
 

 

Grid Service Specification 
 

Draft 3 (7/17/2002) 
 

Steven Tuecke1     Karl Czajkowski3     Ian Foster1,2 
Jeffrey Frey4     Steve Graham5     Carl Kesselman3 

 
1 Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 

2 Department of Computer Science, University of Chicago, Chicago, IL 60637 
3 Information Sciences Institute, University of Southern California, Marina del Rey, CA 90292 

4 IBM Corporation, Poughkeepsie, NY 12601 
5 IBM Corporation, Research Triangle Park, NC 27713 

 

 

Abstract 
Building on both Grid and Web services technologies, the Open Grid Services Architecture 
(OGSA) defines mechanisms for creating, managing, and exchanging information among entities 
called Grid services. Succinctly, a Grid service is a Web service that conforms to a set of 
conventions (interfaces and behaviors) that define how a client interacts with a Grid service. 
These conventions, and other OGSA mechanisms associated with Grid service creation and 
discovery, provide for the controlled, fault resilient, and secure management of the distributed 
and often long-lived state that is commonly required in advanced distributed applications. In a 
separate document, we have presented in detail the motivation, requirements, structure, and 
applications that underlie OGSA. Here we focus on technical details, providing a full 
specification of the behaviors and Web Service Definition Language (WSDL) interfaces that 
define a Grid service. 

 

 

 

 

 

 

This is a DRAFT document and continues to be revised. 
The latest version can be found at http://www.gridforum.org/ogsi-wg. 

Please send comments to the authors (see Section 14 for contact information). 



Grid Service Specification  2 

 Draft 3 (7/17/2002) 
 

 

Table Of Contents 
1 Introduction ................................................................................................................. 4 
2 Notational Conventions............................................................................................... 4 
3 Setting the Context ...................................................................................................... 5 

3.1 Relationship to Distributed Object Systems........................................................ 5 
3.2 Client-Side Programming Patterns...................................................................... 6 
3.3 Relationship to Hosting Environment ................................................................. 7 

4 The Grid Service ......................................................................................................... 9 
4.1 WSDL Extensions and Conventions ................................................................... 9 
4.2 Service Description and Service Instance ......................................................... 10 
4.3 Modeling Time in OGSA.................................................................................. 11 
4.4 Service Data Concept ........................................................................................ 12 

4.4.1 serviceData ................................................................................................ 13 
4.4.2 serviceDataDescription ............................................................................. 14 
4.4.3 serviceDataSet and Instance Service Data ................................................ 17 
4.4.4 XML Element Lifetime Declaration Properties ........................................ 17 

4.5 ServiceType Inheritance.................................................................................... 20 
4.5.1 Requirements for ServiceType Inheritance............................................... 20 
4.5.2 Syntax and Interpretation .......................................................................... 22 

4.6 Interface Naming and Change Management..................................................... 23 
4.6.1 The Change Management Problem........................................................... 23 
4.6.2 Naming Conventions for Grid Service Descriptions................................. 24 

4.7 Naming Grid Service Instances: Handles and References ................................ 24 
4.7.1 Grid Service Reference (GSR).................................................................. 25 

4.7.1.1 WSDL Encoding of a GSR ................................................................... 26 
4.7.2 Grid Service Handle (GSH) ...................................................................... 26 

4.7.2.1 http GSH scheme................................................................................... 27 
4.7.2.2 https GSH scheme ................................................................................. 28 

4.7.3 serviceLocator ........................................................................................... 28 
4.8 Grid Service Lifecycle ...................................................................................... 28 
4.9 Common Handling of Operation Faults ............................................................ 29 

5 Grid Service Interfaces.............................................................................................. 29 
6 The GridService PortType ........................................................................................ 30 

6.1 GridService PortType: Service Data Descriptions and Elements ..................... 30 
6.2 GridService PortType: Operations and Messages............................................. 32 

6.2.1 GridService :: FindServiceData ................................................................ 32 
6.2.2 queryByServiceDataName........................................................................ 33 
6.2.3 queryByXPath ........................................................................................... 33 
6.2.4 queryByXQuery ........................................................................................ 33 
6.2.5 GridService :: SetTerminationTime.......................................................... 33 
6.2.6 GridService :: Destroy............................................................................... 34 

7 The HandleResolver PortType .................................................................................. 34 
7.1 HandleResolver PortType: Service Data Descriptions ..................................... 35 
7.2 HandleResolver PortType: Operations and Messages ...................................... 35 

7.2.1 HandleResolver :: FindByHandle ............................................................. 35 



Grid Service Specification  3 

 Draft 3 (7/17/2002) 
 

8 Notification................................................................................................................ 36 
8.1 The NotificationSource PortType ..................................................................... 37 

8.1.1 NotificationSource PortType: Service Data Descriptions and Elements .. 37 
8.1.2 NotificationSource PortType: Operations and Messages ......................... 37 

8.1.2.1 NotificationSource :: Subscribe ............................................................ 37 
8.1.2.2 subscribeByServiceDataName.............................................................. 38 

8.2 The NotificationSubscription PortType ............................................................ 39 
8.2.1 NotificationSubscription PortType: Service Data Descriptions ............... 39 
8.2.2 NotificationSubscription PortType: Operations and Messages ................ 40 

8.3 The NotificationSink PortType ......................................................................... 40 
8.3.1 NotificationSink PortType: Service Data Descriptions ............................ 40 
8.3.2 NotificationSink PortType: Operations and Messages ............................. 40 

8.3.2.1 NotificationSink :: DeliverNotification................................................. 40 
8.4 Integration With Notification Intermediaries .................................................... 40 

9 The Factory PortType................................................................................................ 41 
9.1 Factory PortType: Service Data Descriptions................................................... 42 
9.2 Factory PortType: Operations and Messages.................................................... 42 

9.2.1 Factory :: CreateService ............................................................................ 42 
10 Registration ........................................................................................................... 43 

10.1 WS-Inspection Document ................................................................................. 43 
10.2 The Registration portType ................................................................................ 44 

10.2.1 Registration PortType: Service Data Descriptions.................................... 44 
10.2.2 Registration PortType: Operations and Messages .................................... 44 

10.2.2.1 Registration :: RegisterService.......................................................... 44 
10.2.2.2 Registration :: UnregisterService ...................................................... 45 

11 Change Log ........................................................................................................... 45 
11.1 Draft 1 (2/15/2002) � Draft 2 (6/13/2002) ...................................................... 45 
11.2 Draft 2 (6/13/2002) � Draft 3 (07/17/2002) .................................................... 45 

12 Acknowledgements ............................................................................................... 46 
13 References ............................................................................................................. 46 
14 Contact Information .............................................................................................. 47 
15 XML and WSDL Specifications ........................................................................... 47 



Grid Service Specification  4 

 Draft 3 (7/17/2002) 
 

 

1 Introduction 
The Open Grid Services Architecture (OGSA) [4] integrates key Grid technologies [3, 5] 
(including the Globus Toolkit [2]) with Web services mechanisms [6] to create a distributed 
system framework based around the Grid service. A Grid service instance is a (potentially 
transient) service that conforms to a set of conventions (expressed as WSDL interfaces, 
extensions, and behaviors) for such purposes as lifetime management, discovery of 
characteristics, notification, and so forth. Grid services provide for the controlled management of 
the distributed and often long-lived state that is commonly required in sophisticated distributed 
applications. OGSA also introduces standard factory and registration interfaces for creating and 
discovering Grid services. 

In this document, we propose detailed specifications for the conventions that govern how clients 
create, discover, and interact with a Grid service. That is, we specify (a) how Grid service 
instances are named and referenced, (b) the interfaces (and associated behaviors) that define any 
Grid service and (c) the additional (optional) interfaces and behaviors associated with factories 
and registries. We do not address how Grid services are created, managed, and destroyed within 
any particular hosting environment. Thus, services that conform to this specification are not 
necessarily portable to various hosting environments, but they can be invoked by any client that 
conforms to this specification (of course, subject to policy and compatible protocol bindings). 

Our presentation here is deliberately terse, in order to avoid overlap with [4]. The reader is 
referred to [4] for discussion of motivation, requirements, architecture, relationship to Grid and 
Web services technologies, other related work, and applications. 

This document is a work in progress and feedback is encouraged. Future versions will 
incorporate additional pedagogical text and examples. We also draw the reader’s attention to 
various “Notes” that indicates areas of particular uncertainty. 

2 Notational Conventions 
The key words “MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “SHALL NOT,” 
“SHOULD,” “SHOULD NOT,” “RECOMMENDED,” “MAY,” and “OPTIONAL” are to be 
interpreted as described in RFC-2119 [cite: RFC 2119]. 

This specification uses namespace prefixes throughout; they are listed in Table 1. Note that the 
choice of any namespace prefix is arbitrary and not semantically significant. 

Table 1: Prefixes and Namespaces used in this specification. 

Prefix Namespace 

gsdl “http://www.gridforum.org/namespaces/2002/07/gridServices 

mdt “http://www.gridforum.org/namespaces/2002/07/measuredDateTime” 

wsdl "http://www.w3.org/2002/07/wsdl"  

wsil ”http://schemas.xmlsoap.org/ws/2001/10/inspection/” 

http "http://www.w3.org/2002/06/wsdl/http" 

xsd "http://www.w3.org/2001/XMLSchema" 

xsi "http://www.w3.org/2001/XMLSchema-instance" 



Grid Service Specification  5 

 Draft 3 (7/17/2002) 
 

 

Namespace names of the general form "http://example.org/..." and "http://example.com/..." 
represent application or context-dependent URIs [cite: RFC2396]. 

In this document we use bold font face to emphasize WSDL defined elements and properties, as 
well as elements and properties of WSDL extensions defined in this document. 

The following abbreviations and terms are used in this document: 

• GSH: Grid Service Handle, as defined in Section 4.7. 

• GSR: Grid Service Reference, as defined in Section 4.7. 

• SDE: Service Data Element, as defined in Section 4.3. 

• SDD: Service Data Description, as defined in Section 4.3. 

• The terms Web services, XML, SOAP, WSDL, and WS-Inspection are as defined in [4].  

The term hosting environment is used in this document to denote the server in which one or more 
Grid service implementations run. Such servers are typically language and/or platform specific. 
Examples include native Unix and Windows processes, J2EE application servers, and Microsoft 
.NET. 

Unresolved issues with the specification are interspersed in appropriate locations through this 
specification, are highlighted in yellow, and begin with “Issue N:”, where N is the GGF OGSI 
working group bugzilla database bug number for this issue. This database is located at 
http://www.gridforum.org/ogsi-wg/bugzilla. 

3 Setting the Context 
Although [4] describes overall motivation for the Open Grid Services Architecture, this document 
describes the architecture at a more detailed level. Correspondingly, there are several details we 
examine in this section that help put the remainder of the document in context. Specifically, we 
discuss the relationship between OGSA and distributed object systems, and also the relationship 
that we expect to exist between OGSA and the existing Web services framework, examining both 
the client-side programming patterns and a conceptual hosting environment for Grid services. 

We emphasize that the patterns described in this section are enabled but not required by OGSA. 
We discuss these patterns in this section to help put into context certain details described in the 
other parts of this document. 

3.1 Relationship to Distributed Object Systems 
As we describe in much more detail below, a given Grid service implementation is an 
addressable, and potentially stateful, instance that implements one or more interfaces described 
by WSDL portTypes within the context of an aggregating serviceType. Grid service factories 
(Section 9) can be used to create instances of a given serviceType. Each Grid service instance 
has a unique identity with respect to the other instances in the system. Each instance can be 
characterized as state coupled with behavior published through type-specific operations. The 
architecture also supports introspection in that a client application can ask a Grid service instance 
to return information describing itself, such as the name of its serviceType and the collection of 
WSDL portTypes that it implements. 

Grid service instances are made accessible to (potentially remote) client applications through the 
use of a Grid Service Handle (Section 4.7.2) and a Grid Service Reference (Section 4.7.1). These 
constructs are basically network-wide pointers to specific Grid service instances hosted in 



Grid Service Specification  6 

 Draft 3 (7/17/2002) 
 

(potentially remote) execution environments. A client application can use a Grid Service 
Reference to send requests (represented by the operations defined in the WSDL portType(s) of 
the target service) directly to the specific instance at the specified network-attached service 
endpoint identified by the Grid Service Reference. 

Each of the characteristics introduced above (stateful instances, typed interfaces, unique global 
names, etc.) is frequently also cited as a fundamental characteristic of so-called distributed 
object-based systems. However, there are also various other aspects of distributed object models 
(as traditionally defined) that are specifically not required or prescribed by OGSA. For this 
reason, we do not adopt the term distributed object model or distributed object system when 
describing this work, but instead use the term Open Grid Services Architecture, thus emphasizing 
the connections that we establish with both Web services and Grid technologies. 

Among the object-related issues that are not addressed within OGSA are implementation 
inheritance, service mobility, development approach, and hosting technology. The Grid service 
specification does not require, nor does it prevent, implementations based upon object 
technologies that support inheritance at either the interface or the implementation level. There is 
no requirement in the architecture to expose the notion of inheritance either at the client side or 
the service provider side of the usage contract. In addition, the Grid service specification does not 
prescribe, dictate, or prevent the use of any particular development approach or hosting 
technology for the Grid service. Grid service providers are free to implement the semantic 
contract of the service in any technology and hosting architecture of their choosing. We envision 
implementations in J2EE, .NET, traditional commercial transaction management servers, 
traditional procedural UNIX servers, etc. We also envision service implementations in a wide 
variety of programming languages that would include both object-oriented and non-object-
oriented alternatives.  

3.2 Client-Side Programming Patterns 
Another important issue that we feel requires some explanation, particularly for readers not 
familiar with Web services, is how OGSA interfaces are likely to be invoked from client 
applications. OGSA incorporates an important component of the Web services framework: the 
use of WSDL to describe multiple protocol bindings, encoding styles, messaging styles (RPC vs. 
document-oriented), and so on, for a given Web service. 



