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What is a spell checker?

Definition: A spell checker is an application program that
flags words in a document that may not be spelled
correctly.
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(Some) Nuts & Bolts of a Spell Checker

Today we will show how to create a spell checker on a laptop.
On my Mac, | use /usr/share/dict/words as our lexicon.

Basics of Hashing

® Check quickly if a word in our document appears or not
in the lexicon.

Bloom filters

® What if space is a constraint? How to create a space
efficient spell checker.
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Balls and bins again : n balls, n bins

Problem: Maximum bin load?
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n balls into n bins
Two ways to prove this claim.
® Chernoff and union bound

® Binomials and union bound

Pr|3i.x > Sloen | (M1 _1
k) nk n

"~ loglogn n
k

Let Xi,..., X, be independent
RVs with X; € {0,1}, X = >_ X;, then:

PriX > (1 +0)E[X]] < ((Hewf[x]
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n balls into n bins

31 1
Pr | dbin with more than ogfn balls| < —
log log n n
Changing the maximum load
lo
¢80
log log n

by playing with constant ¢, we can decrease the failure
probability as - (n)
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Dictionary problem

Universe U = [u] = {0,...,u— 1}
Set SCU, |S|=n|S|<U

Goal: design a data structure that supports efficiently the
following operations.

MAKE(): Initializes an empty dictionary
INSERT(X): Add element x in S
LOOKUP(X): Does x appear in S
DELETE(X): Removes x from S, if present

Questions:

Why not a linked list?
Why not an array over U?
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Python dictionary
#empty table

d ={%

#insert

d["Andrei Rublev"] = "Tarkovsky"
d["Stalker"] = "Tarkovsky"
d["Viridiana"] ="Bunuel"
df(’1237,%a’)] = "al23"

#lookup
print(d["Stalker"])
print (d[(’1237,7a’)])

##delete
del d["Stalker"]
print (d["Stalker"]) #KeyError: ’Stalker’
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Hashing

¢ Basic idea: Work with an array of size m = O(|S|)
rather than of size O(|U|)!

e Hash function: h: [u] — [m]

e Hash table: Array. We place x € S at position h(x).

o x # y € U get mapped to h(x) = h(y).

® How do we choose h?

® How do we resolve conflicts?
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Balls and bins again : n balls, r bins

Problem: Collision?
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Balls and Bins Revisited: k-wise independence

Consider the load of some bin.

> a0

r
KCS,|S|=k

e If k > 2en/r > 2log r the probability of k balls in any
single bucket is < 1/r.

® No need for full randomness, but randomness over all
subsets of k hash values.

See also Rasmus Pagh's slides
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people.seas.harvard.edu/~babis/cs591_files/HashingBasicsPagh.pdf 

Balls and Bins Revisited: k-wise independence

Definition: RVs Xi, ..., X, are k-wise independent iff for
any set of indices i1,..., ik, RVs X, ..., X are independent.

Definition: A set of hash function H is a k-wise independent
family iff the random variables h(0), ..., h(u — 1) are k-wise

independent when h € H is drawn uniformly at random.

Example 1: The set # of all functions from [u] to [m] is
k-wise independent for all k.

# Bits: ulog m (u is enormous!)
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2-wise independent family

Exercise: We can construct a 2-wise independent family as
follows.

® pis prime

® a, b chosen uar from [p]

® The hash of x is

h(x) = ax+ b mod p,
How many bits do we need now?

Generalization: Polynomials with random coefficients, see
https://en.wikipedia.org/wiki/K-independent_
hashing/Polynomials_with_random_coefficients
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https://en.wikipedia.org/wiki/K-independent_hashing/Polynomials_with_random_coefficients
https://en.wikipedia.org/wiki/K-independent_hashing/Polynomials_with_random_coefficients

Universal hash family

e A family H of hash functions is strongly 2-universal if
for any x; # x,

Pr[h(x1) = y1, h(x2) = ya] = %

for a uniform h € H.

