
6

Advanced Crawling Techniques

In this chapter we refine the basic design of Web crawlers, building on the material
presented in Section 2.5.

6.1 Selective Crawling

The search engine coverage experiments reported in Section 2.5.2 suggest that no
crawler can realistically harvest the entire Web. An important fact is that the time
required to complete a large crawl can be significant, independent of whatever tech-
nology is available at the site where the search engines operate. Moreover, fetching
and indexing a larger set of documents has significant implications on the scalability
of the overall system and, consequently, on the cost of the required hardware and
maintenance services. Thus, to optimize available resources, a crawler should ideally
be capable of recognizing the relevance or the importance of sites or pages, and limit-
ing fetching to the most important subset of pages that can be downloaded in a given
amount of time.

Relevance can be estimated with respect to several different criteria. To formalize
the intuitive idea of selective crawling, we need to introduce, for each URL u, a scoring
function s

(ξ)
θ (u), with respect to some underlying relevance criterion ξ and parameters

θ . In the simplest case we can assume a Boolean relevance function, i.e. s(u) = 1
if the document pointed to by u is relevant and s(u) = 0 if the document is not
interesting. More generally, we can think of s(d) as a real-valued function, such as
the conditional probability that the document belongs to a certain category given its
contents. Note that in all of these cases the scoring function depends only on the URL
and the criterion, but does not depend on the state of the crawler. Moreover, we will
assume that the scoring function does not depend on time.

One general approach for building selective crawlers consists of changing the policy
of insertions and extractions in the queue of discovered URLs. For simplicity, let us
consider again the algorithm Simple-Crawler on page 47. Suppose now that URLs
in Q are sorted according to the value returned by s(u). In this way we obtain a
best-first search strategy (see, for example, Russell and Norvig 1995) such that URLs

Modeling the Internet and the Web P. Baldi, P. Frasconi and P. Smyth
© 2003 P. Baldi, P. Frasconi and P. Smyth ISBN: 0-470-84906-1

150 SELECTIVE CRAWLING

1
5N 2

5N 3
5N 4

5N N 1
5N 2

5N 3
5N 4

5N N

0.2

0.4

0.6

0.8

rt /t
1

0.2

0.4

0.6

0.8

qt (G) / t
1

Figure 6.1 Efficiency curves obtained by Cho et al. (1998) for a selective crawler. Both were
obtained on a set of 784 592 Stanford University URLs. Dotted lines correspond to a BFS
crawler, solid lines to a crawler guided by the estimated number of backlinks, and dashed lines
to a crawler guided by estimated PageRank. The diagonal lines are the reference performance
of a random crawler. The target measure of relevance is the actual number of backlinks. In the
right-hand plot, the importance target G is 100 backlinks.

having higher score are fetched first. If s(u) provides a good model of the relevance
of the document pointed to by the URL, then we expect that the search process will
be guided toward the most relevant regions of the Web. From this perspective the
problem is to define interesting scoring functions and to devise good algorithms to
compute them.

In the following we consider in detail some specific examples of scoring functions.

Depth. As we have seen in Chapter 3, the distribution of the number of pages on
different Web servers generally follows a power law. Thus, many sites have few
pages and, at the same time, there is a small but significant fraction of sites con-
taining a huge number of pages. A very simple strategy for maximizing coverage
breadth consists of limiting the total number of documents downloaded from a
single site, for example, by setting a threshold, or by keeping track of the depth in
the site directory tree, or by limiting the acceptable length of the path from the site
homepage to the document,

s
(depth)

δ (u) =
{

1, if |root(u) � u| < δ,

0, otherwise,
(6.1)

where root(u) is the root of the site containing u. The rationale behind this approach
is that by maximizing breadth it will be easy for the end-user to eventually find the
desired information. For example a page that is not indexed by the search engine
may be easily reachable from other pages in the same site.

Popularity. It is often the case that we can define criteria according to which certain
pages are more important than others. For example, search engine queries are
answered by proposing to the user a sorted list of documents. Typically, users tend
to inspect only the few first documents in the list (in Chapter 8 we will discuss

ADVANCED CRAWLING TECHNIQUES 151

empirical data that support this statement). Thus, if a document rarely appears near
the top of any lists, it may be worthless to download it and its importance should be
small. A simple way of assigning importance to documents that are more popular
is to introduce a relevance function based on the number of backlinks

s(backlinks)
τ (u) =

{
1, if indegree(u) > τ,

0, otherwise,
(6.2)

where τ is an assigned threshold.

Clearly s
(backlinks)
τ (u) can be computed exactly only if we have already crawled the

entire Web. In practice we can use an approximated value from the partial subgraph
obtained in a previous crawl, or we can incrementally update the score as soon as
new parents of u are encountered during the crawl.

PageRank. As discussed in Section 5.4, PageRank is a measure of popularity that
recursively assigns each link a weight that is proportional to the popularity of
the source document. It may be seen as a refinement of the indegree measure
defined above in Equation (6.2). Also PageRank needs to be estimated using partial
knowledge of the graph that is refined during crawling.

The efficiency of a selective crawler can be measured by comparing it to an ideal
crawler that fetches documents in order of relevance (whatever the relevance function).
Suppose we are given a website with N pages and for n = 1, . . . , N let sn denote
the score of the page that is ranked in position n by the relevance function. Suppose
at some point in time the crawler has fetched t pages and let rt denote the number
of fetched pages whose score is higher than st . In the ideal crawler we would have
rt = t and the efficiency curve rt /t would be constant and equal to one. In a random
crawler, only a fraction t/N of the fetched pages will have a score higher than st ,
i.e. rt /2 = t/N . Selective crawlers should obtain intermediate efficiency curves.
Alternatively, one may assign a fixed ‘importance target’, G, and consider as relevant
all the pages whose score is higher than G. For example, we might be interested in
quickly fetching pages having at least 20 backlinks. The efficiency in this case may be
measured as qt (G)/t , where qt is the number of fetched pages having a score higher
than G. Cho et al. (1998) report several experimental results comparing the above
strategies on a controlled data set of Stanford University pages. Figure 6.1 shows
some of the results when the target measure of relevance is the number of backlinks.
Interestingly, the estimated PageRank outperforms the estimated number of backlinks
as a guiding criterion.