Grid Service Specification  7 

 Draft 3 (7/17/2002) 
 

C
lie

nt
 

A
pp

lic
at

io
n 

Proxy 

Protocol 1 
(binding) 
specific Stub 

Protocol 2 
(binding) 
specific Stub 

Protocol 4 
(binding) 
specific Stub 

Protocol 3 
(binding) 
specific Stub 

Invocation 
of Web 
service 

client 
interface 

 
Figure 1: A possible client-side runtime architecture 

Figure 1 depicts a possible (but not required) client-side architecture for OGSA. In this approach, 
there is a clear separation between the client application and the client-side representation of the 
Web service (proxy), including components for marshalling the invocation of a Web service over 
a chosen binding. In particular, the client application is insulated from the details of the Web 
service invocation by a higher-level abstraction: the client-side interface. Various runtime tools 
can take the WSDL description of the Web service and generate interface definitions in a wide-
range of programming language specific constructs (e.g. Java interfaces). This interface is a front-
end to specific parameter marshalling and message routing that can incorporate various binding 
options provided by the WSDL. Further, this approach allows certain efficiencies, for example, 
detecting that the client and the Web service exist on the same network host, and therefore 
avoiding the overhead of preparing for and executing the invocation using network protocols. 
One example of this approach to Web services is the Web Services Invocation Framework [7]. 

Within the client application runtime, a proxy provides a client-side representation of remote 
service instance’s interface. Proxy behaviors specific to a particular encoding and network 
protocol (binding in Web services terminology) are encapsulated in a protocol (binding)-specific 
stub. Details related to the binding-specific access to the Grid service, such as correct formatting 
and authentication mechanics, happen here; thus, the application is not required to handle these 
details itself.  

We note that it is possible, but not recommended, for developers to build customized code that 
directly couples client applications to fixed bindings of a particular Grid service. Although certain 
circumstances demand potential efficiencies gained this style of customization, this approach 
introduces significant inflexibility into the system and therefore should be used under 
extraordinary circumstances. 

3.3 Relationship to Hosting Environment 
OGSA does not dictate a particular service provider-side implementation architecture. A variety 
of approaches are possible, ranging from implementing the Grid service directly as an operating 
system process to a sophisticated server-side component model such as J2EE. In the former case, 



Grid Service Specification  8 

 Draft 3 (7/17/2002) 
 

most or even all support for standard Grid service behaviors (invocation, lifetime management, 
registration, etc.) is encapsulated within the user process, for example via linking with a standard 
library; in the latter case, many of these behaviors will be supported by the hosting environment. 

Grid 
service 
impl. 

protocol 
termination 

D
em

ar
sh

al
lin

g 
/ D

ec
od

in
g 

/ 
R

ou
tin

g 

container 

protocol 
termination 

protocol 
termination 

Grid 
service 
impl. 

 
Figure 2: Two alternative approaches to the implementation of argument demarshalling functions in 

a Grid Service hosting environment 

Figure 2 illustrates these differences by showing two different approaches to the implementation 
of argument demarshalling functions. We assume that, as is the case for many Grid services, the 
invocation message is received at a network protocol termination point (e.g., an HTTP servlet 
engine), which converts the data in the invocation message into a format consumable by the 
hosting environment. At the top of Figure 2, we illustrate two Grid services (the ovals) associated 
with container-managed components (for example EJBs within a J2EE container). Here, the 
message is dispatched to these components, with the container frequently providing facilities for 
demarshalling and decoding the incoming message from a format (such as an XML/SOAP 
message) into an invocation of the component in native programming language. In some 
circumstances (the lower oval), the entire behavior of a Grid service is completely encapsulated 
within the component. In other cases (the upper oval), a component will collaborate with other 
server-side executables, perhaps through an adapter layer, to complete the implementation of the 
Grid services behavior. At the bottom of Figure 2, we depict another scenario wherein the entire 
behavior of the Grid service, including the demarshalling/decoding of the network message, has 
been encapsulated within a single executable. Although this approach may have some efficiency 
advantages, it provides little opportunity for reuse of functionality between Grid service 
implementations. 



Grid Service Specification  9 

 Draft 3 (7/17/2002) 
 

A container implementation may provide a range of functionality beyond simple argument 
demarshalling. For example, the container implementation may provide lifetime management 
functions, intercepting lifetime management functions and terminating service instances when a 
service lifetime expires or an explicit destruction request is received. Thus, we avoid the need to 
re-implement these common behaviors in different Grid service implementations. 

4 The Grid Service 
The purpose of this document is to specify the interfaces and behaviors that define a Grid service. 
In brief, a Grid service is a WSDL-defined service that conforms to a set of conventions relating 
to its interface definitions and behaviors. In this section, we expand upon this brief statement by: 

• Introducing a set of WSDL conventions that we make use of in our Grid service 
specification; 

• Defining Grid service description and Grid service instance, as organizing principles for 
the extensions and their use; 

• Defining how time is modeled in OGSA; 

• Defining service data, which provides a standard way for representing and querying 
meta-data and state data from a service instance; 

• Extending the serviceType element introduced in WSDL v1.2 [8] to include serviceType 
reuse through aggregation; 

• Defining the Grid Service Handle and Grid Service Reference constructs that we use to 
refer to Grid service instances; 

• Providing example WSDL documents illustrating the extensibility elements; 

• Defining a common approach for conveying fault information from operations; 

• Defining the lifecycle of a Grid service instance. 

In subsequent sections, we introduce various portTypes, starting with the GridService portType 
that must be supported by any Grid service, and then proceeding to HandleResolver, Notification, 
and the remainder of the portTypes that describe fundamental behavior of Grid services. 

4.1 WSDL Extensions and Conventions 
Web services technologies are designed to support loosely coupled, coarse-grained dynamic 
systems. As such, they do not fully address all needs of the types of distributed systems that 
OGSA is defined to support. To close this gap, this specification defines a set of WSDL 
extensions (defined using extensibility elements allowed by the WSDL language) and 
conventions on the use of Web services, which we list in Table 2and define in more detail in 
subsequent sections. We emphasize that the extensions are not specific to Grid computing per se, 
but have general applicability within Web services as a means of structuring complex and long-
lived stateful applications. We advocate their adoption within the broader Web services standards 
bodies such as the W3C. 

 
Table 2: Proposed WSDL conventions and extensions introduced by OGSA 

Concept WSDL 
Element 

Brief Description See 
Section 



Grid Service Specification  10 

 Draft 3 (7/17/2002) 
 

Service state 
data and meta-
data 

serviceData serviceData elements represent 
properties of the service’s state that 
may be externally queried. Some 
serviceData elements may appear as 
extensions of the service’s description, 
as part of the service’s type. 

4.3 

Service data 
description 

serviceData
Description 

Formal descriptions of serviceData 
elements. These descriptions appear as 
extensions of the Grid service’s WSDL. 

4.4.2 

Interface 
Naming 

convention 
on 
portType 
name 

Naming conventions and immutability 
of portType, and serviceType names. 

4.2 

serviceType 
reuse 

Extends 
serviceType 

Derivation of a new serviceType from 
existing serviceType(s) 

4.5 

Grid Service 
Reference 

N/A Mechanism to convey capabilities of a 
service to a client. Can be a WSDL 
document. 

4.7.1 

Grid Service 
Handle 

N/A Conventional use of URI to act as 
unique identifier of a Grid service 
instance. 

4.7.2 

 

This draft is based on extensions to the WSDL language proposed by the W3C Web Services 
Description Working Group [8]. In particular, we are relying upon the following new constructs 
proposed for WSDL 1.2 (draft): 

•  open content model (extensibility elements appearing in each WSDL element) 

•  serviceType. 

4.2 Service Description and Service Instance 
We distinguish in OGSA between the description of a Grid service and an instance of a Grid 
service: 

• A Grid service description describes how a client interacts with service instances. This 
description is independent of any particular instance. Within a WSDL document, the Grid 
service description is embodied in the serviceType of the instance, along with its 
associated serviceTypes, portTypes, serviceDataDescriptions, messages, and types 
definitions. 

• A Grid service description may be simultaneously used by any number of Grid service 
instances, each of which:  

o embodies some state with which the service description describes how to 
interact;  

o has one or more unique Grid Service Handles;  

o and has one or more Grid Service References to it.  



Grid Service Specification  11 

 Draft 3 (7/17/2002) 
 

A common form of Grid Service Reference (defined in section 4.7.1) is a WSDL 
document comprising a service element, which carries an implements property that 
refers to a serviceType defined by the service description of that instance. 

A service description is primarily used for two purposes. First, as a description of a service 
interface, it can be used by tooling to automatically generate client interface proxies, server 
skeletons, etc. Second, it can be used for discovery, for example, to find a service instance that 
implements a particular service description, or to find a factory that can create instances with a 
particular service description. 

The service description is meant to capture both interface syntax, as well as (in a very 
rudimentary non-normative fashion) semantics. Interface syntax is, of course, described by the 
collection of one or more portTypes referred to by the serviceType. Note that the portTypes 
may come from different namespaces. 

Semantics may be inferred through the names assigned to the portType and serviceType 
elements. For example, when defining a Grid service, one defines zero or more uniquely named 
portTypes, and then collects a set of portTypes defined from a variety of sources into a uniquely 
named serviceType. Concise semantics can be associated with each of these names in 
specification documents – and perhaps in the future through Semantic Web or other formal 
descriptions. These names can then be used by clients to discover services with the sought-after 
semantics, by searching for service instances and factories with the appropriate names. Of course, 
the use of namespaces to define these names provides a vehicle for assuring globally unique 
names. 

4.3 Modeling Time in OGSA 
Throughout this specification there is the need to represent time that is meaningful to multiple 
parties in the distributed Grid. For example: information may be tagged by a producer with 
timestamps in order to convey that information’s useful lifetime to consumers; clients need to 
negotiate service instance and registration lifetimes with services; and multiple services may need 
a common understanding of time in order for clients to be able to manage their simultaneous use 
and interaction. 

The GMT global time standard is assumed for Grid services, allowing operations to refer 
unambiguously to absolute times. However, assuming the GMT time standard to represent time 
does not imply any particular level of clock synchronization between clients and services in the 
Grid. In fact, no specific accuracy of synchronization is specified or expected by this 
specification, as this is a service-quality issue.  

Given this lack of any required accuracy of synchronization, it is instead important that accuracy 
and resolution information about the time source be included whenever timestamps are used in 
OGSA. Accuracy information about a timestamp describes the maximum expected clock skew 
between GMT and the time source from which timestamp was taken. Resolution information 
about a timestamp describes the smallest unit by which the time source is updated. This 
combination of a GMT timestamp, along with accuracy and resolution of that timestamp, allows 
consumers of that timestamp to make informed decisions about the quality of that timestamp.  

Issue 13: There is an emerging specification [9] that defines the XML schema for measured 
timestamps, which are timestamps derived from xsd:dateTime that also include accuracy and 
resolution information. Assuming that this measured timestamp specification evolves to meet the 
needs of timestamps for Grid services, we should update this Grid Service Specification to use 
those measured timestamps instead of xsd:dateTime. We should also recommend that designers 
of higher-level Grid services also use these same measured timestamps where appropriate. 



Grid Service Specification  12 

 Draft 3 (7/17/2002) 
 

Grid service hosting environments and clients SHOULD utilize the Network Time Protocol 
(NTP) or equivalent function to synchronize their clocks to the global standard GMT time. 
However, clients and services MUST accept and act appropriately on messages containing time 
values that might be out of range due to inadequate synchronization, where “appropriately” MAY 
include refusing the use the information associated with those time values. Furthermore, clients 
and services requiring global ordering or synchronization at a finer granularity than their clock 
accuracies or resolutions allow for MUST coordinate through the use of additional 
synchronization service interfaces, such as through transactions or synthesized global clocks. 

4.4 Service Data Concept 
In order to support discovery, introspection, and monitoring of Grid service instances, we 
introduce the concept of service data, which refers to descriptive information about a Grid service 
instance, including both meta-data (information about the service instance) and state data 
(runtime properties of the service instance). 

Each Grid service instance is associated with a set of service data elements (SDEs). Each SDE is 
represented in XML by a serviceData element (see Section 4.4.1). A serviceData element is a 
container that MUST contain zero or more XML elements of some XML type. We refer to each 
XML element as a service data value element, and the complete set of elements within an SDE as 
the service data value. 

SDEs MAY appear in a Grid service’s service description. Specifically, serviceData elements 
MAY appear as extensibility elements in the portType and serviceType elements of the service 
description. We refer to such an SDE as a structural SDE. A structural SDE declares that any 
Grid service instance that implements the given portType or serviceType MUST include an 
SDE of the same name amongst its set of SDEs. The serviceData element that appears in a 
service description also indicates initial service data value elements for the SDE. A Grid service 
instance MAY additionally include non-structural SDEs within its serviceDataSet. Non-
structural SDEs are not declared within the instance’s service description. 

SDEs MUST additionally be made accessible to clients at runtime from the instance itself within 
a serviceDataSet element (see Section 4.4.3), and MAY change over the lifetime of the instance. 
The serviceDataSet contains the complete set of SDEs (structural and non-structural) associated 
with the Grid service instance. A Grid service’s serviceDataSet MAY be accessible to clients in 
two ways. A Grid service instance MUST implement the FindServiceData operation of the 
GridService portType (see Section 6.2.1), which provides a simple, extensible, client-initiated 
query against the instance’s serviceDataSet. A Grid service instance MAY additionally 
implement the NotificationSource portType that provides the Subscribe operation (see Section 
8.1.2.1). This operation enables a client to ask the instance to notify it of subsequent changes to 
the instance’s serviceDataSet. Note that the service data that is available for query by a client 
MAY be subject to policy restrictions. For example, some service data elements MAY not be 
available to some clients, and some service data value elements within a SDE MAY not be 
available to some clients. 

