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Outline

§ Trends in CS&E

§ Component frameworks

§ Brief history

§ Features of CCAT

§ Recent developments in CCAT
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Trends in CS&E

§ Size, complexity, sophistication of apps and libraries is 
growing exponentially

§ Scale and degree of heterogenity is growing
§ Languages
§ Real-time instrument access
§ Data bases, data mining engines, integrated visualization

§ Collaborative, multidisciplinary teams
§ Trend to both OSS and secret/secure codes and data
§ Severe personnel shortage
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Component Features

§ Now standard paradigm in industry and commerce
§ COM/DCOM,  Java Beans, Enterprise Java Beans, Corba 

§ Modules distributed across networks

§ Well-defined interfaces, independent of language

§ Composable dynamically without recompilation to create 
applications

§ Flock of CSE component systems being developed:
§ SciRun (Utah), WebFlow (Fox), NetSolve (UTK), Legion (UVA), and 

many national lab efforts.

§ Need not be software ...
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X-Ray Crystallography Lab

6

Why not use CORBA/DCOM/Beans ?

§ Promptness: we needed a component framework four 
years ago

§ Efficiency: a ruling principle of CS&E research apps

§ Parallelism: need to connect components consisting of 
incommensurate numbers of MPI processes

§ Simplicity: target the minimal specs possible

§ Nevertheless it is important to interoperate with 
commercial systems
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CCAT History

§ 1995: Linear System Analyzer: used Nexus + 
HPC++ for run-time system and data flow model

§ 1996-1997 Component Architecture Toolkit: more 
generic in application areas; still data flow

§ 1998: Industrial finite element SC98 demo, with 
multiple CAVEs/I-Desks for visualization.

§ 1998: DoE Common Component Architecture 
Forum specifications released - start of CCAT.
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CCAT Features 

§ Service-based architecture - where each service is a 
CCA-compliant component

§ Multiple user interaction systems (including new 
“Portals” effort)

§ Multiprotocol communications between components
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Common Component Architecture 
(CCA) Ports

§ Ports: the public interfaces that a component uses or provides.

§ Framework defines a mechanism to link uses ports of one component 
to the provides ports of another.

§ CCA only specifies port services: register, access, get info about 
them.

Uses Port is a call site
for an interface to an
external component

Component A Component B

Provides Port - an interface
to a service provided by that
component. 10

CCAT Framework Requirements

§ A framework must provide other services:
§ Directory Service

§ Locate suitable components

§ Registry Service
§ Locate instantiations of components

§ Creation Service
§ Instantiate a component 

§ Connection Service
§ Connect the ports of two running component instances

§ Event Service
§ Publish/subscribe messaging between services and components.
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Services as Components

§ Each service is a pseudo-component (needs special 
hooks into CCA core services, bootstrapping)

§ E.g.: connection service has port with four methods
§ Connect two typed ports

§ Disconnect

§ ExportAs lets a component export ports of another, so 
that connection seems to be to first component

§ ProvideTo lets a component provide a port to another 
without registering for the whole CCAT app to access
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CCAT Framework
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Services as Components

§ User interaction system is also modular
§ Custom built GUI
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Services as Components

§ User interaction system is also modular
§ Custom built GUI

§ Python script
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Python Example

import ccat

stringDump = ccat.createComponent(‘StringDump’)
printer = ccat.createComponent(‘Printer’)

ccat.setCreationMechanism(stringDump, ‘gram’)
ccat.setCreationMechanism(printer, ‘gram’)

ccat.createInstance(printer)
ccat.createInstance(stringDump)

ccat.connectPorts(stringDump, ‘outputString’,
printer, ‘inputString’)
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Services as Components

§ User interaction system is also modular
§ Custom built GUI

§ Python script

§ Web-based interface
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Composer is a 
CCA component 
instantiated as a 
Java servlet.
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Services as Components

§ User interaction system is also modular
§ Custom built GUI

§ Python script

§ Web-based interface

§ Matlab

§ Java or C++ direct access

§ Users can dynamically choose among these during 
running application, or use multiple ones at once.
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Multiprotocol Communications

§ CS&E components involve large data messages

§ Need efficient, robust, universal mechanisms

§ CCAT is evolving to use
§ Nexus 

§ HPC++ remote method invocation

§ QoS network access

§ SOAP (HTTP + XML)

