing systems. Technical re-
port, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, 1998.

[4] I. Foster and C. Kesselman, editors. Computational
Grids: The Future of High Performance Distributed
Computing. Morgan Kaufmann, 1998.

[5] I. Foster and C. Kesselman. The Globus project: A
progress report. In Heterogeneous Computing Work-
shop, March 1998.

[6] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and communi-
cation. Journal of Parallel and Distributed Computing,
37:70–82, 1996.

[7] M. Gasser and E. McDermott. An architecture for prac-
tical delegation in a distributed system. In IEEE Sym-
posium on Research in Security and Privacy, pages 20–
30, May 1990.

[8] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer.
A secure environment for untrusted helper applications
— confining the wily hacker. In Proc. 1996 USENIX
Security Symposium, 1996.

[9] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P.
Reynolds, Jr. Legion: The next logical step toward a
nationwide virtual computer. Technical Report CS-94-
21, University of Virginia, 1994.

[10] K. Hickman and T. Elgamal. The SSL protocol. Inter-
net draft, Netscape Communications Corp., June 1995.
Version 3.0.

[11] T. Howes and M. Smith. A scalable, deployable di-
rectory service framework for the internet. Technical
Report CITI TR-95-7, CITI, University of Michigan,
July 1995.

[12] D. Hühnlein. Credential management and secure sin-
gle login for SPKM. In ISOC Network and Distributed
System Security Symposium, March 1998.

[13] W. Johnston and C. Larsen. A use-condition centered
approach to authenticated global capabilities: Security
architectures for large-scale distributed collaboratory
environments. Technical Report 3885, LBNL, 1996.

[14] J. Kohl and C. Neuman. The Kerberos network authen-
tication service (v5). Internet RFC 1510, September
1993.

[15] M. Lewis and A. Grimshaw. The core Legion ob-
ject model. In Proc. 5th IEEE Symp. on High Per-
formance Distributed Computing, pages 562–571. IEEE
Computer Society Press, 1996.

[16] J. Linn. Generic security service application program
interface, version 2. Internet RFC 2078, January 1997.

[17] A. Medvinsky and M. Hur. Public key utilizing tickets
for application servers. Internet draft, January 1997.

[18] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES:
A new approach to group key agreement. In IEEE
ICDCS’98, May 1998.

[19] B. Tung, T. Ryutov, C. Neuman, G. Tsudik, B. Som-
merfeld, A. Medvinsky, and M. Hur. Public key cryp-
tography for cross-realm authentication in Kerberos.
Internet draft, November 1997.

[20] B. Tung, J. Wray, A. Medvinsky, M. Hur, and J. Tros-
tle. Public key cryptography for initial authentication
in Kerberos. Internet draft, November 1997.

[21] A. Vahdat, P. Eastham, C. Yoshikawa, E. Belani,
T. Anderson, D. Culler, and M. Dahlin. WebOS: Oper-
ating system services for wide area applications. Tech-
nical Report UCB CSD-97-938, U.C. Berkeley, 1997.

[22] T. Ylonen, T. Kivinen, and M. Saarinen. SSH protocol
architecture. Internet draft, November 1997.

10