The characteristics of each service data element MUST be declared using a 
serviceDataDescription element (see Section 4.4.2). Such a declaration, called a service data 
description (SDD), specifies properties such as the name of the SDE, the XML type of the service 
data value elements, how many times service data value elements may occur, whether the value 
elements may change during the lifetime of the instance, etc. serviceDataDescription elements 
MAY appear as part of a Grid service’s service description, as an extension of the definitions 
element. 



Grid Service Specification  13 

 Draft 3 (7/17/2002) 
 

Each SDD has a name that MUST be unique amongst all serviceDataDescription elements 
within its namespace. This name, when prepended with the URI of the enclosing namespace 
forms a qname that is globally unique. The name property of a serviceData element MUST 
correspond to the name of the SDD to which that SDE conforms. 

4.4.1 serviceData 
A serviceData element MAY appear as part of a portType, a serviceType or as part of a service 
instance’s serviceDataSet (see Section 4.4.3). A serviceData element is a container for a 
collection of service data value elements. 

A serviceData element has the following non-normative grammar: 
<gsdl:serviceData

name=”qname”
type=”qname”?
<-- extensibility attribute -->* >

<-- extensibility element -->*
</gsdl:serviceData>
 

Each serviceData element contains the following information: 

• name: This attribute’s value is the qname of the serviceDataDescription (see Section 
4.4.2) element that describes this serviceData element. The serviceDataDescription 
may come from any namespace. 

• type: This attribute’s value is the qualified name of the XML type to which service data 
value elements contained in this serviceData element must conform. This type MUST be 
either the same as the type property of the serviceDataDescription element referred to 
by the name property, or a derivation of that type using XSD extension or restriction. If 
this property is not specified, this value MUST default to be the type specified by the 
type property of the serviceDataDescription element referred to by the name property. 
Note: the designer would use xsi:schemaLocation attribute to suggest a possible location 
for further information about the namespaces associated with the value of the type 
property. 

• Extensibility attributes: A serviceData element MAY have other extensibility attributes 
including but not limited to: 

• Lifetime declarations: As defined in Section 4.4.4, gsdl:goodFrom, gsdl:goodUntil, 
and gsdl:availableUntil attributes MAY be placed on a serviceData element to 
declare the lifetime characteristics of that service data element and its value. 

• Application-specific: A serviceData element MAY have additional, application-
specific extensibility attributes from any namespace.  

• Extensibility elements: A serviceData element MAY have other extensibility elements 
including but not limited to: 

• Service data value: The serviceData extensibility element MUST include zero or 
more elements that conform to the XML type referred to by the type property – we 
refer to these as service data value elements. The number of such service data value 
elements MUST be greater than or equal to the value specified by the minOccurs 
property of the serviceDataDescription element referred to by the name property, 
and MUST be less than or equal to the value specified by the maxOccurs property of 
that same serviceDataDescription element. These serviceDataDescription 



Grid Service Specification  14 

 Draft 3 (7/17/2002) 
 

properties govern the number of service data value elements that appear in a 
serviceData element within a service instance’s serviceDataSet, and do not apply to 
a serviceData element that appears in portType or serviceType elements. 

• Application-specific: A serviceData element MAY have additional extensibility 
elements from any namespace. 

The following is an example declaration of serviceData in a portType: 

…
<portType name="CPU">
…
...<gsdl:serviceData name=”tns:CPUSpeed”/>

<gsdl:serviceData name="tns:CPULoad">
<xsd:float>0.00</xsd:float>

</gsdl:serviceData>
…
</portType>
 

The SDDs that correspond to these serviceData elements appears in Section 4.4.2. Note the 
inclusion of initial service data value elements in the definition for the CPULoad serviceData 
element. 

4.4.2 serviceDataDescription 
The serviceDataDescription element MAY extend the definitions element, in order to describe 
service data elements that MAY appear in a Grid service instance’s serviceDataSet. 

The serviceDataDescription element has the following non-normative grammar: 
<gsdl:serviceDataDescription

name=”NCName”
type=”qname”
minOccurs=”nonNegativeInteger”?
maxOccurs=(”nonNegativeInteger” | “unbounded”)?
mutability=”constant”|”append”|”mutable”? >

<wsdl:documentation .... />?
<-- extensibility element --> *

</gsdl:serviceDataDescription>
 

Each serviceDataDescription element contains the following information: 

• name: A name for this service data description, which MUST be unique amongst all 
serviceDataDescription names within the namespace in which the it is defined.  

• type: The qualified name of the XML type that is the type of service data value elements 
contained in any serviceData element that conforms to this serviceDataDescription. 

• minOccurs: The minimum number of service data value elements, each conforming to 
the XML type defined by the type property, which MUST be contained in an SDE that 
conforms to this SDD. If this attribute is omitted, then it defaults to 0. 

• maxOccurs: The maximum number of service data value elements, each conforming to 
the XML type defined by the type property, which MUST be contained in an SDE that 
conforms to this SDD. If this attribute is omitted, then it defaults to “unbounded”. 



Grid Service Specification  15 

 Draft 3 (7/17/2002) 
 

• mutability: An SDE MAY appear within a portType, within a serviceType, and/or 
within a service instance’s serviceDataSet. When SDEs conformant to the same 
serviceDataDescription appear in multiple of these locations, the mutability property 
declares the semantic associated with combining these SDEs. If this property is omitted, 
then it defaults to “mutable”. 
 
Issue 21: In the description of each option for the SDD mutability attribute, we need to 
describe how SDEs that appear in the service description should be interpreted by a client 
that is inspecting the service description. 

• mutability=”constant” 
If a serviceData element appears within a portType, and it defines a service data 
element value that is non-empty, then any serviceData element conformant to the 
same SDD appearing in a serviceType that includes the portType must define a 
service data element value that is empty. Further, any other portType aggregated by 
that serviceType MUST NOT include a serviceData element conformant to that 
SDD, unless that serviceData element also defines an empty service data element 
value. 
 
If a serviceData element appears within a portType, but it defines an empty service 
data element value, then a serviceData element conformant to the same SDD MAY 
appear in a serviceType that includes the portType (or in any other portType 
aggregated by the serviceType), but only in at most one of these places MAY the 
serviceData element contain a non-empty service data element value. 
 
If a serviceData element conformant to this SDD appears in a service instance’s 
serviceType or any portType aggregated by the serviceType, and in one of these 
places a non-empty service data element value is declared, then the SDE conformant 
to this SDD appearing in the instance’s serviceDataSet MUST include the same 
service data element value, unchanged, for its entire lifetime. 
 
If a serviceData element conformant to this SDD appears in a service instance’s 
serviceType or any portType aggregated by the serviceType, but in none of these 
places is a non-empty service data element value declared for the SDE, then the SDE 
conformant to this SDD appearing in the instance’s serviceDataSet MAY be assigned 
a service data element value, but once assigned, this value must remain unchanged, 
for the remaining lifetime of the instance. 
 
If a serviceData element conformant to the SDD does not appear within a service 
instance’s serviceType nor any portType aggregated by the serviceType, then the 
instance MAY include a serviceData element conformant to the SDD within its 
serviceDataSet, but once its service data element value is set it MUST NOT be 
changed for the remaining lifetime of the instance. 

• mutability=”append” 
If a serviceData element conformant to this SDD appears in a service instance’s 
serviceType or any portType aggregated by the serviceType, then the service data 
element value for the SDE appearing within the instance’s serviceDataSet MUST 
include a concatenation of all the service data value elements declared for each SDE 
declared in the serviceType and any portType aggregated by the serviceType. The 
instance MAY also include additional service data value elements to the SDE. The 
order of appearance of the service data value elements MUST NOT be significant. 



Grid Service Specification  16 

 Draft 3 (7/17/2002) 
 

 
Once a service data value element appears in an instance SDE that is contained in the 
instance’s serviceDataSet, that value element MUST remain in that SDE, unchanged, 
for the remaining lifetime of the instance. 

• mutability=”mutable” 
If a serviceData element conformant to this SDD appears in a service instance’s 
serviceType then the initial service data value for the corresponding SDE in the 
instance’s serviceDataSet is exactly the one defined by the serviceData element in the 
serviceType (portType SDEs are ignored). 
 
If a serviceData element conformant to this SDD does not appear in a service 
instance’s serviceType, but does appear in one of the portTypes aggregated by the 
serviceType, then the initial service data value for the corresponding SDE in the 
instance’s serviceDataSet is exactly the one defined by the serviceData element in the 
portType. 
 
If a serviceData element conformant to this SDD does not appear in a service 
instance’s serviceType, but does appear in more than one of the portTypes 
aggregated by the serviceType, then the initial service data value for the 
corresponding SDE in the instance’s serviceDataSet is derived from the serviceData 
element in one of the portTypes. The algorithm to choose which portType is not 
specified. 
 
At any time during the lifetime of the instance, the service data element value of the 
SDE corresponding to this SDD MAY change. 

Some example SDDs: 
<gsdl:serviceDataDescription

name=”CPUSpeed”
type=”xsd:float”
minOccurs=”1”
maxOccurs="1"
mutability=”mutable”>

<wsdl:documentation>
Example definition of a measurement of CPU speed

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”CPULoad”
type=”xsd:float”
minOccurs=”1”
maxOccurs="1"
mutability=”mutable”>

<wsdl:documentation>
Example definition of a measurement of CPU load

</wsdl:documentation>
</gsdl:serviceDataDescription>
 



Grid Service Specification  17 

 Draft 3 (7/17/2002) 
 

4.4.3 serviceDataSet and Instance Service Data 
A set of serviceData elements MAY be aggregated into a serviceDataSet element, which has the 
following non-normative grammar: 
<gsdl:serviceDataSet>

<gsdl:serviceData …> *
…

</gsdl:serviceData>
</gsdl:serviceDataSet>
 

Each Grid service instance MUST make available exactly one serviceDataSet element, against 
which it evaluates all FindServiceData (Section 6.2.1) and Subscribe (Section 8.1.2.1) operation 
requests from its clients. 

An instance’s serviceDataSet element MUST include the serviceData elements declared in the 
instance’s serviceType and all the portTypes that the serviceType aggregates (structural SDEs). 
The serviceDataSet MAY also include additional serviceData elements (non-structural SDEs). 

However, this specification does not dictate how the service data set and its elements are 
represented internally within the runtime of a Grid service instance. The GridService portType 
(Section 6) provides a FindServiceData operation that allows clients to issue queries against this 
collection of logical XML elements, and the NotificationSource portType (Section 8.1) 
provides a Subscribe operation that allows clients to subscribe to changes to this same logical 
collection. We use the term logical since there is no requirement for the Grid service 
implementation to actually maintain the service data set and its elements in a persistent form. 
Instead, a Grid service instance MAY choose to create the XML elements dynamically from other 
data sources at the time the FindServiceData operation is invoked, and as necessary to generate 
notification messages as a result of the Subscribe operation. 

4.4.4 XML Element Lifetime Declaration Properties 
Since service data elements may represent point-in-time observations of dynamic state of a 
service instance, it is critical that consumers of service data be able to understand the valid 
lifetimes of these observations. The client MAY use this time-related information to reason about 
the validity and availability of the serviceData element and its value, though the client is free to 
ignore the information at its own discretion. 

We define three XML attributes, which together describe the lifetimes associated with an XML 
element and its sub-elements. These attributes MAY be used in any XML element that allows for 
extensibility attributes, including the serviceData element.  

The three lifetime declaration properties are: 

• gsdl:goodFrom=”mdt:measuredDateTime”: Declares the time from which the content 
of the element is said to be valid. This is typically the time at which the value was 
created. 

• gsdl:goodUntil=”mdt:measuredDateTime”: Declares the time until which the content 
of the element is said to be valid. This property MUST be greater than or equal to the 
goodFrom time. 

• gsdl:availableUntil=”mdt:measuredDateTime”: Declares the time until which this 
element itself is expected to be available, perhaps with updated values. Prior to this time, 
a client SHOULD be able to obtain an updated copy of this element. After this time, a 



Grid Service Specification  18 

 Draft 3 (7/17/2002) 
 

client MAY no longer be able to get a copy of this element. This property MUST be 
greater than or equal to the goodFrom time. 

We use the following serviceData element example to illustrate and further define these lifetime 
declaration attributes:  
<wsdl:definitions

targetNamespace=”http://example.com/ns”
xmlns:n1=”http://example.com/ns”
… >

<wsdl:types>
<xsd:schema …

targetNamespace=http://example.com/ns
…
>

<xsd:complexType name="MyType">
<xsd:sequence>

<xsd:element name="e2" type="xsd:string" minOccurs="1"/>
<xsd:element name="e3" type="xsd:string" minOccurs="1"/>
<xsd:element name="e4" type="xsd:string" minOccurs="0"/>

</xsd:sequence>
<anyAttribute namespace="##any"/>
</xsd:complexType>

</xsd:schema>
</wsdl:types>
…
<gsdl:serviceDataDescription

name=”MySDE”
type=”n1:MyType”
minOccurs=”1”
maxOccurs=”1”
mutability=”mutable”/>

…
<wsdl:portType name=”MyPortType”>

…
<gsdl:serviceData name=”n1:MySDE” />
…

<wsdl:portType>
…

</wsdl:definitions>
 

And within the service instance’s serviceDataSet: 
<gsdl:serviceData

name=”n1:MySDE”
goodFrom="2002-04-27T10:20:00.000-06:00"
goodUntil=”2002-04-27T11:20:00.000-06:00”
availableUntil=”2002-04-28T10:20:00.000-06:00”>

<n1:e1 xsi:type=”n1:MyType”>
<n1:e2>

abc
</n1:e2>
<n1:e3 gsdl:goodUntil=”2002-04-27T10:30:00.000-06:00”>

def
</n1:e3>
<n1:e4 gsdl:availableUntil=”2002-04-27T20:20:00.000-06:00”>



Grid Service Specification  19 

 Draft 3 (7/17/2002) 
 

ghi
</n1:e4>

</n1:e1>
</gsdl:serviceData>
 

The goodFrom and goodUntil attributes of the serviceData element refer to the service data 
value contained in the serviceData element’s extensibility element, which in this example is the 
element n1:e1, which conforms to the type “n1:MyType”. These attributes declare to the 
consumer of this SDE what the expected lifetime is for this element’s value, which in this 
example is from 10:20am until 11:20am EST on 27 April 2002. In other words, the consumer of 
the SDE is being advised that after 1 hour the service data value is likely to no longer be valid, 
and therefore the client should query the service again for the SDE with the same name 
(n1:MySDE) to obtain a newer value of n1:e1. 

