EPL 660, Guest Lecture
Nuts and Bolts of a Spell Checker
UCY

March 19th, 2018

What is a spell checker?

Definition: A spell checker is an application program that
flags words in a document that may not be spelled
correctly.

Sin TS0 AM @ =

& Terminal Shell Edi View Window telp 80a o
0 ;

i =

EPL 660, Guest Lecture

2/ 59

(Some) Nuts & Bolts of a Spell Checker

Today we will show how to create a spell checker on a laptop.
On my Mac, | use /usr/share/dict/words as our lexicon.

Basics of Hashing

® Check quickly if a word in our document appears or not
in the lexicon.

Bloom filters

® What if space is a constraint? How to create a space
efficient spell checker.

EPL 660, Guest Lecture 3 /59

EPL 660, Guest Lecture 4 /59

Balls and bins again : n balls, n bins

Problem: Maximum bin load?
EPL 660, Guest Lecture 5 /59

n balls into n bins
Two ways to prove this claim.
® Chernoff and union bound

® Binomials and union bound

Pr|3i.x > Sloen | (M1 _1
k) nk n

"~ loglogn n
k

Let Xi,..., X, be independent
RVs with X; € {0,1}, X = >_ X;, then:

PriX > (1 +0)E[X]] < ((Hewf[x]

EPL 660, Guest Lecture 6 /59

n balls into n bins

31 1
Pr | dbin with more than ogfn balls| < —
log log n n
Changing the maximum load
lo
¢80
log log n

by playing with constant ¢, we can decrease the failure
probability as - (n)

EPL 660, Guest Lecture 7 /59

Dictionary problem

Universe U = [u] = {0,...,u— 1}
Set SCU, |S|=n|S|<U

Goal: design a data structure that supports efficiently the
following operations.

MAKE(): Initializes an empty dictionary
INSERT(X): Add element x in S
LOOKUP(X): Does x appear in S
DELETE(X): Removes x from S, if present

Questions:

Why not a linked list?
Why not an array over U?

EPL 660, Guest Lecture

8/ 59

Python dictionary
#empty table

d ={%

#insert

d["Andrei Rublev"] = "Tarkovsky"
d["Stalker"] = "Tarkovsky"
d["Viridiana"] ="Bunuel"
df(’1237,%a’)] = "al23"

#lookup
print(d["Stalker"])
print (d[(’1237,7a’)])

##delete
del d["Stalker"]
print (d["Stalker"]) #KeyError: ’Stalker’

EPL 660, Guest Lecture 9 /59

Hashing

¢ Basic idea: Work with an array of size m = O(|S|)
rather than of size O(|U|)!

e Hash function: h: [u] — [m]

e Hash table: Array. We place x € S at position h(x).

o x # y € U get mapped to h(x) = h(y).

® How do we choose h?

® How do we resolve conflicts?

EPL 660, Guest Lecture

10 / 59

Balls and bins again : n balls, r bins

Problem: Collision?

EPL 660, Guest Lecture 11 /59

Balls and Bins Revisited: k-wise independence

Consider the load of some bin.

> a0

r
KCS,|S|=k

e If k > 2en/r > 2log r the probability of k balls in any
single bucket is < 1/r.

® No need for full randomness, but randomness over all
subsets of k hash values.

See also Rasmus Pagh's slides

EPL 660, Guest Lecture 12 / 59

people.seas.harvard.edu/~babis/cs591_files/HashingBasicsPagh.pdf

Balls and Bins Revisited: k-wise independence

Definition: RVs Xi, ..., X, are k-wise independent iff for
any set of indices i1,..., ik, RVs X, ..., X are independent.

Definition: A set of hash function H is a k-wise independent
family iff the random variables h(0), ..., h(u — 1) are k-wise

independent when h € H is drawn uniformly at random.

Example 1: The set # of all functions from [u] to [m] is
k-wise independent for all k.

Bits: ulog m (u is enormous!)

EPL 660, Guest Lecture 13 / 59

2-wise independent family

Exercise: We can construct a 2-wise independent family as
follows.

