
 1

'

University of Cyprus

Computer Science Department

Data Management for Mobile Computing

Case Studies

 2

Case Studies

Four case studies:

•= MIT's Rover distributed object development environment

•= CMU's Coda file system

•= Xerox's Bayou replicated storage system

•= IBM's WebExpress web browsing system

Each one of these systems belongs to a different level of the
software stack

 3

Case Studies: Rover

Rover [3] provides an application environment for the
development of mobile applications.

A suite of software tools, including programming and
communication abstractions.

Various applications have been developed on top of it including:
A distributed calendar and an E-mail browser as mobile-aware
applications, and a web browser as a mobile-transparent one.

System Architecture

Queued remote procedure calls (QRPCs): When a client issues
an RPC, the RPC is stored in a local stable log and control is
immediately returned to the application. The log is drained in
the background, forwarding any queued RPCs to the server.

Relocatable dynamic objects (RDOs): an object encapsulating
both code and data that can execute either at the client or the
server. Application code and data are written as RDOs.

Applications split into two parts: one that will execute at the
client and one at the server. These parts communicate through
QRPCs.

The programmer links the application with the Rover toolkit.
The application can then cooperate with the runtime system to
import RDOs, invoke methods on the imported objects, and
export logs of method invocations to the server.

 4

Case Studies: Rover

The access manager is responsible for all interactions among
server-side and client-side applications. It services requests for
objects (RDOs), mediates network access, log modifications to
objects, and manages the client's object cache.

Client-side applications communicate with the access manager
through QRPCs to import RDOs from severs and cached them
locally in the object cache. Server-side applications are invoked
by the access manager to handle requests from client-side
applications.

Once an RDO has been imported into the client's cache,
applications can invoke the methods provided by it. Method
invocations without side effects are processed locally. At the
application's discretion, method invocations with side effects
also serviced locally, inserting tentative values in the object
cache. In addition, operations with side effects insert a QRPC
into a stable operational log at the client.

The network scheduler lazily transfers the log to the server-side
and mediates between the various communication protocols and
network interfaces.

 5

Case Studies: Rover

Disconnected Operation

In anticipation of disconnections, useful RDOs are imported
from the server to the client's object cache.

Prefetching is application specific. Rover applications provide
prioritized prefetch lists based upon high-level user actions. For
example, Rover Exmh, the TCL/TK-based E-mail browser
ported in Rover's application space [3], automatically prefetches
the user's inbox folder and any recently received messages, etc

Substantial but not exclusive support for primary copy, tentative
update optimistic consistency. Each RDO has a "home" server
that maintains the primary, canonical copy. Clients import
secondary copies of RDOs into their local cache and export
tentatively updated RDOs back to their home server.

During disconnection, Rover applications solely depend on the
local cache. Requests for RDOs not in cache are queued as
QRPCs in the operation log to be serviced upon reconnection.

To ease cache reconciliation at reconnection, in addition to new
data values, Rover automatically logs method invocation as
QRPCs in the operational log.

Thus, increase in the log size. Rover directly involves the
application in the manipulation and reduction of the operation
log. Applications can download procedures into their access
manager to manipulate their log records.

 6

Case Studies: Rover

During reconnection, updates are lazily propagated via QRPCs
to the server.

When the QRPC for a mutating operation arrives at the server,
Rover invokes this method on the primary copy. Update
conflicts are detected and resolved by the server. The results of
reconciliation always override tentative data stored at the object
cache.

Weak Connectivity

By allowing the log to be incrementally flushed back to the
server. Object updates in the operational log are lazily
propagated to the server. Similarly, clients lazily fetch RDOs
from servers in the local object cache, using QRPCs.

The network scheduler performs various optimizations on the
operation log of QRPCs:

•= Reorders logged requests based on consistency
requirements and application-defined operation priorities

•= Groups operations destined to the same server

•= Selects the appropriate transport protocol and medium

over which to send them

•= Performs header and data compression.

 7

Case Studies: Rover

By tightly coupling data and behavior into RDOs, application-
specific and situation-specific optimizations.

For example, an RDO can include compression and
decompression methods along with compressed data.

Through RDOs, Rover gives applications control over the
partition of computation between the static and the mobile hosts:
by importing RDOs from clients into servers and exporting
updates.

For example, during weak connectivity, preferable to transmit to
the client the code for implementing a particular GUI than
transmitting the graphical display updates it generates.

 8

Case Studies: Bayou

Bayou [13, 1, 14] is a replicated, weakly consistent storage
system designed for a mobile computing environment that
includes weakly connected portable machines.

Provides an infrastructure for building a variety of non-real-time
collaborative applications such as shared calendars, mail and
bibliographic databases, program development and document
editing for disconnected workgroups.

System Architecture

Each data collection is replicated in full at a number of Bayou
servers.

Clients can read-any and write-any copy residing on any server
to which they can communicate.

A client and a server may be co-resident on a host, as would be
typical of a laptop running in isolation.

Weak Connectivity

Read-any/write-any replication schema.

When a client submits a write to a server, the server performs
the write only locally. Locally accepted writes are initially
deemed tentative. The value of a tentative write is immediately
made available for reading.

 9

Case Studies: Bayou

Bayou servers propagate writes among themselves during pair-
wise contacts, called anti-entropy sessions. During a session, the
two servers exchange their writes so that at the end agree on the
set of writes they have seen and on the order in which to
perform them.