The availableUntil does not refer to the service data value of the SDE, but rather to the 
availability of this named serviceData element itself. Prior to the declared availableUntil time, a 
client SHOULD be able to query the same service instance for an updated value of this named 
SDE. In this example, a client should be able to query the same service until 28 April 2002 
10:20am EDT for the serviceData element named n1:MySDE, and receive a response with an 
updated copy of the n1:e1 value. However, after that time, such a query MAY result in a response 
indicating that no such service data element exists. In other words, the consumer of the SDE is 
being advised that it can expect to be able to obtain an updated value of this named SDE for 1 
day, but after that time the service may no longer have an SDE with the name n1:MySDE. 

It is sometimes not sufficient for lifetime information of a SDE to refer only to the complete 
service data value. Rather, the value of a SDE may contain sub-elements with different lifetimes 
than those declared in the serviceData element. Any XML element contained within a 
serviceData element MAY use any combination of the goodFrom, goodUntil, and 
availableUntil attributes, assuming that the schema for that element allows for these extensibility 
attributes. Such attributes on sub-elements override the default values specified on parent 
elements. There are no constraints on the values of these attributes in the sub-elements, relative to 
those specified in the parent elements, except that the ordering constraints between the effective 
goodFrom, goodUntil and availableUntil values for any element must be maintained.  

In the above example, the lifetime attributes carried in the serviceData element provide default 
values for all children of that element. For example, the n1:e2 element uses these default values, 
as described above. However, the n1:e3 element overrides the goodUntil attribute, thus stating 
that its value (“def”) is only expected to be valid for 10 minutes, instead of 1 hour as is declared 
in the serviceData element. Such a situation might arise if a portion of a complex element 
changes more quickly than other portions of the element. Likewise, the n1:e4 element overrides 
the availableUntil, thus stating that the n1:e4 element may no longer exist within n1:e1 after 10 
hours. In other words, after 10 hours, a client that queries for the value of this serviceData 
element MAY be returned a n1:e1 element that does not contain a n1:e4 sub-element. This 
example, of course, assumes that the MyType schema allows for n1:e4 to be an optional element, 
and thus be omitted from n1:e1. 

It is RECOMMENDED that the XML schema for elements that are intended to be service data 
values allow all elements within their schema to be extended with these lifetime declaration 
properties, in order to allow for fine-grained lifetime declarations. However, since the 
serviceData element supports extensible properties, service data values that lack property 
extensibility can be enclosed with a serviceData element with the appropriate the lifetime 
declarations for that entire value.  



Grid Service Specification  20 

 Draft 3 (7/17/2002) 
 

Since a SDE MAY be an observation or “by-value copy” of service instance state or some other 
definitive source of the data, a processor of these properties MUST NOT assume that they 
necessarily reflect temporal aspects of that definitive source, unless otherwise specified (for 
example, in the semantic specification of a particular service data element). So the fact that a 
serviceData element has a particular goodUntil value does not necessarily imply that the 
underlying definitive source of that data will not change prior to that time. 

Issue 22: Since the element lifetime attribute are not required, we need to define the semantics 
when they are not specified. The consensus seems to be that absence of these properties means 
that “don’t know”. 

Issue 23: Should there be a special value of “forever” that is allowed on the goodUntil and 
availableUntil, to specify the expectation by the creator that these elements will not change. One 
could instead use values far in the future to represent this expectation. The problem is, how far in 
the future to go? A specially encoded value can be efficiently used to express the designer’s 
intent. Another alternative is to designate the maximum representable dateTime as meaning 
“forever”.. 

4.5 ServiceType Inheritance 
The purpose of the serviceType element introduced into WSDL 1.2 [8] is to aggregate portType 
elements into a named set. The following is the syntax proposed for serviceType by the W3C 
Web Services Description Working Group WSDL 1.2: 
<wsdl:serviceType name="ncname"> *

<wsdl:portType name="qname"/> +
</wsdl:serviceType>
 

A service declares that it implements a serviceType by the following syntax: 
<wsdl:service name="ncname" serviceType="qname">
 

Note that a service MUST implement exactly one serviceType. 

Although this is an improvement over WSDL 1.1, it remains inadequate for our needs in OGSA. 
For purposes of reuse of definition, we propose a limited form of serviceType inheritance, 
extending the serviceType element in WSDL 1.2. 

4.5.1 Requirements for ServiceType Inheritance 
Why do we need to extend serviceType? Fundamentally it boils down to two concepts: 

1. ease of expression to define specializations of the interfaces that are standardized by 
more primitive serviceTypes, and 

2. ease of discovery of Grid services that implement a target serviceType or a 
specialization of that target serviceType. 

Consider a simple situation. A designer has declared a serviceType to define the interface to a 
specialized form of registry (See section 10). This serviceType aggregates the GridService 
portType (See section 6), the Registration portType and a domain-specific portType as shown in 
the following XML: 
<wsdl:portType name=”specializedRegistry”>

<operation name=”specialFind”>
…



Grid Service Specification  21 

 Draft 3 (7/17/2002) 
 

</wsdl:portType>

<wsdl:serviceType name="specializedRegistry">
<wsdl:portType name="gsdl:gridService"/>
<wsdl:portType name="gsdl:Registration"/>
<wsdl:portType name="gsdl:specializedRegistry"/>

</wsdl:serviceType>
 

So far, all of this can be accomplished with WSDL 1.2, however, another designer may want to 
further specialize this interface by adding notification behavior (See section 8), defining a new 
serviceType named “notifyingSpecializedRegistry”. The designer of this new serviceType has 
two choices: 

1. Duplicate the description of specializedRegistry by (for example) copy/paste of the 
existing WSDL into the notifyingSpecializedRegistry serviceType: 

<wsdl:serviceType name="notifyingSpecializedRegistry">
<wsdl:documentation>

Definition of the notifyingSpecializedRegistry by copy/paste
from the specializedRegistry serviceType and then adding
the portType reference to gsdl:notificationSource.

</wsdl:documentation>

<wsdl:portType name="gsdl:gridService"/>
<wsdl:portType name="gsdl:Registration"/>
<wsdl:portType name="gsdl:specializedRegistry"/>

<wsdl:portType name=”gsdl:notificationSource”/>
</wsdl:serviceType>
 

or 

2. use serviceType inheritance proposal here to clearly identify that 
notifyingSpecializedRegistry is a specialization of specializedRegistry. 

<wsdl:serviceType name="notifyingSpecializedRegistry">
<wsdl:documentation>

Definition of the notifyingSpecializedRegistry by inheriting
from the specializedRegistry serviceType and then adding
the portType reference to gsdl:notificationSource.

</wsdl:documentation>

<gsdl:serviceType name="tns:specializedRegistry"/>
<wsdl:portType name=”gsdl:notificationSource”/>

</wsdl:serviceType>
 

The first approach has several downsides: 

1. the list of portType elements for the base behavior is now duplicated in two places 
(specializedRegistry and notifyingSpecializedRegistry).  

2. there is no formal mechanism that associates Grid service instances that implement 
notifyingSpecializedRegistry as also being an implementation of specializedRegistry, this 
situation hinders discovery. 



Grid Service Specification  22 

 Draft 3 (7/17/2002) 
 

The second approach clearly indicates that notifyingSpecializedRegistry is a serviceType derived 
from specializedRegistry and that therefore a Grid service that implements this serviceType also 
MAY be considered an implementation of specializedRegistry. 

4.5.2 Syntax and Interpretation 
The following is the non-normative grammar to represent serviceType interface inheritance: 
<wsdl:serviceType name="ncname"> *

<gsdl:serviceType name=”qname”/>*
<wsdl:portType name="qname"/> +

</wsdl:serviceType>
 

A wsdl:serviceType element MAY be extended with zero or more gsdl:serviceType sub-
elements, each of which refers to another wsdl:serviceType by its qualified name. This approach 
leverages the open content model proposed for WSDL 1.2. 

When a gsdl:serviceType element appears as a child of a wsdl:serviceType element, we say that 
the latter references and is derived from the wsdl:serviceType named in the gsdl:serviceType. 

A serviceType MAY be derived from zero or more other serviceTypes. The derivation of a 
serviceType is the union of the set of serviceTypes referenced by a serviceType and the 
derivations of each referenced serviceType.  

Any serviceType MUST appear at most once in the derivation of a serviceType. Consider the 
following case: 

•  serviceType X references serviceType Y and serviceType Z  

•  serviceType A references serviceType X and serviceType Y. 

In this case, serviceType Y MUST appear in the derivation of serviceType A only once. 

A serviceType MUST NOT derive from itself. 

From the perspective of aggregating portTypes, the set of portTypes represented by a 
serviceType is equivalent to the union of the set of portTypes declared directly in that 
serviceType and the set of portTypes represented by all of that serviceType’s referenced 
serviceTypes. The set of portTypes represented by a serviceType defines the interface (set of 
operations) that must be supported by any service that implements that serviceType. 

Any portType MUST NOT appear more than once in the set of portTypes represented by a 
serviceType. Consider the following case: 

•  serviceType B contains portType “pt1” in its set of portTypes 

•  serviceType A references portType pt1 directly 

•  serviceType A derives from serviceType B. 

The set of portTypes represented by serviceType A does not contain two references to portType 
pt1 (the one declared directly and the one inherited from serviceType B), but rather contains only 
one reference to portType pt1. 

If a service element declares that it implements a serviceType, then for each portType 
represented in the serviceType, there must be one port element child of the service element that 
references a binding for that portType. 



Grid Service Specification  23 

 Draft 3 (7/17/2002) 
 

For the purposes of discovery, a service that implements a serviceType MUST be considered an 
implementation of that serviceType and all of its referenced serviceTypes. If that is not the 
intended interpretation, then the designer MUST NOT use the service inheritance mechanism to 
declare his/her serviceType, and instead MUST revert to a more primitive mechanism such as 
copy/paste to define his/her serviceType. 

With respect to service data (See Section 4.3), the set of serviceData elements declared by a 
serviceType is the union of the serviceData elements declared directly in the serviceType and 
the serviceData elements declared in each of the serviceType’s referenced portTypes and the 
serviceData elements declared in each of the serviceType’s referenced serviceTypes. The means 
by which service data element values are combined is dictated by the mutability property of the 
service data description associated with each serviceData element (See Section 4.4.2). 

4.6 Interface Naming and Change Management  
A critical issue in distributed systems is enabling the upgrade of services over time. This implies 
in turn that clients need to be able to determine when services have changed their interface and/or 
implementation. Here, we discuss this issue and some of the OGSA mechanisms, requirements, 
and recommendations that are used to address it. 

4.6.1 The Change Management Problem 
The semantics of a particular Grid service instance are defined by the combination of two things: 

1. Its interface specification. Syntactically, a Grid service’s interface is defined by its 
service description, comprising a serviceType and its associated serviceTypes, 
portTypes, operations, serviceDataDescriptions, messages, and types. Semantically, 
the interface typically is defined in specification documents such as this one, though it 
may also be defined through other formal approaches. 

2. The implementation of the interface. While expected implementation semantics may be 
implied from interface specifications, ultimately it is the implementation that truly 
defines the semantics of any given Grid service instance. Implementation decisions and 
errors may result in a service having behaviors that are ill-defined in and/or at odds with 
the interface specification. Nonetheless, such an implementation semantics may come to 
be relied upon by clients of that service interface, whether by accident or by design. 

In order for a client to be able to reliably discover and use a Grid service instance, the client must 
be able to determine whether it is compatible with both of these two semantic definitions of the 
service. In other words, does the Grid service support the serviceType that the client requires? 
And does the implementation have the semantics that the client requires, such as a particular 
patch level containing a critical bug fix? 

Further, Grid service descriptions will necessarily evolve over time. If a Grid service description 
is extended in a backward compatible manner, then clients that require the previous definition of 
the Grid service should be able to use a Grid service that supports the new extended description. 
Such backward compatible extensions might occur to the interface definition, such as through the 
addition of a new operation or service data description to the interface, or the addition of optional 
extensions to existing operations. Or, backward compatible extensions might occur through 
implementation changes, such as a patch that fixes a bug. For example, a new implementation 
that corrects an error that previously caused an operation to fail would generally be viewed as 
being backwards compatible. 

However, if a Grid service description is changed in a way that is not backward compatible, a 
client MUST be able to recognize this as well. Again, this could be the result of incompatible 



Grid Service Specification  24 

 Draft 3 (7/17/2002) 
 

changes to the interface or implementation of a Grid service. A bug fix that “fixes” an 
“erroneous” behavior that users have learned to take advantage of might not be considered 
backward compatible. 

This discussion points to the need to be able to provide concise descriptions of both the interface 
and implementation of a Grid service, as well as to make unambiguous compatibility statements 
about Grid services that support different interfaces or implementations. 

4.6.2 Naming Conventions for Grid Service Descriptions  
In WSDL, each portType is globally and uniquely named via its qualified name—that is, the 
combination of the namespace containing the portType definition, and the locally unique name 
of the portType element within that namespace. Similarly, each serviceType is globally and 
uniquely named via its qualified name. In OGSA, our concern with change management leads us 
to require that all elements of a Grid service description MUST be immutable. That is that the 
qname of a Grid service serviceType, portType, operation, message, and underlying type 
definitions MAY be assumed to refer to one and only one WSDL specification. If a change is 
needed, a new serviceType or portType MUST be defined with a new qname—that is, defined 
with a new local name, and/or in a new namespace. 

