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Link Analysis

Computing the relevance of a document is a major issue in Web-based information
retrieval. As we have seen in Chapter 4, when considering unstructured collections
of documents, it is possible to compute relevance with respect to user queries such
as those involving keyword-based Boolean expressions, or those involving measures
of similarity between documents. In each of these cases the score is a function of
the document and the query. Large collections of hypertext such as the Web are
more interesting in this respect since they allow us to compute scoring functions that
include topological information about the hypertext graph. The basic assumption is
that hyperlinks contain information about the human judgment of a document. To
a first approximation, the more incoming links that exist for a document, the more
likely it is that the document was judged to be ‘important’ by the authors of other
documents linking to it.

Incoming links embody a common notion of popularity that also exists in other
domains or in other webs. Networks of interaction have been studied for a long time
in social sciences (Wasserman and Faust 1994), where nodes correspond to persons
or organizations, and edges represent some type of social interaction. Intuitively,
increasing the number of incoming links to a node should increase a common-sense
measure of standing or popularity or prestige for that node. However, it should be also
common sense that just counting the number of links does not necessarily provide an
accurate measure of standing. For example, measuring the prestige of an enterprise
by the mere number of its clients could be misleading, since different clients may
have very different weights.

An important example is the network obtained by considering the scientific litera-
ture. Nodes in this case are papers, books, or entire journals, and edges correspond to
citations. It makes sense to assume that the more citations a paper or a book receives,
the more it can be assumed to be important, since it has been judged as useful by other
scientists. The systematic construction of such networks through citation indexes was
introduced by Garfield (1955), who later proposed a measure of standing for journals
that is still in use. This measure, called impact factor (Garfield 1972), is defined as
the average number of citations per recently published item. More precisely, if C is
the total number of citations in a given time interval [t, t + t1] to articles published
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by a given journal during [t − t2, t], and N is the total number of articles published
by that journal in [t − t2, t], the impact factor is defined as C/N (typically t1 = 1
year and t2 = 2 years). Thus, the impact factor is a very simple measure, since it
basically corresponds to the normalized indegree of a journal in a subgraph of the
citation network. Graph-based link analysis for the scientific literature goes back to
the 1960s (Garner 1967). However, these ideas were not exploited in the development
of first-generation Web search tools.

The paper by Bray (1996) reports an early attempt to apply social networks concepts
to the Web. He suggested a Web visualization approach where the ‘. . . appearance of
a site should reflect its visibility, as measured by the number of other sites that have
pointers to it . . . ’ and ‘. . . its luminosity, as measured by the number of pointers with
which it casts navigational light off-site. . . ’. Visibility and luminosity defined in this
way are directly related to the indegree and the outdegree of websites, respectively.
More recently, toward the end of the 1990s, link analysis methods became more
widely known and used in a search engine context, leading to what is sometimes
called the second generation of Web searching tools.

This chapter reviews the most common approaches to link analysis and how these
techniques are be applied to compute the popularity of a document or a site. The algo-
rithms presented in this chapter extract emergent properties from a complex network
of interconnections, attempting to model (indirectly) subjective human judgments.
It remains debatable as to whether popularity (as implied by the mechanism of cita-
tions) captures well the notions of relevance and quality as they are subjectively
perceived by humans, and whether link analysis algorithms can successfully model
human judgments.

5.1 Early Approaches to Link Analysis

Our notation for hypertext will be straightforward. For each vertex v in the hypertext
graph G = (V , E), d(v) denotes the contents of the document at vertex v. If d(v)

is considered to be an isolated document, then its score with respect to a query q

is s(v | d(v), q). When considering d(v) in its hypertext context, the score should
also depend on G and will be denoted as S(v | d(v), q, G). In the following, we will
simplify the notation of these scores by just writing s(v) and S(v) if the dependencies
on d(v), q, and G are obvious from the context.

To quantify visibility (luminosity) S(v) could simply be designed to grow with
the indegree (outdegree) of v as hinted by Bray (1996). Clearly, however, such an
approach suffers from a fundamental limitation: it would fail to capture the relative
importance of different parents (children) in the graph. For example, a Web page
with a small number of links coming from important sites should be considered more
popular than a Web page with a larger number of links and whose sources are all from
unimportant or irrelevant sites. Hence, rather than a mere count, popularity should be
computed as a weighted sum of the citations a document receives through hypertext
links. Ideas having this flavor are less recent than we might expect.
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The use of hypertext information in information retrieval is older than the Web.
Mark (1988), for example, was concerned with retrieving hypertext cards in a medical
domain and noted that ‘. . . often cards do not even mention what they are about, but
assume that the reader understands the context because he or she has read earlier
cards.’ He then proposed a simple algorithm for scoring documents where relevance
information was transmitted from documents to their parents in the hypertext graph
G. More precisely, the ‘global’ score of v given the query and the topology of G was
computed as:

S(v) = s(v) + 1

| ch[v]|
∑

w∈| ch[v]|
S(w). (5.1)

This simple algorithm somewhat resembles message passing schemes that are very
common in connectionism (McClelland and Rumelhart 1986) or in graphical model-
ing (Pearl 1988). As such, it requires G to be a DAG so that a topological sort1 can be
chosen for updating the global scores S. The DAG assumption is reasonable in small
hypertexts with a root document and a relatively strong hierarchical structure (in this
case, even if G is not acyclic, not much information would be lost by replacing it with
its spanning tree). The Web, however, is a large and complex graph. This may explain
why search engines largely ignored its topology for several years.