® pis prime

® a, b chosen uar from [p]

® The hash of x is

h(x) = ax+ b mod p,
How many bits do we need now?

Generalization: Polynomials with random coefficients, see
https://en.wikipedia.org/wiki/K-independent_
hashing/Polynomials_with_random_coefficients

EPL 660, Guest Lecture

14 / 59

https://en.wikipedia.org/wiki/K-independent_hashing/Polynomials_with_random_coefficients
https://en.wikipedia.org/wiki/K-independent_hashing/Polynomials_with_random_coefficients

Universal hash family

e A family H of hash functions is strongly 2-universal if
for any x; # x,

Pr[h(x1) = y1, h(x2) = ya] = %

for a uniform h € H.

What is the connection with the previous slide?

EPL 660, Guest Lecture 15 / 59

Avoiding Modular Arithmetic

Modular arithmetic can be slow

[Dietzfelbinger et al., 1997] proposed the following hash
function (collisions twice as likely):

For each k,/ they define a class Hy; of hash functions
from U = [2X] to M = [2/]

[Hys = {ha|he = (ax mod 2%) div 257,]

Claim: If « is a random odd 0 < o < 2/, and x; # xo,
then

[Pr[h(x) = h(y)] < 27"]

EPL 660, Guest Lecture 16 / 59

MEIEBENEISLUTMIEL

EPL 660, Guest Lecture 17 / 59

String hashing: bad choice, why?

unsigned long hash(unsigned char *str)

{

unsigned int hash = 0;
int c;
while (c = *str++)

hash += c;
return hash;

EPL 660, Guest Lecture 18 / 59

String hashing: djbx33a

unsigned long hash(unsigned char *str)
{
unsigned long hash = 5381;
int c;
while (c == *str++)
hash = ((hash << 5) + hash) + c;
return hash;

EPL 660, Guest Lecture 19 / 59

| S0,YOU ARE TELLING

- ol
THAT nmmn I(S >

EPL 660, Guest Lecture 20 / 59

djbx33a is Vulnerable to attacks

#include <iostream>
#include <cstring>

// author: Charalampos Tsourakakis
unsigned long hash(std::string str){
unsigned long hash = 5381;
int c;
for(int i = 0; i < str.length(); i++)

hash = ((hash << 5) + hash) + str.at(i)
return hash;

EPL 660, Guest Lecture 21 /59

djbx33a is Vulnerable to attacks

int main ()

{

std::string s="Ey";
std::cout<<"h(Ey)="<<hash(s)<<std::endl;
s = "FZ";
std::cout<<"h(FZ)="<<hash(s)<<std::endl;
return O;

b

>> g++ -o DoSdjbx33a DoSdjbx33a.cc
>> ./DoSdjbx33a

h(Ey)=5862307

h(FZ)=5862309

Verify () that h(Ey) = h(FZ) for djbx33a hash

function.
EPL 660, Guest Lecture 22 /59

Hash-flooding DoS

Victim

Attacker

|

)Y/

Oooio:

DDoS Attack

Definition: Send to a server many inputs with a same hash
(enforces linear)

EPL 660, Guest Lecture 23 /59

String hashing: java.lang.String.hashCode()

unsigned long hash(unsigned char *str)

{
unsigned long hash = 0;

int c;
while (¢ == *str++)
hash = ((hash << 5) - hash) + c;

return hash;

EPL 660, Guest Lecture 24 / 59

Hash-flooding DoS

Here is what your website may look like after a successful
Denial of Service Attack:

Service Unavailable

HTTP Error 503. The service 1s unavailable.