§ Protocol will be dynamically negotiated, on a per-
message basis if desired.  
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Specification Fragment: Defining 
an Interface in XML 

<port-type>

<type-name>SparseLinearSystem_idl</type-name>

<method-list> 

<method>

<method-name>sendSparseLinearSystem</method-name>

<method-param-list>

<param-info>

<param-name>sls</param-name>

<param-dir>in</param-dir>

<param-type>SparseLinearSystem</param type>

</param-info>

</method-param-list>

<return-value>int</return-value>

</method>

</method-list>

</port-type>
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Science Portals Project

§ CCAT used as engine for secure Web-based access 
to computing resources
§ Browser based “Notebook database”

§ Script Editor and Execution Environment

§ Component Proxies and component linking

§ File Management Issues
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Portal Notebook

§ Notebook is a set of
§ ordinary web pages

§ pages with input forms (java script) 

§ execution scripts (driven by forms pages.)

§ Users of a notebook create sessions
§ A session represents an application execution.  

§ Including parameter settings and results.

§ A session can be revisited, modified and run as a new 
session.

portal server

Notebook
servlets

Portal
services

Notebook
database

NBook

Session 1 Session 2 Session 3
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Creating an application portal

§ Start with existing notebook
§ set of pages, figures, etc

§ Create a session
§ a copy of the notebook

§ Edit and run execution scripts
§ add pages to session

§ Session saved as new notebook

p1 p2 p3

myScience

p1 p2 p3

myScience-session-1

p1 p2 p3

myScience-session-1

s1
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Example.

§ A notebook that launches two applications and 
returns results.

Intro Page

here is stuff
about the cool

science
1

Config App 1
here are some
forms: x = ?

y=?
OK
2

Config App 2
app 2 forms
alpha = ?
gamma=?

OK
3

launch
launch app1

and app2
grab results

OK
4

Results Page

tables
and figures
and links

Script 1
grab x and y
stage in file
for App 1.

Script 2
grab alpha 
and gamma.
stage in file
for App 2.

Script 3
launch 1&2
connect out
of 1 to in of
2. Grab results
make new page
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Scripting in Notebook

§ Notebook has built-in interactive script/forms editor
§ Interactive forms layout and testing.

§ Allows notebook chapter designer :
§ semi-interactive design of application scripts.

§ Easy-to-use forms editor

§ all from standard web browser (no plug-ins)

§ Scripting language is JPython
§ gives full access to CCAT,  COG, GDK class libraries

§ powerful language with growing popularity in scientific 
computing.
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Application Components

§ Applications run as a stand alone 
programs
§ reads and writes files
§ may send and receive “event” 

messages.

§ Applications can have an 
Application Proxy.
§ Provides a component interface to 

app. 
§ Provides sequencing control for IO 

staging

portal server
(script)

App proxy

Fortran/C
app

control application
events

eventscontrol
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Component Proxy/Manager Model

§ Application may be untouchable (no source code, etc)

§ Idea is to make it appear as a fully-enabled component

§ Create a proxy that manages app and framework comm.

Component
Proxy

Fortran Application
(a.out)

ENotebook
OutFile1InputFilesInputFilesInputFiles

exec

Start running
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Component Proxy/Manager Model

§ Proxy is responsible for 
§ making sure all input files are ready before running
§ event notifications to ENotebook and other interested 

parties
§ publishing file locations, and moving files

§ When output file of one component is needed as input file of 
another, receiver is responsible for file move.

§ Component proxy has user’s Globus certificate of authority 
and can use gsiftp, gsissh for file transfers, app execution.

§ Proxy can (on advice of resource recommender) actually run 
application on a different machine
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XML encoded application metadata

App proxy

Fortran/C
app

control application
events

Component XML
port  type info

- control messages
execution env.
- path to binary

portal server
(script)

To tell portal server how to launch
a proxy

Application XML
File names and 
types
application launch
event detials

To tell proxy about application
details

Input
file

Temp
file

Output
file
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Sample Script Fragment

import ccat
xmlPath = '/u/bramley/extreme/ccat/XML/’
componentProxy = 

ccat.createComponent (xmlPath + ’BasicInfoProxy')

ccat.setMachineName (componentProxy, 
'bread.extreme.indiana.edu')

ccat.setCreationMechanism (componentProxy, 'gram')

ccat.createInstance (componentProxy)

ccat.execute (componentProxy)
32

File Management 

§ Application developer provides a description of 
each file the application reads or writes:

<filename>matstruct.gif</filename>  Filename the app “opens”

<direction>output</direction>            Input, output, both

<termination>total</termination>       Can be streamed or not

<format>binary</format>                    ASCII, binary, or other

<mimetype>image/gif</mimetype>    Optional; provide if known

<description>This is an image of the sparsity structure of the matrix

being analyzed; it is part of the overall matstruct.html file

</description>
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File Management 

§ Notebook developer provides additional information for each 
file, things which are outside the scope of individual 
application
§ Whether file is to be locally archived, remotely archived, or is volatile
§ Whether file should be cleaned up after/between runs
§ What kind of compression should be used (if any)
§ Naming convention for archived files

§ basename.machine.timestamp.suffix

§ Location for archived files (machine, directory or some URN)

§ Notebook must provide user with easy, coherent picture of the 
files

§ Notebook must also provide for additional information 
sources: user notes, etc.
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Overall Process (one component)

Portal
Server

Notebook Python script:
PetSc = CCA.createInstance(PetSc)

Notebook script specifies creating component
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Overall Process (one component)

PetSc
Proxy

Portal
Server

Proxy starts up on remote machine

Notebook Python script:
PetSc = CCA.createInstance(PetSc)
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Overall Process (one component)

PetSc
Proxy

Portal
Server

Server send application configuration data to proxy.
Proxy reads XML descriptions for app files from app developer

Notebook Python script:
CCA.execute(PetSc)
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Overall Process (one component)

PetSc
Proxy

Portal
server

Proxy reads additional file info from ENotebook
(archival nature, get/store locations)

Notebook Python script:
FileData = CCA.invoke(“PetSc”, “FileInfo”, “…”)
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Overall Process (one component)

PetSc
Proxy

Portal
Server

Proxy returns file descriptions to ENotebook, so
page detailing experiment data can be created

Notebook Python script:
FileData = CCA.invoke(“PetSc”, “FileInfo”, “…”)
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Overall Process (one component)

PetSc
Proxy

Portal
Server

Script starts component running; proxy checks for 
necessary input files and imports them if needed

Start running

InputFilesInputFilesInputFiles

?

Notebook Python script:
CCA.invoke(“PetSc”, “Run”)
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Overall Process (one component)

PetSc
Proxy

PetSc Executable

Portal
Server

OutFile1InputFilesInputFilesInputFiles

exec

Proxy starts application code, which reads/writes files
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Overall Process (one component)

PetSc
Proxy

Portal
Server

OutFile1InputFilesInputFilesInputFiles

App completes, proxy moves specified files to archive(s)
and deletes any that require cleanup

gsincftp
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Overall Process (one component)

ENotebook

ENotebook builds page detailing files, locations, URLs
as the experiment proceeds

• Fluxes  /home/dude/fluxes.dat
• Material properties hpss:/EOS.bin
• Deposition history  http:sil.ncsa.uiuc.edu:CE/dh.gif
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Multiple Components

§ Script view: PetSc.flows.connect(MonteCarlo.fluxes)

§ Creates a connection between output port on PetSc proxy and 
input port on MonteCarlo proxy.

§ Actual data transfer is via files and secure transfer.

PetSc
Proxy

MC
Proxy

PetSc output
file flows

= CCAT portGimme the file
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Multiple Components

§ Script view: PetSc.flows.connect(MonteCarlo.fluxes) 

§ Creates a connection between output port on PetSc proxy and 
input port on MonteCarlo proxy.

§ Actual data transfer is via files and secure transfer.

PetSc
Proxy

MC
Proxy

PetSc output
file flows

= CCAT port
File ready at /home/dude/flows
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Multiple Components

§ Script view: PetSc.flows.connect(MonteCarlo.fluxes)

§ Creates a connection between output port on PetSc proxy and 
input port on MonteCarlo proxy.

§ Actual data transfer is via files and secure transfer.

PetSc
Proxy

MC
Proxy

MonteCarlo input
file fluxes

PetSc output
file flows

= CCAT port

gsiftp
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Summary

§ Component based system, emphasizing
§ multiple communication protocols

§ minimal set of requirements to become a component

§ framework services provided as pluggable components

§ Portals interface
§ Roaming access to Grid resources

§ Support for licensed or immobile apps via component 
proxies

§ Goal is to provide lab notebook combined with secure 
application launcher/manager, in a Web interface


