
EPL 660, Guest Lecture
Nuts and Bolts of a Spell Checker

UCY

March 19th, 2018

What is a spell checker?
Definition: A spell checker is an application program that
flags words in a document that may not be spelled
correctly.

EPL 660, Guest Lecture 2 / 59

(Some) Nuts & Bolts of a Spell Checker

Today we will show how to create a spell checker on a laptop.
On my Mac, I use /usr/share/dict/words as our lexicon.

Basics of Hashing
• Check quickly if a word in our document appears or not

in the lexicon.

Bloom filters
• What if space is a constraint? How to create a space

efficient spell checker.

EPL 660, Guest Lecture 3 / 59

EPL 660, Guest Lecture 4 / 59

Balls and bins again : n balls, n bins

Problem: Maximum bin load?
EPL 660, Guest Lecture 5 / 59

n balls into n bins
Two ways to prove this claim.

1 Chernoff and union bound

2 Binomials and union bound

Pr

∃i : Xi ≥
3 log n

log log n︸ ︷︷ ︸
k

 ≤ n

(
n

k

)
1

nk
≤ 1

n
.

Reminder, Chernoff bound: Let X1, . . . ,Xn be independent

RVs with Xi ∈ {0, 1}, X =
n∑

i=1

Xi , then:

Pr [X ≥ (1 + δ)E [X]] ≤
(eδ

(1 + δ)1+δ

)E[X]

EPL 660, Guest Lecture 6 / 59

n balls into n bins

Pr

[
∃bin with more than

3 log n

log log n
balls

]
≤ 1

n

Changing the maximum load

c
log n

log log n

by playing with constant c , we can decrease the failure
probability as 1

poly(n)
.

EPL 660, Guest Lecture 7 / 59

Dictionary problem

Universe U = [u] = {0, . . . , u − 1}

Set S ⊆ U , |S | = n, |S | � U

Goal: design a data structure that supports efficiently the
following operations.

• Make(): Initializes an empty dictionary

• Insert(x): Add element x in S

• Lookup(x): Does x appear in S

• Delete(x): Removes x from S , if present

Questions:

• Why not a linked list?

• Why not an array over U?

EPL 660, Guest Lecture 8 / 59

Python dictionary
#empty table

d ={}

#insert

d["Andrei Rublev"] = "Tarkovsky"

d["Stalker"] = "Tarkovsky"

d["Viridiana"] ="Bunuel"

d[(’123’,’a’)] = "a123"

#lookup

print(d["Stalker"])

print(d[(’123’,’a’)])

#delete

del d["Stalker"]

print(d["Stalker"]) #KeyError: ’Stalker ’
EPL 660, Guest Lecture 9 / 59

Hashing

• Basic idea: Work with an array of size m = O(|S |)
rather than of size O(|U |)!

• Hash function: h : [u]→ [m]

• Hash table: Array. We place x ∈ S at position h(x).

• Collision: x 6= y ∈ U get mapped to h(x) = h(y).

1 How do we choose h?

2 How do we resolve conflicts?

EPL 660, Guest Lecture 10 / 59

Balls and bins again : n balls, r bins

Problem: Collision?
EPL 660, Guest Lecture 11 / 59

Balls and Bins Revisited: k-wise independence

Consider the load of some bin.

∑
K⊆S,|S |=k

1

r k
≤
(en
k

)k
r−k =

(en
rk

)k
• If k > 2en/r > 2 log r the probability of k balls in any

single bucket is < 1/r .

• No need for full randomness, but randomness over all
subsets of k hash values.

Source: See also Rasmus Pagh’s slides

EPL 660, Guest Lecture 12 / 59

people.seas.harvard.edu/~babis/cs591_files/HashingBasicsPagh.pdf

Balls and Bins Revisited: k-wise independence

Definition: RVs X1, . . . ,Xn are k-wise independent iff for
any set of indices i1, . . . , ik , RVs Xi1 , . . . ,Xik are independent.

Definition: A set of hash function H is a k-wise independent
family iff the random variables h(0), . . . , h(u − 1) are k-wise
independent when h ∈ H is drawn uniformly at random.

Example 1: The set H of all functions from [u] to [m] is
k-wise independent for all k .

Bits: u logm (u is enormous!)

EPL 660, Guest Lecture 13 / 59

2-wise independent family

Exercise: We can construct a 2-wise independent family as
follows.

