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A Grid Programming Primer

1. Abstract

A grid computing environment is inherently parallel,
distributed,heterogeneousand dynamic,both in termsof
the resourcesinvolved and their performance. Further-
more,grid applicationswill want to dynamicallyandflexi-
bly composeresourcesandservicesacrossthatdynamicen-
vironment.While it maybepossibleto build grid applica-
tionsusingestablishedprogrammingtools,they arenotpar-
ticularly well-suitedto effectively manageflexible compo-
sition or dealwith heterogeneoushierarchiesof machines,
dataandnetworkswith heterogeneousperformance.Hence,
this paperinvestigateswhatpropertiesandcapabilitiesgrid
programmingtoolsshouldpossessto supportnot only effi-
cient grid codes,but alsotheir effectivedevelopment. The
requiredpropertiesandcapabilitiesaresystematicallycon-
sideredandthencurrentprogrammingparadigmsandtools
aresurveyed,examiningtheir suitability for grid program-
ming. Clearly no onetool will addressall requirementsin
all situations. However, paradigmsand tools that can in-
corporateandprovide the widestpossiblesupportfor grid
programmingwill cometo dominant.Acrossall identified
grid programmingissues,suggestionsare madefor focus
areasin which further work is most likely to yield useful
results.
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2. Intr oduction

Grid programmingwill requirecapabilitiesandproper-
tiesbeyondthatof simplesequentialprogrammingor even
parallelanddistributedprogramming.Besidesorchestrat-
ing simple operationsover private datastructures,or or-
chestratingmultiple operationsover sharedor distributed
datastructures,a grid programmerwill have to managea
computationin an environmentthat is typically heteroge-
neousanddynamicin compositionwith a deepeningmem-
ory andbandwidth/latency hierarchy. Besidessimply op-
eratingover datastructures,a grid programmercould also
haveto orchestratetheinteractionbetweenremoteservices,
datasourcesandhardwareresources.While it maybepos-
sible to build grid applicationswith currentprogramming
tools, thereis a growing consensusthat currenttools and
languagesareinsufficient to supportthe effective develop-
mentof efficientgrid codes.

Grid applicationswill tendto beheterogeneousanddy-
namic, i.e., they will run on different typesof resources
whoseconfigurationmay changeduring run-time. These
dynamicconfigurationscould be motivatedby changesin
the environment, e.g., performancechangesor hardware
failures,or by the needto flexible composevirtual orga-
nizations[34] from any availablegrid resources.Regard-
lessof their cause,cana programmingmodelor tool give
thoseheterogeneousresourcesa common“look-and-feel”
to theprogrammer;hiding their differenceswhile allowing
theprogrammerexplicit controlover eachresourcetype if
necessary?If theproperabstractionis used,cansuchtrans-
parency beprovidedby therun-timesystem?

Gridswill alsobeusedfor large-scale,high-performance
computing.Obtaininghigh-performancerequiresa balance
of computationandcommunicationamongall resourcesin-
volved. Currently this is doneby managingcomputation,
communicationanddatalocality usingmessage-passingor
remotemethodinvocationsincethey requirethe program-
mer to beawareof the marshallingof argumentsandtheir
transferfrom sourceto destination. To achieve petaflop
rateson tightly or looselycoupledgrid clustersof gigaflop
processors,however, applicationswill have to allow ex-
tremely large granularityor produceover ������� -way par-
allelismsuchthathigh latenciescanbe tolerated.In some

cases,this type of parallelism,andthe performancedeliv-
eredby it in a heterogenousenvironment,will bemanage-
able by hand-codedapplications. In general,however, it
will not be. Hence,what programmingmodels,abstrac-
tions,tools,or methodologiescanbeusedto reducethebur-
den(or even enablethe managementof) massive amounts
of parallelismandmaintainingperformancein a dynamic,
heterogeneousenvironment?

In light of theseissues,we mustclearly identify where
currentprogrammingtechnologyis lacking,whatnew capa-
bilities arerequiredandwhetherthey arebestimplemented
at the languagelevel, at the tool level, or in the run-time
system.Hence,thispaperendeavorsto identifyandinvesti-
gateprogrammingmethodologiesthat supporttheeffective
developmentof algorithmsand codesthat performwell in
grid environments.Theterm“programmingmethodology”
is usedheresincewearenot just consideringprogramming
languages.A programmingmethodologyor modelcanbe
presentin many differentforms,e.g.,a language,a library
API, or a tool with extensiblefunctionality. “Effective de-
velopment”meansthatany suchmethodologyshouldfacil-
itate the entiresoftwarelifecycle: design,implementation,
debugging,operation,maintainence,etc. Hence,success-
ful programmingmethodologiesshouldfacilitatetheeffec-
tive useof all mannerof tools, e.g.,compilers,debuggers,
performancemonitors,etc. “Perform well” is intendedto
have the broadestpossibleinterpretation. In a grid, “per-
form well” canmeannot only the effective use(high uti-
lization) of high-performanceresources,but alsothe flexi-
blecompositionandmanagementof resources.

First, we list desirablepropertiesfor grid programming.
Next, we review programmingmodels fundamentalsfor
parallelanddistributedcomputingprior to discussingissues
for grid programming.With theseissuesin mind, we then
survey andevaluateexisting programmingtools in Section
4 anddiscussfocusareasfor furtherresearchanddevelop-
mentin Section5. Conclusionsaregivenin Section6.

3. Propertiesfor Grid Programming Models

Thereareseveralgeneralpropertiesthataredesirablefor
all programmingmodels. Propertiesfor parallelprogram-
ming modelshavealsobeendiscussed[64]. Grid program-
ming modelsinherit all of these. The grid environment,
however, will shift the emphasison thesepropertiesdra-
maticallyto a degreenot seenbefore.

� Useability. Grid programmingtools shouldsupporta
wide rangeof programmingconceptsandparadigms,
e.g., simple desktopcomputingto large-scale,data-
intensive computing,distributedclient-server applica-
tionsand“systems”code.Thereshouldbea low bar-
rier to acceptance, i.e., new tools shouldnot require
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a drasticallydifferent approachto codebuilding yet
shouldoffer a“developmentpath” thatwill build more
sophisticatedconceptson previoussuccesses.

� Dynamic, HeterogeneousConfigurations. Grid ap-
plications will typically run in a heterogeneousen-
vironment that is changing, either due to com-
peting resourcedemandsor resourcefailures. A
grid programmershould be able to ignore architec-
tural/configurationdetails when possibleyet control
thosesamedetailswhen necessary. A grid program
may want to changeconfigurationbasedon available
resources.Thiscouldentailprocessor datamigration.

� Portability. In muchthe sameway that currenthigh-
level languagesallowed codesto be processorinde-
pendent,grid programmingmodelsshouldallow grid
codesgreatersoftwareportability. Portability, or ar-
chitecture independence, is a necessaryprerequisite
for coping with dynamic, heterogeneousconfigura-
tions.

� Interoperability. The notion of an open and exten-
sible grid architecture implies a distributed environ-
mentthatmaysupportprotocols,services,application
programminginterface,andsoftwaredevelopmentkits
[34]. Any of theseprotocols,services,interfaces,or
kits, maypresentaprogrammingmodelthatshouldbe
interoperablewhereappropriate.

� Reliableperformance. Most grid userswill want their
applicationsto exhibit reliableperformancebehavior.
Besidesqualityof serviceissues,ausershouldbeable
to know the “cost” of a programmingconstructon a
given resourceconfiguration. While someusersmay
require an actual deterministicperformancemodel,
it may be more reasonableto expect reliable perfor-
manceat least within some statistical bound. Be-
sidesproviding reliable performance,grid program-
ming toolsshouldalsopromoteperformanceportabil-
ity asmuchaspossible.

� Reliability and Fault-tolerance. Grid user must be
ableto checkrun-timefaultsof communicationand/or
computingresourcesandprovide,attheprogramlevel,
actionsto recoveror reactto faults.At thesametime,
toolscouldassureaminimumlevel of reliablecompu-
tationin thepresenceof faultsimplementingrun-time
mechanismsthataddsomeform of reliability of oper-
ations.

� Securityand privacy. Grid codeswill commonlyrun
acrossmultipleadminstrativedomainsusingsharedre-
sourcessuchasnetworks. Hence,it is imperative that
securityandprivacy be integral to grid programming
models.

4. Programming Model Fundamentals

Thesedesireablepropertieswill be temperedby both
currentprogrammingpracticesand the grid environment.
Thelasttwentyyearsof researchanddevelopmentin thear-
easof parallelanddistributedprogramminganddistributed
systemdesignhasproduceda bodyof knowledgethatwas
drivenby boththemostfeasibleandeffectivehardwarear-
chitecturesand by the desireto be able to build systems
that aremore “well-behaved” with propertiessuchas im-
provedmaintainabilityandreusability. Herewe provide a
brief survey of thefundamentalsof programmingmodelsas
they applyto parallelanddistributedprogramming.

4.1 Accessto State

Programmingrequires the algorithmic or systematic
managementof datawhich we arecalling accessto state.
On a uniprocessor, it is typical andconvenientto think of
thedataasbeing“in thesameplace”asthecodesuchthat
analgorithm’sor system’sperformanceonly dependsonthe
structureof thealgorithmor system,e.g.,QuickSorthaving
acomplexity of O(nlogn). Of course,multilevel cachesand
memorylayoutcanhave profoundeffectson performance,
especiallyin scientificapplicationswith very largedatasets
on vectormachines.

In parallelanddistributedgrid environments,the issue
of accessingstateis evenmorecomplicatedandaffectsan
application’s behavior to anevengreaterextent. Accessto
stateis managedin two basicways: shared data abstrac-
tions and shared-nothingenvironments. We also discuss
scopingas the mechanismfor managingthe visibility of
state.

� Shared data spaceabstractions. The most common
shareddataspaceabstractionis thatof shared-memory
actuallysupportedin hardware.Of course,shareddata
spacescanbeprovidedasanabstractionon top of dis-
tributedmemory. A globally sharedaddressspacecan
be provided by virtual or distributedshared memory
(DSM) systems. A globally sharednamespacecan
providedby languagessuchasHigh-PerformanceFor-
tran(HPF).

� SharedNothing. Parallelcomputingcanalsobestruc-
tured by assumingthat nothing is sharedbut that a
well-definedmethodfor copyingdatabetweentwo or
moredisjointprocessesexists.This is calledmessage-
passing. Typically thereis amatchedpairof processes
calledthesenderandthe receiverthatexchangemes-
sageseithersynchronouslyor asynchronously, i.e., the
senderor receiver blocksuntil a particularmessageis
received or sent, respectively. The Message-Passing
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Interface(MPI) is themostcommonlyusedmessage-
passingtool. One-sidedmessage-passingis alsopossi-
blewhereamessagesendoperationdoesnothaveto be
matchedwith anexplicit receiveoperation,i.e., there-
ceiver is always“listening” for incomingmessagesof
any kind. Examplesof this includeremoteprocedure
calls(RPC),remotemethodinvocations(RMI), remote
servicerequests(RSR),andactivemessages(AM).