In a more recent study by Najork and Wiener (2001) it was found that traversing the
Web in breadth-first order is a good strategy and allows us to download ‘hot’ pages
first. The study was conducted on a large set of 328 million pages from 7 million
distinct servers.

152 FOCUSED CRAWLING

Linked, different domains
Linked
Linked, same domain
Sibling
Random

Mean
TFIDF

Mean Term
Probability

Mean
Overlap

0.0

0.1

0.2

0.3

0.4

0.5

Figure 6.2 Results of the study carried out by Davison in 2000. (a) Three indicators that
measure text similarity (see Section 4.3) are compared in five different linkage contexts. In
this data set, about 56% of the linked documents belong to the same domain. It can be seen
that the similarity between linked documents is significantly higher than the similarity between
random documents. (b) Similarities measured between anchor text and text of documents in
five different contexts.

6.2 Focused Crawling

In many cases a search engine does not need to be completely general purpose and
cover every possible site on the Web, but instead can be focused on particular topics
that are of interest to a specific community of users. In these cases, relevance can be
defined with respect to the expected utility of the pages for users of the search engine.
For example, a crawler that provides information to a vertical portal specialized in,
say, music, could be quite safely programmed to ignore sites with content in different
topics such as health or sports. A focused crawler is a refined selective crawler that
searches for information related to certain topics rather than being driven by generic
quality measures. The fraction of sites that specialize in a particular topic may be
small enough to enable a focused crawler to download them almost exhaustively and
in a relatively short time.

6.2.1 Focused crawling by relevance prediction

The URL ordering technique suggested for selective crawlers can be also extended
to focused crawlers. In this case, it is necessary to determine whether a document is
relevant or not to the topic of interest in order to define a scoring function for driving
the search process. One way to do this is to use the text categorization techniques
presented in Section 4.6. More precisely, if we denote by c the topic of interest, a
score can be computed as the conditional probability that the document is relevant,
given the text in the document:

s
(topic)
θ (u) = P(c | d(u), θ). (6.3)

ADVANCED CRAWLING TECHNIQUES 153

0

0.2

0.4

0 2000 4000 6000 8000 10000

Average
relevance

(unfocused)

0

0.2

0.4

0 1000 2000 3000 4000 5000

0

0.2

0.4

0.6

0.8

0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

0 1000 2000 3000 4000 5000 Documents
fetched

Documents
fetched

Documents
fetched

Documents
fetched

Cycling domain AIDS/HIV domain

Average
relevance

(unfocused)

Average
relevance

(soft focused)

Average
relevance

(soft focused)

Figure 6.3 Efficiency of a BFS and a focused crawler compared in the study by Chakrabarti
et al. (1999b). The plots show the average relevance of fetched documents versus the number
of fetched documents. Results for two topics are shown (cycling on the left, AIDS/HIV on the
right).

Here θ represents the adjustable parameters of the classifier.An obvious consideration
is that the score cannot be computed exactly (we have not yet downloaded the docu-
ment pointed to by u). There are a number of different strategies for approximating
the topic score.

Parent based. In this case we compute the score for a fetched document and extend
the computed value to all the URLs in that document. More precisely, if v is a
parent of u, we approximate the score of u as

s
(topic)
θ (u) � P(c | d(v), θ). (6.4)

The rationale is a general principle of ‘topic locality’. If a page deals with, say,
music, it may be reasonable to believe that most of the outlinks of that page will deal
with music as well. In a systematic study based on the analysis of about 200 000 doc-
uments, Davison (2000b) found that topic locality is measurably present in the Web,
under different text similarity measures (see Figure 6.2a).

Chakrabarti et al. (1999b) use a hierarchical classifier and suggest two implemen-
tations of the parent-based scoring approach. In hard focusing, they check if at least
one node in the category path of d(v) is associated with a topic of interest; if not

154 FOCUSED CRAWLING

Layer 2

Layer 1

Figure 6.4 Example of a two-layered context graph. The central white node
is a target document. Adapted from Diligenti et al. (2000).

the outlinks of v are simply discarded (not even inserted in the crawling queue Q).
In soft focusing, relevance is computed according to Equation (6.4), but if the same
URL is discovered from multiple parents, a revision strategy is needed in order to
update s

(topic)
θ (u) when new evidence is collected. Chakrabarti et al. (1999b) found

no significant difference between the two approaches.

Anchor based. Instead of the entire parent document, d(v), we can just use the text
d(v, u) in the anchor(s) where the link to u is referred to, as the anchor text is often
very informative about the contents of the document pointed to by the corresponding
URL. This ‘semantic linkage’was also quantified by Davison (2000b), who showed
that the anchor text is most similar to the page it references (see Figure 6.2b).

To better illustrate the behavior of a focused crawler on real data, consider the
efficiency diagrams in Figure 6.3 that summarize some results obtained by Chakrabarti
et al. (1999b). An unfocused crawler starting from a seed set of pages that are relevant
to a given topic will soon begin to explore irrelevant regions of the Web. As shown in
the top diagrams, the average relevance of the fetched pages dramatically decreases
as crawling goes on. Using a focused crawler (in this case, relevance is predicted
by a Naive Bayes classifier trained on examples of relevant documents) allows us to
maintain an almost steady level of average relevance.

There are several alternatives to a focused crawler based on a single best-first queue,
as detailed in the following.