• p is prime

• a, b chosen uar from [p]

• The hash of x is

h(x) = ax + b mod p,

How many bits do we need now?

Generalization: Polynomials with random coefficients, see
https://en.wikipedia.org/wiki/K-independent_

hashing/Polynomials_with_random_coefficients

EPL 660, Guest Lecture 14 / 59

https://en.wikipedia.org/wiki/K-independent_hashing/Polynomials_with_random_coefficients
https://en.wikipedia.org/wiki/K-independent_hashing/Polynomials_with_random_coefficients

Universal hash family

• A family H of hash functions is strongly 2-universal if
for any x1 6= x2,

Pr [h(x1) = y1, h(x2) = y2] =
1

m2
.

for a uniform h ∈ H.

What is the connection with the previous slide?

EPL 660, Guest Lecture 15 / 59

Avoiding Modular Arithmetic

• Modular arithmetic can be slow

• [Dietzfelbinger et al., 1997] proposed the following hash
function (collisions twice as likely):

• For each k , l they define a class Hk,l of hash functions
from U = [2k] to M = [2l]

Hk,l = {hα|hα = (ax mod 2k) div 2k−l .

• Claim: If α is a random odd 0 < α < 2l , and x1 6= x2,
then

Pr [h(x) = h(y)] ≤ 2−l+1.

EPL 660, Guest Lecture 16 / 59

EPL 660, Guest Lecture 17 / 59

String hashing: bad choice, why?

unsigned long hash(unsigned char *str)

{

unsigned int hash = 0;

int c;

while (c = *str ++)

hash += c;

return hash;

}

EPL 660, Guest Lecture 18 / 59

String hashing: djbx33a

unsigned long hash(unsigned char *str)

{

unsigned long hash = 5381;

int c;

while (c == *str ++)

hash = ((hash << 5) + hash) + c;

return hash;

}

EPL 660, Guest Lecture 19 / 59

EPL 660, Guest Lecture 20 / 59

djbx33a is Vulnerable to attacks

#include <iostream >

#include <cstring >

// author: Charalampos Tsourakakis

unsigned long hash(std:: string str){

unsigned long hash = 5381;

int c;

for(int i = 0; i < str.length (); i++)

hash = ((hash << 5) + hash) + str.at(i);

return hash;

}

EPL 660, Guest Lecture 21 / 59

djbx33a is Vulnerable to attacks

int main()

{

std:: string s="Ey";

std::cout <<"h(Ey)="<<hash(s)<<std::endl;

s = "FZ";

std::cout <<"h(FZ)="<<hash(s)<<std::endl;

return 0;

}

>> g++ -o DoSdjbx33a DoSdjbx33a.cc

>> ./ DoSdjbx33a

h(Ey)=5862307

h(FZ)=5862309

Verify (exercise) that h(Ey) = h(FZ) for djbx33a hash
function.

EPL 660, Guest Lecture 22 / 59

Hash-flooding DoS

Definition: Send to a server many inputs with a same hash
(enforces linear)

EPL 660, Guest Lecture 23 / 59

String hashing: java.lang.String.hashCode()

unsigned long hash(unsigned char *str)

{

unsigned long hash = 0;

int c;

while (c == *str ++)

hash = ((hash << 5) - hash) + c;

return hash;

}

EPL 660, Guest Lecture 24 / 59

Hash-flooding DoS

Here is what your website may look like after a successful
Denial of Service Attack:

Figure from: How to Detect a Denial of Service (DoS) Attack

EPL 660, Guest Lecture 25 / 59

http://www.gregthatcher.com/Azure/Ch2_DetectingDenialOfService.aspx

Hash-flooding DoS
For example: farmhash::Fingerprint64() takes as input
a string, and outputs a uint64. [Not secure!]

For secure cryptographic functions, a good start is the MD5
algorithm.

EPL 660, Guest Lecture 26 / 59

https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/MD5

Perfect Hashing

• So far, we’ve seen that the average case behavior of
hashing is significantly superior to the worst case.

• However, we can get excellent worst case performance if
the set of keys is static.

• Perfect hashing requires O(1) memory accesses in the
worst case.

Theorem: If H is 2-universal, |S | = n, m ≥ α
(
n
2

)
, then

Pr [h is perfect for S] ≥ 1− 1

α
.