The paper by Marchiori (1997) was probably the first one to discuss the quantitative
concept of hyper information to complement textual information in order to obtain
the overall information contained in a Web document. The idea somewhat resembles
Frisse’s approach. Indeed, if we rewrite Equation (5.1) as

S(v) = s(v) + h(v), (5.2)

then s(v) can be thought of as the textual information (that only depends on the
document and the query), h(v) corresponds to the hyper information that depends on
the link structure where v is embedded, and S(v) is the overall information. Marchiori
(1997) did not cite Mark (1988), but nonetheless he identified a fundamental problem
with Equation (5.1). If an irrelevant page v has a single link to a relevant page w,
Equation (5.1) implies that S(v) � S(w). The scenario would be even worse in a
chain of documents v0, v1, . . . , vk . Here if S(vk) is very high but S(v0), . . . , S(vk−1)

are almost zero, then v0 would receive a global score higher than vk , even though a
user would need k clicks to reach the important document.

As a remedy, Marchiori suggested that in this case the hyper information of v0
should be computed as

h(v) =
∑

w∈ch[v]
F r(v,w)S(w), (5.3)

where F ∈ (0, 1) is a fading constant and r(v, w) ∈ {1, . . . , |ch[v]|} is the rank
of w after sorting (in ascending order) the children of v according to the value of

1 A topological sort is an ordering ‘<’ of the vertices such that v < v′ if and only if there is a directed
path from v′ to v (Cormen et al. 2001).
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S(w). When applying Equation (5.3) to a linear chain v0, v1, . . . , vk of documents,
one would get S(v0) = ∑k

i=1 F iS(vi), so the contribution of the score of vk fades
exponentially as one moves back in the graph.As it turns out, Equation (5.3) in general
implies a recursive form of computation that cannot be carried out in a cyclic graph.
Marchiori (1997) suggested a solution to this problem assuming a finite horizon of
propagation, i.e. S(v) was computed on the tree rooted at v and having a fixed small
depth k.

Before we discuss link analysis of the Web graph, it will first be useful to estab-
lish certain basic mathematical results relating to nonnegative matrices, graphs, and
Markov chains. The reader familiar with these topics can safely skip the next section.

5.2 Nonnegative Matrices and Dominant
Eigenvectors

A square matrix A is said to be nonnegative, written A � 0, if all its elements are
nonnegative. Important examples of nonnegative matrices include graph incidence
(of adjacency) matrices and stochastic matrices. Given a directed graph G = (V , E),
the incidence matrix A of G is defined as the 0-1 matrix with aij = 1 if and only if
(i, j) ∈ E. Note that for simplicity we have assumed that the vertices in V are iden-
tified by the integers 1, 2, . . . , n, where n = |V |. Stochastic matrices are commonly
used to describe first-order Markov chains as discussed in Appendix A. In a system
with n discrete states, each entry of a stochastic matrix A contains the transition
probability aij = P(St = j | St−1 = i). In this case, the probability axioms imply
that each aij � 0 and that the elements of each row i should sum to unity.

A nonnegative n × n matrix A is said to be irreducible if, for each pair of indices
(vertices) i and j , there exists a corresponding integer t such that (At )ij > 0. If A

is the adjacency matrix of a (directed) graph, this property tells us that the graph is
(strongly) connected. By contrast, a reducible matrix is associated with a graph with
more than one (strongly) connected component. In this case, if there exists a path of
length t from a node i to itself, (At )ii > 0. The greatest common divisor (gcd) of
the set {t : (At )ii > 0} is called the period of i. If A is irreducible, then the period
is the same for all indices (nodes) i. The common period is the gcd of the lengths of
all the cycles in the graph. Interestingly, these topological properties of a graph have
a correspondence in the spectral structure of its adjacency matrix, as shown by the
Perron–Frobenius theorem (Seneta 1981).

For a nonnegative irreducible primitive matrix A, the Perron–Frobenius theorem
allows us to conclude that there exists an eigenvalue λ of A such that

(1) λ is real and positive, and λ � |λ′| for every other eigenvalue λ′ �= α;

(2) λ corresponds to a strictly positive eigenvector;

(3) λ is a simple root of the characteristic equation (A − αIn) = 0.
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Figure 5.1 Graphs with different types of incidence matrices. (a) is primitive,
(b) is irreducible (with period 4) but not primitive, (c) and (d) are reducible.

In this case, λ is called the dominant eigenvalue of A and the associated eigenvector
is called the dominant eigenvector. Denoting by (λ1, . . . , λn) the eigenvalues of A,
in the following we will assume that the dominant eigenvalue is always λ1.

Note, however, that although there cannot be multiple roots there may be some
other eigenvalue λj �= λ1 such that |λj | = |λ1|. It can be shown that if there are k

eigenvalues having the same magnitude as the dominant eigenvalue, then they are
equally spaced in the complex circle of radius λ1. Moreover, if A is the adjacency
matrix of a graph, k is the gcd of the lengths of all the cycles in the graph. In order
to get a dominant eigenvalue that is strictly greater than all other eigenvalues further
conditions are necessary.