� Scope. For both shareddataandsharednothing ab-
stractions,the conceptof scopemust be addressed.
For a shareddataabstraction,who can reador write
which data?For a sharednothingenvironment,which
receiverscan a senderaddressmessagesto? Hence,
scopeis an importanttool for structuringandcontrol-
ling grid computationsandservices.Scopeis typically
associatedwith anamespacethatcanbe local (known
to a few) or global (known to all).

4.2 DependencyManagement

The useof datain a parallelenvironmentmustalsobe
managedto enforcedependencies, i.e., when the dataare
valid andavailable,or whenthe storagespacefor the data
is available.Enforcingdependenciesrequiressomeform of
synchronizationof which therearetwo majorcategories.

� Control-oriented synchronization is basedon opera-
tions that explicitly managethe flow of control in a
code,e.g.,barriers,mutexs, conditionvariables,par-
block, parfor, etc. All of thesemechanismshave lit-
tle to do with the applicationproblem itself but are
addedto observe andenforceoneor more,and typi-
cally a block of many, datadependencies.For exam-
ple, one barrier may be usedto enforcemany loop-
carrieddependencies.We notethatblockingmessage
sends/receivesis a form of controlsynchronization.

� Data-orientedsynchronization is associatedwith ac-
tual data dependenciesand typically resultsin finer
grainedsynchronizationwith lessunnecessaryblock-
ing. Data-orientedsynchronizationcan be imple-
mentedas single-assignmentvariablesor full/empty
variables. We note that blocking on data to be re-
ceived in a messageis a form of data synchroniza-
tion. Data-orientedsynchronizationis, of course,used
in functionallanguageswherescopingrulescanelimi-
nateside-effectsandraceconditionsat thecostof high
dynamicallocationandgarbagecollectionoverheads,
high dynamicschedulingoverheads,andpoordatalo-
cality.

4.3 ProcessManagement

In additionto managingaccessto dataandthedependen-
ciesamongthem,thecreationandterminationof processes
or tasksmustalsobe managed.On a uniprocessor, this is
doneby the operatingsystemandcanbe managedfrom a
shellor underprogramcontrol.Thisis alsothecaseonaho-
mogeneousparallelmachinebut richercontrolmechanisms
mustbeavailableto createandterminatesetsof relatedpro-
cesseson partsor all of themachine.In a distributedenvi-
ronment,suchasa grid, theissueis furthercomplicatedby
heterogeneity. As with dependency management,thereare
two majorcategoriesfor processmanagement.

� Task parallel – explicit managementof parallelism.
Like control-oriented synchronization, task paral-
lelismis basedonexplicit operationsfor managingthe
creationandterminationof parallelthreadsof control,
e.g., fork/join, parblock,RPC,etc. Thesethreadsof
controlcanbeimplementedasheavyweightprocesses,
lightweightthreads,or evenhardwarethreads.

� Data parallel – implicit managementof parallelism.
Dataparallelismis associatedwith theapplicationof a
functionto structureddata,e.g,arrayoperators,paral-
lel objects,etc. We notethat theseimplicitly manage
thecreationandterminationof parallelthreadsof con-
trol.

4.4 ResourceManagement

The scopeof resourcemanagementwill be drastically
differentin a grid thanany othersinglemachine.We note
that in a singlemachine,a processcanbeconsidereda re-
source,in addition to memory, disk, andother immediate
hardware devices. In a grid, however, the scopeof re-
sourcesthat are manageablefrom a single codeexplodes
intoanessentiallyopen-endedenvironment.Therearemore
machines,processes,storagedevices, networks, services,
and specializedinstrumentsthat are potentially discover-
ableandavailable. Theseresourceswill be heterogeneous
anddistributedover a wide areaandwill typically beused
asasharedinfrastructure.

Hence,grid programmingmodelsandtoolswill have to
supportnot only the“traditional” operationsof dataaccess,
synchronization,andprocesscontrol, but also the flexible
compositionof grid resources. As we shallsee,established
programmingtoolsaretheleastdevelopedin this area.Not
only mustflexible compositionbe supported,but dataac-
cess,synchronizationandprocesscontrol have to be sup-
portedacrossthosecompositions.While currentprogram-
ming tools, suchas C and sockets, may be sufficient, in
somesense,for building a grid infrastructure,it canhardly
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bearguedthat thesearethebesttools for building grid ap-
plications.

5. Curr ent Tools, Languages, and Envir on-
ments

Having briefly surveyed the fundamentalsof program-
mingmodels,wenow examinethemany specifictools,lan-
guagesandenvironmentsthat have beenbuilt using these
concepts.Many, if not most, of thesesystemshave their
roots in “ordinary” parallel or distributed computingand
are being applied in grid environments,with varying de-
greesof success,becausethey areestablishedprogramming
methodologies.A few of thesesystemswereactuallydevel-
opedconcomitantlywith thenotionof grid computingand,
in fact,mayhave helpeddefinethatnotion. In this section,
wefocusonthoseprogrammingtoolsthatareactuallyavail-
ableandin usetoday. We do,however, mentiona few tools
andlanguagesthat arenot actually in usebut nonetheless
representanimportantsetof capabilities.

5.1 SharedData Abstractions

5.1.1 Global SharedAddr essSpace

Programminglanguagesandtools that fall underthis class
providea globalsharedmemorymodelasa usefulabstrac-
tion for stateaccess,althoughon distributedcomputingar-
chitecturesits implementationis distributed.Thisapproach
is calledvirtual sharedmemoryor distributedsharedmem-
ory (DSM). Theseprogramminglanguagespresenta view
of memoryas if it is shared,but the implementationmay
or may not be. The goal of suchapproachesis to emulate
sharedmemorywell enoughthat thesamenumberof mes-
sagestravel aroundthesystemwhena programexecutesas
wouldhavetraveledif theprogramhadbeenwritten to pass
messagesexplicitly. In otherwords,theemulationof shared
memoryimposesno extramessagetraffic.

Significantexamplesof languagesandtoolsin this class
areTreadMarks,Rthreads,IVY, Munin, andLinda. Some
of them sharesimilar features,others use different ap-
proachesin the implementationof global sharedaddress
space.Treadmarks[5] supportsparallelcomputingon net-
works of computersby providing a global sharedspace
acrossthedifferentmachinesonacluster. TreadMarkspro-
videssharedmemoryasa lineararrayof bytesvia arelaxed
memorymodelcalledreleaseconsistency. The implemen-
tationusesthevirtual memoryhardwareto detectaccesses,
but it usesa multiple-writer protocolto alleviate problems
causedby mismatchesbetweenpagesize andapplication
granularity. Treadmarksprovidesfacilities for processcre-
ationanddestruction,synchronization,andsharedmemory
allocation(for instance,byTmk malloc()is allocatedshared

memory). SystemssuchasIVY andMunin, usethe same
programmingapproachof TreadMarks,but they implement
morestrict consistency models.

Rather than providing the programmerwith a shared
memoryspaceorganizedasa linear arrayof bytes,struc-
turedDSM systemsoffer asharedspaceof objectsor tuples
accessedby properlysynchronizedmethods.Linda [18] is
a well-known languagethatusesthis approach.It is based
on an associative memoryabstractioncalled tuple space.
Lindathreadscommunicatewith eachotheronly by placing
tuplesin andremoving tuplesfrom this sharedassociative
memory. In Linda, tuplespaceis accessedby four actions:
oneto placea tuple in tuplespace,out(T), two to removea
tuplefrom tuplespace,in(T) andrd(T), oneby copying and
theotherdestructively, andonewhich evaluatesits compo-
nentsbeforestoringtheresultsin tuplespace(allowing the
creationof new processes),eval(T). Wheninvoked,theeval
operationcreatesa processto evaluatethe componentsof
thetuplethatit takesasargument.Theefficient implemen-
tation of tuple spacedependson distinguishingtuplesby
sizeandcomponenttypesat compile time, andcompiling
themto messagepassingwhenever thesourceanddestina-
tion canbeuniquelyidentified,andto hashtableswhenthey
cannot.In distributed-memoryimplementations,theuseof
two messagespertuplespaceaccessis claimed,whichis an
acceptableoverhead.

Other modelsthat are basedon global sharedaddress
spaceare basedon threads, such as Pthreads(POSIX
threads)[57] that define low-level primitives to control
accessto sharedaddressspaceor Java threads, imple-
mentedby theThreadclass.An implementationof Pthreads
on shareddistributed memorysystemsis Remotethreads
(Rthreads) [24]. Rthreadssupportssharingof global vari-
ablesaccordingto the Pthreadssemanticson distributed
memory architectures,also composedof heterogeneous
nodes.

Theuseof globalsharedaddressspacemodelsis simple
anddirect becausethey offer a global view of grid mem-
ory resources.Thus their usagemay result in significant
programmingbenefits. The real questionin programming
grid applicationswith thesemodelsis performance,that is
how efficient will be the implementationof DSM in a grid
framework. This strictly dependson theimplementationof
run-timesystemsfor programminglanguagesandtools in
this heterogeneoussetting.

5.1.2 Global Data Space

Programminglanguagesof this category allow usersto de-
fine variablesthatareautomaticallymappedinto themem-
ory of processingelementsthatathigherlevel areseenasa
globalmemoryspace.Whendataaremappedto their pro-
cessingelements,programconstructscanbeusedto express
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paralleloperations.Datathatmustbeprocessedin parallel
aredefinedusingspecifickeywords.Thenthecompilerwill
partition the dataandmapthemonto the differentproces-
sorsof theparallelcomputersoinstructionsthatoperateon
thesedatawill be executedin parallelon differentproces-
sorsthatexecutethesameoperationon differentelements.

Languagesand tool kits that implementa global data
spaceareHPF, OpenMP, andC*. High PerformanceFor-
tranor HPFis alanguagefor programmingcomputationally
intensivescientificapplications[53]. A programmerwrites
theprogramin HPFusingtheSPMDstyleandprovidesin-
formationaboutdesireddatalocality or distribution by an-
notatingthe codewith data-mappingdirectives. An HPF
programis compiledby an architecture-specificcompiler.
Thecompilergeneratestheappropriatecodeoptimizedfor
theselectedarchitecture.Accordingto this approach,HPF
could be usedalsoon shared-memoryparallel computers.
HPF mustbe consideredasa high level parallel language
becausethe programmerdoesnot needto explicitly spec-
ify parallelismandprocess-toprocesscommunication.The
HPFcompilermustbeableto identify codethatcanbeex-
ecutedin parallelandit implementsinter-processcommu-
nication. So HPF offers a higherprogramminglevel with
respectseveral tool kits. On the otherhand,HPFdoesnot
allow the exploitation of control parallelismand in some
cases(e.g.,irregularcomputations)thecompileris not able
to identify all theparallelismthatcanbeexploitedin a par-
allel program,andthusit doesnot generateefficient code
for parallelarchitectures.