EPL 660, Guest Lecture 27 / 59

Perfect Hashing

Proof sketch:

• Define X =# collisions, and let’s compute E [X]

• X =
∑

i 6=j Xij

• Pr [Xij = 1] = 1
m

• By linearity of expectation E [X] =
(n
2)
m
≤ 1

α

• Apply Markov’s inequality

1− Pr [X = 0] = Pr [X ≥ 1] ≤ E [X] ≤ 1

α
.

EPL 660, Guest Lecture 28 / 59

Perfect Hashing

• Issue: O(n2) space

• Question: Can we get away with O(n) space?

• Yes: Fredman-Komlós-Szemerédi

• Idea: Two level hashing,

1 Hash using a universal hash function to n = |S | bins.
2 Rehash perfectly within each bin at second level.

EPL 660, Guest Lecture 29 / 59

Perfect Hashing

Source: CLRS book

Claim (Exercise):

E

[
n−1∑
j=0

n2j

]
≤ 2n.

EPL 660, Guest Lecture 30 / 59

https://mitpress.mit.edu/books/introduction-algorithms

Separate Chaining

Source: Hackerearth

EPL 660, Guest Lecture 31 / 59

https://www.hackerearth.com/practice/data-structures/hash-tables/basics-of-hash-tables/tutorial/

Insertion

vector <string > Table [20];

int hashTableSize =20;

void insert(string s)

{

// Compute the index using Hash Function

int index = hashFunc(s);

// Insert the element

Table[index]. push_back(s);

}

EPL 660, Guest Lecture 32 / 59

Search

void search(string s)

{

int index = hashFunc(s);

for(int i = 0;i < Table[index].size ();i++)

{

if(Table[index][i] == s)

{

cout << s << " is found!" << endl;

return;

}

}

cout << s << " is not found!" << endl;

}

EPL 660, Guest Lecture 33 / 59

Separate Chaining

Load factor α:

α :=
n

m
.

Claim: Under the assumption of simple uniform hashing, an
unsuccessful search takes O(1 + α) time.

Proof sketch: E [nj] = α for all j ∈ {0, . . . ,m − 1}.

EPL 660, Guest Lecture 34 / 59

Linear Probing

• Sequential memory accesses are fast

• Values stored directly to hash table

• We hash x to h(x). If this cell is already occupied, then
we check h(x) + 1, h(x) + 1 and so on (mod arithmetic).

• Pagh et al. proved that if hash function is 5-wise
independent, then E [operation] = O(1).

EPL 660, Guest Lecture 35 / 59

Insertion

// Linear probing

void insert(string s)

{

int index = hashFunc(s);

while(Table[index] != "")

index = (index + 1) % hashTableSize;

hashTable[index] = s;

}

EPL 660, Guest Lecture 36 / 59

Search

void search(string s)

{

int index = hashFunc(s);

while(Table[index] != s&& Table[index] != "")

index = (index +1)% hashTableSize;

if(Table[index] == s)

cout << s << " is found!" << endl;

else

cout << s << " is not found!" << endl;

}

EPL 660, Guest Lecture 37 / 59

Quadratic Probing

• Difference from linear probing is the choice between
successive probes or entry slots

index = index % hashTableSize

index = (index + 12) % hashTableSize

index = (index + 22) % hashTableSize

index = (index + 32) % hashTableSize

EPL 660, Guest Lecture 38 / 59

Insertion

void insert(string s)

{

int index = hashFunc(s);

int h = 1;

while(hashTable[index] != "") {

index = (index + h*h) % hashTableSize;

h++;}

Table[index] = s;

}

EPL 660, Guest Lecture 39 / 59

Search

void search(string s)

{

int ind = hashFunc(s);

int h = 1;

while(Table[ind] != s&&Table[ind] != ""){

ind = (ind + h*h) % hashTableSize;

h++;}

if(Table[index] == s)

cout << s << " is found!" << endl;

else

cout << s << " is not found!" << endl;

}

EPL 660, Guest Lecture 40 / 59

Double Hashing

• Difference from linear probing is that the interval between
probes is computed by using two hash functions.

indexH = hashFunc2(s);

index = (index + 1 * indexH) % hashTableSize;

index = (index + 2 * indexH) % hashTableSize;