Issue 24: Several people have commented on the need to loosen the immutability statement to say 
that a service description must be immutable once the service designer no longer has control of all 
possible clients of instances that use that description. The wording in this specification supports 
this interpretation because the MUST, MAY, etc. indicate what assumptions a compliant client or 
service implementation may make. A designer with full control of the client and hosting 
environment implementations can propagate changes without relying on features in the 
specification. However, this needs to be expressed more clearly in the text. 

Issue 25: Some people have expressed the concern that the statement of immutability of service 
descriptions is too strict for small, backward compatible additions to a portType or serviceType. 
One suggestion is to add some notion of a version number as a constant service data element. 

4.7 Naming Grid Service Instances: Handles and References 
Each Grid service instance is globally, uniquely, and for all time named by one or more Grid 
Service Handles (GSH). However, a GSH is just a minimal name in the form of a URI, and does 
not carry enough information to allow a client to communicate directly with the service instance. 
Instead, a GSH must be resolved  to a Grid Service Reference (GSR). A GSR contains all 
information that a client requires to communicate with the service via one or more network 
protocol bindings. 

Like any URI, a GSH consists of a scheme, followed by a string containing information that is 
specific to the scheme. The scheme indicates how one interprets the scheme-specific data to 
resolve the GSH into a GSR, within the bounds of the requirements defined below. A client MAY 
choose to implement a set of GSH resolution protocols itself, or it MAY choose to outsource all 
resolution, for example, to a pre-configured service that implements the HandleResolver 
portType (see Section 7). 

The format of the GSR is specific to the binding mechanism used by the client to communicate 
with the Grid service instance. For example, if an RMI/IIOP binding were used, the GSR would 
take the format of an IOR. If a SOAP binding were used, the GSR would take the form of a 
properly annotated WSDL document. 

While a GSH is valid for the entire lifetime of the Grid service instance, a GSR may become 
invalid, therefore requiring a client to resolve the GSH into a new, valid GSR. 



Grid Service Specification  25 

 Draft 3 (7/17/2002) 
 

4.7.1 Grid Service Reference (GSR) 
Grid service instances are made accessible to (potentially remote) client applications through the 
use of a Grid Service Reference (GSR). A GSR is typically a network-wide pointer to a specific 
Grid service instance that is hosted in an environment responsible for its execution. A client 
application can use a GSR to send requests (represented by the operations defined in the WSDL 
portType(s) of the target service) directly to the specific instance at the specified (potentially 
network-attached) service endpoint identified by the GSR. In other words, the GSR supports the 
programmatic notion of passing Grid service instances "by reference". The GSR contains all of 
the information required to access the Grid service instance resident in its hosting environment 
over one or more communication protocol bindings. However, a GSR may be localized to a given 
client context or hosting environment and the scope of portability for a GSR is determined by the 
binding mechanism(s) it supports. 

A new WSDL type definition is introduced to represent a Grid Service Reference. The 
<gsdl:reference>  XML schema definition is used to represent the GSR so that references may 
be introduced into typed message parts in the operation signatures of a WSDL service interface 
definition. 

The encoding of a Grid Service Reference may take many forms in the system. Like any other 
operation message parts, the actual encoded format of the GSR "on the wire" is specific to the 
Web service binding mechanism used by the client to communicate with the Grid service 
instance. Below we define a WSDL encoding of a GSR that MAY be used by some bindings, but 
the use of any particular encoding is defined in binding specifications, and is therefore outside of 
the scope of this specification. However, it is useful to elaborate further on this point here. For 
example, if an RMI/IIOP binding were used, the GSR would be encoded as a CORBA compliant 
IOR. If a SOAP binding were used, the GSR may take the form of the WSDL encoding defined 
below. This "on the wire" form of the Grid Service Reference is created both in the Grid service 
hosting environment, when references are returned as reply parameters of a WSDL defined 
operation, and by the client application or its designated execution environment when references 
are passed as input parameters of a WSDL defined operation. This "on the wire" form of the Grid 
Service Reference, passed as a parameter of a WSDL defined operation request message, 
SHOULD include all of the service endpoint binding address information required to 
communicate with the associated service instance over any of the communication protocols 
supported by the designated service instance, regardless of the Web service binding protocol used 
to carry the WSDL defined operation request message. 

Any number of Grid Service References to a given Grid service instance MAY exist in the 
system. The lifecycle of a GSR MAY be independent of the lifecycle of the associated Grid 
service instance. A GSR is valid when the associated Grid service instance exists and can be 
accessed through use of the Grid Service Reference, but validity MAY only be detected by the 
client attempting to utilize the GSR. A GSR MAY become invalid during the lifetime of the Grid 
service instance. Typically this occurs because of changes introduced at the Grid service hosting 
environment. These changes MAY include modifications to the Web service binding protocols 
supported at the hosting environment, or of course, the destruction of the Grid service instance 
itself. Use of an invalid Grid Service Reference by a client SHOULD result in an exception being 
presented to the client. 

When a Grid Service Reference is found to be invalid and the designated Grid service instance 
exists, a client MAY obtain a new GSR using the Grid Service Handle of the associated Grid 
service instance, as defined in Section 4.7.2. It is RECOMMENDED that the Grid Service Handle 
be contained within each binding-specific implementation of the Grid Service Reference. A client 
encountering an invalid GSR would otherwise be unable to acquire a new, valid GSR unless he 



Grid Service Specification  26 

 Draft 3 (7/17/2002) 
 

cached the GSH himself or repeated a discovery operation to reacquire the GSH without being 
able to interact with the service instance. 

A binding-specific implementation of a Grid Service Reference MAY include an expiration time, 
which is a declaration to clients holding that GSR that the GSR SHOULD be valid prior to that 
time, and it MAY NOT be valid after the expiration time. After the expiration time, a client MAY 
continue to attempt to use the GSR, but SHOULD retrieve a new GSR using the GSH of the Grid 
service instance. While an expiration time provides no guarantees, it nonetheless is a useful hint 
in that it allows clients to refresh GSRs at convenient times (perhaps simultaneously with other 
operations), rather than simply waiting until the GSR becomes invalid, at which time it must 
perform the (potentially time-consuming) refresh before it can proceed. 

Mere possession of a GSR does not entitle a client to invoke operations on the Grid service. In 
other words, a GSR is not a capability. Rather, authorization to invoke operations on a Grid 
service instance is an orthogonal issue, to be addressed elsewhere. 

4.7.1.1 WSDL Encoding of a GSR 
It is RECOMMENDED that a WSDL document that encodes a GSR be the minimal information 
required to describe fully how to reach the particular Grid service instance. This information will 
commonly be just the WSDL service element, which in turn contains references (qnames) to 
elements in other namespaces of the other WSDL elements that are non-instance specific.  

4.7.2 Grid Service Handle (GSH) 
A GSH MUST be a valid URI (cite: RFC 2396). The URI scheme defines the protocol for 
resolving the GSH to a GSR.  

Issue 26: Who is in control of handle namespaces?  Who decides what handles are given to a 
particular instance?  Does a service instance necessarily know about all handles that refer to that 
instance?  This has implications on: how one can determine if a handle refers to a particular 
instance; whether the GridServiceHandles SDE is authoritative or just a hint; whether there can 
be restrictions on the number of handles of a URI scheme that refer to a particular instance.  

The following are properties of a GSH, resolver, Grid service instance, and GSR: 

1. A GSH MUST globally, uniquely and for all time refer the same Grid service instance. 
The same GSH MUST NOT ever refer to more than one Grid service instance, whether 
or not they exist simultaneously. 

2. A Grid service instance MUST have at least one GSH.  

3. A Grid service instance MAY have multiple GSHs that use the same URI scheme, and 
MAY have multiple GSHs that use different URI schemes. Issue 27: Should we restrict 
handles to only allow a single GSH within a given URI scheme to a particular instance?  
An advantage to this is that given two GSH’s with the same URI scheme, you would be 
able to test for inequality – that is, if they are syntactically different, you would know that 
they refer to different instances.  

4. The GridServiceHandles service data element (Section 6.1) of each Grid service 
instance MUST contain only GSHs that refer to that instance. If two GSHs are contained 
in a Grid service instance’s GridServiceHandles SDE, then they MUST both refer to 
that Grid service instance. 

5. Since a Grid service instance MAY have multiple GSRs that refer to that instance, 
multiple resolutions of the same GSH MAY result in different GSRs. For example, a 



Grid Service Specification  27 

 Draft 3 (7/17/2002) 
 

resolver MAY return different GSRs for the same GSH at different times, and it MAY 
return different GSRs to different clients that are resolving the same GSH. 

An untrusted resolver protocol is one for which the client cannot trust that the GSR returned as a 
result of speaking that protocol is valid for the requested GSH. An example of an untrusted 
resolver protocol is the one associated with the http GSH scheme, as described in Section 4.7.2.1. 
In this situation, the party performing the resolution SHOULD assume that the resolution that 
results from the resolver protocol MAY be accidentally or maliciously wrong, and thus service 
invocation using that GSR SHOULD only be trusted by a client based on independently 
established trust policies.  

A trusted resolver protocol is one for which the client can, based on its pre-configured trust 
anchors, trust that the GSR returned by the resolver protocol for a GSH is correct. An example of 
a trust resolver protocol is the one associated with the https GSH scheme, as described in Section 
4.7.2.2. The following additional properties are assumed from a trusted resolver protocol: 

1. Multiple resolutions of the same GSH MUST result in GSRs that refer to the same Grid 
service instance. 

2. All GSRs that are resolved from the same GSH MUST obey the same service interface 
and semantics, as defined by the serviceType of the instance referred to by those GSRs. 

It is important to note that a trusted resolver protocol does not imply any particular trust 
relationship between the client and the service referred by the GSR. The fact that a client is able 
to resolve a GSH to a GSR from a trusted resolver protocol say nothing about whether that client 
can trust the service to which the GSR refers. Such trust MUST be established through some 
other means. For example, a client MAY trust a service because it received the GSH to that 
service from a registry that it trusts. In this situation, a trusted resolver protocol simply allows the 
client to trust that the mapping from that trusted GSH into a GSR is correct, and that it is not 
instead receiving a GSR to a Trojan service from the resolver.  

4.7.2.1 http GSH scheme 
A GSH MAY be a URI with an “http” scheme and that conforms to the http URL syntax  [cite: 
RFC 1738]. Support for the http scheme in implementations of this specification is OPTIONAL. 

An http GSH MAY be resolvable by performing an http 1.1 GET on the http URL, as specified in 
[cite: RFC 2616]. A successful resolution MUST result in a “200 OK” response from the http 
server, where the Content-Type is “text/xml; utf-8” [cite: RFC 3023], and the response is a 
WSDL encoded GSR, as defined in Section 4.7.1.1. 

A common convention in the Web community is to use the http scheme for URIs (i.e. abstract 
names) instead of URLs (i.e. resolvable locations). We do not want to disallow this use of http 
URIs, and therefore cannot require that an http GSH be resolvable by performing an http GET on 
that GSH. This implies that upon receipt of an http GSH, a client MAY use some mechanism to 
resolve this GSH that is not defined in this specification. If that does not result in a GSR, the 
client SHOULD attempt to resolve the GSH by performing an http GET as defined above. 
However, the client MUST NOT assume that it will get a response to the http GET, or that the 
http GET response will necessarily be a WSDL encoded GSR. 

Issue 28: Do we need to place restrictions on the http protocol that is used in an http GSH 
resolution?  We probably do not need many of the more complicated features of http, and by 
disallowing them for GSH resolution we make it easier to write a compliant implementation of an 
http GET resolver client. For example, we might disallow a chunked response to the GET. 

The http GSH resolver protocol is untrusted. 



Grid Service Specification  28 

 Draft 3 (7/17/2002) 
 

4.7.2.2 https GSH scheme 
A GSH MAY be a URI with an “https” scheme and that conforms to the https URL syntax. (The 
https syntax is the same as that of http, except for the different scheme portion of the URL.) 
Support for the https scheme in implementations of this specification is OPTIONAL. 

An https GSH MUST be resolvable by performing an http 1.1 GET on the http URL, as specified 
in [cite: RFC 2616]. The resolution protocol for an https GSH is the same as for an http GSH 
(Section 4.7.2.1), except with regard to security. Whereas an http GSH resolution is carried over 
an unprotected TCP channel, an https resolution (i.e. http GET) MUST be carried over a TLS 
[cite: RFC 2246] protected channel.  

The https GSH resolver protocol MAY be a trusted, depending upon the configuration of the 
client’s trust anchor. (Note that the “client” referred to here MAY not be the client of the Grid 
service instance referred to by the GSH, but MAY instead be a resolver service to whom that Grid 
service client has outsourced the resolution request.) With an https GSH, the GET operation 
MUST be performed over a server-authenticated TLS channel, as described in [cite: RFC 2818]. 
The client MUST compare the https URL hostname with the subject and subjectAltName fields 
of the X.509 certificate with which the https server authenticates. If the https URL hostname is 
included the server’s X.509 certificate as described in [cite: RFC 2818], and if the client trusts the 
Certificate Authority that signed the server’s certificate, then the client MAY trust that the GSR 
returned by that https server is a correct GSR for the input GSH. Otherwise, the client SHOULD 
treat the GSR as if it came from an untrusted resolver protocol. 

A client MAY authenticate with the https server when setting up the TLS channel. If the client 
does not authenticate, or if the https server does not have a trust policy that recognizes the client 
authentication credentials, then the https server SHOULD respond to the http GET as if it knows 
nothing about the client. For example, the https server MAY reject the resolution request, by 
returning an http “401 Unauthorized” client error response. But if the https server does have a 
trust policy that recognizes the client, then the https server MAY apply that policy and return an 
appropriate GSR.  

