
A Component Based Services Architecture
for Building Distributed Applicatioins 1

9/28/00
Extreme Computing Lab, Indiana

University
1

A Component Based Services
Architecture for Building
Distributed Applications

Randall Bramley, Kenneth Chiu,

Shridhar Diwan, Dennis Gannon,

Madhusudhan Govindaraju, Marie Ma,

Nirmal Mukhi, Benjamin Temko,

Madhuri Yechuri

2

Outline

§ Trends in CS&E

§ Component frameworks

§ Brief history

§ Features of CCAT

§ Recent developments in CCAT

3

Trends in CS&E

§ Size, complexity, sophistication of apps and libraries is
growing exponentially

§ Scale and degree of heterogenity is growing
§ Languages
§ Real-time instrument access
§ Data bases, data mining engines, integrated visualization

§ Collaborative, multidisciplinary teams
§ Trend to both OSS and secret/secure codes and data
§ Severe personnel shortage

4

Component Features

§ Now standard paradigm in industry and commerce
§ COM/DCOM, Java Beans, Enterprise Java Beans, Corba

§ Modules distributed across networks

§ Well-defined interfaces, independent of language

§ Composable dynamically without recompilation to create
applications

§ Flock of CSE component systems being developed:
§ SciRun (Utah), WebFlow (Fox), NetSolve (UTK), Legion (UVA), and

many national lab efforts.

§ Need not be software ...

5

X-Ray Crystallography Lab

6

Why not use CORBA/DCOM/Beans ?

§ Promptness: we needed a component framework four
years ago

§ Efficiency: a ruling principle of CS&E research apps

§ Parallelism: need to connect components consisting of
incommensurate numbers of MPI processes

§ Simplicity: target the minimal specs possible

§ Nevertheless it is important to interoperate with
commercial systems

A Component Based Services Architecture
for Building Distributed Applicatioins 2

7

CCAT History

§ 1995: Linear System Analyzer: used Nexus +
HPC++ for run-time system and data flow model

§ 1996-1997 Component Architecture Toolkit: more
generic in application areas; still data flow

§ 1998: Industrial finite element SC98 demo, with
multiple CAVEs/I-Desks for visualization.

§ 1998: DoE Common Component Architecture
Forum specifications released - start of CCAT.

8

CCAT Features

§ Service-based architecture - where each service is a
CCA-compliant component

§ Multiple user interaction systems (including new
“Portals” effort)

§ Multiprotocol communications between components

9

Common Component Architecture
(CCA) Ports

§ Ports: the public interfaces that a component uses or provides.

§ Framework defines a mechanism to link uses ports of one component
to the provides ports of another.

§ CCA only specifies port services: register, access, get info about
them.

Uses Port is a call site
for an interface to an
external component

Component A Component B

Provides Port - an interface
to a service provided by that
component. 10

CCAT Framework Requirements

§ A framework must provide other services:
§ Directory Service

§ Locate suitable components

§ Registry Service
§ Locate instantiations of components

§ Creation Service
§ Instantiate a component

§ Connection Service
§ Connect the ports of two running component instances

§ Event Service
§ Publish/subscribe messaging between services and components.

11

Services as Components

§ Each service is a pseudo-component (needs special
hooks into CCA core services, bootstrapping)

§ E.g.: connection service has port with four methods
§ Connect two typed ports

§ Disconnect

§ ExportAs lets a component export ports of another, so
that connection seems to be to first component

§ ProvideTo lets a component provide a port to another
without registering for the whole CCAT app to access

12

CCAT Framework

A Component Based Services Architecture
for Building Distributed Applicatioins 3

13

Services as Components

§ User interaction system is also modular
§ Custom built GUI

14

15

Services as Components

§ User interaction system is also modular
§ Custom built GUI

§ Python script

16

Python Example

import ccat

stringDump = ccat.createComponent(‘StringDump’)
printer = ccat.createComponent(‘Printer’)

ccat.setCreationMechanism(stringDump, ‘gram’)
ccat.setCreationMechanism(printer, ‘gram’)

ccat.createInstance(printer)
ccat.createInstance(stringDump)

ccat.connectPorts(stringDump, ‘outputString’,
printer, ‘inputString’)

17

Services as Components

§ User interaction system is also modular
§ Custom built GUI

§ Python script

§ Web-based interface

18

Composer is a
CCA component
instantiated as a
Java servlet.

A Component Based Services Architecture
for Building Distributed Applicatioins 4

19

Services as Components

§ User interaction system is also modular
§ Custom built GUI

§ Python script

§ Web-based interface

§ Matlab

§ Java or C++ direct access

§ Users can dynamically choose among these during
running application, or use multiple ones at once.