A matrix A is said to be primitive if there exists a positive integer t such that
At > 0 (note the strict inequality). A primitive matrix is also irreducible, but the
converse is not true in general. For a primitive matrix, condition 1 of the Perron–
Frobenius theorem holds with strict inequality. This means that all the remaining
eigenvalues are smaller in modulus than the dominating eigenvalue. Moreover, if the
adjacency matrix of a graph is primitive, then the gcd of the lengths of all cycles is
unity. Figure 5.1 illustrates some examples.
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Figure 5.2 Example of a base subgraph obtainedby starting from the vertex set {1, 2, 3, 4}.

The fundamental property of primitive matrices also suggests a simple iterative
algorithm for computing the dominant eigenvalue and the associated eigenvector.
Let x ∈ R

n and let (a1, . . . , an) denote the coordinates of x in the basis formed
by the eigenvectors (v1, . . . , vn). If we expand the product Atx, remembering that
Avi = λivi , we obtain

Atx =
∑

i

aiλ
t
ivi , (5.4)

but since λ1 > |λi |, i > 1, the first term dominates the above sum as t gets large,
i.e. aiλivi ≈ At for large t . This gives us a vector proportional to the dominant
eigenvector, provided that x is not orthogonal to v1. Since the Perron–Frobenius
theorem tells us that v1 is strictly positive, any random positive vector will yield the
correct solution, for example, x = 1 = (1, 1, . . . , 1)T.

In the special case of primitive stochastic matrices, it is easy to see that λ1 = 1 since,
by the definition of a stochastic matrix, A1 = 1. Moreover, since all the remaining
eigenvalues are strictly smaller than one in modulus, the sequence At converges at
an exponential rate and it can be shown that

lim
t→∞ At = 1Tr. (5.5)
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In this case, r is known as the stationary distribution of the Markov chain.

5.3 Hubs and Authorities: HITS

Kleinberg’s algorithm, called ‘Hypertext Induced Topic Selection’ (HITS), simul-
taneously computes a pair of scoring values associated with hypertext documents
(Kleinberg 1998, 1999). The semantics attached to these quantities essentially match
Bray’s concepts of visibility and luminosity.

HITS works on a small graph associated with a selected collection of hypertext
documents, for example a focused portion of the Web that is expected to be related to
a given topic of interest. In the original formulation of HITS, the subgraph of interest
(also known as the base subgraph) is computed by selecting the neighbors of a root
set R of Web pages that are known to be relevant with respect to the topic. The root
set is expanded to include all the children and a fixed number of parents of nodes in
R. Details of the procedure are given in the following algorithm (see Figure 5.2 for
an illustration).

BaseSubgraph(R, d)

1 S ← R

2 for each v in R

3 do S ← S ∪ ch[v]
4 P ← pa[v]
5 if |P | > d

6 then P ← arbitrary subset of P having size d

7 S ← S ∪ P

8 return S

Note that the children of a given node (line 3) are forward links and can be
obtained directly from each page v. Parents (line 4) correspond to backlinks and
can be obtained from a representation of the Web graph obtained, for example,
through a crawl. Several commercial search engines currently support the spe-
cial query link:url that returns the set of documents containing url as a link.
In the case of small scale applications, this approach can be used to obtain the
set of parents in line 4. Parameter d is the maximum number of parents of a
node in the root set that can be added. As we know (see Chapter 3), some pages
may have a very large indegree. Thus, bounding the number of parents is cru-
cial in practical applications. Algorithm BaseSubgraph returns a set of nodes S.
In what follows, HITS is assumed to work on the subgraph of the Web induced
by S.

Let G = (V , E) denote the subgraph of interest, where V = S. For each vertex
v ∈ V , let us introduce two positive real numbers a(v) and h(v). These quantities
are called the authority and the hubness weights of v, respectively. Intuitively, a
document should be very authoritative if it has received many citations. As discussed
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above, citations from important documents should be weighted more than citations
from less-important documents. In the case of HITS, the importance of a document as
a source of citations is measured by its hubness. Intuitively, a good hub is a document
that allows us to reach many authoritative documents through its links. The result is
that the hubness of a document depends on the authority of the cited documents, and
the authority of a document depends on the hubness of the citing documents. We are
apparently stuck in a loop, but let us observe that this recursive form of dependency
between hubs and authority weights naturally leads to the definition of the following
operations:

a(v) ←
∑

w∈pa[v]
h(w), (5.6)

h(v) ←
∑

w∈ch[v]
a(w). (5.7)

The two operations above can be carried out to update authority and hubness weights
starting from initial values. This approach is meaningful because Kleinberg (1999)
showed that iterating Equations (5.6) and (5.7), intermixed with a proper normaliza-
tion step, yields a convergent algorithm. The output is a set of weights that can be
therefore considered to be globally consistent. Kleinberg’s algorithm is listed below.
For convenience, weights are collected in two n-dimensional vectors a and h.