4.7.3 serviceLocator 
The gsdl:serviceLocator type contains either a GSH or a GSR, but not both. It is used by various 
operations in this specification that may accept either a GSH or a GSR. 

4.8 Grid Service Lifecycle 
The lifecycle of any Grid service is demarked by the creation and destruction of that service. The 
actual mechanisms by which a Grid service is created or destroyed are fundamentally a property 
of the hosting environment, and as such are not defined in this document. There is nonetheless a 
collection of related portTypes defined in this specification that specify how clients may interact 
with these lifecycle events in a common manner. As we describe in subsequent sections: 

• A client may request the creation of a Grid service by invoking the createService 
operation on a Factory service. (A service instance that implements a serviceType that 
includes the Factory portType.) 

• A client may request the destruction of a Grid service via either client invocation of an 
explicit destruction operation request to the Grid service (see the Destroy operation, 
supported by the GridService portType: Section 6) or via a soft-state approach, in which 
(as motivated and described in [4]) a client registers interest in the Grid service for a 
specific period of time, and if that timeout expires without the service having received re-
affirmation of interest from any client to extend the timeout, the service may be 



Grid Service Specification  29 

 Draft 3 (7/17/2002) 
 

automatically destroyed. Periodic re-affirmation can serve to extend the lifetime of a Grid 
service as long as is necessary (see the SetTerminationTime operation in the 
GridService portType: Section 6). 

In addition, a Grid service MAY support notification of lifetime-related events, through the 
standard notification interfaces defined in Section 8. 

A Grid service MAY support soft state lifetime management, in which case a client negotiates an 
initial service instance lifetime when the Grid service is created through a factory (Section 9), and 
authorized clients MAY subsequently send SetTerminationTime (“keepalive”) messages to 
request extensions to the service's lifetime. If the Grid service termination time is reached, the 
server hosting the service MAY destroy the service, reclaim any resources associated with the 
service, and remove any knowledge of the service maintained in handle resolvers under its 
control. 

Termination time MAY change non-monotonically. That is, a client MAY request a termination 
time that is earlier than the current termination time. If the requested termination time is before 
the current time, then this SHOULD be interpreted as a request for immediate termination. 

A Grid service MAY decide at any time to extend its lifetime. A service MAY also terminate 
itself at any time, for example if resource constraints and priorities dictate that it relinquish its 
resources. 

4.9 Common Handling of Operation Faults 
OGSA will define a small collection of base fault messages that may be used by the portTypes 
defined in this document. These faults will be described in this Section in a subsequent version of 
this document. An XML schema of various XML types and wsdl:parts that define common fault 
messages for reuse amongst the operations defined in this specification and operations defined in 
domain-specific portTypes will appear with the final XML definition of Grid Services (See 
Section: 15). 

5 Grid Service Interfaces 
A Grid service is defined as any Web service that MUST implement a serviceType that 
aggregates the Grid Service portType (See Section 6). 

This specification defines a collection of common distributed computing patterns that are 
considered to be fundamental to OGSA. The embodiment of these patterns appears as WSDL 
portTypes. The collection of portTypes specified in this document is listed in Table 3. 

The task for the designer of components within OGSA is to design serviceTypes that aggregate 
the GridService portType, zero or more other portTypes defined in this specification and one or 
more portTypes that define domain specific behavior. 

Table 3 Summary of the portTypes defined in this document 

PortType Name See 
Section 

Description 

GridService 6 encapsulates the root behavior of the component model 

HandleResolver 7 mapping from a GSH to a GSR 

NotificationSource 8.1 allows clients to subscribe to notification messages 

NotificationSubscription 8.2 defines the relationship between a single NotificationSource 
and NotificationSink pair



Grid Service Specification  30 

 Draft 3 (7/17/2002) 
 

and NotificationSink pair 

NotificationSink 8.3 defines a single operation for delivering a notification 
message to the service instance that implements the 
operation 

Factory 9 standard operation for creation of Grid service instances 

Registration 10.2 allows clients to register and unregister registry contents 

 

6 The GridService PortType 
In this section and those that follow, we describe the various standard portTypes that are defined 
by OGSA.  

We start with the GridService portType, which MUST be implemented by all Grid services and 
thus serves as the base interface definition in OGSA. This portType is analogous to the base 
Object class within object-oriented programming languages such as Smalltalk or Java, in that it 
encapsulates the root behavior of the component model. The behavior encapsulated by the 
GridService portType is that of querying against the serviceDataSet of the Grid service instance, 
and managing the termination of the instance. 

In Web services interface design, there is a choice to be made between document-centric 
messaging patterns and remote procedure call (RPC). Using a document-centric approach, the 
interface designer defines a loosely coupled interaction pattern wherein the API to the service is 
defined in terms of document exchange; both input and output are XML documents. This 
approach shifts the complexity of the interaction away from the API level and into the data format 
of the document exchange itself. This style tends to yield simpler, more flexible APIs. The RPC 
approach defines a specific, strongly-typed operation signature. This approach tends to produce 
less flexible API, but is often easier to map onto APIs of existing objects and can have better 
runtime performance. 

Designers of Grid service interfaces also face the document-centric vs. RPC choice, and have 
attempted to take a middle road. The GridService portType provides several operations with 
typed parameters, but leaves considerable extensibility options within several of those 
parameters. Service data is then used to express what specific extensibility elements a particular 
service instance understands. Grid service designers are free to mix and match the document-
centric and RPC approaches in the portTypes that they design to compose with those described 
here. 

6.1 GridService PortType: Service Data Descriptions and Elements 
The GridService portType includes serviceData elements conformant to the following 
serviceDataDescription elements:  
<gsdl:serviceDataDescription

name=”ServiceType”
type=”qname”
minOccurs=”1”
maxOccurs=”1”
mutability=”constant”>

<wsdl:documentation>
The qname of the serviceType implemented by this Grid service.

</wsdl:documentation>
</gsdl:serviceDataDescription>



Grid Service Specification  31 

 Draft 3 (7/17/2002) 
 

<gsdl:serviceDataDescription
name=”ServiceDataNames”
type=”qname”
minOccurs=”6”
maxOccurs=”unbounded”
mutability=”mutable”>

<wsdl:documentation>
A set of qnames, one for each service data element contained
in this service instance. Note:the minOccurs corresponds to
the number of serviceDataDescription elements in this
GridService portType that are required (that have minOccurs > 0).

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”FactoryHandle”
type=”uri”
minOccurs=”0”
maxOccurs=”1”
mutability=”constant”>

<wsdl:documentation>
The Grid Service Handle to the factory that created
this Grid service instance, if appropriate.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”GridServiceHandles”
type=”uri”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”>

<wsdl:documentation>
The Grid Service Handles of this Grid service instance.
It is possible to have multiple handles, for example one
for each handle scheme that might be deployed.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”GridServiceReferences”
type=”xml:any”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”mutable”>

<wsdl:documentation>
A set of Grid Service References to this Grid service instance.
One service data value element MUST be the WSDL representation
of the GSR. Other service data value elements may represent
other forms of the WSDL.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”QueryExpressionTypes”
type=”xsd:anyURI”



Grid Service Specification  32 

 Draft 3 (7/17/2002) 
 

minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”>

<wsdl:documentation>
A set of URIs any one of which MAY be used by a client in the
FindServiceData operation’s QueryExpression parameter.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”TerminationTime”
type=”xsd:dateTime”
minOccurs=”1”
maxOccurs=”1”
mutability=”mutable”>

<wsdl:documentation>
The dateTime value of the time when the lifetime for the Grid
service will expire.

</wsdl:documentation>
</gsdl:serviceDataDescription>
 

In addition, the GridService portType defines the following initial set of service data value 
elements: 
<gsdl:serviceData

name=”gsdl:QueryExpressionTypes”>
<xsd:anyURI>

http://www.gridforum.org/namespaces/2002/07/queryByServiceDataName
</xsd:anyURI>

</gsdl:serviceData>

 

6.2 GridService PortType: Operations and Messages 
Issue 29: Do we need an additional operation on GridService that allows a client to reliably 
determine if a GSH (or perhaps two GSHs)  refers to particular instance? 

6.2.1 GridService :: FindServiceData 
Query the service data. 

Input 
• QueryExpressionType: The URI that identifies the query mechanism used. This MUST 

be one of the URIs declared in the QueryExpressionTypes service data element of the 
target instance. 

• QueryExpression: The query to be performed. This is an extensible parameter, which 
MUST be expressed using the query mechanism identified by the QueryExpressionType 
parameter. 

Output 
• Result: The result of the query. The format of this result is dependent upon the 

QueryExpression. 

Fault(s) 



Grid Service Specification  33 

 Draft 3 (7/17/2002) 
 

• TBD. 

Every Grid service instance MUST support a QueryExpressionType identified by the 
http://www.gridforum.org/namespaces/2002/07/queryByServiceDataName URI that corresponds 
to queryByServiceDataName. A Grid service instance MAY support other 
QueryExpressionTypes 

The list of query expression types supported by a Grid service instance is expressed in the 
instance’s QueryExpressionTypes service data element. Therefore, a client can discover the 
query expression types supported by a service instance by performing a FindServiceData request 
on the instance, using the queryByServiceDataName expression type URI searching for the 
name gsdl:QueryExpressionTypes. 

The service data that is available for query by a client MAY be subject to policy restrictions. For 
example, some service data elements MAY not be available to some clients, and some service 
data value elements within a SDE MAY not be available to some clients. 

6.2.2 queryByServiceDataName 
A queryByServiceDataName results in all service data elements that have a qname as specified 
by the name property.  

The non-normative grammar of this type is: 
<gsdl:queryByServiceDataName name=“qname”/>
 

The FindServiceData operation’s Result output parameter for a queryByServiceDataName 
query MUST be the serviceData element that has the requested serviceDataName. 

6.2.3 queryByXPath 
Issue 30: Define the XPath QueryExpressionType, QueryExpression schema, and the result 
format. Support for this QueryExpressionType is optional. 

6.2.4 queryByXQuery 
Issue 31: Define the XQuery QueryExpressiontype, QueryExpression schema, and the result 
format. Support for this QueryExpressionType is optional. 

6.2.5 GridService :: SetTerminationTime 
Request that the termination time of this service be changed. The request specifies a minimum 
and maximum requested new termination time and includes a timestamp with the request. Upon 
receipt of the request, the service MUST discard any requests that have arrived out of order based 
as determined by the ClientTimestamp parameter ; MAY adjust its termination time, if necessary, 
based on its own polices and the requested minimum and maximum; and if acknowledgement is 
requested MUST return the new termination time, a timestamp of when this new termination time 
was set, and a maximum lifetime extension allowed for subsequent requests. Upon receipt of the 
response, the client SHOULD discard any responses that have arrived out of order, based on the 
timestamp in the response. 

Input: 

• ClientTimestamp: The time at which the client generated the request. Any request MUST 
be discarded by the service that has a ClientTimestamp that is earlier than the latest 
ClientTampstamp received in a previous SetTerminationTime request. 



Grid Service Specification  34 

 Draft 3 (7/17/2002) 
 

• TerminationTime: The earliest termination time of the Grid service that is acceptable to 
the client. Issue 14: Do we need to be able to express “forever”? 

Output: 

• ServiceTimestamp: The time at which the Grid service handled the request. 

• CurrentTerminationTime: The service's currently planned termination time.  

• MaximumExtension: The maximum extension that the service will currently allow a 
client to request of its termination time. This value SHOULD change infrequently over 
the lifetime of the service, but a service MAY change this value at any time.  

Fault(s): 
Issue 16: Should the termination time be expressed as absolute time, or relative to receipt of the 
message? 

Issue 15:Should we collapse SetTerminationTime and Destroy into a single, extensible 
SetTerminationPolicy operation?  Then immediate destruction and soft-state destruction would 
simply be standard policies that could be expressed in the request. 

6.2.6 GridService :: Destroy 
Explicitly request destruction of this service. Upon receipt of an explicit destruction request, a 
Grid service MUST either initiate its own destruction and return a response acknowledging the 
receipt of the destroy message; or ignore the request and return a fault message indicating failure. 
Once destruction of the Grid service is initiated, any subsequent operation invocations by clients 
to that service will be denied. 

Input: 
• None 

Output: 
• Acknowledgement that the destroy has been initiated 

Fault(s): 

•  

7 The HandleResolver PortType 
A handle resolver is a Grid service instance that implements the HandleResolver portType.  

Issue 17: The authoring team is divided on the recommendations regarding the role of the 
resolver protocol vs the use of HandleResolver. Should there be language such as: “Clients 
SHOULD use one or more HandleResolver services to resolve GSHs to GSRs. The handle 
resolver protocols discussed in this section SHOULD NOT normally be used by clients, but 
SHOULD be used by HandleResolver services only.” 

Each GSH scheme defines a particular resolver protocol for resolving a GSH of that scheme to a 
GSR. Some schemes, such as the http and https schemes defined in Section 4.7.2, MAY not 
require the use of a HandleResolver service, as they are based on some other resolver protocol. 
However, there are two situations where a Grid service based resolver protocol MAY be used, 
and which therefore motivates the definition of a standard HandleResolver portType. First, a 
GSH scheme MAY be defined that uses the HandleResolver as a fundamental part of its resolver 
protocol, where the GSH carries information about to which HandleResolver service instance a 



Grid Service Specification  35 

 Draft 3 (7/17/2002) 
 

client should send resolution requests. Second, in order to avoid placing undo burden on a client 
by requiring it to directly speak various resolver protocols, a client instead MAY be configured to 
outsource any GSH resolutions to a third party HandleResolver service. This outsourced handle 
resolver MAY in turn speak the scheme-specific resolver protocols directly. Both of these 
situations are addressed through the definition of the HandleResolver portType. 