OpenMP[58] is a library (applicationprograminterface
or API) thatsupportsparallelprogrammingin sharedmem-
oryparallelcomputersusingtheglobaldataspaceapproach.
OpenMPhasbeendevelopedby aconsortiumof vendorsof
parallel computers(DEC, HP, SGI, Sun, Intel, etc.) with
the aim to have a standardprogramminginterfacefor par-
allel shared-memorymachines(like PVM andMPI for dis-
tributedmemorymachines).TheOpenMPfunctionscanbe
usedinsideFortran,C andC++ programs.They allow for
the parallelexecutionof code(parallel DO loop), the def-
inition of shareddata(SHARED), and synchronizationof
processes.

A standardOpenMPprogrambegins its executionasa
singletask,whena PARALLELconstructis encountered,a
setof processesarespawnedto executethe corresponding
parallel region of code. Eachprocessis assignedwith an
iteration.Whentheexecutionof a parallelregion ends,the
resultsareusedto updatethe dataof the original process,
whichthenresumeitsexecution.Fromthisoperationalway,
couldbededucedthatsupportfor generaltaskparallelismis
not includedin theOpenMPspecification.Moreover, con-
structsor directivesfor datadistribution controlareabsent
from thecurrentreleasesof OpenMP.

The implementationof theseprogrammingmodelson

grids is very hardfor several reasonsmainly relatedto the
different computationalmodel betweenglobal dataspace
computingandgrid. Herewelist threeof thesereasons:(1)
theprogrammingmodelsin this classabstractfrom several
implementationissuesthatarisein a grid computingarchi-
tecture,(2) generallythey imposea tight synchronization
modelamongparallelactivities that cannot be efficiently
implementedon remoteheterogeneousmachines,and,(3)
mostof the applicationsdevelopedwith thesemodelsare
basedon regularpatternsof computationandcommunica-
tion thatdo not matchwell theirregularitiesof grids.

5.1.3 Distrib uted Data Space

In this approachdatasharedamongprocessesthat com-
posea parallelor distributedapplicationcanbedistributed
amongthe memoriesof processors,but thereis no a sin-
gle globalscope.Languagesandtools in this classprovide
mechanismsfor sharingdatathatarephysicallydistributed
on differentprocessingelementsby abstractsharedspaces
thatcanbeaccessedby groupsof processes.Extensionsto
Linda,suchasISETL-Linda,SDL andEase[76], arebased
on distributeddataspaceabstractionfor solving problems
of a global singlememoryspace.Thefirst problemis that
a single,shared,associative memorydoesnot provide any
way to structuretheprocessesthatuseit, sothatLindapro-
gramshave no naturalhigher-level structure. The second
issuesis that, as programsget larger, the lack of scoping
in tuple spacemakes the optimizationsof tuple spaceac-
cessdescribedabove lessandlessefficient. For example,
two setsof communicationsin differentpartsof a program
may, by coincidence,usetupleswith the sametype signa-
ture. They will tend to be implementedin the samehash
tableandtheir accesseswill interfere.Thus,whena Linda
programget larger or it is composedof several processes
the managementof a large tuple spaceandof the parallel
processesbecomesdifficult.

Otherlanguagesbasedon thedistributeddataspaceab-
stractionareOpus,OrcaandEmerald. In particular, Orca
andEmeraldaretwo object-basedlanguagesthatimplement
datasharingby meansof datamanagersanddatareplication
mechanisms.For example,Orcadefinesa setof constructs
for the sharingof dataamongprocesseson differentpro-
cessors[61]. Dataareencapsulatedin data-objectsthatare
instancesof user-defineddatatypes.TheOrcalanguageis
basedon a hierarchicallystructuredsetof abstractions.At
thelowestlevel, reliablebroadcastis thebasicprimitiveso
that writes to a replicatedstructurecanrapidly take effect
throughoutasystem.At thenext levelof abstraction,shared
dataareencapsulatedin passive objectsthatarereplicated
throughoutthesystem.Orcaitself providesanobject-based
languageto createandmanageobjects.Ratherthana strict
coherence,Orca providesserializability: if several opera-
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tionsexecuteconcurrentlyon anobject,they affect theob-
jectasif they wereexecutedserially in someorder.

Systemswith a singleglobal spacearemoreappropri-
atefor grid environmentswith regardsto modelsandlan-
guagesdiscussedin Section4.1.1. Thesemodelscan be
usedto programgrid applicationsascomposedof groups
or clustersof processesthatsharebunchesof dataeachone
composinga differentdatascope.At thesametime, these
modelscansupportshareddatareplicationsandhierarchies
thatcanmatchcomputingandmemoryhierarchiesthatexist
in a grid.

5.1.4 Evaluation

� Usability: Programminglanguagesand tools based
on shareddata abstractionscan be effectively used
for a wide rangeof grid applicationsand they offer
programmingapproachesthat do not drasticallydif-
fer from well know programmingmodels. However,
it is worth to mentionthat theseapproachesare not
particularlysuitedfor massively parallelapplications
ongrids,especiallywhenirregularcommunicationand
computationstructuresareused.

� Dynamic,HeterogeneousConfiguration: Among the
shareddataabstractionmodels,globalsharedaddress
spacemodelsand distributed dataspacemodelscan
dealefficiently with dynamicandheterogeneousset-
tings.Thesemodelsoffer theprogrammerabstractions
that allow she/himto ignorearchitecturedetails. On
the otherhand,global dataspacetools, like HPF and
OpenMP, may suffer from configurationchangesand
heterogeneousresourcesusage.

� Portability: The languagesandtools basedon shared
dataoffer a programmingapproachthat is architec-
ture independenthencecan offer good portability of
code,whereasperformanceportability is not assured
becauseof their high level of abstraction.

� Interoperability: Interoperabilityis an openquestion
in this framework. It needsto be providedbut at the
momentno high-level protocolsareprovided for this
classof languages.This issuecanbe effectively ad-
dressedif implementationsof theselanguageswill be
basedon protocolsusedfor computationalgrids.

� ReliablePerformance: As mentionedabove, perfor-
manceportability is not assuredfor shareddataab-
stractionmodels. The programmingmodelsthey im-
plementis high level, so complex measuresmust be
provided to computeperformancecostson different
architectures.Significantefforts in this areamustbe
performedto definecostmodelsin grid environments.

� Fault Tolerance: Somemodelsin this classprovide
mechanismsto detect faults and to recover. Other
modelsofferaprogrammertechniquesthatcanbeused
to implementfault toleranceof grid applicationsvia
replicationof dataandprocessesor via reliablecom-
municationmechanismssuchasOrca.

� Securityand Privacy: Up to now, this issuehasnot
explicitly addressedin parallelandconcurrentshared
datalanguages.Thusit mustbe investigatedandnew
mechanismsmustbeaddedto thelanguageconstructs
andoperationsto provide securedatasharing,coop-
erationand computationsas other programmingtool
kits, suchasMPICH-G2,do.

5.2 SharedNothing – MessagePassing

5.2.1 Two-SidedCommunication

As previouslystated,onemethodto manageaccessto state
is thesharednothingenvironment. In this modelprocesses
run in disjointaddressspacesandinformationis exchanged
usingmessagepassingof oneform oranother. TheMessage
PassingInterface(MPI) [54] standarddefinesa two-sided
messagepassinglibrary (matchedsendsandreceives)thatis
well-suitedfor sharednothingenvironments. While theex-
plicit parallelizationwith messagepassingis cumbersomeit
givestheuserfull controlandis thusapplicableto problems
wheremoreconvenientsemi-automaticprogrammingmod-
els may fail. It alsotells the programmerexactly wherea
potentialexpensive communicationtakesplace.Thesetwo
points do not hold only for single parallel machines,but
evenmorefor grid computing.

SomeMPI applicationsarebetter-suitedto run in a grid
environmentthanothers.Oneimportantclassof problems
is thosethat are distributed by nature, that is, problems
whosesolutionsareinherentlydistributed.Oneexampleare
remotevisualizationapplicationsin which computationally
intensivework producingvisualizationoutputis performed
at onelocation,perhapsasan MPI applicationrunningon
somemassively parallelprocessor(MPP), and the images
aredisplayedonaremotehigh-end(e.g.,IDesk,CAVE) de-
vice. For suchproblems,all implementationscited below
allow you to useMPI asyourprogrammingmodel.

A secondclassof problemsis thosethataredistributed
bydesign. Hereyoumayhaveaccessto multiplecomputers
andaproblemthatis toobig for any oneof thosecomputers.
Thesecomputers,perhapsatmultiplesitesconnectedacross
aWAN, maybecoupledto form a computationalgrid.

Thereare many implementationsof the MPI standard
including vendor-suppliedimplementationsoptimized for
specificplatforms.If youwantto runyourapplicationsdis-
tributed on different platformsan MPI implementationis
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requiredthattakestheheterogeneityof thenetwork into ac-
count.A grid-enabledlibrary shouldalsobeintegratedinto
agrid computingenvironmentsto takecareof launchingthe
application.Problemsto addressareauthentication,autho-
rization and resourcereservation acrossmultiple comput-
ersonpossiblydifferentadministrativedomains.In thelast
coupleof yearsseveralgroupshave beenworking on these
grid-enabledMPI implementations[28, 32, 35, 42, 48].

MPICH-G2 [32] alleviatestheuserfrom thecumbersome
(andoftenundesirable)taskof learningandexplicitly
following site-specificdetailsby enablingthe userto
launcha multimachineapplicationwith the useof a
singlecommand,mpirun. MPICH-G2 requires,how-
ever, that Globus servicesbe availableon all partici-
patingcomputersto contacteachremotemachine,au-
thenticatetheuseroneach,andinitiateexecution(e.g.,
fork, placeinto queues,etc.).

PACX-MPI [35] is an implementationthat covers the
completeMPI-1 standardwith somesupportof MPI-
2 andthe MPI-2 Journalof Development.It contains
a wide rangeof optimizationsfor grid environments,
e.g. for efficient collectivecommunicationsor derived
datatypes.It supportsTCP, ATM andan SSL based
protocolfor intermachinemessaging.

Stampi [42] implementsmostof MPI-1. It includessup-
port for MPI-IO anddynamicprocessmanagementof
MPI-2. It alsooffers thepossibility to have a flexible
numberof routerprocessesfor inter machinemessag-
ing.

MPI Connect [28] is designedto supportapplications
runningon vendorMPI implementations.By adding
MPI intercommunicatorsit allows to link applica-
tions running on different machines. Unlike other
grid-enabledMPI librarieseachsystemmaintainsits
ownMPI COMM WORLD makingit suitablefor thedis-
tributedbynatureapplicationsdescribedabove.

MagPIe [48] is not a stand-alonelibrary, but a tool to
optimize an existing MPI library for grid environ-
ments. It usesthe MPI profiling interfaceto replace
thecollectivecommunicationcallswith optimizedrou-
tines.Messagedelivery is donewith theexisting grid-
enabledMPI.

LAM is an MPI implementationthat has becomegrid
awarewith thesupportof IMPI [65].

Oncetheapplicationis running,MPI automaticallycon-
verts data in messagessent betweenmachinesof differ-
ent architecturesand supportsmultiprotocol communica-
tion by automaticallyselectingTCPfor intermachinemes-
sagingand(whereavailable)vendor-suppliedMPI for in-
tramachinemessaging.