6.2.2 Context graphs

Diligenti et al. (2000) suggested a strategy that takes advantage of knowledge of
the Internet topology to train a machine-learning system to predict ‘how far’ some

ADVANCED CRAWLING TECHNIQUES 155

relevant information can be expected to be found starting from a given page. Intu-
itively, suppose the crawler is programmed to gather homepages of academic courses
in artificial intelligence. The backlinks of these pages are likely to lead to professors’
home pages or to the teaching sections of the department site. Going one step further,
backlinks of backlinks are likely to lead into higher level sections of department sites
(such as those containing lists of the faculty). More precisely, the context graph of a
node u (see Figure 6.4) is the layered graph formed inductively as follows. Layer 0
contains node u. Layer i contains all the parents of all the nodes in layer i − 1. No
edges jump across layers. Starting from a given set of relevant pages, Diligenti et al.
(2000) used context graphs to construct a data set of documents whose distance from
the relevant target was known (backlinks were obtained by querying general purpose
search engines). After training, the machine-learning system predicts the layer a new
document belongs to, which indicates how many links need to be followed before rel-
evant information will be reached, or it returns ‘other’ to indicate that the document
and its near descendants are all irrelevant. Denoting by n the depth of the considered
context graph, the crawler uses n best-first queues, one for each layer, plus one extra
queue for documents of class ‘other’. This latter queue is initialized with the seeds.
In the main loop, the crawler extracts URLs from the first nonempty queue and in this
manner favors those that are more likely to rapidly lead to relevant information.

6.2.3 Reinforcement learning

Reinforcement learning (see, for example, Sutton and Barto 1998) is a framework for
deciding in an optimal way what actions an agent operating in a discrete environment
should take in order to maximize its expected future reward. Compared to supervised
learning, reinforcement learning is characterized by the absence of external supervi-
sion. The agent learns from the received rewards (or punishments). More formally,
the discrete-time environment is characterized by a finite set of states S. At time t

the environment perceived by the agent is in state st ∈ S and, correspondingly, the
agent has access to a finite set of actions A(st). After performing action at ∈ A(st)

the state transitions to st+1 and the agent receives an immediate reward rt+1. A policy
π describes the joint probability distribution on states and actions, i.e. π(s, a) is the
probability of taking action a when in state s. An optimal policy should maximize the
expected rewards received by the agent over time. In order to specify what an optimal
policy is, we first define the value of state s under a policy π as

V π(s) = Eπ

[∞∑
k=0

γ krt+k+1 | st = s

]
. (6.5)

Similarly, we can define the action-value function as

Qπ(s, a) = Eπ

[∞∑
k=0

γ krt+k+1 | st = s, at = a

]
. (6.6)

156 FOCUSED CRAWLING

An optimal policy π∗ maximizes the value function over all the states: V ∗(s) �
V π(s) for all s ∈ S. According to the Bellman optimality principle, underlying
the foundations of dynamic programming (Bellman 1957), a sequence of optimal
decisions has the property that, regardless of the action taken at the initial time, the
subsequent sequence of decisions must be optimal with respect of the outcome of the
first action. This translates into

V ∗(s) = max
a∈A(s)

E[rt+1 + γV ∗(st+1) | st = s, at = a], (6.7)

which allows us to determine the optimal policy once V ∗ is known for all s. An
optimal policy π∗ also maximizes Qπ(s, a) for all s ∈ S, a ∈ A(s):

Q∗(s, a) = E[rt+1 + γ max
b

Q∗(st+1, b) | st = s, at = a]. (6.8)

The advantage of the state-action representation is that once Q∗ is known for all s

and a, all the agent needs to do in order to maximize the expected future reward is to
choose the action that maximizes Q∗(s, a).

In the context of focusedWeb search, immediate rewards are obtained (downloading
relevant documents) and the policy learned by reinforcement can be used to guide
the agent (the crawler) toward high long-term cumulative rewards. As we have seen
in Section 2.5.3, the internal state of a crawler is basically described by the sets of
fetched and discovered URLs. Actions correspond to fetching a particular URL that
belongs to the queue of discovered URLs. Even if we simplify the representation by
removing from the Web all the off-topic documents, it is clear that the sets of states and
actions are overwhelming for a standard implementation of reinforcement learning.

LASER (Boyan et al. 1996) was one of the first proposals to combine reinforcement
learning ideas with Web search engines. The aim in LASER is to answer queries
rather than to crawl the Web. The system begins by computing a relevance score
r0(u) = TFIDF(d(u), q) and then propagates it in the Web graph using the recurrence

rt+1(u) = ro(u) + γ
∑

v∈pa[u]

rt (v)

|pa[u]|� , (6.9)

which is iterated until convergence for each document in the collection, where γ and
� are free parameters. After convergence, documents at distance k from u provide a
contribution proportional to γ k times their relevance to the relevance of u.

McCallum et al. (2000c) used reinforcement to search computer science papers
in academic websites. In order to simplify the problem of learning Q∗(s, a) for an
enormous number of states and actions they propose the following two assumptions:

• the state is independent of the relevant documents that have been fetched so
far;

• actions can only be distinguished by means of the words in the neighborhood
of the hyperlink that correspond to each action (e.g. the anchor text).

ADVANCED CRAWLING TECHNIQUES 157

In this way, learning Q reduces to learning a mapping from text (e.g. bag of words
representing anchors) to a real number (the expected future reward).

6.2.4 Related intelligent Web agents

The Fish algorithm by De Bra and Post (1994) uses a population of agents that
autonomously spider the Web. Like fishes in an information sea, agents accumulate
energy as they collect relevant documents for a given query while they consume
energy for using network resources. Since agents need energy to survive, those which
end up exploring irrelevant portions of the Web perish, implementing a selection
mechanism. The Shark algorithm by Hersovici et al. (1998) improves the Fish search
by introducing a real-valued relevance score that also depends on anchor text and a
discounted fraction of the score that was given to ancestor pages. One of the main
limitations of these approaches is the lack of adaptation.

WebWatcher (Armstrong et al. 1995) is an interactive recommendation system that
assists a user during browsing. It introduced the use of machine learning for predicting
the best hyperlink to follow according to a given user goal. A similar approach based
on heuristic searching was proposed in Lieberman (1995). Arachnid (Menczer 1997)
is based on a distributed population of adaptive agents that search information related
to user-provided keywords. Similar in spirit to the Fish algorithm, Arachnid agents
receive energy by relevance feedback provided by the user. An important feature of
this approach is that hyperlinks are selected by a neural network associated with the
agent, whose weights are adjusted by reinforcement learning. An extension of this
system is described in Menczer and Belew (2000).