HubsAuthorities(G)

1 1 ← [1, . . . , 1] ∈ R
|V |

2 a0 ← h0 ← 1
3 t ← 1
4 repeat
5 for each v in V

6 do at (v) ← ∑
w∈pa[v] ht−1(w)

7 ht (v) ← ∑
w∈ch[v] at−1(w)

8 at ← at /‖at‖
9 ht ← ht /‖ht‖

10 t ← t + 1
11 until ‖at − at−1‖ + ‖ht − ht−1‖ < ε

12 return (at , ht )

To show that HubsAuthorities terminates, we need to prove that for each ε > 0
the condition controlling the outer loop will be met for t large enough. Formally,
this means that the sequences {at }i∈N and {ht }t∈N converge to limits a� and h�,
respectively. The proof of this result is based on rewriting HITS using linear algebra.
In particular, if we denote by A the incidence matrix of G, it can be easily verified that
the updating operations can be written compactly in vector notation as at = ATht−1
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The authority weight of a page is the sum 
of the hubness weights of its parents

The hubness weight of a page is the sum 
of the authority weights of its children

Figure 5.3 Graphical explanation of the basic operations in HITS
(see Equations (5.6) and (5.7)).

and ht = Aht−1. As a result, after t iterations,

at = αt (A
TA)t−1AT1, (5.8)

ht = βt (AAT)t1, (5.9)

where αt and βt are scalar normalization factors. Thus, a sufficient condition for
HubsAuthorities to terminate is that the sequences of vectors {αt (A

TA)t−1AT1}
and βt (AAT)t1 converge for t → ∞. It is possible to prove that these sequences
converge under fairly unrestrictive hypotheses. For example, it can be shown that a
sufficient condition is that M be a nonnegative nonsingular symmetric matrix. In this
case, the dominant eigenvector ω1(M) (i.e. the eigenvector associated with the largest
eigenvalue λ1(M)) is nonnegative, and for every vector x such that ω1(M)Tx �= 0
we have

lim
t→∞

M tx

‖M tx‖ ∝ ω1(M). (5.10)

Since 1 cannot be orthogonal to a nonnegative vector, the sequences {at } and {ht }
converge to ω1(A

TA) and ω1(AAT), respectively.
As an example, in Figure 5.4 we show the authority and hubness weights computed

by HubsAuthorities on the graph of Figure 5.2. We can note some unobvious
weight assignments. For example, vertex 3 has the largest indegree in the graph but
nonetheless its authority is rather small because of the low hubness weight of its
parents.

Bharat and Henzinger (1998) have suggested an improved version of HITS that
addresses some specific problems that are encountered in practice. For example, a
mutual reinforcement effect occurs when the same host (or document) contains many
identical links to the same document in another host. To solve this problem, Bharat
and Henzinger (1998) modified HITS by assigning weight to these multiple edges that
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Figure 5.4 Authority and hubness weights in the example graph of Figure 5.2.

are inversely proportional to their multiplicity. The method presented by Bharat and
Henzinger (1998) also addresses the problem of links that are generated automatically,
for example, by converting messages posted to Usenet news groups into Web pages.
Finally, they address the so-called topic drift problem, i.e. some nodes in the base
subgraph may be irrelevant with respect to the user query and documents with highest
authority or hubness weights could be about different topics. This problem can be
addressed either by pruning irrelevant nodes or by regulating the influence of a node
with a relevance weight.

5.4 PageRank

The theory developed in this section was introduced by Page et al. (1998) and resem-
bles in many ways the recursive propagation idea we have seen in HITS. However,
unlike HITS, only one kind of weight is assigned to Web documents. Intuitively, the
rank of a document should be high if the sum of its parents’ ranks is high. To a first
approximation, this intuition might be embodied in the equation

r(v) = α
∑

w∈pa[v]

r(w)

|ch[w]| , (5.11)

where r(v) is the rank assigned to page v and α is a normalization constant. Note
that each parent w contributes by a quantity that is proportional to its rank r(w) but
inversely proportional to its outdegree. This is a fundamental difference with respect
to authority in HITS. The endorsement signal that flows from a given page w to each
of its children decreases as the number of outgoing links (and, therefore, the potential
of being a good hub) increases. Equation (5.11) can also be written in matrix notation,
as

r = αBr = Mr. (5.12)
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The matrix B is obtained from the adjacency matrix A of the graph by dividing each
element by the corresponding row sum, i.e.

buv =




auv∑
w auw

, if ch[u] �= ∅,

au,v = 0, otherwise.
(5.13)

As implied by Equation (5.12), the vector r is a right eigenvector of B with an
associated eigenvalue α.

An interesting property of this solution can be seen by interpreting the computation
expressed by Equation (5.12) as the description of a random walk through the Web
graph. More precisely, suppose each vertex in the graph is associated with a realization
of a discrete random variable St that models the position of a hypothetical surfer at
a given time t . The rank of a page v could be then thought of as the asymptotic
probability that the surfer is currently browsing that page, i.e. P(St = v). Under this
perspective, M is interpreted as the transition matrix for a first-order Markov chain:

rt (v) = P(St = v) =
∑
w

P (St = v | St−1 = w)P (St−1 = w)

=
∑
w

mwvrt−1(w). (5.14)

This equation updates the probability that our random surfer will browse page v at
time t , given the vector of probabilities at time t − 1 and the transition probabilities
mwv . In matrix notation this can be written as

rt = Mrt−1. (5.15)

To satisfy probability axioms, M must be a stochastic matrix, i.e. its rows should sum
to one. Since the rows of B are normalized, the probability axioms are satisfied if
α = 1. This simply means that the random surfer picks one of the outlinks in the page
being visited according to the uniform distribution.

A fundamental question is whether iterating Equation (5.14) converges to some
sensible solution regardless of the initial ranks r0. To answer this we need to inspect
different cases in the light of the theory of nonnegative matrices developed in Sec-
tion 5.2.