While MPI addressessomeof the challengesin grid
computing,it hasnotaddressedthemall. Someissues(e.g.,
algorithmdesign,communicationpatterns)canonly bead-
dressedby theMPI applicationdeveloper. Local-andwide-
areanetworksinjectsignificantlyhigherlatenciesandlower
bandwidths,andthereforeMPI applicationsthat expect to
run efficiently in grid environmentsmust be written with
respectto this disparity in communicationpaths.MPI has
theadvantagethatit offersanincrementalapproachto grid
programming.It is possibleto first gainsomeexperiences
andadoptandimprove an existing solutionto the grid. It
alsoprecludestheuserfrom learninga new methodfor in-
teroperating.

To allow andynamicadoptionto grid environmentsthe
applicationsmight needmore informationsthan provided
by MPI. Oneexampleis theexactdistribution of MPI pro-
cesseson multiple machines.This informationcanbe re-
trievedby thesocalledclusterattributesthatarecontained
in the MPI Journalof Development[56] and available in
someimplementations[35].

5.2.2 One-sidedCommunication

While having matchedsend/receive pairs is a naturalcon-
cept, one-sidedcommunicationis also possibleand in-
cludedin MPI-2 [55]. In this case,a sendoperationdoes
not have to have an explicit receiveoperation. Not hav-
ing to matchsendsand receivesmeansthat irregular and
asynchronouscommunicationpatternscanbeeasilyaccom-
modated. To implementone-sidedcommunication,how-
ever, meansthat there is usually an implicit outstanding
receive operationthat listens for any incoming messages,
sincetherearenoremotememoryoperationsbetweenmul-
tiple computers. However, the one-sidedcommunication
semanticsasdefinedby MPI-2 canbe implementedon top
of two-sidedcommunications[13].

A numberof one-sidedcommunicationtoolsexist. One
that supportsmulti-protocol communicationsuitable for
grid environmentsis Nexus [31]. In Nexus terminology,
a remoteservicerequest(RSR)is passedbetweencontexts.
Nexushasbeenusedto built run-timesupportfor languages
to supportparallel and distributed programming,suchas
CompositionalC++ [21], and also MPI. We note that re-
mote procedure call (RPC) or remotemethodinvocation
(RMI) are forms of one-sidedcommunication. Theseare
discussedlater.

5.2.3 Evaluation

� Usability: Message-passingis inherentlyeasyto un-
derstandand,hence,to use.However, it is constrained
by this very simplicity to exchangingbuffers of data
that the applicationmust explicitly interpretand the

lee@aero.org [Page8]



GWD-I (Informational) August2001

methodof interactionmust be explicitly managedat
thesend-receivelevel.

� Dynamic, Heterogeneous Configuration: Most
message-passingsystemsdo not support dynamic,
heterogeneousconfigurations. As in the case of
MPI-1, the communication“universe” is finite and
fixed at start-time. MPI-2 adds dynamic process
creation,but this is only supportedto a limited extend
by thegrid-enabledimplementations.

� Portability: Sincemessage-passingmodelshide pro-
cessorand OS details, portability is typically quite
good. However, the MPI standardallows a number
of implementationdefinedbehaviors which limits the
portability if usedcarelessly.

� Interoperability: Interoperabilityin message-passing
modelsis typically not supportedsincemost models
assumea“closed”communicationworld thatobserves
a singlecommunicationmechanism.Interoperability
shouldbepossible,however, assumingthata common
“wire protocol” is used.IMPI [22] is sucha protocol,
but it doesneithercover thecompleteMPI-1 standard
noraddressMPI-2.

� ReliablePerformance:Thesimplicity of themessage-
passingmodelsmeansthat the performanceon the
end-hostsis usually quite reliable. Congestionand
bottlenecksin the communicationmedium,however,
can drastically alter performance. Therefore QoS
mechanismshave beenintegratedinto someMPI li-
braries[35, 59]. Themajorproblemhereis thatthereis
no commonlydeployedQoSstandardon the network
level.

� Fault Tolerance: Message-passingmodelswereorig-
inally designedfor single-chassisparallel machines
with lower fault rates and not grid environments.
Hence,fault tolerancein message-passingmodelstyp-
ically meansjust checkpointingon thepart of theap-
plication. IntroducingFault Toleranceinto MPI is on-
goingresearch[27]. Evenif it is supportedby theMPI
library it will still be theresponsibilityof theapplica-
tion to recover from failure.

� SecurityandPrivacy: Securityandprivacy usuallyde-
pendon theuseof authenticationandencryptionout-
sideof themessage-passingmodel.

5.3 Object-Oriented Tools

The object conceptis fundamentaland hasbeenused
extensively to structurecodesandsystems.Accordinglya
numberof object-orientedparallelprogramminglanguages

andtoolshave beendesigned[75]. We will briefly discuss
two primaryapproachesto theuseof objects:(1) “global”
objectsthatcanbereferencedfrom anywhere,and(2) dis-
tributedobjectsthatencapsulateadistributedinternalstruc-
ture.

5.3.1 Global Objects

CORBA. The CommonObject RequestBroker Architec-
ture(CORBA) [69] usesa meta-languageinterfaceto man-
ageinteroperabilityamongobjects.Objectmemberaccess
is definedusing the InterfaceDefinition Language(IDL).
An Object RequestBroker (ORB) is usedto provide re-
sourcediscoveryamongclientobjects.

While CORBA can be consideredmiddleware, its pri-
mary goal hasbeento manageinterfacesbetweenobjects.
As such, the primary focus hasbeenon client-server in-
teractionswithin a relatively static resourceenvironment.
With theemphasison flexibly managinginterfaces,imple-
mentstendto requirelayersof softwareon every function
call resultingin performancedegradation.

To enhanceperformancefor thoseapplicationsthat re-
quire it, there is work being done on High-Performance
CORBA [44]. This endeavors to improve theperformance
of CORBA not only by improving ORB performance,but
by enabling“aggregate” processingin clustersor parallel
machines.Therearealsoefforts to make CORBA services
available to grid computations.This is being donein the
CoGKit project[74] to enable“CommodityGrids” through
an interfacelayer that mapsGlobus servicesto a CORBA
API.

Legion. Legion [52] provides objectswith a globally
unique(and opaque)identifier. Using suchan identifier,
an object, and its members,can be referencedfrom any-
where. Being able to generateand dereferenceglobally
uniqueidentifiersrequiresa significantdistributed infras-
tructure.We noteherethatall Legion developmentis now
beingdoneaspartof theAVAKI Corporation[7].

5.3.2 Distrib uted Objects

POOMA/SMARTS. POOMA (Parallel Object-Oriented
MethodsandApplications)[50] is an extendedC++ class
library for data-parallelnumericalapplications. Besides
supportingdata-parallelarrayoperators,array indicescan
be arbitrary user-definedtypesand polymorphic. That is
to say, indexing (mappingthe domain to the range)can
be donedifferently dependingon the type of array being
indexed. This allows arrayswith differentrepresentations
(e.g.,column-major, row-major, sparse)to betransparently
handled.

SMARTS (Shared Memory AsynchronousRunTime
Systems)[73] is a run-time systemdevelopedto support
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POOMA in a novel way. SMARTS provides a macro-
dataflow approachbasedon the dependenciesamongthe
data-paralleloperations. The granularity of computation
is basedon the dynamicdecompositionof the data,rather
than any fixed functional decomposition. SMARTS is
implementedas a Dependency GraphManager/Scheduler
that controls the queuesfor multiple processors. While
SMARTS wasoriginally designedfor shared-memoryma-
chines,work is beingdoneto useit within aclusterof sym-
metric multiprocessors.The asynchronousschedulingin
SMARTS will facilitatetheoverlappingof communication
with computationand,hence,thetoleranceof latency.

5.3.3 Evaluation
� Usability: The object-orientedparadigmis conceptu-

ally easyto usebut the useof OO tools canbecome
mired in the complexity of systemsthat must solve
all problems. Nonetheless,objectsprovide a natural
boundaryto definetheir interfacesandbehaviors.

� Dynamic,HeterogeneousConfiguration: As exempli-
fiedby CORBA, theOOparadigmcanbeusedto man-
agethe interactionbetweenbrokersand applications
suchthatdynamicconfigurationsarepossible.

� Portability: Object-orientedsystemscanprovide ex-
cellentportability sinceencapsulationand the hiding
of implementationdetails is fundamentalto the OO
paradigm.

� Interoperability: Interoperabilitymustbeaddressedby
commonwire protocolssuchasIIOP in the CORBA
world.

� Reliable Performance: In distributed OO systems,
QoSmechanismswill eventuallyhave to beintegrated
to providereliableperformance.

� Fault Tolerance: Fault tolerancemustbe achievedas
in otherenvironmentsby theuseof techniquessuchas
replicationandtransactions.

� Securityand Privacy: Again, the OO paradigmpro-
videsanaturalboundaryonwhichto basesecurityand
privacy models.Authenticationandencryptionarein-
tegral to CORBA ORBs.

5.4 Middlewar e

While thetoolsdevelopedin thelasttwentyyearsof par-
allel and distributed computinghave becomeestablished,
andwill continueto play an importantrole in thedevelop-
ment of grid software, the expandedresourcerichnessof
the grid meansthat middleware will emerge asan equally
importantclassof tools. Middlewarewill typically bebuilt

on top of theestablishedtools to provide additionaluseful
abstractionsto thegrid programmer.

5.4.1 Network EnabledServersand GridRPC

Overview of NES/GridRPC Systems

The Network-Enabled Server (NES) paradigm [20],
which enablesGrid-basedRPC,or GridRPCfor short, is
a goodcandidateasa viableGrid middlewarethatoffersa
simpleyet powerful programmingparadigmfor program-
ming on the Grid. Several systemsthat facilitatewholeor
partsof theparadigmarealreadyin existence,suchasNeos
[23], Netsolve [19], Nimrod/G[1], Ninf [62], andRCS[6],
andwefeel thatpursuitof acommondesignin GridRPC,as
hadbeendonefor MPI for messagepassing,will bringben-
efitsof standardizedprogrammingmodelto theGrid world.
This sectionwill introducethe NES/GridRPCfeaturesas
an effective, simple-touseprogrammingmodel and mid-
dlewarefor theGrid.

Comparedto traditionalRPCsystems,suchasCORBA,
designedfor applicationsthat facilitate non-scientificap-
plications,GridRPCsystemsoffer featuresandcapabilities
that make it easyto programmedium-to coarse-grained,
taskparallelapplicationsthatinvolvehundredsto thousands
or morehigh-performancenodes,eitherconcentratedasa
tightly coupledcluster, or a setof themspreadovera wide-
areanetwork. Suchapplicationswill oftenrequirehandling
of shippingmegabytesof multi-dimensionalarraydatain a
user-transparentandefficient way, aswell asrequiringthe
supportof RPCcallsthatrangeanywherefrom 100sof mil-
lisecondsup to severaldaysor evenweeks.Thereareother
necessaryfeaturesof Grid RPCsystemssuchasdynamic
resourcediscovery, dynamicloadbalancing,fault tolerance,
security(multi-siteauthentication,delegationof authentica-
tion, adaptingto multiple securitypolicies,etc.), easy-to-
useclient/server management,firewall andprivateaddress
considerations,remotelargefile andI/O supportetc.These
featuresareessentiallywhatis neededfor theGridRPCsys-
temsto executewell ontheGrid—featureseithermissingor
incompletein traditional‘closedworld’ RPCsystems—and
in factarewhatareprovidedby lower level Grid substrates
suchas Condor, Globus, and Legion. As suchGridRPC
systemseitherprovide thesefeaturesthemselves,or builds
uponthefeaturesprovidedby suchsubstrates.