A more recent framework that generalizes focused crawling is intelligent crawl-
ing (Aggarwal et al. 2001). In this case, the crawler does not need a collection of
topical examples for training. Users describe their information needs by means of
predicates, i.e. general specifications that generalize keyword-based queries to also
include document-to-document similarity queries, or characterizations of a topic as
obtained from a text classifier. The intelligent crawler proposed in Aggarwal et al.
(2001) is capable of auto-focusing using documents that satisfy the query predicate.

CiteSeer (http://citeseer.nj.nec.com/cs) is a search engine focused
on computer science literature (Bollacker et al. 1998; Lawrence et al. 1999). It fetches
PostScript or PDF papers from paper repositories (for example, a researcher’s Web
pages) and autonomously builds a citation index.As a major difference with respect to
the system described by McCallum et al. (2000c), documents are located by querying
traditional Web search engines and by collecting submitted URLs of pages containing
links to research articles. The system performs several information extraction opera-
tion from the documents and, in particular, it extracts citations and references in the
body of a paper in order to build a scientific literature web. Having represented the
collection of papers as a web, CiteSeer can also apply link analysis algorithm and
compute for example authority and hubness weights of each paper. Link analysis in
this case can also be used to determine which documents are related to any given one.

158 DISTRIBUTED CRAWLING

Interestingly, since CiteSeer creates a Web page for each online article, it effectively
maps the online subset of the computer science literature web to a subset of the World
Wide Web. A recent study has shown that papers that are available online tend to
receive a significantly higher number of citations (Lawrence 2001).

The DEADLINER system described in Kruger et al. (2000) is a search engine
specialized in conference and workshop announcements. One of the input components
of the system is a context-graph focused crawler (see Section 6.2.2) that gathers
potentially related Web documents. An SVM text classifier is subsequently used to
refine the set of documents retrieved by the focused crawler.

6.3 Distributed Crawling

A single crawling process, even if multithreading is used, will typically be insufficient
for large-scale engines that need to fetch large amounts of data rapidly. When using
a single centralized crawler, all the fetched data must pass through a single physical
link. This is often problematic, regardless of the bandwidth available at the crawling
center, because it will be unlikely to have comparable connection speeds from different
geographical regions. Distributing the crawling activity via multiple processes can
be seen as a form of ‘divide and conquer’ that can help build a scalable system.
Splitting the load decreases hardware requirements and at the same time increases the
overall download speed and reliability if separate processes access the Internet through
different physical links. The advantage is particularly evident if separate crawlers run
in separate data centers that are located in different countries or continents. However,
while the physical links reflect geographical neighborhoods, we know that the edges
of the Web graph are instead associated with ‘communities’that can and often do cross
geographical borders. Hence, running separate and independent crawling processes
can result in a significant overlap among the collections of fetched documents. The
performance of a parallelization approach can be measured in terms of

• communication overhead – the fraction of bandwidth spent to coordinate the
activity of the separate processes, with respect to the bandwidth usefully spent
for document fetching;

• overlap – the fraction of duplicate documents downloaded by all the processes;

• coverage – the fraction of documents reachable from the seeds that are actually
downloaded; and

• quality – e.g. some of the scoring functions defined in Section 6.1 depend on the
link structure and this information can be partially lost using separate crawling
processes.

The literature on this important topic is not abundant. In a recent study, Cho and
Garcia-Molina (2002) have defined a framework based on several dimensions that
characterize the interaction among a set of crawlers.

ADVANCED CRAWLING TECHNIQUES 159

Si Sj

AjjAii

Ajj Aji

Crawler i Crawler j

Aii Aij

Aij Aji

Figure 6.5 Two crawlers statically coordinated.

Coordination refers to the way different processes agree about the subset of pages
each of them should be responsible for. If two crawling processes i and j are
completely independent (not coordinated), then the degree of overlap can only
be controlled by having different seeds Si and Sj . If we assume the validity of
topological models such as those presented in Section 3, then we can expect that
the overlap will eventually become significant unless a partition of the seed set is
properly chosen. On the other hand, making a good choice is a challenge, since
the partition that minimizes overlap may be difficult to compute, for example,
because current models of the Web are not accurate enough. In addition it may be
suboptimal with respect to other desiderata that motivated distributed crawling in
the first place, such as distributing the load and scaling-up.

A pool of crawlers can be coordinated by partitioning the Web into a number of
subgraphs and letting each crawler be mainly responsible for fetching documents
from its own subgraph. If the partition is decided before crawling begins and not
changed thereafter, we refer to this as static coordination. This option has the great
advantage of simplicity and implies little communication overhead. Alternatively,
if the partition is modified during the crawling process, the coordination is said to
be dynamic. In the static approach the crawling processes, once started, can be seen
as agents that operate in a relatively autonomous way. In contrast, in the dynamic
case each process is subject to a reassignment policy that must be controlled by an
external supervisor.

Confinement specifies, assuming statically coordinated crawlers, how strictly each
crawler should operate within its own partition. Consider two processes, i and

160 WEB DYNAMICS

j , and let Aij denote the set of documents belonging to partition i that can be
reached from the seeds Sj (see Figure 6.5). The question is what should happen
when crawler i pops from its queue ‘foreign’ URLs pointing to nodes in a different
partition. Cho and Garcia-Molina (2002) suggest three possible modes: firewall,
crossover, and exchange. In firewall mode, each process remains strictly within its
partition and never follows interpartition links. In crossover mode, a process can
follow interpartition links when its queue does not contain any more URLs in its
own partition. In exchange mode, a process never follows interpartition links, but
it can periodically open a communication channel to dispatch the foreign URLs
it has encountered to the processes that operate in those partitions. To see how
these modes affect performance measures, consider Figure 6.5 again. The firewall
mode has, by definition, zero overlap but can be expected to have poor coverage,
since documents in Aij \ Aii are never fetched (for all i and j). Cross-over mode
may achieve good coverage but can have potentially high overlap. For example,
documents in Aii ∩ Aij can be fetched by both process i and j . The exchange mode
has no overlap and can achieve perfect coverage. However, while the first two modes
do not require extra bandwidth, in exchange mode there will be a communication
overhead.