What is the connection with the previous slide?
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Avoiding Modular Arithmetic

Modular arithmetic can be slow

[Dietzfelbinger et al., 1997] proposed the following hash
function (collisions twice as likely):

For each k,/ they define a class Hy; of hash functions
from U = [2X] to M = [2/]

[ Hys = {ha|he = (ax mod 2%) div 257, ]

Claim: If « is a random odd 0 < o < 2/, and x; # xo,
then

[ Pr[h(x) = h(y)] < 27" ]
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String hashing: bad choice, why?

unsigned long hash(unsigned char *str)

{

unsigned int hash = 0;
int c;
while (c = *str++)

hash += c;
return hash;
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String hashing: djbx33a

unsigned long hash(unsigned char *str)
{
unsigned long hash = 5381;
int c;
while (c == *str++)
hash = ((hash << 5) + hash) + c;
return hash;
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djbx33a is Vulnerable to attacks

#include <iostream>
#include <cstring>

// author: Charalampos Tsourakakis
unsigned long hash(std::string str){
unsigned long hash = 5381;
int c;
for( int i = 0; i < str.length(); i++)

hash = ((hash << 5) + hash) + str.at(i)
return hash;
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djbx33a is Vulnerable to attacks

int main ()

{

std::string s="Ey";
std::cout<<"h(Ey)="<<hash(s)<<std::endl;
s = "FZ";
std::cout<<"h(FZ)="<<hash(s)<<std::endl;
return O;

b

>> g++ -o DoSdjbx33a DoSdjbx33a.cc
>> ./DoSdjbx33a

h(Ey)=5862307

h(FZ)=5862309

Verify ( ) that h(Ey) = h(FZ) for djbx33a hash

function.
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Hash-flooding DoS

Victim

Attacker

|

)Y/

Oooio:

DDoS Attack

Definition: Send to a server many inputs with a same hash
(enforces linear)
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String hashing: java.lang.String.hashCode()

unsigned long hash(unsigned char *str)

{
unsigned long hash = 0;

int c;
while (¢ == *str++)
hash = ((hash << 5) - hash) + c;

return hash;
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Hash-flooding DoS

Here is what your website may look like after a successful
Denial of Service Attack:

Service Unavailable

HTTP Error 503. The service 1s unavailable.

How to Detect a Denial of Service (DoS) Attack
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http://www.gregthatcher.com/Azure/Ch2_DetectingDenialOfService.aspx

Hash-flooding DoS

For example: FARMHASH::FINGERPRINTG64 () takes as input

a string, and outputs a uint64. [Not securel]

colo \ges/ Jl.common. hash Hashing htm! %o ¢ e
\pps B Data sources E5Blogs ESBooks [5Puzzies [5Funstaff £S5 People Eanmg ESBoston E5GHt ESAmxiv ESGrants ESTensorfiow [SMachine Learning 5 Coding BS Favorites ES Stackoverfiow
smesaor Querview Package [ETTT] Helo Gonerated by
nevcLAss NECTCLASS  FrawEs NoFrauEs OETAL consTRUCTORS | METIGDS| FELDS

Class com.google.common.hash.gashing

Added Methods

Returns a hash function ing FarmHash's Fingerprint64, an open-source algorithm.
asnPanction hmacas(byte( 1) Returns a hash function implementing the Message Authentication Code (MAC) aigorithm, using the MDS (128 hash bits) hash function and &
created from the given byte array and the MDS algorithm.
oshPunction huacds(Key) Returns a hash function implementing the Message Authentication Code (MAC) aigorithm, using the MDS (128 hash bits) hash function and the given
secret key.
asnPanction huacshal(byte(1) Retums a hash funclon implementng th Vissage Auhenticallon Code (MAC) sigorthm, using the SHA-T (160 hash bis) hash funclon and a
eated from the given byte array and the SHA-1 algorithr
oshPunction hnacshal(Key) Returns a hash function implementing the Message Authentication Code. (MACi algorithm, using the SHA-1 (160 hash bits) hash function and the
given secret
aahPanc ion huacshazss(byte( 1) Retumns nssh function implementing the Message Authentication Code (MAC) aigorithm, using the SHA-256 (256 hash bits) hash funcion and a

created from the given byte array and the SHA-256 algorithm.
aahrunction hacshazs6(Key) Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the SHA-256 (256 hash bits) hash function and the
given secret key
aanPanction huacshasia(byte( 1) Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the SHA-512 (512 hash bits) hash function and a
created from the given byte array and the SHA-512 algorithm.
aahrunction hacshasiz(key) Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the SHA-512 (512 hash bits) hash function and the
given secret

Package [EFTT] Help

Guava 20.0-suAPSHOT Overview

For secure cryptographic functions, a good start is the MD5
algorithm.
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https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/MD5

Perfect Hashing

e So far, we've seen that the average case behavior of
hashing is significantly superior to the worst case.