In a sense,NES/GridRPCsystemsabstractaway much
of the Grid infrastructureandthe associatedcomplexities,
allowing the usersto programin a style he is accustomed
to in order to exploit task-parallelism,i.e., asynchronous
parallelprocedureinvocationwhereargumentsandreturn
valuesare passedby valueor referencedependingon his
preference.Our studies,aswell asuserexperiences,have
shown that this paradigmis amenableto many large-scale
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applicationsand especiallyto scientific simulations. The
differencehereis that1) becauseof the ‘openworld’ Grid
assumptionstheunderlyingGridRPCsystemmustbemuch
more robust, and 2) the scalability of the applications,in
termsof theexecutiontime,theparallelism,andtheamount
of datainvolved,mustscalefrom just onenodewith a sim-
ple LAN RPCto thousand-nodetaskparallelexecutionin-
volving weeksandTerabytesof data.

Brief Sketch of Programming in NES/GridRPC

In this section,we take Ninf andNetsolve asan exam-
ple NES/GridRPCsystem.OthersystemssuchasNimrod
may have slightly differentprogrammingmodelsandsys-
tem featuresandwill be coveredin othersectionsof this
document.

Both Ninf and Netsolve offer network-basednumeri-
cal library functionality via the use of RPC technology.
Parts of applicationsmaking procedurecalls can be re-
placedwith high-performance,remoteequivalentsin asub-
stantiallytransparentmanner, usuallyonly a small modifi-
cationto the call itself, without any RPCdatatypes,pro-
logue/epilogues,IDL management,etc.

Comparedto simple,well-known RPCtechniquessuch
asCORBA, this is not simpleasit seems:for example,for
local procedurecalls most numericaldatastructuressuch
as arraysare passedby reference,so the numericalRPC
mechanismmustprovidesomesharedmemoryview of the
arguments,despitebeing a remotecall. Furthermore,no
information regardingits physicalsize,or which portions
areto be usedaremaintainedby the underlyinglanguage.
Rather, suchinformationarepassedasparameters,which
must be appropriatelygiven by somecalling convention
which mustbeobeyedby theapplication.Also, theunder-
lying languagemight not provide sufficient type informa-
tion to theRPCsystem,asthetypesin thenumericalRPC
are somewhat ‘finer grained’, in that it must containinfo
suchas the leadingdimensionof the array/matrixusage.
Moreover, bothNinf andNetsolve locateappropriatecom-
putingresourceson thenetwork without explicit specifica-
tion, achieving loadbalancingandfault tolerancy. Various
informationis containedin their specializedIDL language.

For example,in Ninf, if the original program,this case
in C, involvedcalling amatrix multiply routine:

#define N 1000
double A[N][N], B[N][N], C[N][N];

matrix_mult(N, A, B, C); // C = A * B

The procedurecall in the last line is merely replaced
with:

Ninf_call("matrix_mult", N, A, B, C);

Here,noticethat:

1. Only onegeneric,polymorphiccall (Ninf_call())
givenasthe basicAPI for RPC.This not only allows
simpleone-linesubstitutionof call sitesto make the
call beremote,but alsoallows theclientsnot to main-
tainstublibrariesor IDLs (seebelow).

2. thesizeof thematrix is givenbyN, but C (norFortran)
hasno inherentwaysto determinethesizeof thedata
structure,let alonewhichpartsof thematrix is usedfor
moreintricatealgorithms.

3. BothC andFortranassumesthatarrayargumentsA, B,
andC arepassedby reference.Moreover, thereis no
way to tell from theprogramthatC is beingusedasan
output,while A andB areinputsto theprocedure.

4. The first argumentof the call is the signatureof the
library or an applicationbeingcalled. For Ninf, un-
lessa URL is specifiedto target a particular library
on a host,the metaserver infrastructureselectsan ap-
propriateserver from a setof serversunderits main-
tenance,dependingonmonitorednetwork throughput,
serverperformanceandload,andtheavailability of the
library.

In order to facilitatesuchflexibility for programglob-
alizationandease-of-maintenanceon the client side,both
Ninf and Netsolve provide specializedIDLs that embody
sufficient informationto implementthe featuresdescribed
above. For example,for Ninf, the IDL for thematrix mult
would look like thefollowing:

Define dmmul( long mode_in int n,
mode_in double A[n][n],
mode_in double B[n][n],
mode_out double C[n][n]

) /* Ninf interface */
"description"
Required "libXXX.o" /* link libs */
/* lang. and call seq. */
Calls "C" dmmul(n,A,B,C);
...

Here, the IDL embodiesthe necessaryinformation to de-
scribe the in/out values of the call, just as is with the
CORBA IDL. Some additional information are present,
suchas the computationalcomplexity of the call with re-
spectto its arguments. Moreover, the IDL compiler au-
tomaticallydeducesthedependenciesof scalarparameters
versusthe arrayindices. The exampleIDL describesonly
thesimplesituationof shippingthe entirematrix basedon
� ; morecomplex descriptionssuchas leadingdimension,
stride,dependencieson linearcombinationsof multiple in-
dices,etc.,aresupported.

In bothNinf andNetsolve, the client doesnot maintain
any form of IDLs; rather, the client only containsa small
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IDL interpreter. Whenacall is made,themetaserver(Agent
in the caseof Netsolve) locatesan appropriateserver, and
lets it connectto theclient. Giventhesignatureof thecall,
the server sendsthe compiledIDL to the client; the client
IDL interpreterin turn usesit to marshalanddemarshalthe
argumentsin orderto make thecall. This is somewhatsim-
ilar to theDynamicInvocationInterface(DII) of CORBA,
but is completelytransparenton theclient side,unlikeDII.

In summaryNinf andNetsolveareasymmetricalsystems
in that the client andserver sidesoftwarepackagesbeing
different. Not only this is the matterof size,but also for
functionality, aswell asthe necessaryof maintenance;the
client sideneednot be updatedto a limited degreeeven if
thereis someprotocolchange,thanksto theIDL info being
uploadeddynamically. By contrast,CORBA andothertyp-
ical RPCsystemsaresymmetrical, in thatthesamesoftware
packagesareusedfor bothclient andtheserver. While this
providesbetterflexibility for exampleclientscanbecome
serversandvice versa,it could put the complexity of the
managementnot only on the server but also on the client
side.

5.4.2 Frameworks

Cactus. TheCactusCodeandComputationalToolkit [17]
is thecumulationof over10yearsof developmentby many
computerscientistsandphysiciststo providecomputational
physicistswith aflexible,modular, portableandimportantly
easy-to-use,programmingenvironmentfor large-scalesim-
ulations.

Oneof the designrequirementsfor Cactuswas to pro-
vide application programmerswith a high level set of
APIs which hide featuressuchas the underlyingcommu-
nication and data layers. Theselayers are implemented
in modules (in Cactus terminology thorns), which can
be chosenat runtime, using the best available technol-
ogy for a given resource,e.g., MPI, PVM, pThreads,
SHMEM, OpenMPfor communication,or HDF5, IEEEIO,
PandaIOfor parallel data I/O. For example, to output a
grid variablefrom a Cactusapplication,programmersuse
the API call CCTK OutputVar(grid identifier,
grid variable), dependingon the modulesavailable
for I/O, the grid variablecould be written to a local file-
system,to a remotefile-systemusingDPSS,or even writ-
ten to a virtual file which canthenbe streamedacrossthe
network to any otherresource.

Much of designof theCactusarchitectureis influenced
by the vast computingrequirementsof someof the main
applicationsusingtheframework, includingnumericalrela-
tivity andastrophysics.Theseapplications,whicharebeing
developedandrun by largeinternationalcollaborations,re-
quireTerabyteandTeraflopresources,andwill provide an
idealtest-casefor developingGrid computingtechnologies

for simulationapplications.
Featuresof Cactuswhicharerelevantfor Grid program-

ming [4] include:

(i) automaticand configurablecompilation systemfor
mostmachinearchitectures,

(ii) corecodeandtoolkits written in ANSI C for portabil-
ity,

(iii) parallel I/O capabilitiescompatiblewith distributed
simulations,

(iv) parallelcheckpointingandrecoveryof simulations,in-
cludingdistributedsimulations,

(v) steeringinterfacefor dynamicallychangingthevalues
of parametersduringa simulation,

(vi) existingapplicationsalreadytrivially Grid-enabledus-
ing theGlobusMPI implementationMPICH-G2,and,

(vii) existing modulesto implementremotevisualization
(streamingdatawith HDF5), remotemonitoring and
steeringof simulations(e.g. using a module which
providesa simulationwith its own web server), par-
allel I/O, etc.

There are several ongoing Grid related projects as-
sociated with Cactus, either to develop Cactus Grid-
infrastructureandtools,or to build moregenericGrid tools
usingCactusasan application.Theseprojectsincludethe
developmentof a web-basedportal for remotelycompila-
tion, stagingand control, developing the communication
layer for moreefficient distributedsimulations,enhancing
parallel and distributed I/O capabilitiesand the construc-
tion of a Grid ApplicationToolkit to allow applicationand
infrastructureto easilyincorporategrid programmingcapa-
bilities in a genericmanner.

Meta-Chaos. The ability to composemultiple sepa-
ratelydevelopedparallelapplicationsis becomingincreas-
ingly importantin many applications,in areasasdiverseas
multidisciplinarycomplex physicalsimulationsandmedi-
cal imagedatabaseapplications. Meta-Chaosis a proto-
type “meta-library” developedat the University of Mary-
landthatmakesit possibleto integratemultipledataparallel
programs(perhapswrittenusingdifferentparallelprogram-
mingparadigms)within asingleapplication[25, 60]. Meta-
Chaosalsosupportstheintegrationof multipledataparallel
libraries within a single program. In effect, Meta-Chaos
provides a Unix-style pipe for parallel programs. Appli-
cationsthathave beendevelopedwith Meta-Chaosinclude
couplingmultiplescientificsimulations,potentiallyrunning
at differentsitesacrossa wide-areanetwork, andintegrat-
ing resultsfrom multiple remotesensoror medicalimage
databases.
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In collaborative projectswith groupsat several univer-
sities, Meta-Chaoshas been used to exchangedata be-
tween data parallel programswritten using High Perfor-
manceFortran (HPF), the Maryland CHAOS and Multi-
block Parti libraries,and the UC SanDiego KeLP library
[29]. Theselibrariesare targetedat parallelizationof ap-
plicationsthat work on unstructured(CHAOS) andmulti-
ple structuredgrids (Multiblock Parti, KeLP). In addition
severalhigh-endsensorandscientificdatabaseapplications
implementedwith the Maryland Active Data Repository
(ADR) object-orientedframework have usedMeta-Chaos
to exchangedatabetweena parallelADR databaseanda
parallelclient application.