Partitioning defines the strategy employed to split URLs into non-overlapping sub-
sets that are then assigned to each process.A straightforward approach is to compute
a hash function of the IP address in the URL, i.e. if n ∈ {0, . . . , 232 − 1} is the inte-
ger corresponding to the IP address and m the number of processes, documents such
that n mod m = i are assigned to process i. In practice, a more sophisticated solu-
tion would take into account the geographical dislocation of networks, which can
be inferred from the IP address by querying Whois databases such as the Réseaux
IP Européens (RIPE) or the American Registry for Internet Numbers (ARIN).

6.4 Web Dynamics

In the final section of this chapter we address the question of how information on the
Web changes over time. Knowledge of this ‘rate of change’ is crucial, as it allows us
to estimate how often a search engine should visit each portion of the Web in order
to maintain a fresh index.

In Chapter 3 we discussed general ‘aging’ properties of Web graphs. A precise
notion of recency in this context has been proposed by Brewington and Cybenko
(2000). The index entry for a certain document, indexed at time t0, is said to be β-
current at time t if the document has not changed in the time interval between t0 and
t − β. Basically β is a ‘grace period’: if we pretend that the user query was made β

time units ago rather than now, then the information in the search engine would be up
to date.A search engine for a given collection of documents is said to be (α, β)-current
if the probability that a document is β-current is at least α.According to this definition,
we can ask interesting questions like ‘how many documents per day should a search

ADVANCED CRAWLING TECHNIQUES 161

engine refresh in order to guarantee it will remain (0.9,1 week)-current?’Answering
this question requires that we develop a probabilistic model of Web dynamics. The
model will be complicated because of two concomitant factors: pages change over
time, and the Web itself grows and evolves in time (see Chapter 3).

6.4.1 Lifetime and aging of documents

To begin with consider a single document. The model we are going to develop is based
on the same ideas underpinning reliability theory in industrial engineering (see, for
example, Barlow and Proshan 1975). Let T be a continuous random variable repre-
senting the lifetime of a component in a piece of machinery or equipment. Assuming
the component was initially installed or replaced at time zero, lifetime is the time
when the component breaks down (dies). Let F(t) be the cumulative distribution
function (cdf) of lifetime. The reliability (or survivorship function) is defined as

S(t)
.= 1 − F(t) = P(T > t), (6.10)

i.e. the probability that the component will be functioning at time t . A variable closely
related to lifetime is the age of a component, i.e. the time elapsed since the last
replacement (see Figure 6.6 to better understand the relationship between lifetime
and age). Its cdf, defined as G(t) = P(age < t), is obtained by integrating the
survivorship function and normalizing:

G(t) =
∫ t

0 S(τ) dτ∫∞
0 S(τ) dτ

. (6.11)

Note that G(t) is the expected fraction of components that are still operating at
time t . The age probability density function (pdf) g(t) is thus proportional to the
survivorship function. Returning from the reliability metaphor to Web documents,
S(t) is the probability that a document that was last changed at time zero will remain
unmodified at time t , while G(t) is the expected fraction of documents that are older
than t . The probability that the document will be modified before an additional time
h has passed is expressed by the conditional probability P(t < T � t + s | T > t).
The change rate λ(t) (also known as the hazard rate in reliability theory, or mortality
force in demography) is then obtained by dividing by h and taking the limit for small
h,

λ(t)
.= lim

h→0

1

s
P (t < T � t + h | T > t)

= lim
h→0

1

S(t)

1

h

∫ t+h

t

f (τ) dτ = f (t)

S(t)
, (6.12)

where f (t) denotes the lifetime pdf. Combining (6.10) and (6.12) we have the ordinary
differential equation (see, for example, Apostol 1969)

F ′(t) = λ(t)(1 − F(t)), (6.13)

162 WEB DYNAMICS

age(t)

age(t)

t

t

Observation
timespan

Actual
lifetime

Observed
lifetime

Figure 6.6 Sampling lifetimes can be problematic as changes can be missed for two reasons.
Top, two consecutive changes are missed and the observed lifetime is overestimated. Bottom,
the observation time-span must be large enough to catch changes that occur in a long range.
Sampling instants are marked by double arrowheads.

with F(0) = 0. We will assume that changes happen randomly and independently.
According to a Poisson process, the probability of a change event at any given time
is independent of when the last change happened (see Appendix A). For a constant
change rate λ(t) = λ, the solution of Equation (6.13) is

F(t) = 1 − e−λt , f (t) = λe−λt .

Brewington and Cybenko (2000) observed that the model could be particularly
valuable for analyzing Web documents. In practice, however, the estimation of f (t)

is problematic for any method based on sampling. If a document is observed at two
different instants t1 and t2, we can check for differences in the document but we can-
not know how many times the document was changed in the interval [t1, t2], a phe-

ADVANCED CRAWLING TECHNIQUES 163

1

0.1

10
4

10
5

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400 10

Age in daysAge in days

Observed pdf
of page age

Observed pdf
of page age

10
2

10
3

1

0.1

104

103

102

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 10

Lifetime in daysLifetime in days

Observed pdf
of page lifetime

Observed cdf
of page lifetime

102 103

Figure 6.7 Empirical distributions of page age (top) and page lifetime (bottom) on a set of
7 million Web pages. Adapted from Brewington and Cybenko (2000).

nomenon known as aliasing (see Figure 6.6). On the other hand, the age of a document
may be readily available, if the Web server correctly returns the Last-Modified
timestamp in the HTTP header (see Section 2.3.4 for a sample script that obtains this
information from a Web server). Sampling document ages is not subject to aliasing
and lifetime can be obtained indirectly via Equation (6.11). In particular, if the change
rate is constant, it is easy to see that the denominator in Equation (6.11) is a/λ and
thus from Equation (6.12) we obtain

g(t) = f (t) = λe−λt . (6.14)

In other words, assuming a constant change rate, it is possible to estimate lifetime
from observed age.