Various handle resolvers may have different approaches as to how they are populated with GSH 
to GSR mappings. Some handle resolvers may be tied directly into a hosting environment’s 
lifetime management services, such that creation and destruction of instances will automatically 
add and remove mappings, through some out-of-band, hosting-environment-specific means. 
Other handle resolver services may implement the Registration portType, such that whenever a 
service instance registers its existence with the resolver, that resolver queries the 
GridServiceHandles and GridServiceReferences service data elements of that instance to 
construct its mapping database. Other handle resolver services may implement a custom 
registration protocol via a custom portType. But in all of these cases, the HandleResolver 
portType MAY be used to query the resolver service for GSH to GSR mappings. 

7.1 HandleResolver PortType: Service Data Descriptions 
The HandleResolver portType includes serviceData elements conformant to the following 
serviceDataDescription elements:  
<gsdl:serviceDataDescription

name=”HandleResolverSchemes”
type=”xsd:anyURI”
minOccurs=”0”
maxOccurs=”unbounded”
mutability=”mutable”>

<wsdl:documentation>
A set of URIs that correspond to the handleResolver schemes that
the HandleResolver implements.

</wsdl:documentation>
</gsdl:serviceDataDescription>

7.2 HandleResolver PortType: Operations and Messages 

7.2.1 HandleResolver :: FindByHandle 
Returns a Grid Service Reference for a Grid Service Handle. 

Input 

• Handle: A Grid Service Handle. 

• GSRSet: (optional) a set of one or more GSRs that the client already possesses that are 
not satisfactory for some reason. This is a hint from the client that these existing 
references should not be returned in response to this message. 

Output 
• Reference: A Grid Service Reference, encoded in the format specific to the binding used 

to invoke the FindByHandle operation. 

Fault(s) 
• InvalidHandle, indicating the operation failed to resolve the handle. 



Grid Service Specification  36 

 Draft 3 (7/17/2002) 
 

• NoValidReferences available, indicating that the service cannot return a GSR that is not 
already contained in the GSRSet input parameter. 

• Redirection, indicating that the clients SHOULD reissue to request to a different handle 
resolver, as specified by a GSR that is returned with this fault case. 

8 Notification 
The purpose of notification is to deliver interesting messages from a notification source to a 
notification sink, where: 

• A notification source is a Grid service instance that implements the NotificationSource 
portType, and is the sender of notification messages. A source MAY be able to send 
notification messages to any number of sinks. 

• A notification sink is a Grid service instance that receives notification messages from any 
number of sources. A sink MAY implement the DeliverNotification operation of the 
NotificationSink portType, which allows it to receive notification messages of any type. 
Alternatively, a sink MAY implement a specialized notification delivery operation from a 
different portType, where that operation is a specialization of the DeliverNotification 
operation. A specialized delivery operation MAY only accept a subset of the types of 
messages that the general DeliverNotification operation can accept, and like 
DeliverNotification is an input-only operation (i.e. it does not return a response). 

• A notification message is an XML element sent from a notification source to a 
notification sink. The XML type of that element is determined by the subscription 
expression. 

• A subscription expression is an XML element that describes what messages should be 
sent from the notification source to the notification sink. The subscription express also 
describes when messages should be sent, based on changes to values within a service 
instance’s serviceDataSet.  

• In order to establish what and where notification messages are to be delivered, a 
subscription request is issued to a source, containing a subscription expression, the 
serviceLocator of the notification sink to which notification messages are to be sent, the 
portType and operation name of the specialized notification delivery operation to which 
notification messages should be sent, and an initial lifetime for the subscription. 

• A subscription request causes the creation of a Grid service instance, called a 
subscription, which implements the NotificationSubscription portType. This portType 
MAY be used by clients to manage the (soft-state) lifetime of the subscription, and to 
discover properties of the subscription. 

This notification framework allows for either direct service-to-service notification message 
delivery, or for the ability to integrate various intermediary delivery services. Intermediary 
delivery services might include: messaging service products commonly used in the commercial 
world, message filtering services, message archival and replay services, etc. 

Issue 12: The GGF Grid Monitoring Architecture (GMA) working group has written a draft 
document called "A Grid Monitoring Architecture". The GS Spec basically includes an 
implementation of this architecture, via its service data, notification, and FindServiceData. 
However, the GS Spec uses "Source" and "Sink" instead of "Producer" and "Consumer". Should 
we change the GS Spec to use "Producer" and "Consumer", to bring it into alignment with the 
GMA terminology? 



Grid Service Specification  37 

 Draft 3 (7/17/2002) 
 

8.1 The NotificationSource PortType 
The NotificationSource portType allows clients to subscribe to notification messages from the 
Grid service instance that implements this portType. 

8.1.1 NotificationSource PortType: Service Data Descriptions and Elements 
The NotificationSource portType includes serviceData elements conformant to the following 
serviceDataDescription elements:  
<gsdl:serviceDataDescription

name=”NotifiableServiceDataNames”
type=”qname”
minOccurs=”0”
maxOccurs=”unbounded”
mutability=”mutable”>

<wsdl:documentation>
A set of qualified names of service data elements to
which a client MAY subscribe for notification of changes.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”SubscriptionExpressionTypes”
type=”xsd:anyURI”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”>

<wsdl:documentation>
A set of URIs identifying expression mechanisms that are
understood by the Subscribe operation. One of these would be used
as the operation’s SubscriptionExpression parameter.

</wsdl:documentation>
</gsdl:serviceDataDescription>

 

The NotificationSource portType would also include the following initial service data value 
elements: 
<gsdl:serviceData

name=”gsdl:SubscriptionExpressionTypes”>
<xsd:anyURI>

http://www.gridforum.org/namespaces/2002/07/subscribeByServiceDataName
</xsd:anyURI>

</gsdl:serviceData>

8.1.2 NotificationSource PortType: Operations and Messages 

8.1.2.1 NotificationSource :: Subscribe 
Subscribe to be notified of subsequent changes to the target instance’s service data. This 
operation creates a Grid service subscription instance, which MAY subsequently be used to 
manage the lifetime and discovery properties of the subscription. 

Input: 



Grid Service Specification  38 

 Draft 3 (7/17/2002) 
 

• SubscriptionExpressionType: The URI that identifies the subscription mechanism used. 
This MUST be one of the URIs declared in the SubscriptionExpressionTypes service data 
element of the target instance. 

• SubscriptionExpression: The subscription to be performed. This is an extensible 
parameter, which MUST be expressed using the subscription mechanism identified by the 
SubscriptionExpressionType parameter. 

• Sink: The serviceLocator  of the notification sink to which messages will be delivered. 
This locator MAY be to some other service than the one that is issuing this subscription 
request, thus allowing for third-party subscriptions.  

• SpecializedNotificationDeliveryOperation (optional): The name of the operation, and the 
qname of the portType in which that operation is defined, to be used by the notification 
source when delivering messages to the notification sink. The operation signature MUST 
be the same as, or a specialization of, the NotificationSink::DeliverNotification operation. 
If this parameter is not specified, then it defaults to the “DeliverNotification” operation 
name that is defined in the gsdl:NotificationSink portType. 

• ExpirationTime: The initial time at which this subscription instance should terminate, and 
thus notification delivery to this sink be halted. Normal GridService lifetime management 
operations MAY be used on the subscription instance to change its lifetime. 

Output: 

• SubscriptionInstanceLocator: A serviceLocator to the subscription instance that was 
created to manage this subscription. This subscription instance MUST implement the 
NotificationSubscription portType. 

Fault(s): 

Every Grid service instance that implements the NotificationSource portType MUST support a 
SubsciptionExpressionType identified by the 
http://www.gridforum.org/namespaces/2002/07/subscribeByServiceDataName URI that 
corresponds to subscribeByServiceDataName. A Grid service instance MAY support other 
SubscriptionExpressionTypes. 

The list of subscription expression types supported by a Grid service instance is expressed in the 
instance’s SubscriptionExpressionTypes service data element. Therefore, a client can discover 
the subscription expression types supported by a service instance by performing a 
FindServiceData request on the instance, using a queryByServiceDataName element, which 
contains the name “gsdl:SubscriptionExpressionTypes”. 

The service data that is available for subscription by a client MAY be subject to policy 
restrictions. For example, some service data elements MAY not be available to some clients, and 
some service data value elements within a SDE MAY not be available to some clients. 

8.1.2.2 subscribeByServiceDataName 
A subscribeByServiceDataName results in notification messages being sent whenever the 
named service data element changes. 

The non-normative grammar of this type is: 
<gsdl:subscribeByServiceDataName

name=“qname”
minInterval=”xsd:duration”?
maxInterval=(”nonNegativeInteger”|”unbounded”)? >



Grid Service Specification  39 

 Draft 3 (7/17/2002) 
 

</gsdl:subscribeByServiceDataName>
 

The minInterval property specifies the minimum interval between notification messages, 
expressed in xsd:duration. If this property is not specified, then the notification source MAY 
choose this value. A notification source MAY also reject a subscription request if it cannot satisfy 
the minimum interval requested. 

The maxInterval property specifies the maximum interval between notification messages, 
expressed in xsd:duration. If this interval elapses without a change to the named service data 
element’s value, then the source MUST resend the same value. When the valueis “unbounded” 
the  source need never resend a service data value if it does not change. If this property is not 
specified, then the notification source MAY choose this value.  

For a subscribeByServiceDataName subscription, the type of the notification message sent from 
the notification source to the notification sink MUST be the serviceData element that has the 
requested serviceDataName. 

8.2 The NotificationSubscription PortType 
A subscription for notification causes the creation of a Grid service subscription instance, which 
MUST implement the NotificationSubscription portType. This instance MAY be used by clients 
to manage the lifetime of the subscription, and discover properties of the subscription.  

8.2.1 NotificationSubscription PortType: Service Data Descriptions 
The NotificationSubscription portType includes serviceData elements conformant to the 
following serviceDataDescription elements:  
<gsdl:serviceDataDescription

name=”SubscriptionExpression”
type=”xsd:any”
minOccurs=”1”
maxOccurs=”1”
mutability=”mutable”>

<wsdl:documentation>
The current subscription expression managed by this
subscription instance.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”SinkHandle”
type=”uri”
minOccurs=”1”
maxOccurs=”1”
mutability=”mutable”>

<wsdl:documentation>
The Grid Service Handle of the Notificationsink to
who this subscription is delivering messages.

</wsdl:documentation>
</gsdl:serviceDataDescription>
 

Issue 18: In order to represent a subscription expression in service data, should we create a 
gsdl:subscriptionExpression type which contains an attribute with the URI of the subscription 
expression type, and an extensibility element to carry the actual subscription expression?  The 



Grid Service Specification  40 

 Draft 3 (7/17/2002) 
 

SubscriptionExpress SDD should be changed to have this type. This same type can also then be 
used in the NotificationSource::Subscribe operation. 

8.2.2 NotificationSubscription PortType: Operations and Messages 
None. 

8.3 The NotificationSink PortType 
A notification sink portType defines a single operation for delivering a notification message to 
the service instance that implements the operation. 

8.3.1 NotificationSink PortType: Service Data Descriptions 
None. 

8.3.2 NotificationSink PortType: Operations and Messages 

8.3.2.1 NotificationSink :: DeliverNotification 
Deliver message to this service. 

Input: 

• Message: An XML element containing the notification message. The content of the 
message is dependent upon the notification subscription. 

Output: 

The service does not reply to this request. 

Fault(s): 

8.4 Integration With Notification Intermediaries 
While the NotificationSource and NotificationSink define how notification messaging is 
performed between two parties, these same portTypes can be used in various combinations to 
allow for third-party services to intermediate the notification process.  

For example, an intermediary notification service may implement the NotificationSink portType 
in order to receive notification messages from some other sources, as well as the 
NotificationSource portType to send notifications to other subscribing sinks. The intermediary 
may simply forward the notification messages on to subscribers, or it may transform them in 
various ways by making service data elements available to subscribers that are different than 
SDEs of the original notification source. Intermediary notification sources are generally 
characterized by the fact that their serviceData elements have originator properties that refers to 
other service instances, rather than to themselves. 

Intermediary notification services may be used for a variety of purposes, including: 

• To provide for a notification source service that has a lifetime that is independent from 
that of the notification source service that originally generated the message. 

• To filter, modify, aggregate, and/or archive notification messages from other sources. 

• To represent third party messaging services, which may transport notification messages 
with different delivery protocols, semantics, and/or qualities of service. 



Grid Service Specification  41 

 Draft 3 (7/17/2002) 
 

The third purpose, integrating messaging service products, deserves further explanation. Such 
messaging service products can be exploited in this framework by: 

1. Defining an intermediary messaging service instance that implements both the 
NotificationSource and NotificationSink portTypes, as well as possibly other portTypes 
for managing the behavior of the messaging service product. 

2. This intermediary messaging service instance can then subscribe to various notification 
source. Note that the client issuing the subscription request need not be the same Grid 
service instance as the notification sink designated in the subscription request to receive 
notification messages. This property allows for clients to stitch together notification 
message paths, without being directly in those paths. 

3. The intermediary messaging service instance can advertise various notification topics 
service data elements for which it produces notification messages, relating to any 
incoming notification messages it receives via its sink interface. For example, for any 
notification message that it receives through its sink interface, it may resend it to 
subscribers with a particular quality of service. 

4. The intermediary messaging service instance may have its own efficient, scalable, 
message distribution network, thus allowing the incoming message to be efficiently 
delivered to a large number of subscribing sinks. Or it may guarantee delivery of the 
notification message for some period of time, even in the face of various failures. Or it 
may distribute incoming notification messages to sinks in a round-robin fashion, rather 
then sending all notification messages to all sinks. The possible behaviors that the 
intermediary messaging service instance can introduce to the notification message 
delivery are limitless. 