Four interesting cases are illustrated in Figure 5.5. The first graph has a primitive
adjacency matrix. Therefore Equation (5.5) holds, and values of r(v) corresponding
to the steady state are indicated inside each node (below the node index). In the
same figure, arcs are labeled by the amount of rank that is passed from a node to its
children. As expected, Equation (5.11) holds everywhere. The second graph is more
problematic, since its adjacency matrix is irreducible but not primitive. In this case,
passing ranks from nodes to their children results in a cyclic updating. The random
walk recursion of Equation (5.14) converges in this case to a limit cycle rather than to
a steady state, and the periodicity of the limit cycle is the period of the matrix, or, as
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Figure 5.5 Rank propagation on graphs with different types of incidence matrices. Equa-
tion (5.14) converges to a nontrivial steady state in case (a) and (c), to a limit cycle in case (b),
and to zero in case (d).

we know, the gcd of the lengths of the cycles (4 in the example). This is indicated in
Figure 5.5b by four values a, b, c, d of rank that cyclically bounce along the nodes. The
third graph of Figure 5.5 has a reducible adjacency matrix. In this case M t converges
to a matrix whose last column is all zero, reflecting the fact that the node should have
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zero rank as it has no parents. Finally, the fourth graph has also a reducible adjacency
matrix but this time the maximum eigenvalue is less than one, so M t converges to the
zero matrix. This is due to the existence of a node (1) with no children that effectively
acts as a rank sink.

The situation in Figure 5.5d is of course undesirable but is very common in the
actual Web. Many pages have no outlinks at all. Furthermore, pages that remain on the
crawling frontier and are never fetched will likely produce dangling edges in the graph
that is obtained from crawling. To solve this difficulty, observe that the connectivity
of node 1 should be defined as illegal, since it violates the basic hypothesis underlying
the random walk model: the sum of the probabilities of the available actions should
be one in each node, but once in the sink nodes our random surfer would be left with
no choices. A sensible correction consists of giving the random surfer a ‘method of
escape’ by adding allowable actions. One possibility is to assume that the surfer, who
cannot possibly follow any link, will restart browsing by picking a new Web page
at random. This is the same as adding a link from each sink to each other vertex,
i.e. introducing an escape matrix E defined as evw = 0 if |ch[v]| > 0 and evw = 1/n

otherwise, for each w. Then the transition matrix becomes

M = (B + E).

M is now a stochastic matrix and the Markov chain model for a Web surfer is sound. In
general, however, there is no guarantee that M is also primitive (if there are cycles with
zero outdegree as in Figure 5.1b, these bring irreducible but periodic components).
This difficulty will be addressed shortly and for now let us assume that M is primitive.

The following iterative algorithm was suggested in the original paper on PageRank
(Page et al. 1998). It takes as input a nonnegative square matrix M , its size n, and a
tolerance parameter ε.

PageRank(M, n, ε)

1 1 ← [1, . . . , 1] ∈ R
n

2 z ← 1
n

1
3 x0 ← z

4 t ← 0
5 repeat
6 t ← t + 1
7 xt ← MTxt−1
8 dt ← ‖xt−1‖1 − ‖xt‖1
9 xt ← x1 + dtz

10 δ ← ‖xt−1 − xt‖1
11 until δ < ε

12 return xt

The quantity dt is the total rank being lost in sinks. Adding dtz to MTxt−1 is basically
a normalization step. As it turns out, if M is a stochastic primitive matrix, then dt = 0
in each iteration (no normalization is necessary) and PageRank converges to the
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stationary distribution of M . Otherwise, the above algorithm implicitly ‘repairs’ the
matrix M into a stochastic matrix and converges to the corresponding stationary
distribution (see Exercise 5.4).

Now we address the problem of irreducible but periodic components. These also
act as rank sinks because they never pass rank to other parts of the graph. Moreover,
periodicity may hurt convergence and the algorithm PageRank above is not anymore
guaranteed to terminate. The solution suggested in Page et al. (1998) consists of forc-
ing some source or rank by introducing a ‘static’ stochastic process that models the
‘distribution of Web pages that a random surfer periodically jumps to.’ This distribu-
tion can be any nonnegative vector e such that ‖e‖1 = 1. The probability distribution
that results from combining the Markovian random walk distribution x and the static
rank source distribution is a mixture model with parameter ε:

r = εe + (1 − ε)x.

The simplest choice for e is a uniform distribution, i.e. e = (1/n)1. Intuitively, this
approach can be motivated by the metaphor that browsing consists of following exist-
ing links with some probability 1−ε or selecting a nonlinked page with probability ε.
When the latter choice is made, each page in the entire Web is sampled according to
the probability distribution e. In the case of the uniform distribution, Equation (5.15)
will be rewritten as

rt = [εH + (1 − ε)M]Trt−1, (5.16)

where H is a square matrix with huv = 1/n for each u, v. In this way we have obtained
an ergodic Markov chain whose underlying transition graph is fully connected. The
associated transition matrix εH +(1−ε)M is primitive and therefore the sequence rt

converges to the dominant eigenvector. The stationary distribution r associated with
the Markov chain described by Equation (5.16) is known as PageRank. In practice, ε

is typically chosen to be between 0.1 and 0.2 (Brin and Page 1998).