20

Multiprotocol Communications

§ CS&E components involve large data messages

§ Need efficient, robust, universal mechanisms

§ CCAT is evolving to use
§ Nexus

§ HPC++ remote method invocation

§ QoS network access

§ SOAP (HTTP + XML)

§ Protocol will be dynamically negotiated, on a per-
message basis if desired.

21

Specification Fragment: Defining
an Interface in XML

<port-type>

<type-name>SparseLinearSystem_idl</type-name>

<method-list>

<method>

<method-name>sendSparseLinearSystem</method-name>

<method-param-list>

<param-info>

<param-name>sls</param-name>

<param-dir>in</param-dir>

<param-type>SparseLinearSystem</param type>

</param-info>

</method-param-list>

<return-value>int</return-value>

</method>

</method-list>

</port-type>
22

Science Portals Project

§ CCAT used as engine for secure Web-based access
to computing resources
§ Browser based “Notebook database”

§ Script Editor and Execution Environment

§ Component Proxies and component linking

§ File Management Issues

23

Portal Notebook

§ Notebook is a set of
§ ordinary web pages

§ pages with input forms (java script)

§ execution scripts (driven by forms pages.)

§ Users of a notebook create sessions
§ A session represents an application execution.

§ Including parameter settings and results.

§ A session can be revisited, modified and run as a new
session.

portal server

Notebook
servlets

Portal
services

Notebook
database

NBook

Session 1 Session 2 Session 3

24

Creating an application portal

§ Start with existing notebook
§ set of pages, figures, etc

§ Create a session
§ a copy of the notebook

§ Edit and run execution scripts
§ add pages to session

§ Session saved as new notebook

p1 p2 p3

myScience

p1 p2 p3

myScience-session-1

p1 p2 p3

myScience-session-1

s1

A Component Based Services Architecture
for Building Distributed Applicatioins 5

25

Example.

§ A notebook that launches two applications and
returns results.

Intro Page

here is stuff
about the cool

science
1

Config App 1
here are some
forms: x = ?

y=?
OK
2

Config App 2
app 2 forms
alpha = ?
gamma=?

OK
3

launch
launch app1

and app2
grab results

OK
4

Results Page

tables
and figures
and links

Script 1
grab x and y
stage in file
for App 1.

Script 2
grab alpha
and gamma.
stage in file
for App 2.

Script 3
launch 1&2
connect out
of 1 to in of
2. Grab results
make new page

26

Scripting in Notebook

§ Notebook has built-in interactive script/forms editor
§ Interactive forms layout and testing.

§ Allows notebook chapter designer :
§ semi-interactive design of application scripts.

§ Easy-to-use forms editor

§ all from standard web browser (no plug-ins)

§ Scripting language is JPython
§ gives full access to CCAT, COG, GDK class libraries

§ powerful language with growing popularity in scientific
computing.

27

Application Components

§ Applications run as a stand alone
programs
§ reads and writes files
§ may send and receive “event”

messages.

§ Applications can have an
Application Proxy.
§ Provides a component interface to

app.
§ Provides sequencing control for IO

staging

portal server
(script)

App proxy

Fortran/C
app

control application
events

eventscontrol

28

Component Proxy/Manager Model

§ Application may be untouchable (no source code, etc)

§ Idea is to make it appear as a fully-enabled component

§ Create a proxy that manages app and framework comm.

Component
Proxy

Fortran Application
(a.out)

ENotebook
OutFile1InputFilesInputFilesInputFiles

exec

Start running

29

Component Proxy/Manager Model

§ Proxy is responsible for
§ making sure all input files are ready before running
§ event notifications to ENotebook and other interested

parties
§ publishing file locations, and moving files

§ When output file of one component is needed as input file of
another, receiver is responsible for file move.

§ Component proxy has user’s Globus certificate of authority
and can use gsiftp, gsissh for file transfers, app execution.

§ Proxy can (on advice of resource recommender) actually run
application on a different machine

30

XML encoded application metadata

App proxy

Fortran/C
app

control application
events

Component XML
port type info

- control messages
execution env.
- path to binary

portal server
(script)

To tell portal server how to launch
a proxy

Application XML
File names and
types
application launch
event detials

To tell proxy about application
details

Input
file

Temp
file

Output
file

A Component Based Services Architecture
for Building Distributed Applicatioins 6

31

Sample Script Fragment

import ccat
xmlPath = '/u/bramley/extreme/ccat/XML/’
componentProxy =

ccat.createComponent (xmlPath + ’BasicInfoProxy')

ccat.setMachineName (componentProxy,
'bread.extreme.indiana.edu')

ccat.setCreationMechanism (componentProxy, 'gram')

ccat.createInstance (componentProxy)

ccat.execute (componentProxy)
32

File Management

§ Application developer provides a description of
each file the application reads or writes:

<filename>matstruct.gif</filename> Filename the app “opens”

<direction>output</direction> Input, output, both

<termination>total</termination> Can be streamed or not

<format>binary</format> ASCII, binary, or other

<mimetype>image/gif</mimetype> Optional; provide if known

<description>This is an image of the sparsity structure of the matrix

being analyzed; it is part of the overall matstruct.html file

</description>

33

File Management

§ Notebook developer provides additional information for each
file, things which are outside the scope of individual
application
§ Whether file is to be locally archived, remotely archived, or is volatile
§ Whether file should be cleaned up after/between runs
§ What kind of compression should be used (if any)
§ Naming convention for archived files

§ basename.machine.timestamp.suffix

§ Location for archived files (machine, directory or some URN)

§ Notebook must provide user with easy, coherent picture of the
files

§ Notebook must also provide for additional information
sources: user notes, etc.

34

Overall Process (one component)

Portal
Server

Notebook Python script:
PetSc = CCA.createInstance(PetSc)

Notebook script specifies creating component

35

Overall Process (one component)

PetSc
Proxy

Portal
Server

Proxy starts up on remote machine

Notebook Python script:
PetSc = CCA.createInstance(PetSc)

36

Overall Process (one component)

PetSc
Proxy

Portal
Server

Server send application configuration data to proxy.
Proxy reads XML descriptions for app files from app developer

Notebook Python script:
CCA.execute(PetSc)

A Component Based Services Architecture
for Building Distributed Applicatioins 7

37

Overall Process (one component)

PetSc
Proxy

Portal
server

Proxy reads additional file info from ENotebook
(archival nature, get/store locations)

Notebook Python script:
FileData = CCA.invoke(“PetSc”, “FileInfo”, “…”)

38

Overall Process (one component)

PetSc
Proxy

Portal
Server

Proxy returns file descriptions to ENotebook, so
page detailing experiment data can be created

Notebook Python script:
FileData = CCA.invoke(“PetSc”, “FileInfo”, “…”)

39

Overall Process (one component)

PetSc
Proxy

Portal
Server

Script starts component running; proxy checks for
necessary input files and imports them if needed

Start running

InputFilesInputFilesInputFiles

?

Notebook Python script:
CCA.invoke(“PetSc”, “Run”)

40

Overall Process (one component)

PetSc
Proxy

PetSc Executable

Portal
Server

OutFile1InputFilesInputFilesInputFiles

exec

Proxy starts application code, which reads/writes files

41

Overall Process (one component)

PetSc
Proxy

Portal
Server

OutFile1InputFilesInputFilesInputFiles

App completes, proxy moves specified files to archive(s)
and deletes any that require cleanup

gsincftp

42

Overall Process (one component)

ENotebook

ENotebook builds page detailing files, locations, URLs
as the experiment proceeds

• Fluxes /home/dude/fluxes.dat
• Material properties hpss:/EOS.bin
• Deposition history http:sil.ncsa.uiuc.edu:CE/dh.gif

A Component Based Services Architecture
for Building Distributed Applicatioins 8

43

Multiple Components

§ Script view: PetSc.flows.connect(MonteCarlo.fluxes)

§ Creates a connection between output port on PetSc proxy and
input port on MonteCarlo proxy.

§ Actual data transfer is via files and secure transfer.

PetSc
Proxy

MC
Proxy

PetSc output
file flows

= CCAT portGimme the file

44

Multiple Components

§ Script view: PetSc.flows.connect(MonteCarlo.fluxes)

§ Creates a connection between output port on PetSc proxy and
input port on MonteCarlo proxy.

§ Actual data transfer is via files and secure transfer.

PetSc
Proxy

MC
Proxy

PetSc output
file flows

= CCAT port
File ready at /home/dude/flows

45

Multiple Components

§ Script view: PetSc.flows.connect(MonteCarlo.fluxes)

§ Creates a connection between output port on PetSc proxy and
input port on MonteCarlo proxy.

§ Actual data transfer is via files and secure transfer.

PetSc
Proxy

MC
Proxy

MonteCarlo input
file fluxes

PetSc output
file flows

= CCAT port

gsiftp

46

Summary

§ Component based system, emphasizing
§ multiple communication protocols

§ minimal set of requirements to become a component

§ framework services provided as pluggable components

§ Portals interface
§ Roaming access to Grid resources

§ Support for licensed or immobile apps via component
proxies

§ Goal is to provide lab notebook combined with secure
application launcher/manager, in a Web interface