How to Detect a Denial of Service (DoS) Attack

EPL 660, Guest Lecture 25 /59

http://www.gregthatcher.com/Azure/Ch2_DetectingDenialOfService.aspx

Hash-flooding DoS

For example: FARMHASH::FINGERPRINTG64 () takes as input

a string, and outputs a uint64. [Not securel]

colo \ges/ Jl.common. hash Hashing htm! %o ¢ e
\pps B Data sources E5Blogs ESBooks [5Puzzies [5Funstaff £S5 People Eanmg ESBoston E5GHt ESAmxiv ESGrants ESTensorfiow [SMachine Learning 5 Coding BS Favorites ES Stackoverfiow
smesaor Querview Package [ETTT] Helo Gonerated by
nevcLAss NECTCLASS FrawEs NoFrauEs OETAL consTRUCTORS | METIGDS| FELDS

Class com.google.common.hash.gashing

Added Methods

Returns a hash function ing FarmHash's Fingerprint64, an open-source algorithm.
asnPanction hmacas(byte(1) Returns a hash function implementing the Message Authentication Code (MAC) aigorithm, using the MDS (128 hash bits) hash function and &
created from the given byte array and the MDS algorithm.
oshPunction huacds(Key) Returns a hash function implementing the Message Authentication Code (MAC) aigorithm, using the MDS (128 hash bits) hash function and the given
secret key.
asnPanction huacshal(byte(1) Retums a hash funclon implementng th Vissage Auhenticallon Code (MAC) sigorthm, using the SHA-T (160 hash bis) hash funclon and a
eated from the given byte array and the SHA-1 algorithr
oshPunction hnacshal(Key) Returns a hash function implementing the Message Authentication Code. (MACi algorithm, using the SHA-1 (160 hash bits) hash function and the
given secret
aahPanc ion huacshazss(byte(1) Retumns nssh function implementing the Message Authentication Code (MAC) aigorithm, using the SHA-256 (256 hash bits) hash funcion and a

created from the given byte array and the SHA-256 algorithm.
aahrunction hacshazs6(Key) Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the SHA-256 (256 hash bits) hash function and the
given secret key
aanPanction huacshasia(byte(1) Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the SHA-512 (512 hash bits) hash function and a
created from the given byte array and the SHA-512 algorithm.
aahrunction hacshasiz(key) Returns a hash function implementing the Message Authentication Code (MAC) algorithm, using the SHA-512 (512 hash bits) hash function and the
given secret

Package [EFTT] Help

Guava 20.0-suAPSHOT Overview

For secure cryptographic functions, a good start is the MD5
algorithm.

EPL 660, Guest Lecture

26 / 59

https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/MD5

Perfect Hashing

e So far, we've seen that the average case behavior of
hashing is significantly superior to the worst case.

® However, we can get excellent worst case performance if
the set of keys is static.

e Perfect hashing requires O(1) memory accesses in the
worst case.

Theorem: If H is 2-universal, |S| =n, m > oz(’z’), then

1
Pr[h is perfect for S]>1— —.
a

EPL 660, Guest Lecture 27 / 59

Perfect Hashing

Proof sketch:

e Define X =# collisions, and let's compute E [X]
* X = Zi;ﬁj Xij

e PriX;=1=21

® By linearity of expectation E [X] = (31) <1

.

Apply Markov's inequality

1—Pr[X:O]:Pr[X21]§E[X]gé.

EPL 660, Guest Lecture 28 / 59

Perfect Hashing

Issue: O(n?) space

o Can we get away with O(n) space?

Yes: Fredman-Komlds-Szemerédi

Idea: Two level hashing,

@ Hash using a universal hash function to n = |S]| bins.
® Rehash perfectly within each bin at second level.

EPL 660, Guest Lecture 29 / 59

Perfect Hashing

Source: CLRS book

Claim (Exercise):

n—1

E anz < 2n.

Jj=0

EPL 660, Guest Lecture

10 11

12 13 14 15

30 / 59

https://mitpress.mit.edu/books/introduction-algorithms

Separate Chaining

0 —f—litem]| |
1
2 ——bliternl —I—blite:ﬂl I
3
4
5 ——>|item| +——liten| +——=fiten] |
6
7
8 —f—=>|item
9 —f—>|item
10
1
. ——|item| ;——liten] |
.
-
-
-

Source: Hackerearth

EPL 660, Guest Lecture 31/59

https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/tutorial/

Insertion

vector <string> Table [20];
int hashTableSize=20;

void insert(string s)

{
// Compute the index using Hash Function
int index = hashFunc(s);

// Insert the element
Table [index].push_back(s);
}

EPL 660, Guest Lecture 32 /59

Search

void search(string s)

{
int index = hashFunc(s);
for(int i = 0;i < Table[index].size();i++)
{
if (Table[index] [i] == s)
{
cout << s << "isyfound!" << endl;
return;
}
}
cout << s << "_isynot,found!" << endl;

EPL 660, Guest Lecture 33 /59

Separate Chaining

Load factor o:

Claim: Under the assumption of simple uniform hashing, an
unsuccessful search takes O(1 + «) time.