Meta-Chaosimplementsa framework-basedsolutionto
the interoperabilityproblem,requiring that eachdatapar-
allel library export a set of interface functions, and uses
thosefunctions to allow all the libraries to interoperate.
This approachgivesthe taskof providing the requiredin-
terfacefunctionsto thedataparallellibrary developer(or a
third party applicationdeveloperthat wantsto be able to
exchangedatawith the library). The interfacefunctions
provide informationthatallows the meta-libraryto inquire
aboutthelocation(processorandlocaladdress)of datadis-
tributedby agivendataparallellibrary.

DataCutter. DataCutter[12, 11] is anapplicationframe-
work, underdevelopmentat University of Maryland, that
providessupportfor developingdata-intensiveapplications
thatmake useof scientificdatasetsin remote/archival stor-
agesystemsacrossa wide-areanetwork. To make efficient
useof distributedsharedresources,theapplicationprocess-
ing structureis implementedas a set of distributed pro-
cesses,called filters, that adhereto the filter-streampro-
grammingmodel. DataCutterusesthesedistributed pro-
cessesto carry out a rich set of queriesand application
specificdatatransformations.Filterscanexecuteanywhere
(e.g.,on computationalfarms),but are intendedto be run
on machineswherethe locationprovidesan efficiency ad-
vantage.For example,givenafilter thatgreatlyreducesthe
sizeof thedatait receivesbeforesendingit to thenext filter,
anefficient locationwould becloseto the archival storage
server. DataCutteralsoprovidessupportfor subsettingvery
large datasetsthroughmulti-dimensionalrangequeries. It
usesa multi-level hierarchicalindexing scheme,basedon
R-treeindexing methods,to ensurescalabilityto very large
datasets.

The basicideasunderlyingthe filter-streammodel[12]
areto (1) constrainapplicationcomponentsto allow for lo-
cationindependence,which is necessaryfor executionin a
distributed environment,and (2) exposeapplicationcom-
municationpatternsandresourcerequirements,allowing a
runtimesystemto aid in efficient execution.Theprogram-
mingmodelis looselybasedon thestream-basedprogram-

mingmodel, originally developedfor ActiveDisks[2].

In the filter-streamprogrammingmodel,part of an ap-
plication is representedby a collection of filters. A filter
is a portionof the full applicationthat performssomedis-
cretefunction. Filters can pre-disclosedynamicmemory
andscratchspaceneedsso that the requiredspacecanbe
allocatedby theunderlyingruntimesystemonbehalfof the
filter. Communicationwith other filters is solely through
the useof streams. A streamis a communicationabstrac-
tion thatallowsfixedsizeduntypeddatabuffersto betrans-
portedfrom onefilter to another. A simpleexampleof this
modelis Unix systempipes,wherethestandardoutputof a
processis usedasstandardinput for anotherprocess.Unix
pipesrepresenta linearchainof filters, eachof which have
a singleinput streamanda singleoutputstream.Thefilter-
streammodelallows for arbitrarygraphsof filters with any
numberof input andoutputstreams.

Theprocessof manuallyrestructuringanapplicationus-
ing thismodelis referredto asdecomposingtheapplication.
Themaingoalin choosingtheappropriatedecompositionis
to achieveefficient useof limited resourcesin a distributed
andheterogeneousenvironment.A particulargranularityof
the applicationdecompositioninto filters is not mandated
by the model. Given a setof filters, the runtimemapping
of filtersontovarioushostsin awide-areagrid environment
is referredto asplacement. Thechoiceof placementrepre-
sentsthe main degreeof freedomin affecting application
performanceby, for instance,placing filters with affinity
to datasourcesnearthe sources,minimizing communica-
tion volumeon slow links, placingcomputationallyinten-
sive filters on lessloadedhosts,etc. Note thata placement
decisionis not assumedto be static,andthe programming
modelsupportsthenotionof stoppingasetof filtersandre-
placingthemwith possiblyanew setof filterswith adiffer-
entplacement.A runtimesysteminfrastructure,calledthe
DataCutterFiltering Service,providessupportfor theexe-
cutionof applicationsthatarestructuredin thefilter-stream
programmingmodel.

Thelifetime of a filter is definedby theamountof work
requiredby the application. Within this lifetime, a filter
canprocessmultiple logically distinctportionsof the total
workload. This is referredto as a unit-of-work, andpro-
vides an explicit time when adaptationdecisionsmay be
madewhile anapplicationis running.A unit-of-work starts
with the submissionof a work descriptionto a runningset
of filters, andendswhenthe last filter finishesprocessing
the work. A collectionof runningfilters that operatecol-
lectively to processa unit-of-work is referredto asa filter
instance. An applicationmayhave multiple concurrentfil-
ter instances.
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5.4.3 ComponentAr chitectures

Componentsextend the object-orientedparadigmby en-
abling objectsto managethe interfacesthey presentand
discover thosepresentedby others[66]. This alsoallows
implementationto becompletelyseparatedfrom definition
andversion.Componentsarerequiredto haveasetof well-
knownports that includesan inspectionport. This allows
onecomponentto queryanotheranddiscover what inter-
facesare supportedand their exact specifications. This
capability meansthat a componentmust be able to pro-
vide metadataaboutits interfacesand also perhapsabout
its functionalandperformanceproperties.This capability
alsosupportssoftwarereuseandcomposibility.

A numberof componentand component-like systems
have beendefined. TheseincludeCOM/DCOM [63], the
CORBA 3 ComponentModel [69], EnterpriseJava Beans
andJini [26, 68], and the CommonComponentArchitec-
ture [36]. Of these,theCommonComponentArchitecture
includesspecificfeaturesfor high-performancecomputing,
suchascollectiveportsanddirectconnections.

5.4.4 Evaluation

� Usability: By design,middlewaresystemsprovide a
simple programmingmodel to allow the user to mi-
grateexisting codeto the Grid. For example,experi-
encesin bothNinf andNetsolve have shown that, for
simpleparallelizationssuchasparametersweep,users
can parallelizetheir codeand effectively “gridify” it
in mattersof hours. Somesystemsrestrict the scope
of parallelizationto task-parallelprogrammingmod-
els.Mixedprogrammingmodels,suchasOpenMPand
MPI, arealsonot supportedverywell.

� DynamicHeterogeneousConfiguration: Middleware
systemsoffer varying degrees of resourcediscov-
ery, monitoring,naming(directory),maintenance,and
schedulingfeatures,relieving theusersof at leastsome
of theburdenof explicit resourcespecifications.Since
middlewaresystemsareintendedto hidelow-level de-
tails, they almost always supportheterogeneousre-
sources.

� Portability: Again, sincemiddlewaresystemsarein-
tendedto hidedetails,they areindependentof specific
processorsor OSs,and,hence,areportable.Moreover,
mostsystemsoffer client andserver bindingsfor vari-
ousprogramminglanguages,suchasC/C++,Fortran,
Java, Lisp, aswell as interfacesto tools andcompo-
nentssuchasMatlab,Mathematica,andCOM compo-
nents.

� Interoperability: Interoperabilityof middleware sys-
temsis aproblematicissue.Assumingfor themoment

that two middlewaresystemsunderstandthesamese-
mantics, then interoperabilitywould only require a
commonlyunderstoodcommunicationprotocol.How-
ever, sincemostmiddlewaresystemsare intendedto
supportcomplex, application-domain-specificseman-
tics, interoperabilitymay be meaningless.Interoper-
ability might be reasonable,though,for simple,com-
monoperations(suchaspassinganarrayof floats)or
wherethe semanticsof two systemsoverlapssignifi-
cantly(e.g.,betweenNinf andNetSolve).

� ReliablePerformance: Generalperformancepredic-
tion or maintenanceof middleware system perfor-
manceis still difficult due to the dynamicnatureof
the Grid. SinceQoSsupportis not commonlyavail-
ableyet, the bestthat canbe doneis to estimateper-
formance. SomeNES/GridRPCsystems,for exam-
ple,offer entriesin their IDLs to specifythecomplex-
ity of the computationbeingremotelyinvoked to as-
sist the schedulerin making more effective schedul-
ing decisions. Various work is underway to deter-
mine theperformancecharacteristicsof theGrid. For
NES/GridRPCsystems,see[3] for example.

� Fault Tolerance: At the middlewarelevel, fault toler-
ancemay dependon both implementationandinher-
entdesignproperties.NES/GridRPCsystemscansup-
porttransactionalbehavior thatprovidesbetterfaultre-
covery thansimplyskippingserversthataredown and
calling another.

� Securityand Privacy: Middleware systemscan sup-
port a varietyof securitymechanisms.This canbeas
simpleasno authentication,theuseof passwordsand
secureshells,or ascomplicatedasusingX.509certifi-
cates.Of course,an advantageof middlewareis that
they canhide the detailsof a securitymechanismbe-
neaththeirAPIs.

5.5 Grid Computing Envir onments

5.5.1 ProblemSolvingEnvir onments

ProblemSolving Environments(PSEs)form anotherclass
of higher-level computingenvironments.Thebasicnotion
is that a PSEis comprisedof a numberof modularfunc-
tionsthatcanbecomposedinto amorecomplex, composite
application. Eachof thesemodulesor functionsprovides
a serviceandhideslow-level detailsinvolved in grid use.
While someof thesemodulesprovide basicservices,such
asa communication“channel”or “pipe”, otherscanbetai-
loredto aparticularstyleof programmingor anapplication
domain.

Sincethisdefinitionof PSEis somewhatlooseandhigh-
level itself and, hence,can cover many different typesof
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systems. The termsPSE,workbenchand framework are
oftenusedinterchangeably. Somesystemsthatcanbecon-
sideredPSEshave alreadybeenintroduced.This includes
Ninf/NetSolve,Cactus,andDataCutter.

Theprimedistinction,however, shouldbethatsuchsys-
temsprovidetheabstractionsandinterfacesthatserveapar-
ticular applicationproblemdomain. Jaco3,for example,
providesanenvironmentfor couplingmultiplephysicssim-
ulationcodesto addressmulti-physicsproblems[43]. The
existing codesaregiveneithera genericCORBA wrapper
or an IDL interface. Parallel interfacesare possible. Vi-
sualORBprovidesa graphicalinterfacefor composingthe
modules.Anotherexampleis Nimrod/G [15]. It provides
automatedsupportfor modelingand executionof param-
eter sweepapplications. It usesa declarative parametric
modeling languagethat enablesthe user to expressa set
of parametriccomputationswhich are then automatically
scheduledandmanaged.OtherPSEsincludeSCIRunfor
visualization[45] andVDCE for virtual computing[40].

A moredetailed,templatecomparisonof theseandother
PSEsis availableasa white paperfrom theAPM website
[16].