® However, we can get excellent worst case performance if
the set of keys is static.

e Perfect hashing requires O(1) memory accesses in the
worst case.

Theorem: If H is 2-universal, |S| =n, m > oz(’z’), then

1
Pr[h is perfect for S]>1— —.
a
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Perfect Hashing

Proof sketch:

e Define X =# collisions, and let's compute E [X]
* X = Zi;ﬁj Xij

e PriX;=1=21

® By linearity of expectation E [X] = (31) <1

.

Apply Markov's inequality

1—Pr[X:O]:Pr[X21]§E[X]gé.
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Perfect Hashing

Issue: O(n?) space

o Can we get away with O(n) space?

Yes: Fredman-Komlds-Szemerédi

Idea: Two level hashing,

@ Hash using a universal hash function to n = |S]| bins.
® Rehash perfectly within each bin at second level.
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Perfect Hashing

Source: CLRS book

Claim (Exercise):

n—1

E anz < 2n.

Jj=0
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https://mitpress.mit.edu/books/introduction-algorithms

Separate Chaining
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Source: Hackerearth
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https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/tutorial/

Insertion

vector <string> Table [20];
int hashTableSize=20;

void insert(string s)

{
// Compute the index using Hash Function
int index = hashFunc(s);

// Insert the element
Table [index].push_back(s);
}
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Search

void search(string s)

{
int index = hashFunc(s);
for(int i = 0;i < Table[index].size();i++)
{
if (Table[index] [i] == s)
{
cout << s << "isyfound!" << endl;
return;
}
}
cout << s << "_isynot,found!" << endl;

EPL 660, Guest Lecture 33 /59



Separate Chaining

Load factor o:

Claim: Under the assumption of simple uniform hashing, an
unsuccessful search takes O(1 + «) time.

Proof sketch: E[nj] = « forall j € {0,...,m—1}.
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Linear Probing

® Sequential memory accesses are fast
® Values stored directly to hash table

e We hash x to h(x). If this cell is already occupied, then
we check h(x) + 1, h(x) +1 (mod arithmetic).

® Pagh et al. proved that if hash function is 5-wise
independent, then E [operation] = O(1).
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Insertion

void insert(string s)
{
int index = hashFunc(s);
while (Table [index] !'= "")
index = (index + 1) Y% hashTableSize;
hashTable[index] = s;
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Search

void search(string s)
{
int index = hashFunc(s);
while(Table[index] !'= s&&Table[index] != "")
index = (index+1)%hashTableSize;
if (Table[index] == s)
cout << s << " is_found!" << endl;
else
cout << s << "isynot,found!" << endl;
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Quadratic Probing

e Difference from linear probing is the choice between
successive probes or entry slots

index = index % hashTableSize
index = (index + 1%) % hashTableSize
index = (index + 22) % hashTableSize

index = (index + 32) % hashTableSize
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Insertion

void insert(string s)

{
int index = hashFunc(s);
int h = 1;
while (hashTable [index] !'= "") {
index = (index + h*h) % hashTableSize;
h++;}

Table [index] = s;
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Search

void search(string s)

{
int ind = hashFunc(s);
int h = 1;
while(Table[ind] != s&&Table[ind] != ""){
ind = (ind + hx*h) % hashTableSize;
h++;}
if (Table [index] == s)
cout << s << "isyfound!" << endl;
else
cout << s << ", isynot, found!" << endl;
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Double Hashing

e Difference from linear probing is that the interval between
probes is computed by using two hash functions.

indexH = hashFunc2(s);
index = (index + 1 * indexH) % hashTableSize;
index = (index + 2 * indexH) % hashTableSize;
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Insertion

void insert(string s)

{

int index = hashFuncl(s);

int indexH = hashFunc2(s);
while (hashTable [index] != "")

index = (index+indexH))hashTableSize;
hashTable [index] = s;
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Search

void search(string s)