EPL 660, Guest Lecture 41 / 59

Insertion

void insert(string s)

{

int index = hashFunc1(s);

int indexH = hashFunc2(s);

while(hashTable[index] != "")

index = (index+indexH)% hashTableSize;

hashTable[index] = s;

}

EPL 660, Guest Lecture 42 / 59

Search

void search(string s)

{

int index = hashFunc1(s);

int indexH = hashFunc2(s);

while(Table[index]!= s&&Table[index]!= "")

index = (index + indexH)% hashTableSize;

if(Table[index] == s)

cout << s << " is found!" << endl;

else

cout << s << " is not found!" << endl;

}

EPL 660, Guest Lecture 43 / 59

EPL 660, Guest Lecture 44 / 59

Bloom Filter

• Approximate membership problem

• Highly space-efficient randomized data structure

• Its analysis shows an interesting tradeoff between space
and error probability

• The Bloom filter principle :

Wherever a list or set is used, and space is at a
premium,consider using a Bloom filter if the effect of false
positives can be mitigated.

EPL 660, Guest Lecture 45 / 59

Bloom Filter – Applications

Historically, Bloom filter was developed in the context of
dictionary applications when space resources were scarce.

• Burton H. Bloom introduced Bloom filters (1970) for an
application related to hyphenation programs.

• Bloom filters were also used in early UNIX spell-checker
(space savings were crucial for functionality)

• Avoid weak passwords.

• Content Delivery in P2P networks

• Networks

• Distributed Caching

• Databases (e.g., Bloomjoin algorithm)

• . . .

EPL 660, Guest Lecture 46 / 59

Bloom Filter – Description

1 A vector of m bits

2 k independent hash functions h1, . . . , hk

3 A set S of n keys

4 To store key x , we set A[hi(x)] = 1 for all i ∈ [k]

5 Lookup(x): if A[hi(x)] = 1 for all i ∈ [k], then x ∈ S .

6 No false negatives, but false positives may exist.

EPL 660, Guest Lecture 47 / 59

Bloom filter in Python – Pybloom library

>>> from pybloom import BloomFilter

>>> f = BloomFilter(capacity =1000, err =0.001)

>>> [f.add(x) for x in range (10)]

>>> all([(x in f) for x in range (10)])

True

>>> 10 in f

False

>>> 5 in f

True

EPL 660, Guest Lecture 48 / 59

Bloom Filters – Example

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 49 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters – Example

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 50 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters – Example

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 51 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters – Example

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 52 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters – Example

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 53 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters – Example

Demo: Bloom Filters by Example

EPL 660, Guest Lecture 54 / 59

https://llimllib.github.io/bloomfilter-tutorial/

Bloom Filters – False positives

• Assumption: hi are close to being independent hash
functions, probes are uniform

• Claim: Pr [A(i) = 1] = 1− (1− 1
m

)kn

• Why?

EPL 660, Guest Lecture 55 / 59

Bloom Filters – False positives

• Probability of a false positive.

pf =
(

1− (1− 1

m
)kn
)k
≈ (1− ekn/m)k .

Given n,m how do we optimally set k?

k = log(2)
m

n
.

EPL 660, Guest Lecture 56 / 59

Bloom Filters – Do we need k hash functions?

Double hashing works!

• Instead of using k random hash functions, one can choose
two sufficiently random hash functions h, h′ and then set

hi(x) = h(x) + ih′(x) mod m.

• This was proved by Kirsch et al.

• Dillinger and Manolios had earlier suggested

hi(x) = h(x) + ih′(x) + i2 mod m,

as an effective heuristic.

EPL 660, Guest Lecture 57 / 59

Spell Checker with Bloom Filters

https://github.com/tsourolampis/
bloom-spell-checker

EPL 660, Guest Lecture 58 / 59

https://github.com/tsourolampis/bloom-spell-checker
https://github.com/tsourolampis/bloom-spell-checker

references I

Carter, J. L. and Wegman, M. N. (1979).

Universal classes of hash functions.

Journal of computer and system sciences, 18(2):143–154.

Dietzfelbinger, M., Hagerup, T., Katajainen, J., and Penttonen, M.
(1997).

A reliable randomized algorithm for the closest-pair problem.

Journal of Algorithms, 25(1):19–51.

EPL 660, Guest Lecture 59 / 59