This simple model, however, does not capture the essential property that the Web
is growing with time. Brewington and Cybenko (2000) collected a large data set of
roughly 7 million Web pages, observed between 1999 and 2000 in a time period
of seven months, while operating a service called ‘The Informant’.1 The resulting
distributions of age and lifetime are reported in Figure 6.7.

1 Originally http://informant.dartmouth.edu, now http://www.tracerlock.com.

164 WEB DYNAMICS

P0 e
ξ(τ−t)

P0

P0 e
ξτ

P(τ)

τ−t τ
Figure 6.8 Assuming an exponentially growing Web whose pages are never changed,

it follows that the age distribution is also exponential at any time τ .

What is immediately evident is that most of the collected Web documents are
‘young’, but what is interesting is why this is the case. Suppose that growth is modeled
by an exponential distribution, namely that the size at time τ is P(τ) = P0eξτ , where
P0 is the size of the initial population and ξ the growth rate. If documents were
created and never edited, their age would be simply the time since their creation. The
probability that a random document at time τ has an age less than t is

Gg(t, τ) = new docs in (τ − t, τ)

all docs
= eξτ − eξ(τ−t)

eξτ − 1
(6.15)

(see Figure 6.8) and thus the resulting age density at time τ is

gg(t, τ) = ξeξ(τ−t)

eξτ − 1
[H(t) − H(t − τ)], (6.16)

where H(t) is the Heaviside step function, i.e. H(t) = 0 for t < 0 and H(t) = 1
otherwise.

In other words, this trivial growth model yields an exponential age distribution,
like the model in Section 6.4.1 that assumed a static Web with documents refreshed
at a constant rate. Clearly, the effects of both Web growth and document refreshing
should be taken into account in order to obtain a realistic model. Brewington and
Cybenko (2000) experimented with a hybrid model (not reported here) that combines
an exponential growth model and exponential change rate. Fitting this model with
ages obtained from timestamps, they estimated ξ = 0.001 76 (in units of days−1).
This estimate corresponds to the Web size doubling in about 394 days. In contrast,
if we estimated ξ from the lower bounds of 320 million pages in December 1997
(Lawrence and Giles 1998b) and 800 million pages in February 1999 (Lawrence and
Giles 1999), roughly 426 days later, we would obtain ξ = 0.022, or a doubling time

ADVANCED CRAWLING TECHNIQUES 165

of 315 days. Despite the differences in these two estimates, they are of the same order
of magnitude and give us some idea of the growth rate of the Web.

Another important problem when using empirically measured ages is that servers
often do not return meaningful timestamps. This is particularly true in the case of
highly dynamic Web pages. For example, it is not always possible to assess from the
timestamp whether a document was just edited or was generated on-the-fly by the
server. These considerations suggest that the estimation of change rates should be
carried out using lifetimes rather than ages. The main difficulty is how to deal with
the problem of potentially poorly chosen timespans, as exemplified in Figure 6.6.
Brewington and Cybenko (2000) suggest a model that explicitly takes into account
the probability of observing a change, given the change rate and the timespan. Their
model is based on the following assumptions.

• Document changes are events controlled by an underlying Poisson process,
where the probability of observing a change at any given time does not depend
on previous changes. Given the timespan τ and the change rate λ, the probability
that we observe one change (given that it actually was made) is therefore

P(c | λ, τ) = 1 − e−λτ . (6.17)

It should be observed that, in their study, Brewington and Cybenko (2000)
found that pages are changed with different probabilities at different hours of
the day or during different days of the week (most changes being concentrated
during office hours). Nonetheless, the validity of a memoryless Poisson model
is assumed.

• Mean lifetimes are Weibull distributed (seeAppendixA), i.e. denoting the mean
lifetime by t = 1/λ, the pdf of t is

w(t) = σ

δ

(
t

δ

)σ−1

e(t/δ)σ , (6.18)

where δ is a scale parameter and σ is a shape parameter.

• Change rates and timespans are independent and thus

P(c | λ) =
∫ ∞

0
P(c, τ | λ) dτ =

∫ ∞

0
P(τ)P (c | τ, λ) dτ.

The resulting lifetime distribution is

f (t) =
∫ ∞

0
λe−λt ŵ(1/λ) d(1/λ), (6.19)

where ŵ(1/λ) is an estimate of the mean lifetime. Brewington and Cybenko (2000)
used the data shown in Figure 6.7 to estimate the Weibull distribution parameters,
obtaining σ = 1.4 and δ = 152.2. The estimated mean lifetime distribution is plotted
in Figure 6.9.

166 WEB DYNAMICS

800600400200

0.001

0.002

0.003

0.004

Lifetime in days

Estimated
probability density function

of mean page lifetime

1
0

0.2

0.4

0.6

0.8

1

5 10
t

50

Lifetime in days

Estimated
cumulative distribution function

of page lifetime

100 500 1000

Figure 6.9 Estimated density and distribution of mean lifetime resulting from
the study of Brewington and Cybenko (2000).

0 tt-β

Grace period β

I

fetchfetch

Figure 6.10 A document is β-current at time t if no changes have occurred before
the grace period that extends backward in time until t − β.