5. The intermediary messaging service instance, the originating notification source service, 
and the final notification sink service may all implement a specialized network protocol 
binding to optimize the transmission of the notification messages. For example, if the 
intermediary messaging service instance represents a particular message service product 
with its own custom protocol, implementing that protocol as a Grid service network 
protocol binding allows the integration of this product and its protocols, without requiring 
different interfaces or models to be imposed on the sources and sinks. 

9 The Factory PortType 
From a programming model perspective, a factory is an abstract concept or pattern. A factory is 
used by a client to create an instance of a Grid service. A client invokes a create operation on a 
factory and receives as response a GSR for the newly created service. This specification defines 
one approach to realizing the factory pattern as a Grid service. OGSA uses a document-centric 
approach to define the operations of the basic factory. Service providers can, if they wish, define 
their own factories with specifically typed operation signatures.  

In OGSA terms, a factory is a Grid service that MUST implement the Factory portType, which 
provides a standard WSDL operation for creation of Grid service instances. A factory MAY of 
course also implement other portTypes (in addition to the required GridService portType), such 
as: 

• Registration (Section10), which allows clients to inquire of the factory as to what Grid 
service instances created by the factory are in existence. 

Upon creation by a factory, the Grid service instance MUST be registered with, and receive a 
GSH from, a handle resolution service (see Section 7). The method by which this registration is 



Grid Service Specification  42 

 Draft 3 (7/17/2002) 
 

accomplished is specific to the hosting environment, and is therefore outside the scope of this 
specification. 

Issue 5: Consider adding another factory related portType that allows for management of the set 
of serviceTypes that a factory may create. Perhaps allow for downloading of code into the factory 
when adding a service. 

9.1 Factory PortType: Service Data Descriptions 
The Factory portType includes serviceData elements conformant to the following 
serviceDataDescription elements:  
<gsdl:serviceDataDescription

name=”CreatesServiceTypes”
type=”qname”
minOccurs=”1”
maxOccurs=”unbounded”
mutability=”append”

<wsdl:documentation>
QNames to serviceTypes that are created by this Factory.

</wsdl:documentation>
</gsdl:serviceDataDescription>

<gsdl:serviceDataDescription
name=”CreationInputTypes”
type=”qname”
minOccurs=”0”
maxOccurs=”unbounded”
mutability=”append”

<wsdl:documentation>
Qnames of XML type supported by this Factory for the
ServiceParameters argument of the CreateService operation.
Note: there is a consideration to have this as a property of the
Factory ServiceType, using the extensibility element..

</wsdl:documentation>
</gsdl:serviceDataDescription>

9.2 Factory PortType: Operations and Messages 

9.2.1 Factory :: CreateService 
Create a new Grid service instance. Note that to support soft state lifetime management (Section 
4.8), a client may specify an initial termination time, within a window of earliest and latest 
acceptable initial termination times. The factory selects an initial termination time within this 
window, and returns this to the client as part of its response to the creation request. Additionally, 
the factory returns the maximum lifetime extension that clients can subsequently request of this 
new Grid service instance. Alternatively, the Grid service creation request may fail if the 
requested termination time is not acceptable to the factory. 

Input 
• TerminationTime (optional): The earliest initial termination time of the Grid service 

instance that is acceptable to the client. 

• ServiceParameters (optional): An XML document that is specific to the factory and the 
services that it creates. 



Grid Service Specification  43 

 Draft 3 (7/17/2002) 
 

Output 
• ServiceLocator: A serviceLocator  to the newly created Grid service instance. 

• ServiceTimestamp: The time at which the Grid service was created. 

• CurrentTerminationTime: The Grid service’s currently planned termination time.  

• MaximumExtension: The maximum extension that the Grid service will currently allow a 
client to request of its termination time. 

• ExtensibilityOutput (optional): An XML extensibility element that is specific to the 
factory and the services that it creates. 

Fault(s): 

Issue 19: Can we reduce the number of output parameters in Factory::CreateService by moving 
many of them into service data of the created instance? 

10 Registration 
A registry is a Grid service that maintains a collection of Grid Service Handles, with policies 
associated with that collection. Clients may query the registry to discover what services are 
available.  

A registry implements the Registration portType, in order to allow clients to register and 
unregister registry contents. Because a registry is a Grid service, it must also implement the 
GridService portType. A registry MAY implement custom portType that define service data 
elements that are structured to support particular types of queries against the registry. The 
FindServiceData (see Section 6.2.1) operation provides rich query interface against the contents 
of the registry that is maintained in service data. A registry's FindServiceData operation 
SHOULD support the XPath query language, and MAY support other query languages. A 
registry SHOULD implement the NotificationSource portType (Section 8), in order to support 
notification of registry existence and changes in registry contents. 

A Grid service instance MAY be a member of any number of registries, and for any portion of the 
service's lifetime. 

10.1 WS-Inspection Document 
The registry makes available a WS-Inspection document [1] to aid in discovery of the services in 
that registry. This document contains information about any Grid service that has been registered 
with the registry. 

This WS-Inspection document can be retrieved by a client via the FindServiceData operation. 

The registry's WS-Inspection document MAY have the following properties: 

1. WS-Inspection WSDL service description elements that refer other Grid services 
(including other registries), where the location values are the GSHs of the services. 

2.  WS-Inspection link elements that refer to registry services, where the location values 
are the GSHs of services. 

3.  any other valid WS-Inspection element. 

Issue 20: Should a WS-Inspection document be required of all registries? Or might a registry just 
use the RegisterService operation, define its own service data to represent the contents of the 
registry, and ignore the WS-Inspection document entirely?  In other words, should the WS-



Grid Service Specification  44 

 Draft 3 (7/17/2002) 
 

Inspection document be given a minOccurs=”0”, or separated out into a different portType 
entirely? 

10.2 The Registration portType 
The Registration portType allows clients to register and unregister registry contents. 

10.2.1 Registration PortType: Service Data Descriptions 
The following contains the serviceDataDescription elements associated with the Registration 
portType: 
<gsdl:serviceDataDescription name=”GridServiceRegistryWSInspection”

type=”wsil:inspection”
minOccurs=”1”
maxOccurs=”1”
mutability=”mutable”

<wsdl:documentation>
A WS-Inspection document containing all of the Grid services in
this registry. We expect that specializations of registries that

take this registration port type and combine it with other mechanisms
to do discovery (for example a specialization that finds discovery such
as “find by portType”). This portType forms the base assumption that an
inspection document is available.

</wsdl:documentation>
</gsdl:serviceDataDescription>
 

10.2.2 Registration PortType: Operations and Messages 

10.2.2.1 Registration :: RegisterService 
Add or atomically update a Grid Service Handle to the registry. 

Input 
• Handle: The Grid Service Handle of the service to register. If the registry already 

contains a registration that matches this parameter, this operation is to be treated as an 
“update” to the registration information. 

• Timeout: The time at which this registration should timeout and be removed from the 
registry, unless the registry receives a subsequent RegisterService. 

• Description (optional): A text description to include with the service element. 

• Extensibility (optional): An XML fragment to be inserted as an extensibility element for 
this service. This field may be used, for example to register a UDDI service description 
for the service as well. 

Output: 

Fault(s): 
It is worth noting that the registry has the freedom to interpret registrations of other Registration 
Grid services in one of two ways. Consider the case where Registry A receives a register 
operation for Registry B. Registry A can choose to treat B simply as another Grid service, 
generating a WS-Inspection service element based on the GSH for B, or it can be treat B as a 
WS-Inspection link element. 



Grid Service Specification  45 

 Draft 3 (7/17/2002) 
 

10.2.2.2 Registration :: UnregisterService 
Remove a Grid Service Handle from the registry. 

Input: 
• Handle: The Grid Service Handle of the service to remove. 

Output: 
• Acknowledgement of receipt of the UnregisterService 

Fault(s): 

• Unregistration operation failed. 

11 Change Log 

11.1 Draft 1 (2/15/2002) ���� Draft 2 (6/13/2002) 
• Improved introduction to Section 4, “The Grid Service, and reordered the subsections to 

make it flow better. 

• Added Section 4.2, “Service Description and Service Instance”, containing an 
explanation of service description vs service instance. 

• Added/rewrote “Service Data” section (4.3) including: cleaned up serviceData container; 
moved lifetime declarations out to an extensibility element that can be included on any 
XML element; introduced schema to be able include service data declarations into the 
WSDL service description. 

• Changed tables containing service data declarations to use correct XML elements that 
conform to the new serviceDataDescription element 

• Moved description of instanceOf to be part of the WSDL GSR description, since it is a 
sub-element of the WSDL service element, which is part of the WSDL GSR. 

• Removed old Section 5, “How portType Definitions are Presented”. This was subsumed 
by the rewrite of Section 4, including the new service data specification. 

• Removed all primary key material, including old Section 10, and references to it from the 
Factory discussion. 

• Simplified the schema for serviceType. 

• Added Section 11, Change Log. 

11.2 Draft 2 (6/13/2002) ���� Draft 3 (07/17/2002) 
• Changed draft to assume new features in WSDL v1.2 draft 1, including serviceType and 

an open extensibility model. 

• Added serviceType reuse/extension. 

• Modified notion of Handle to be a URI, reflected changes in GSR and HandleResolver 
(previously called HandleMap) discussion. Introduced resolver protocols for the http and 
https GSH schemes. 

• Substantially changed “Service Data” section (4.3), primarily to cleanup and plug holes 
in service data descriptions and elements, particularly around naming and typing. 
Changed various portType descriptions to reflect this change to service data. 



Grid Service Specification  46 

 Draft 3 (7/17/2002) 
 

• Added section “Modeling Time in OGSA” 

• Overhauled the notification section, to completely integrate with service data, and to 
provide a “push model” that parallels the FindServiceData “pull model”. 

• Renamed Registry portType to Registration, and did some cleanup on the section. 

• Introduced gsdl:serviceLocator, which is an XML schema type that can be either a GSH 
or GSR. Changed various GSH and GSR argument to use this type. 

• Renamed “Terminology and Abbreviations” section to “Notational Conventions”. In this 
section, added a table of namespace prefixes used in throughout the document, and 
cleaned up the rest of the section. 

• Added inline “Issue” that need to be resolved, with numbers that refer to the GGF OGSI 
working group bugzilla database. 

12 Acknowledgements 
We are grateful to numerous colleagues for discussions on the topics covered in this document, in 
particular (in alphabetical order, with apologies to anybody we've missed) Malcolm Atkinson, Ed 
Boden, Brian Carpenter, Francisco Curbera, Andrew Grimshaw, Marty Humphrey, Keith 
Jackson, Bill Johnston, Kate Keahey, Gregor von Laszewski, Lee Liming, Miron Livny, Tom 
Maguire, Norman Paton, Jean-Pierre Prost, John Rofrano, Thomas Sandholm, Ellen Stokes, Scott 
Sylvester, Sanjiva Weerawarana, Von Welch and Mike Williams. 

This work was supported in part by IBM and by the Mathematical, Information, and 
Computational Sciences Division subprogram of the Office of Advanced Scientific Computing 
Research, U.S. Department of Energy, under Contract W-31-109-Eng-38 and DE-AC03-
76SF0098; by the National Science Foundation; and by the NASA Information Power Grid 
project. 

13 References  
1. Brittenham, P. An Overview of the Web Services Inspection Language. 2001, 

http://www.ibm.com/developerworks/webservices/library/ws-wsilover. 
2. Foster, I. and Kesselman, C. Globus: A Toolkit-Based Grid Architecture. In Foster, I. and 

Kesselman, C. eds. The Grid: Blueprint for a New Computing Infrastructure, Morgan 
Kaufmann, 1999, 259-278. 

3. Foster, I. and Kesselman, C. (eds.). The Grid: Blueprint for a New Computing 
Infrastructure. Morgan Kaufmann, 1999. 

4. Foster, I., Kesselman, C., Nick, J. and Tuecke, S. The Physiology of the Grid: An Open 
Grid Services Architecture for Distributed Systems Integration. Globus Project, 2002, 
www.globus.org/research/papers/ogsa.pdf. 

5. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid: Enabling Scalable 
Virtual Organizations. International Journal of High Performance Computing 
Applications, 15 (3). 200-222. 2001. www.globus.org/research/papers/anatomy.pdf 

6. Graham, S., Simeonov, S., Boubez, T., Daniels, G., Davis, D., Nakamura, Y. and 
Neyama, R. Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and 
UDDI. Sams, 2001. 

7. Mukhi, N. Web Service Invocation Sans SOAP. 2001, 
http://www.ibm.com/developerworks/library/ws-wsif.html. 

8. W3C Web Services Description Language 1.2 (Working Draft), 
http://www.w3.org/TR/2002/WD-wsdl12-20020709 



Grid Service Specification  47 

 Draft 3 (7/17/2002) 
 

9. Gunter, D, Tierney, B. A Timestamp for Distributed Computing (Draft), Global Grid 
Forum OGSI Working Group. 

14 Contact Information 
Steven Tuecke  
Distributed Systems Laboratory  
Mathematics and Computer Science Division  
Argonne National Laboratory  
Argonne, IL 60439  
Phone: 630-252-8711  
Email: tuecke@mcs.anl.gov  

Karl Czajkowski  
University of Southern California, Information Sciences Institute  
Email: karlcz@isi.edu 

Ian Foster 
Argonne National Laboratory & University of Chicago  
Email: foster@mcs.anl.gov  

Jeffrey Frey 
IBM 
Poughkeepsie, NY 12601 
Email: jafrey@us.ibm.com 

Steve Graham 
IBM 
4400 Silicon Drive 
Research Triangle Park, NC, 27713 
Email: sggraham@us.ibm.com 

Carl Kesselman  
University of Southern California, Information Sciences Institute  
Email: carl@isi.edu 

15 XML and WSDL Specifications 
This Section will contain the full WSDL types, message, and portType for each of the operations 
described in this document. Watch this space. 

Pending agreement from the OGSI-WG community on the directions and changes in this draft of 
the specification, the authors will produce formal WSDL and related XML definitions shortly 
after GGF5. 