5.5.2 Portals

Portalscanbe viewed asproviding a web-basedinterface
to a distributedsystem.More precisely, though,portalsen-
tail a threetier architecture thatconsistsof (1) afirst tier of
clients,(2) a middle tier brokersor servers,and(3) a third
tier of object repositories,computeservers, databases,or
any otherresourceor serviceneededby theportal. Clients
andmiddle-tierserverstypically communicateviaHTTPal-
lowing any webbrowserto beused.Middle-tierserverscan
simplyaccesslocalfiles to servepagesbut alsocandynam-
ically generateweb pagecontentby running CGI scripts,
andby directly or indirectly interactingwith the back-end
resources.The interactionwith third-tier resourcescanbe
accomplishedin any protocolor mannerappropriate.

Using this generalarchitecture,portalscanbebuilt that
supportawide varietyof applicationdomains,e.g.,science
portals,computeportals,shoppingportals,educationpor-
tals, etc. To do this effectively, however, requiresa setof
portal building tools that can be customizedfor eachap-
plication area. An exampleof this is (surprise,surprise)
the Grid Portal Toolkit, aka GridPort [71]. The GridPort
Toolkit is partitionedinto two parts:(1) theclient interface
tools, and(2) the web portal servicesmodule. The client
interfacetoolsenablecustomizedportal interfacedevelop-
ment and doesnot require usersto have any specialized
knowledgeof the underlyingportal technology. The web
portalservicesmodulerunsoncommercialwebserversand
providesauthenticateduseof grid resources.Note that the
portal interfaceand the portal servicescanbe run on dif-

ferentserverswhich provides isolationbetweenthe front-
end and back-endfunctions, facilitatesdistributed execu-
tion, andenhancessecurity.

HotPage[72] is anexampleof asystembuilt usingGrid-
Port. HotPageprovides userswith a view of distributed
computingresourcesandallows individual machinesto be
examinedasto status(up or down), load,etc. Besidesex-
aminingmachines,userscanaccessfiles andperformrou-
tinecomputationaltasks.Sessionsareauthenticatedanden-
cryptedto providesecurity.

Anotherveryimportantprojectis theIndiana/NCSASci-
encePortal [37]. In this effort, portalsaredesignedusing
a notebookof typical web pages,input forms, andexecu-
tion scripts.Notebookshaveaninteractivescript/formsed-
itor basedon JPythonthat allows accessto other tool kits
suchas CoG Kit and the CommonComponentArchitec-
tureToolkit (CCAT). Theability to manipulatecomponents
in the context of a portal interfaceandarchitectureis ex-
tremelyimportant.As discussedearly, componentsmustbe
ableto provide metadataabouttheir interfacesandperhaps
abouttheirproperties.Thismeansthatnotebookscriptscan
dynamically composeand managecomponentsin a grid
environment. Proxy componentscanbe usedto encapsu-
latelegacy applicationsandmanageI/O staging.Notebook
componentshave an integral event modelenablinggreater
functionality androbustness.The couplingof portalsand
componentswill facilitateeaseof useby the userandthe
dynamiccompositionof grid codesandservicesin a way
thatwill providethebestof bothworlds.

Otherexamplesof grid computingportalsareavailable
fromtheGridComputingEnvironmentWorkingGroupweb
site[39].

5.5.3 Evaluation

� Usability: PSEsand portalsare easyto useby their
design.

� Dynamic,HeterogeneousConfiguration: SincePSEs
and portalsare intendedto have integral “front-end”
interfaces,theback-endsystemscanmoreeasilyman-
agedynamicconfigurations.

� Portability: For portals,portability canbe considered
separatefor thefront andbackends.Theuseof HTTP-
basedbrowserson the front-endenablestremendous
portability. Ontheback-end,portalsandPSEsfacethe
sameportability issues.If the moduleson which the
back-endsarebuilt hideprocessorandOSdetails,then
portability is possible.

� Interoperability: A similar dichotomyexists for inter-
operability. The useof HTTP on the front-endlever-
agesthetremendousinteroperabilityof webbrowsers.
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On the back-end,interoperabilitydependson the use
of commonwire protocolsandcommonsemantics.

� ReliablePerformance:Aside from the issuesof deal-
ingwith adynamicgrid environment,PSEsandportals
needto provide a mechanismwherebytheuseror the
client candeterminewhena computationalrequestis
going to exceedsomereasonablebound. Their flexi-
bility andeaseof usemeanthatPSEsandportalscan
enableusersto unwittingly “ask for too much” or ask
for somethingthatcurrentconditionscannotsupport.

� Fault Tolerance:Fault toleranceneedsto beaddressed
in PSEsandportals.

� SecurityandPrivacy: Securityandprivacy shouldbe
providedby theunderlyinginfrastructureandbeinte-
gral to the modelpresentedto the useras is the case
with GridPort.

6. Grid Programming Issues

The systemssurveyed in the previous section vary
widely in scopeand the capabilitiesthey are able to pro-
vide in a grid environment.We now discussthesignificant
issuesthatsetgrid programmingapartusinga simplecate-
gorization.While this capturesthemajorclassesof issues,
therearesometopicsthat neverthelesscut acrossmultiple
categories.

For eachof theseissues,where possible,we suggest
FocusAreasrepresentingtechnologiesthat could be used
to addressthem. We also posethe questionsrelevant to
framing the discussionaboutan issueand the further re-
searchthat needsto be doneto resolve it. Acrossall fo-
cus areas,an inherent questionis where to address it?
In the hardware, operatingsystem, run-time, language,
tool/library/environment,or “in the application”? In the
terminology of the proposedGrid Protocol Architecture,
shouldan issuebe addressedin a protocol, a service,an
API, or a SDK?In somecases,it maybeclearbut, in oth-
ers,differentalternativesmaybepossible.

6.1 PerformanceManagement

For any significantapplication,performanceis alwaysan
issue.Gridspresentchallengingperformanceissuesdueto
their heterogeneousnatureandopenarchitecture.

6.1.1 HeterogeneousBandwidth/Latency Hierar chy

Gridswill presenta hierarchyof bandwidthsandlatencies
thatis gettingdeeperandmoreheterogeneous.Simply put,
highly synchronousoperationswill not be desirable since

they will be too inefficient. This situation will not im-
prove, especiallyin a wide-areagrid, sincesimplepropa-
gationdelaysarecomingto dominantend-to-endlatencies
[51]. This alsomeansthat theconsistency of replicatedin-
formationacrossmultiplesiteswill beincreasinglydifficult
to maintain. (Distributedshared-memorysystems,for in-
stance,will beunattractiveacrossa wide-areagrid.)

Hence,thecentralquestionhereis Whatdistribution of
latenciescanbeaccommodated?A hostof well-known la-
tency tolerancetechniquescanbeappliedbut to whatdegree
will they be effective? Aside from argumentsof shorter
turn-aroundtime, will large computationsalwaysbe mar-
ried to tightly coupledhardware? We note that any given
coderepresentsanabstractproblemarchitecturewhich can
determinewhich platforms are appropriateperformance-
wise. Can the abstractproblembe restructuredto allow
more loosely coupledcodesto be constructed?Can exe-
cutionmodelsenableloosercoupling?

FocusAr ea: Execution Models. Hiding latency with
throughputis a well-known technique. In the Tera MT-1
machineand the HTMT, this is usedto hide memoryla-
tency. A processorcan switch betweenhardware threads
dependingon which threadhasa memoryreferencethat is
completing.Thissametechniquecouldbeappliedin a grid
computationbut on a vastly different scale. Hence,in a
grid computation,canenoughparallelismbeextractedwith
a large enoughgranularityto permit a data-driven execu-
tion model? If so, can asynchronousmodelsor stylesof
programmingbedeveloped?

6.1.2 Data and ResourceTopology

Largescientificcodesusingdatadecompositioncouldben-
efit from programmingtoolsthatunderstandthedatatopol-
ogyandhow it is mappedonto theresourcetopology. Some
work has beendone in this areawith regard to clusters
of symmetricmultiprocessors,or “clumps”. In this envi-
ronment,communicationthroughshared-memorymustbe
balancedwith slower network communication. SIMPLE
providesa setof collective communicationoperationsfor
clumps[9]. TheKeLPsystem,however, usesthenotionof
structural abstractionandanassociatedregion calculusto
managemessage-passing,threadschedulingandsynchro-
nizationin clumps[29, 8]. MagPIeprovidescollectiveoper-
ationsfor MPI for wide-area,two-tier clusters,i.e.,clusters
of clusters.[47]. As discussedearlier, POOMA/SMARTS
usesmacro-dataflow schedulingto managelarge-graindata-
paralleloperations[50, 73].

Focus Ar ea: HeterogeneousTopologies. Can these
techniquesbegainfullyappliedin wide-area,heterogeneous
environments? How do the bandwidthsand latenciesen-
counteredin ageneralgrid changetheireffectiveness?How
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would a distributedobjectencapsulatethe knowledgeand
understandingnecessaryto efficiently manageparallelop-
erationsovera dynamicbandwidthandlatency hierarchy?

6.1.3 PerformanceReliability

Theheterogeneousnatureof gridsmeansthatit will bediffi-
cult for many applicationsto provide reliableperformance.
For thoseapplicationswherethis is important, therewill
have to be methodswherebysourcesof variability canbe
controlled,oratleastmonitored.QualityofService(QoS)is
theconceptwherebyresourcesdeliver a “contracted”level
of service.Thebroaddefinitionof a“resource”in grid com-
puting, however, meansthat QoScanalsobe broadlyap-
plied. Besidesnetwork bandwidthandlatency, this canin-
cludecpuscheduling,memory/diskspace,andaccessto re-
moteservices.Besidescapacityreservations, QoScanalso
addresstemporal reservations, i.e.,advancereservationsfor
sometime in thefuture.

We note that, in general,hard performanceguarantees
can be expensive to deploy and enforce. The Integrated
ServicesModel, for example,canprovideahardbandwidth
but requiresper-flow stateat every hop for network QoS.
TheDifferentiatedServicesmodel,by contrast,aggregates
flows into differentclassesof serviceat eachhop (thereby
not requiringper-flow state)but only providesa statistical
bandwidthguarantee.

FocusAr ea: Quality of Service. GridQoSisclearlyde-
sirable.In anopenarchitecture,however, it canbedifficult
to enforceperformanceguarantees.For any resource,QoS
implies that somecontroller or agent(centralizedor dis-
tributed)knowshow muchresourcecapacityexistsandhow
muchhasbeenallocated.In orderfor meaningfulreserva-
tionsto bemade,(1) a controllermusthavea hardenforce-
mentmechanism,or (2) all usersmustengagethecontroller
andobserve policies. If this is not the case,then thereis
nothingto prevent a rogue(or simply unaware)userfrom
consumingexcessiveresourcecapacity.

Aside from thesehard issues,work hasbeendone in
this area. The Globus AdvanceReservation Architecture
(GARA), for instance,provides a uniform interface for
dealingwith both capacityand temporalreservations for
several resourcetypes, including network bandwidthand
fractionalcpuscheduling[33].