These results allow us to estimate how often a crawler should refresh the index
of a search engine to guarantee that it will remain (α, β)-current. Let us consider
first a single document and, for simplicity, let t = 0 be the time when the crawler
last fetched the document. Also, let I be the time interval between two consecutive
visits (see Figure 6.10). The probability that for a particular time t the document
is unmodified in [0, t − β] is e−λ(t−β) for t ∈ [β, I) and 1 for t ∈ (0, β). Thus, the
probability that a specific document is β-current at time t is∫ β

0

1

I
dt +

∫ I

β

1

I
e−λ(t−β) dt = β

I
+ 1 − e−λ(I−β)

λI
, (6.20)

but since each document has a change rate λ, whose reciprocal is Weibull distributed,
the probability that the collection of documents is β-current is

α =
∫ ∞

0
w(t)

[
β

I
+ 1 − e−(I−β/t)

t/I

]
dt. (6.21)

This allows us to determine the minimum refresh interval I to guarantee (α, β)-
currency once the parameters of the Weibull distribution for the mean change rate are
known. Assuming a Web size of 800 million pages, Brewington and Cybenko (2000)

ADVANCED CRAWLING TECHNIQUES 167

determined that a reindexing period of about 18 days was required to guarantee that
95% of the repository was current up to one week ago.

6.4.2 Other measures of recency

Freshness and index age are two alternative and somewhat simpler measures of
recency (Cho and Garcia-Molina 2000b). The freshness φ(t) at time t of a given
document is a binary function that indicates whether the document is up-to-date in
the index at time t . The expected freshness is therefore the probability that the doc-
ument did not change in (0, t], i.e. E[φ(t)] = e−λt (see Equation (6.17)). Note that
freshness essentially corresponds to the concept of β-currency for β = 0. Hence, if
d is refreshed regularly each I time units, the average freshness is

φ̄ = 1 − e−λI

λI

as follows from Equation (6.20) with β = 0.
The index age of a document is the age of the document if the local copy is outdated,

or zero if the local copy is fresh. Thus if the document was modified at time s ∈ (0, t],
its index age is t − s. From Equation (6.14) it follows that the expected age at time t

is

E[a(t)] =
∫ t

0
(t − s)λe−λs ds = t − 1 − e−λt

λ
,

whose average in (0, I] is

a = 1 − e−λI

λ2I
− 1

λ
+ I

2
.

When a collection of documents is considered, the above quantities can be averaged
over the collection. Because of the linearity of integral, we can average both time
punctual values and time averages.

6.4.3 Recency and synchronization policies

The bandwidth requirements that can be inferred from the analysis reported in Sec-
tion 6.4.1 could be somewhat pessimistic. Clearly, not all the sites change their pages
at the same rate. Cho and Garcia-Molina (2000b) conducted another study in 1999,
monitoring changes of about 720 000 popular2 Web pages. Results are reported in
Figure 6.11. In terms of the overall ‘popular’ Web, these diagrams are in good qual-
itative accordance with the findings of Brewington and Cybenko (2000), indicating
that a vast fraction of this Web is dynamic. However, it is interesting to note that a
very simple Web partitioning, based on four top-level domains, yields dramatically
different results (Cho and Garcia-Molina 2000b). In particular, ‘dot com’ websites

2 According to PageRank (see Section 5.4), so this forms a biased representative of the Web population.

168 WEB DYNAMICS

0.0 0.2 0.4 0.6 0.8 1.0

> 4 months

1–4 months

1 week – 1 month

1 day – 1 week

≤ 1 day

.com

.net

.edu

.gov

Average

Figure 6.11 Average change interval found in a study conducted by Cho and Garcia-Molina
(2000a). 270 popular sites were monitored for changes from 17 February to 24 June 1999. A
sample of 3000 pages was collected from each site by visiting in breadth first order from the
homepage.

are much more dynamic compared to educational or governmental sites. While this
is not surprising, it suggests that a resource allocation policy that does not take into
account site (or even document) specific dynamics may waste bandwidth re-fetching
old information that, however, is recent in the index. From a different viewpoint, this
nonuniformity suggests that, for a given bandwidth, the recency of the index can be
improved if the refresh rate is differentiated for each document.

To understand how to design an optimal synchronization policy we will make
several simplifying assumptions. Suppose there are N documents of interest and
suppose we can estimate the change rate λi , i = i, . . . , N , of each document. Suppose
also that it will be practical to program a crawler that regularly fetches each document
i with a refresh interval Ii . Suppose also that the time required to fetch each document
is constant. The fact that we have limited bandwidth should be reflected in a constraint
involving Ii . If B is the available bandwidth, expressed as the number of documents
that can be fetched in a time unit, this constraint is

N∑
i=1

1

Ii

� N. (6.22)

The problem of optimal resource allocation consists of selecting the refresh intervals
Ii so that a recency measure of the resulting index (e.g. freshness or index age) will be
maximized (Cho and Garcia-Molina 2000b). For example, we may want to maximize
freshness

(I ∗
1 , . . . , I ∗

N) = arg max
Ii ,...,IN

N∑
i=1

φ̄(λi, φi) (6.23)

subject to (6.22). We might be tempted to arrange a policy that assigns to each doc-
ument a refresh interval Ii that is proportional to the change rate λi . However, this
intuitive approach is suboptimal, and can be proven to be even worse than assign-
ing the same interval to each document. The optimal intervals can be easily derived

ADVANCED CRAWLING TECHNIQUES 169

as the solution of a constrained optimization problem such as the one described by
Equation (6.23).

If very large collections of documents need to be monitored, bandwidth limitations
may even prevent us from frequently monitoring document changes. Cho and Ntoulas
(2002) have recently proposed a sampling approach where a small fraction of pages
from a given site is checked for changes and the results are used to estimate the change
rate of the entire site.

WebFountain (Edwards et al. 2001) is a fully distributed and incremental crawler
with no central control or centralized queue of URLs. ‘Incremental’ in this case means
that the repository entry of a given document is updated as soon as it is fetched from
the Web and the crawling process is never regarded as complete. The goal is to keep
the repository as fresh and as complete as possible. The model in this case is not
based on assumptions on the distribution of document change rates. Changes are
simply detected when a document is re-fetched and documents are grouped into a set
of buckets, each containing documents having similar rates of change. The trade-off
between re-fetching (to improve freshness) and exploring (to improve coverage) is
controlled in this case by maintaining separate queues for ‘old’ and ‘new’ URLs.
The optimal ratio of between the number of old and new URLs is determined as the
solution of a constrained optimization problem (see Edwards et al. (2001) for details).