5.5 Stability

An important question is whether the link analysis algorithms based on eigenvectors
(such as HITS and PageRank) are stable in the sense that results do not change
significantly as a function of modest variations in the structure of the Web graph. More
precisely, suppose the connectivity of a portion of the graph is changed arbitrarily,
i.e. let G = (V , E) be the graph of interest and let us replace it by a new graph
G̃ = (V , Ẽ), where some edges have been added or deleted. How will this affect the
results of algorithms such as HITS and PageRank?

Ng et al. (2001) proved two interesting results about the stability of algorithms
based on the computation of dominant eigenvectors.
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5.5.1 Stability of HITS

First, Ng et al. (2001) derived a bound on the number of hyperlinks that can added
or deleted from one page without significantly affecting the authority (or hubness)
weights computed by HITS. The bound essentially depends on the eigengap, namely
the difference δ

.= λ1 − λ2 between the two largest eigenvalues of M = ATA (since
this matrix is symmetric the eigengap is a real number).

The result can be formally stated as follows. For every α > 0, suppose G is
perturbed by adding or deleting at most k hyperlinks from one page,

k �
(√

d + αδ

4 + √
2α

− √
d

)2

, (5.17)

where d is the maximum outdegree of G. The principal eigenvector associated with
the perturbed graph G̃ then satisfies

‖a − ã‖2 � α. (5.18)

Moreover, Ng et al. (2001) show that it is possible to perturb a symmetric matrix,
by a quantity that grows as δ, that produces a constant perturbation of the dominant
eigenvector. Thus, matrices with small eigengap can have low robustness with respect
to perturbation.

In practice, it is not difficult to construct graphs where even adding or deleting
even a single edge results in large variations in the authority and hubness weights. For
example, consider two isolated communities, one possessing a hub h but no emerging
authority (so the authority weight is dispersed among all the nodes), and the other
possessing a well recognized authority a but no important hubs. Adding an edge
from h to a would result in a large change in weight assignments, since the authority
weight of a would be increased at the expense of some amount of authority weights
contributed by all the nodes in the first community.

5.5.2 Stability of PageRank

In this case suppose r is the stationary distribution associated with matrix

εH + (1 − ε)M

(see Equation (5.16)). If the adjacency matrix A is perturbed to a new matrix Ã, then
Ng et al. (2001) show that

‖r̃ − r‖ �
2
∑

j∈Ṽ
r(j)

ε
, (5.19)

where Ṽ denotes the set of vertices touched by the perturbation. This demonstrates
two interesting facts: first, the parameter ε of the mixture model in Equation (5.16)
has a stabilization role; second, if the set of pages affected by the perturbation have a
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Figure 5.6 Forming a bipartite graph in SALSA.

small rank, the overall change will also be small. Bianchini et al. (2001) later proved
the tighter bound

‖r̃ − r‖ � 1 − ε

ε
2
∑
j∈Ṽ

δ(j)r(j), (5.20)

where δ(j) � 2 depends on the edges incident on j affected by the perturbation.

5.6 Probabilistic Link Analysis

The probabilistic interpretation of PageRank based on random walks can be extended
to link analysis algorithms that, like HITS, distinguish the importance of a node as
an authority or as a hub.

5.6.1 SALSA

Lempel and Moran (2001) have proposed a probabilistic extension of HITS called the
‘Stochastic Approach for Link Structure Analysis’ (SALSA). Similar extensions have
been proposed independently by Rafiei and Mendelzon (2000) and Ng et al. (2001).
In all of these proposals, the random walk is carried out by following hyperlinks both
in the forward and in the backward direction.

SALSA starts from a graph G = (V , E) of topically related pages (like the base
subgraph of HITS) and constructs a bipartite undirected graph U = (V̂ , Ê) as (see
Figure 5.6)

V̂ = Vh ∪ Va,
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where

Vh
.= {vh : v ∈ V, ch[v] �= ∅},

Va
.= {va : v ∈ V, pa[v] �= ∅},

Ê
.= {(uh, va) : (u, v) ∈ E}.

The sets Vh and Va are called the hub side and the authority side of U , respectively.
Two separate random walks are then introduced. In the ‘hub’ walk, each step con-

sists of

(1) following a Web link from a page uh to a page wa, and

(2) immediately afterward following a backlink going back from wa to vh, where
we have assumed that (u, w) ∈ E and (v, w) ∈ E.

For example, jumping from 1h to 5a and then back from 5a to 2h in Figure 5.6. In
the ‘authority’ walk, a step consists of following a backlink first and a forward link
next. In both cases, a step translates into following a path of length exactly two in
U . Note that, by construction, each walk starts on one side of U , either the hub side
or the authority side, and will remain confined to the same side. The Markov chains
associated with the two random walks have transition matrices H̃ and T̃ , respectively,
defined as follows:

h̃uv =
∑

w:(u,w)∈E,
(v,w)∈E

1

deg(uh)

1

deg(wa)
,

t̃uv =
∑

w:(w,u)∈E,
(w,v)∈E

1

deg(va)

1

deg(wh)
.

The hub and authority weights are then obtained as principal eigenvectors of the
matrices H̃ and T̃ . Note that these two matrices could also be defined in an alternative
way. Let A be the adjacency matrix of G, Ar the row-normalized adjacency matrix
(as in Equation (5.13)) and let Ac the column-normalized adjacency matrix of G

(i.e. dividing each nonzero entry by its column sum). Then H̃ consists of the nonzero
rows and columns of Ar · AT

c , while T̃ consists of the nonzero rows and columns of
AT

c · Ar.
Note that h̃uv > 0 implies that there exists at least one page w that has links to both

u and v. This is known as co-citation in bibliometrics (Kessler 1963) (see Figure 5.9
and Exercise 5.2). Similarly, t̃uv > 0 implies there exists at least one page that is
linked to by both u and v, a bibliographic coupling (Small 1973).