Proof sketch: E[nj] = « forall j € {0,...,m—1}.

EPL 660, Guest Lecture 34 /59

Linear Probing

® Sequential memory accesses are fast
® Values stored directly to hash table

e We hash x to h(x). If this cell is already occupied, then
we check h(x) + 1, h(x) +1 (mod arithmetic).

® Pagh et al. proved that if hash function is 5-wise
independent, then E [operation] = O(1).

EPL 660, Guest Lecture 35 /59

Insertion

void insert(string s)
{
int index = hashFunc(s);
while (Table [index] !'= "")
index = (index + 1) Y% hashTableSize;
hashTable[index] = s;

EPL 660, Guest Lecture 36 / 59

Search

void search(string s)
{
int index = hashFunc(s);
while(Table[index] !'= s&&Table[index] != "")
index = (index+1)%hashTableSize;
if (Table[index] == s)
cout << s << " is_found!" << endl;
else
cout << s << "isynot,found!" << endl;

EPL 660, Guest Lecture 37 /59

Quadratic Probing

e Difference from linear probing is the choice between
successive probes or entry slots

index = index % hashTableSize
index = (index + 1%) % hashTableSize
index = (index + 22) % hashTableSize

index = (index + 32) % hashTableSize

EPL 660, Guest Lecture 38 /59

Insertion

void insert(string s)

{
int index = hashFunc(s);
int h = 1;
while (hashTable [index] !'= "") {
index = (index + h*h) % hashTableSize;
h++;}

Table [index] = s;

EPL 660, Guest Lecture 39 /59

Search

void search(string s)

{
int ind = hashFunc(s);
int h = 1;
while(Table[ind] != s&&Table[ind] != ""){
ind = (ind + hx*h) % hashTableSize;
h++;}
if (Table [index] == s)
cout << s << "isyfound!" << endl;
else
cout << s << ", isynot, found!" << endl;

EPL 660, Guest Lecture 40 / 59

Double Hashing

e Difference from linear probing is that the interval between
probes is computed by using two hash functions.

indexH = hashFunc2(s);
index = (index + 1 * indexH) % hashTableSize;
index = (index + 2 * indexH) % hashTableSize;

EPL 660, Guest Lecture 41 /59

Insertion

void insert(string s)

{

int index = hashFuncl(s);

int indexH = hashFunc2(s);
while (hashTable [index] != "")

index = (index+indexH))hashTableSize;
hashTable [index] = s;

EPL 660, Guest Lecture 42 /59

Search

void search(string s)

{
int index = hashFuncil1(s);
int indexH = hashFunc2(s);
while(Table[index]!= s&&Table[index]!= "")
index = (index + indexH)%hashTableSize;
if (Table[index] == s)
cout << s << "isyfound!" << endl;
else
cout << s << "isynot,found!" << endl;

EPL 660, Guest Lecture 43 / 59

»

TIMEFORIBLOOM
FILTERS!

EPL 660, Guest Lecture 44 / 59

Bloom Filter

® Approximate membership problem
® Highly space-efficient randomized data structure

® |ts analysis shows an interesting tradeoff between space
and error probability

¢ The Bloom filter principle

Wherever a list or set is used, and space is at a
premium,consider using a Bloom filter if the effect of false
positives can be mitigated.

EPL 660, Guest Lecture 45 / 59

Bloom Filter — Applications

Historically, Bloom filter was developed in the context of
dictionary applications when space resources were scarce.

e Burton H. Bloom introduced Bloom filters (1970) for an
application related to hyphenation programs.