6.2 Configuration Management

In additionto performanceissues,the openandhetero-
geneousnatureof grids alsopresentsconfigurationissues,
that is to say, thegrid programmerneedsto know (1) what
configurationthegrid is currentlyin and(2) whatconfigu-
rationtheapplicationcouldbein. Furthermore,how doesa

grid programmeror a grid codeknow how to interactwith
othercodes,servicesor resources?

6.2.1 Program ResourceMetadata

To addresstheseissues,gridsmustdeploy informationser-
vicesto enableresourcediscovery. Thisallows tremendous
flexibility in when,where, and how a grid programexe-
cutesandalsoenablesit to monitorandprobeits environ-
mentduring execution. Most establishedparallelanddis-
tributedprogrammingtoolsareonly awareof resourcesthat
arestaticallyidentifiedat start-time.How shoulddynamic
resource-awarenessbeintegrated?How shouldtheuniverse
of grid resourcesberepresented,discovered,andusedin a
grid application?

FocusAr ea: Metadata Schema.Any representationof
programresourcesmustbe openandextensible.Hence,a
metadataschemamustbeusedwhichcanbedevelopedus-
ing tools suchasXML. Several relatedschemahave been
producedfor grids, suchasthoseby the Grid Information
ServicesWG andthe Grid PerformanceWG. The Globus
MDS also definesan information schema[30]. These
schemahave not, however, beendevelopedwith the goal
of enablingdynamicprogramconfigurationmanagement.

6.2.2 ComponentSoftware.

Componentscouldbeusedto encapsulateandmanagethe
interfacesto many grid functions. For example,compo-
nentscanencapsulatecommunicationaswell ascomputa-
tion. In other words, componentscanalso be connectors
betweenother components.Thesecould possiblyencap-
sulatedatamanagementto hide latency, supporta stream-
basedexecutionmodel, or possiblyother, non-functional
behaviors, suchasfault-toleranceor security. Thesecapa-
bilities, in additionto interfacediscovery, have clearutility
for grid programmingthathavenotyetbeencompletelyin-
vestigated.

FocusAr ea: A Grid Component Ar chitecture. How
shoulda componentarchitecturebedefinedfor theemerg-
ing grid architecture? Somework hasbeendone in this
regards[36] but completeimplementationsandin-depthex-
periencehaveyet to berealized.

6.2.3 Global NameSpacesand Persistence

A global namespaceand persistentobjectshave definite
uses. A global namespacehasmany issuesin common
with systemssuchasDNS.

FocusAr ea: Implementation. Resolvingglobalnames
requiresa deploymenton thescopeof DNS andwill share
many of the implementationissues.Shoulda globalname
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server for grid environmentsbepiggy-backedon DNSor is
differentsystemdesignmoresuitable?

6.3 Programming/UserEnvir onments

After dealingwith the basicmechanismsof managing
performanceandconfiguration,higher-level modelscanbe
definedto facilitate the processof building grid applica-
tions.

6.3.1 RemoteData Access

Oneof thegoalsof grid computingis to enableroutineac-
cessto largeamountsof datathatareoftenassociatedwith
data-intensiveapplications.Extremelylargedatasets(cur-
rently in theterabytes)aredifficult to moveor copy. Hence,
tools arebeingdeployed to allow remotecodesto access,
subset,filter, andreplicatelarge datasets. This will allow
usersto extracttheminimumamountof datarequired,spec-
ify operationsto be done“in-transit”, suchasdecimations
or corner-turns,andstorecopies“closer to home”. Natu-
rally this raisesissuesof accesspolicies, replicationpoli-
cies,consistency requirements,etc.

FocusAr ea: Data Grid Issues. Thesearespecifically
theissuesof datagrids. A numberof suchprojectsareun-
derway [41, 67, 70]. Datagridsmaytypically involve sys-
temslike theStorageResourceBroker (SRB)[10] thatpro-
vide a uniform middleware API to accessheterogeneous,
distributedstorageresources.With regardto programming
issues,tools suchasDataCutter[49] have beenintegrated
into theSRBto provideafilter-streamprogrammingmodel.
Filtersaresub-classedfrom aC++filter baseclass.Streams
are namedand optionally associatedwith an XML DTD.
The allocationof filters and streamson to grid resources
is an importantissuefor data-intensive applications,espe-
cially giventhebandwidthandlatenciesissuesnotedabove.

6.3.2 Frameworks, PSEsand Portals

Frameworks, problem solving environments,and portals
sharesimilar issues.While frameworks,PSEs,andportals
areintendedto be tailoredto application-specificdomains,
what is themostappropriatesoftwarearchitecturethatwill
supportthis flexibility andnot excessively hamperperfor-
mance?In suchsystems,therecouldbeanemergentdomi-
nantpracticefor their construction.

Focus Ar ea: Portals and Components. Components
provide a tremendouslyflexible anddynamicway of com-
posingfunctionality. This is a fundamentalaspectof the
programmingtask. Portalsprovide easeof usethrougha
graphicalinterfacethatis themostwidely usedandfamiliar
interfaceacrossthespectrumof computerusers.Theproper

integrationof thesecapabilitieswill have far-reachingben-
efits.

6.3.3 Languages,Compilers and Run-Time Systems

Compilerswith an associatedrun-timesystemcan imple-
ment a wide variety of interestingsemantics. The open
questionhereis whatkind of grid semanticsneedto beof-
feredat thelanguagelevel? As anexample,Compositional
C++ includedthenotionof aprocessorobjectwith dataand
functionmembersthat could be referencedthroughglobal
pointers[46]. It seemsunlikely, however, thatcompilersup-
port for loop-levelparallelism,e.g.,loopunrollingandcode
reorganization,will beuseful.Morelikely is theuseof sim-
plepragmato giveusefulhintsto thecompilerandrun-time
for improvedprogrambehavior underdifferentgrid condi-
tions.

6.4 Properties

6.4.1 Portability

Most establishedtools also assumea homogeneousenvi-
ronment.While homogeneoussetsof resourcescanbeac-
quired in a grid environment,beingable to useheteroge-
neousresourcesallows greaterflexibility . How canhetero-
geneitybefacilitatedwithouthaving to simplypre-compile
andpre-stagebinaries,data,etc., or resortingto a single-
languagedesignsuchasJava?

6.4.2 Inter operability

Interoperabilityis a necessaryprerequisitefor grids to be-
comeestablishedtechnology. If differentimplementations
of the sameservicescan interoperate,thenthereis no re-
quirementto have exactly the sameversionof the grid in-
frastructuredeployed everywhere. CORBA, for example,
usesIIOP for this purpose.Protocolswill likewiseplay an
importantrolein grid architectures.Whatgrid protocolsare
neededto supportprogrammingmodels?Is SOAP (Simple
ObjectAccessProtocol)sufficient [14]? Is it usefulto con-
siderinteroperabilityathigherlevels,e.g.,frameworkinter-
operability?

Focus Ar ea: Multi-method Communication. While
tools like SOAP can provide interoperability, the cost of
their flexibility canbe lower performance[38]. Canmulti-
methodcommunicationpackages(asin thespirit of Nexus
[31]) bedesignedandbuilt suchthatflexibility is provided
for negotiatingcommunicationandbeyondacertainbreak-
even point, communicationis doneusinga moreefficient
method?
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6.4.3 Security

The wide-spreaduseand connectivity of sharedcompute
resourcesin societyat large, i.e., the Internet, hasmade
securitya seriousissue. How doesthis needfor security
manifestitself in grid programmingmodelsandtools?The
modelsandtools examinedpreviously suggestthe follow-
ing shortlist of securityrequirements:

� Runningan individual taskor invoking an individual
methodon a remotehostcan requiremutualauthen-
ticationandauthorizationof therequestorandremote
host, and also privacy and integrity checkingof any
datasentto andreceivedfrom theremotehost.

� Interactingwith a remoteservicecarriesall the same
requirements.

� Co-schedulinga setof remotetasks,methods,or ser-
vicescanrequirea setof mutualauthentications,etc.,
thatcouldberelatedor separate.

� A grid application may incrementally acquire re-
sourcesor mayinteractwith resourcesthroughproxies
suchthat“chains”of trustmustbeestablished.

Thetypical grid securityinfrastructureis basedon thecon-
ceptof agrid userhaving a“grid identity” thatis associated
with somethinglike anX.509certificate.Themanagement
of certificatesandCertificateAuthorities(thatissueandver-
ify certificates)is beyondthescopeof thisdocument.

FocusAr ea: Delegationof Trust Chains. Whatis at is-
suehereis how suchmechanismsareusedin programming
modelsand tools in the above situations. An outstanding
issuein securityis the delegationof trust, i.e., allowing a
remotehostor proxy to acton your behalfwith your iden-
tity suchthatchainsof trustareestablished.This hasclear
implicationsfor iterative andrecursive computingtopolo-
giesthathavenot beeninvestigated.

6.4.4 Reliability and Fault Tolerance

Reliability and fault tolerancein grid programmingmod-
els/toolsare largely unexplored. Certain applicationdo-
mainsaremoreamendableto faulttolerancethanother, e.g.,
parametersweepor MonteCarlosimulationsthatarecom-
posedof many independentcaseswherea casecansimply
beredoneif it fails for any reason.Theissuehere,however,
is how to make grid programmingmodelsandtools inher-
ently morereliableandfault tolerant.Clearlya distinction
exists betweenreliability and fault tolerancein the appli-
cationversusin the programmingmodel/toolversusin the
grid infrastructureitself. An argumentcanbemadethatre-
liability andfault tolerancehave to beavailableat all lower

levels to bepossibleat thehigherlevels. A furtherdistinc-
tion canbemadebetweenfault detection,fault notification
andfault recovery. In a distributedgrid environment,sim-
ply beingableto detectwhenafaulthasoccurredis crucial.
Propagatingnotificationof thatfault to relevantsitesis also
critical. Finally theserelevantsitesmustbeableto take ac-
tion to recover from or limit theeffectsof thefault.

FocusAr ea: Event Models. Thesecapabilitiesrequire
that eventmodelsbe integral to grid programmingmodels
andtools. Event modelsarerequiredfor many aspectsof
grid computing,suchasa performancemonitoring infras-
tructure. Hence,it is expectedthata widely deployedgrid
event mechanismwill becomeavailable. The useof such
a mechanismwill be a key elementfor reliable and fault
tolerantprogrammingmodels.

7. Conclusions

We have takena broadlook at theissuesconcerningthe
effective developmentof efficient grid codes. Grid pro-
grammingmodelsandtoolswill dramaticallyshift theem-
phasisof desireableor necessarypropertiesto thoseof man-
aging heterogeneousconfigurations,interoperability, and
reliable performance. In reviewing currentprogramming
tools, languagesandenvironments,we note that mostare
limited with regardsto resourcemanagement,i.e., being
ableto dynamicallyorchestratearbitrarygrid resources.We
alsodiscussanumberof specificfocusareasfor futurework
in grid programming,from low-level performanceissuesto
enhancedsupportfor high-level tools.

8. Security

A brief discussionof generalsecurityissuesappearsin
Section6.4.3.
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