Lempel and Moran (2001) showed theoretically that SALSA weights are more
robust that HITS weights in the presence of the Tightly Knit Community (TKC)
Effect. This effect occurs when a small collection of pages (related to a given topic)
is connected so that every hub links to every authority and includes as a special
case the mutual reinforcement effect identified by Bharat and Henzinger (1998) (see
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Section 5.3). It can be shown that the pages in a community connected in this way
can be ranked highly by HITS, higher than pages in a much larger collection where
only some hubs link to some authorities. Clearly the TKC effect could be deliberately
created by spammers interested in pushing the rank of certain websites. Lempel and
Moran (2001) constructed examples of community pairs Cs connected in a TKC
fashion, and Cl sparsely connected, and proved that authorities of Cs are ranked
above the authorities of Cl by HITS but not by SALSA.

In a similar vein, Rafiei and Mendelzon (2000) and Ng et al. (2001) have proposed
variants of the HITS algorithm based on a random walk model with reset, similar to
the one used by PageRank. More precisely, a random surfer starts at time t = 0 at a
random page and subsequently follows links from the current page with probability
1 − ε, or (s)he jumps to a new random page with probability ε. Unlike PageRank,
in this model the surfer will follow a forward link on odd steps but a backward link
on even steps. For large t , two stationary distributions result from this random walk,
one for odd values of t , that corresponds to an authority distribution, and one for
even values of t that correspond to a hubness distribution. In vector notation the two
distributions are proportional to

a2t+1 = ε1 + (1 − ε)Arh2t , (5.21)

h2t = ε1 + (1 − ε)AT
c a2t−1. (5.22)

The stability properties of these ranking distributions are similar to those of PageRank
(Ng et al. 2001).

Some further improvements of HITS and SALSA, as well as theoretical analyses
on the properties of these algorithms can be found in Borodin et al. (2001).

5.6.2 PHITS

Cohn and Chang (2000) point out a different problem with HITS. Since only the
principal eigenvector is extracted, the authority along the remaining eigenvectors is
completely neglected, despite the fact that it could be significant.An obvious approach
to address this limitation consists of taking into account several eigenvectors of the
co-citation matrix, in the same spirit as PCA is used to extract several factors that
are responsible for variations in multivariate data. As we have discussed in Sec-
tion 4.5.2, however, the statistical assumptions underlying PCA are not sound for
multinomial data such as term–document occurrences or bibliographical citations.
PHITS can be viewed as probabilistic LSA (see Section 4.5.2) applied to co-citation
and bibliographic coupling matrices. In this case citations replace terms. As in PLSA,
a document d is generated according to a probability distribution P(d) and a ‘latent’
variable z is then attached to d with probability P(z | d). Here z could represent
research areas (in the case of bibliographic data) or a (topical) community in the
case of Web documents. Citations (links) are then chosen according to a probability
distribution P(d ′ | z).
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Figure 5.7 A link farm. Shaded nodes are all copies of the same page.

5.7 Limitations of Link Analysis

Search engines can be ‘spammed’ by websites faking high relevance with respect to
some topics for the sole purpose of attracting visitors. Marchiori (1997) called this
phenomenon Search Engine Persuasion (SEP). First-generation engines that based
their ranking on classical information retrieval measures were clearly very sensitive
to SEP. Common early techniques used to fool these engines included the use of
inappropriate site titles or descriptions, the inclusion of META keywords in the HTML
code, or even the use of extra text invisible to human surfers. Link analysis was
immediately recognized as a solid defense against SEP. In their seminal paper on
PageRank, Page et al. (1998) stated that

. . . for a page to get a high PageRank, it must convince an important page,
or a lot of non-important pages to link to it.At worst, you can have manip-
ulation in the form of buying advertisements (links) on important sites.
But this seems well under control since it costs money. This immunity
to manipulation is an extremely important property.

In the intervening time period, ranking pages using link analysis has become the stan-
dard approach followed by all the ‘second generation’ search engines. Consequently,
website owners have realized the enormous importance of maximizing PageRank or
similar link-based scoring functions in order to increase visibility. For some websites,
having high search engine ranking (with respect to some keywords) is so important
that it justifies considerable financial investments. Buying links as a form of adver-
tisement has become reality and perhaps in some cases it is a sensible alternative to
paying search engine companies directly for advertised links.

A link farm is a densely connected Web subgraph artificially built for the purpose
of accumulating PageRank (or similar measures of popularity). Link farms can be
built in many ways but link exchange is a common approach. A website owner who
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Figure 5.8 Canonical decomposition of the Web relative to a subgraph G.

decides to join the farm agrees to store a copy of a ‘hub’ page on her server and to
link it from the root of her site. In return, the main URL of her site is added to the
hub page, which is in turn redistributed to the sites participating in the link exchange.
The result is a densely connected subgraph like the one shown in Figure 5.7.