® Bloom filters were also used in early UNIX spell-checker
(space savings were crucial for functionality)

® Avoid weak passwords.

e Content Delivery in P2P networks

® Networks

e Distributed Caching

e Databases (e.g., Bloomjoin algorithm)

EPL 660, Guest Lecture 46 / 59

Bloom Filter — Description
@® A vector of m bits
® k independent hash functions hy, ..., hy
© A set S of n keys
O To store key x, we set A[h;(x)] =1 for all i € [k]
® Lookup(x): if A[hi(x)] =1 for all i € [k], then x € S.
® No false negatives, but false positives may exist.

EPL 660, Guest Lecture 47 / 59

Bloom filter in Python — Pybloom library

>>> from pybloom import BloomFilter

>>> f = BloomFilter (capacity=1000, err=0.001)
>>> [f.add(x) for x in range(10)]

>>> all([(x in f) for x in range(10)])

True

>>> 10 in £

False

>>> 5 in £

True

EPL 660, Guest Lecture 48 / 59

Bloom Filters — Example

01234567 891011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string: cssei| | add to bloom filtar

fov:
murmur:

Your set: []

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 49 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

[||
01234567 891011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string: add to bloom fiter

fnv: 3
murmur: 2

Your set: [cs591]

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 50 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

(I
012345678 91011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string;: | snowstom| | a0d to bloom filter

friv: 3
murmur: 2

Your set: [¢s591]

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 51 /59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

||
0

[| | ||
1234567 891011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string: add to bloom filter

fnv: 13
murmur: 0

Your set: [cs591, snowstorm)]

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 52 /59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

H BN ||
01234567 8091011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fnv and Murmur are two simple hash functions:

Enter a string: sostan | add to bloom filtar

fnv: 13
murmur: 0

Your set: [cs591, snowstorm]

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 53 /59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — Example

H ER H nm
01234567 891011121314

Each empty cell in that table represents a bit, and the number below it its index. To
add an element to the Bloom filter, we simply hash it a few times and set the bits in
the bit vector at the index of those hashes to 1.

It's easier to see what that means than explain it, so enter some strings and see how
the bit vector changes. Fniv and Murmur are two simple hash functions:

Enter a string: add to bloom filter

frv: 11
murmur: 11

Your set: [cs591, snowstorm, boston]

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 54 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters — False positives

e Assumption: h; are close to being independent hash
functions, probes are uniform

e Claim: Pr{A(i)=1]=1—(1— 1)k

e Why?

EPL 660, Guest Lecture

55 / 59

Bloom Filters — False positives

® Probability of a false positive.

1 k
—(1—-(1=-= kn> ~(1— kn/m k‘
pr= (1= (1= 2y7)" =~ (1= el

Given n, m how do we optimally set k7

k = Iog(Q)%.

EPL 660, Guest Lecture 56 / 59

Bloom Filters — Do we need k hash functions?

Double hashing works!

® |nstead of using k random hash functions, one can choose
two sufficiently random hash functions h, " and then set

hi(x) = h(x) + ih'(x) mod m.

® This was proved by Kirsch et al.

® Dillinger and Manolios had earlier suggested

hi(x) = h(x) + ih'(x) + i* mod m,

as an effective heuristic.

EPL 660, Guest Lecture 57 / 59

Spell Checker with Bloom Filters

https://github.com/tsourolampis/
bloom-spell-checker

EPL 660, Guest Lecture 58 / 59

https://github.com/tsourolampis/bloom-spell-checker
https://github.com/tsourolampis/bloom-spell-checker

references |

[§ Carter, J. L. and Wegman, M. N. (1979).
Universal classes of hash functions.
Journal of computer and system sciences, 18(2):143-154.

@ Dietzfelbinger, M., Hagerup, T., Katajainen, J., and Penttonen, M.
(1997).
A reliable randomized algorithm for the closest-pair problem.
Journal of Algorithms, 25(1):19-51.

EPL 660, Guest Lecture 59 / 59