Wolf et al. (2002) also formulate crawling as an optimization problem and suggest
a pragmatic metric, the embarrassment level, that focuses on the expected number of
times a search engine client is returned a stale URL.

Exercises

Exercise 6.1. Write a simplified crawling program that organizes the list of URLs
to be fetched as a priority queue. Order the priority queue according to the expected
indegree of the page pointed to by each URL and compare your results to a best-first
search algorithm, using the actual indegree as a target measure of relevance.

Exercise 6.2. Extend the crawler developed in Exercise 6.1 to search for documents
related to a specific topic of interest. Collect a set of documents of interest to be used as
training examples and use one of text categorization tools studied in Chapter 4 to guide
the crawler. Compare results obtained using the parent-based and the anchor-based
strategies.

Exercise 6.3. Write a program that recursively scans your hard disk and estimates
the lifetime of your files.

Exercise 6.4. Suppose the page mean lifetime is Weibull distributed with parameters
δ and σ . What are the average mean lifetime, the most likely mean lifetime, and the
median mean lifetime? What would be reasonable values for these quantities starting
from an estimated distribution like the one shown in Figure 6.9?

Exercise 6.5. Explain what we mean when we say that a collection of stored docu-
ments is (α, β)-current.

170 WEB DYNAMICS

Exercise 6.6. Suppose you want to build a (0.8,1-week)-current search engine for
a collection of 2 billion documents whose average size is 10 Kb. Suppose the mean
change is Weibull distributed with σ = 1 and δ = 100 days. What is the required
bandwidth (suppose the time necessary to build the index is negligible)?

	Modeling the Internet and the Web : Probabilistic Methods and Algorithms
	Contents
	Preface
	1 Mathematical Background
	1.1 Probability and Learning from a Bayesian Perspective
	1.2 Parameter Estimation from Data
	1.2.1 Basic principles
	1.2.2 A simple die example

	1.3 Mixture Models and the Expectation Maximization Algorithm
	1.4 Graphical Models
	1.4.1 Bayesian networks
	1.4.2 Belief propagation
	1.4.3 Learning directed graphical models from data

	1.5 Classification
	1.6 Clustering
	1.7 Power-Law Distributions
	1.7.1 Definition
	1.7.2 Scale-free properties (80/20 rule)
	1.7.3 Applications to Languages: Zipf's and Heaps' Laws
	1.7.4 Origin of power-law distributions and Fermi's model

	1.8 Exercises

	2 BasicWWWTechnologies
	2.1 Web Documents
	2.1.1 SGML and HTML
	2.1.2 General structure of an HTML document
	2.1.3 Links

	2.2 Resource Identifiers: URI, URL, and URN
	2.3 Protocols
	2.3.1 Reference models and TCP/IP
	2.3.2 The domain name system
	2.3.3 The Hypertext Transfer Protocol
	2.3.4 Programming examples

	2.4 Log Files
	2.5 Search Engines
	2.5.1 Overview
	2.5.2 Coverage
	2.5.3 Basic crawling

	2.6 Exercises

	6 Advanced Crawling Techniques
	6.1 Selective Crawling
	6.2 Focused Crawling
	6.2.1 Focused crawling by relevance prediction
	6.2.2 Context graphs
	6.2.3 Reinforcement learning
	6.2.4 Related intelligentWeb agents

	6.3 Distributed Crawling
	6.4 Web Dynamics
	6.4.1 Lifetime and aging of documents
	6.4.2 Other measures of recency
	6.4.3 Recency and synchronization policies

	7 Modeling and Understanding Human Behavior on the Web
	7.1 Introduction
	7.2 Web Data and Measurement Issues
	7.2.1 Background
	7.2.2 Server-side data
	7.2.3 Client-side data

	7.3 Empirical Client-Side Studies of Browsing Behavior
	7.3.1 Early studies from 1995 to 1997
	7.3.2 The Cockburn and McKenzie study from 2002

	7.4 Probabilistic Models of Browsing Behavior
	7.4.1 Markov models for page prediction
	7.4.2 Fitting Markov models to observed page-request data
	7.4.3 Bayesian parameter estimation for Markov models
	7.4.4 Predicting page requests with Markov models
	7.4.5 Modeling runlengths within states
	7.4.6 Modeling session lengths
	7.4.7 A decision-theoretic surfing model
	7.4.8 Predicting page requests using additional variables

	7.5 Modeling and Understanding Search Engine Querying
	7.5.1 Empirical studies of search behavior
	7.5.2 Models for search strategies

	7.6 Exercises

	8 Commerce on theWeb: Models and Applications
	8.1 Introduction
	8.2 Customer Data on theWeb
	8.3 Automated Recommender Systems
	8.3.1 Evaluating recommender systems
	8.3.2 Nearest-neighbor collaborative filtering
	8.3.3 Model-based collaborative filtering
	8.3.4 Model-based combining of votes and content

	8.4 Networks and Recommendations
	8.4.1 Email-based product recommendations
	8.4.2 A diffusion model

	8.5 Web Path Analysis for Purchase Prediction
	8.6 Exercises

	Appendix A Mathematical Complements
	A.1 Graph Theory
	A.1.1 Basic definitions
	A.1.2 Connectivity
	A.1.3 Random graphs

	A.2 Distributions
	A.2.1 Expectation, variance, and covariance
	A.2.2 Discrete distributions
	A.2.3 Continuous distributions
	A.2.4 Weibull distribution
	A.2.5 Exponential family
	A.2.6 Extreme value distribution

	A.3 Singular Value Decomposition
	A.4 Markov Chains
	A.5 Information Theory
	A.5.1 Mathematical background
	A.5.2 Information, surprise, and relevance

	Appendix B List of Main Symbols and Abbreviations
	References
	Index