It may appear that, since structures of this kind are highly regular, they should
be relatively easy to detect (see Exercise 5.8) and thus link farming should not be
a serious concern for search engines. However, it is possible to build farms that are
more tightly entangled in the Web and are therefore more difficult to detect by simple
topological analyses. This problem has been recently pointed out by Bianchini et al.
(2001), who have shown that every community, defined as an arbitrary subgraph G

of the Web, must satisfy a special form of ‘energy balance’. The overall PageRank
assigned to pages in G grows with the ‘energy’ that flows in from pages linking to
the community and decreases with the energy dispersed in sinks and passed to pages
outside the community. With reference to Figure 5.8, let Gout denote the subgraph
of G induced by pages that contain hyperlinks pointing outside to G and let Gsink
denote the sink subgraph of G. Also, let Win be the subgraph induced by the pages
outside G that link to pages in G. Then the equation

‖rG‖ = α|G| + Ein
G − Esink

G − Eout
G . (5.23)

holds, where α|G| is the ‘default’ energy that is assigned to the community,

Ein
G = 1 − ε

ε

∑
w∈Win

fG(w) r(w)

is the energy flowing in from outside, where fG(w) is the fraction of links in w that
point to pages in G,

Eout
G = 1 − ε

ε

∑
w∈Gout

(1 − fG(w)) r(w)

is the energy flowing out to pages outside the community, and

Esink
G = 1 − ε

ε

∑
w∈Gsink

r(w).
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Suppose a set of ‘sponsoring’ pages S is generated artificially to boost the rank
of a target website. The above energy balance analysis shows that the PageRank of
the target can be increased linearly with |S| regardless of the topology in S, making
it difficult to detect the origin of spam using methods that are only based on graph
topology. The fact that spamming activities of this kind are indeed possible is borne
out, for example, by some recent anecdotes such as the popularity battle of the Church
of Scientology against its main opponent Xenu.net.2

Websites that allow their users to post HTML code, for example, Weblogs (Walker
2002), potentially offer a cheap way for constructing artificial rank-boosting commu-
nities. Specialized algorithms that exploit more information than just topology are
likely to be needed in the near future in order to prevent these spamming activities.
This may also help prevent the future topology of the Web (and associated notions of
popularity) from becoming significantly controlled by economic interests.

One example in this direction is the paper by Davison (2000a) that describes a
machine-learning method for the automatic discrimination of links that are unrelated
to the intrinsic merit of the pages. In this case, hyperlinks are described by several
binary features that include, for example, tests about the structure of the URL, identity
of source and target host or domain, or the total number of outlinks found on the source
page.

Finally, we note that assessing the quality of pages returned by a search engine
is difficult because quality is ultimately defined by human judgement. Amento et al.
(2000) have reported an empirical study in which 16 human experts in five popular
topics related to TV entertainment and music were asked to rank the quality of a
set of Web pages. The experiment was aimed at testing whether expert judgements
were correlated with scores based on link analysis. The study revealed that ranking
documents according to the authority score (as computed by HITS) or according to
PageRank yields high precision for the top 5 or 10 ranked documents. However, it
was also found that alternative metrics such as page indegree or total number of pages
in the website perform equally well.

Exercises

Exercise 5.1. Draw a graph of reasonable size, connecting vertices at random, and
compute the principal eigenvectors of the matrices ATA and AAT to get authority and
hubness weights. A very rapid way of doing this is by using linear algebra software
such as Octave. Now select a vertex having nonzero indegree but small authority and
try to modify the graph to increase its authority without increasing its indegree nor
the indegree of its parents.

Exercise 5.2. The two matrices involved in Equations (5.8) and (5.9) were introduced
several years before in the field of bibliometrics. In particular, C = ATA is known as
the co-citation matrix (Kessler 1963) and B = AAT is known as the bibliographic

2 See http://www.operatingthetan.com/google/ for details.
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Co-citations (Small, 1973)

Bibliographic coupling (Kessler, 1963)

Figure 5.9 Co-citations and bibliographic coupling.
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Figure 5.10 Markov chain for Exercise 5.3.

coupling matrix (Small 1973). Show that cuv is the number of documents that cite
both documents u and v, while buv is the number of pages that are cited by both u

and v (see Figure 5.9).

Exercise 5.3. Consider the Markov chain in Figure 5.10 (where arcs are labeled by
transition probabilities). Is it ergodic? What is the steady-state distribution?
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Exercise 5.4. Let N be the n × n row normalized adjacency matrix of a graph as in
Section 5.4. Suppose N is not stochastic and let R be any matrix such that N + R

is a stochastic matrix. Show that PageRank(N , n, ε) and PageRank(N + R, n, ε)

converge to the same solution.

Exercise 5.5. In Equation (5.21), the stationary distributions of authority and hubness
for randomized HITS are defined within a proportionality constant. Determine what
this constant is.

Exercise 5.6. Use the stability results in Section 5.5.2 to estimate how often you
should crawl the Web (and recompute PageRank) in order to guarantee that

‖r̃ − r‖ < ε,

ε being an assigned tolerance. Assume for simplicity that a constant number of pages
are changed in a given unit of time.

Exercise 5.7. Implement the PageRank computation and simulate the results on a
relatively large artificial graph (build the graph using ideas from Chapter 3). Then
introduce link farms in your graph and study the effect they have on the PageRank
vector as a function of the number and the size of the farms.

Exercise 5.8. Propose an efficient algorithm to detect link farms structured as in
Figure 5.7 in a large graph.
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