{
int index = hashFuncil1(s);
int indexH = hashFunc2(s);
while(Table[index]!= s&&Table[index]!= "")
index = (index + indexH)%hashTableSize;
if (Table[index] == s)
cout << s << "isyfound!" << endl;
else
cout << s << "isynot,found!" << endl;
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Bloom Filter

® Approximate membership problem
® Highly space-efficient randomized data structure

® |ts analysis shows an interesting tradeoff between space
and error probability

¢ The Bloom filter principle

Wherever a list or set is used, and space is at a
premium,consider using a Bloom filter if the effect of false
positives can be mitigated.
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Bloom Filter — Applications

Historically, Bloom filter was developed in the context of
dictionary applications when space resources were scarce.

e Burton H. Bloom introduced Bloom filters (1970) for an
application related to hyphenation programs.

® Bloom filters were also used in early UNIX spell-checker
(space savings were crucial for functionality)

® Avoid weak passwords.

e Content Delivery in P2P networks

® Networks

e Distributed Caching

e Databases (e.g., Bloomjoin algorithm)
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Bloom Filter — Description
@® A vector of m bits
® k independent hash functions hy, ..., hy
© A set S of n keys
O To store key x, we set A[h;(x)] =1 for all i € [k]
® Lookup(x): if A[hi(x)] =1 for all i € [k], then x € S.
® No false negatives, but false positives may exist.
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Bloom filter in Python — Pybloom library

>>> from pybloom import BloomFilter

>>> f = BloomFilter (capacity=1000, err=0.001)
>>> [f.add(x) for x in range(10)]

>>> all([(x in f) for x in range(10)])

True

>>> 10 in £

False

>>> 5 in £

True
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Bloom Filters — Example

01234567 891011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string: cssei| | add to bloom filtar

fov:
murmur:

Your set: []

Demo: Bloom Filters by Example
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https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

[ ||
01234567 891011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string: add to bloom fiter

fnv: 3
murmur: 2

Your set: [cs591]

Demo: Bloom Filters by Example
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https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

(I
012345678 91011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string;: | snowstom| | a0d to bloom filter

friv: 3
murmur: 2

Your set: [¢s591]

Demo: Bloom Filters by Example
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https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

||
0

[ | | ||
1234567 891011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string: add to bloom filter

fnv: 13
murmur: 0

Your set: [cs591, snowstorm)]

Demo: Bloom Filters by Example
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https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

H BN ||
01234567 8091011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string: sostan | add to bloom filtar

fnv: 13
murmur: 0

Your set: [cs591, snowstorm]

Demo: Bloom Filters by Example
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https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

H ER H nm
01234567 891011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fniv and Murmur are two simple hash functions:

Enter a string: add to bloom filter

frv: 11
murmur: 11

Your set: [cs591, snowstorm, boston]

Demo: Bloom Filters by Example
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https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — False positives

e Assumption: h; are close to being independent hash
functions, probes are uniform

e Claim: Pr{A(i)=1]=1—(1— 1)k

e Why?
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Bloom Filters — False positives

® Probability of a false positive.

1 k
—(1—-(1=-= kn> ~(1— kn/m k‘
pr= (1= (1= 2y7)" =~ (1= el

Given n, m how do we optimally set k7

k = Iog(Q)%.
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Bloom Filters — Do we need k hash functions?

Double hashing works!

® |nstead of using k random hash functions, one can choose
two sufficiently random hash functions h, " and then set

hi(x) = h(x) + ih'(x) mod m.

® This was proved by Kirsch et al.

® Dillinger and Manolios had earlier suggested

hi(x) = h(x) + ih'(x) + i* mod m,

as an effective heuristic.
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Spell Checker with Bloom Filters

https://github.com/tsourolampis/
bloom-spell-checker
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https://github.com/tsourolampis/bloom-spell-checker
https://github.com/tsourolampis/bloom-spell-checker

references |

[§ Carter, J. L. and Wegman, M. N. (1979).
Universal classes of hash functions.
Journal of computer and system sciences, 18(2):143-154.

@ Dietzfelbinger, M., Hagerup, T., Katajainen, J., and Penttonen, M.
(1997).
A reliable randomized algorithm for the closest-pair problem.
Journal of Algorithms, 25(1):19-51.

EPL 660, Guest Lecture 59 / 59