The Bayou system guarantees that: all servers will eventually
receive all writes and that any two servers holding the same set
of writes will have the same data contents.

To achieve that, writes are performed in the same global order at
all servers and the procedures for detecting and resolving update
conflicts are deterministic.

Need to undo thus a given write may be executed several times
at a server. A write becomes stable when the server has received
and executed all writes that precede it.

Bayou uses a primary-commit schema: one server designated as
the primary takes responsibility for committing updates.
Committed writes are ordered according to the times at which
they commit at the primary and before any tentative writes.
Knowledge of which writes have committed and in which order
propagates to other servers during anti-entropy.

Each server maintains two views of the database: a copy that
only reflects committed data and another full copy that also
reflects the tentative writes currently known to the server.

 10

Case Studies: Bayou

Dependency checks for automatic conflict detection and merge
procedures for automatic conflict resolution with each write
operation.

Dependency Check: an application-supplied query and its
expected result. Before performing a write at a server, the
corresponding query is run at the server against its current copy
of the data. Conflict if the query does not return the expected
result. In this case, the requested update is not performed and
the server invokes a merge procedure.

Merge Procedure: program written in a high-level interpreted
language responsible for resolving the conflict and producing a
revised update to apply. When automatic resolution not possible,
just logs the detected conflict to enable manual resolution.

Bayou allows replicas to remain accessible even when conflicts
have been detected but not yet resolved.

A choice of reading committed or tentative data, and by setting
an additional age parameter on reads.

 11

Case Studies: Bayou

Session Guarantees

Clients can be attached to different servers.

A session is a sequence of read and write operations. Four
session guarantees that can be applied independently:

Read Your Writes: read operations reflect previous writes.
Monotonic Reads: successive reads reflect a nondecreasing
set of writes.
Writes Follow Reads: writes are propagated after reads on
which they depend.
Monotonic Writes: writes are propagated after writes that
logically precede them.

Either the storage system ensures them for each read and write
operation belonging to a session, or else it informs the calling
application that the guarantee cannot be met [13].

Disconnected Operation

By relying only on occasional pair-wise communication
between servers, Bayou deals with arbitrary network
connectivity.

 12

Case Studies: Coda

Coda is a highly-available replicated file system.

Takes a transparent approach to mobility. Applications running
on Coda use the standard Unix file system interface and can
continue to run on mobile clients without any modification.

The client cache manager, Venus is solely responsible for
coping with the consequences of mobility, acting as a client-side
agent/proxy.

System Architecture

A number of clients and a much smaller number of file servers
located at the fixed network [11, 4].

Volumes (i.e., groups of files) have replicas at more than one
server. Replicas at servers are kept strictly coherent.

Clients cache data on their local disks. The replicas (i.e., cache
copies) on clients are second class: less secure, incomplete,
probably inaccurate and less persistent.

Disconnected Operation

Venus operates in one of three states: hoarding, emulating, and
reintegration [4, 12].

 13

Case Studies: Coda

During normal operation, Venus is in the hoarding state
relying on servers but in alert for possible disconnection.

Cache coherence is based on callbacks.

Venus ensures that critical objects are cached using a priority-
based cache management that combines:

•= The recent reference history
•= Information in the form of a per-client hoarding database

with entries are pathnames identifying objects of interest.

Venus periodically reevaluates which objects merit retention in
the cache through hoard walking.

While disconnected, Venus relies solely on its cache.

Cache misses appear as failures to application programs and
users.

An optimistic replica control strategy that allows updates in any
partition.

Updates kept in an operation log, called CML, which is
implemented on top of a transactional facility.

Optimizations [12, 10] to reduce the size of the CML: before a
log is appended to the CML, Venus checks whether it cancels or
overrides the effects of earlier records.

 14

Case Studies: Coda

Upon reintegration, the cache is resynchronized with the
servers.

Coda offers different strategies for handling concurrent updates
on directories [5] and files [6].

For directories: resolution fails only if a newly created name
collides with an existing name, if an object updated at the client
or the server has been deleted by the other, or if the directory
attributes have been modified at the server and at the client.

For files: application-specific resolvers (ASRs). An ASR is a
program per file. It is invoked, when Venus detects divergence
among its copies. The ASR is selected using rules specified by
the user. If an ASR is found, it is executed on the client. The
ASR's mutations are performed locally on the client's cache and
written back to the server atomically after the ASR completes.
While the ASR is being executed, the application that requested
service for the file is blocked. Additional support is provided to
ensure transactional semantics. If no ASR is found or the ASR's
execution fails, a manual repair tool is then run on the client.

Isolation-only transactions (IOTs) [7] extend the Coda system
so that it detects and resolves read/write conflicts. IOTs provide
isolation but do not guarantee failure atomicity and only
conditionally guarantee permanence.

 15

Case Studies: Coda

Weak Connectivity

When weakly connected, Venus' behavior is a blend of its
connected and disconnected mode behaviors [9].

•= Updates are logged, as when disconnected; they are
propagated to servers on the background.

•= Cache misses are selectively serviced.

•= Instead of callbacks, cache coherence is maintained by

having the client validate its cache entries.

- Trickle reintegration: an ongoing background process to
propagate updates at the client to the servers

Aging: a record is not eligible for reintegration until it has spent
a minimal amount of time in the CML. This amount of time is
called aging window (A) (results suggest a value of 10 min).

At the beginning of the trickle reintegration a logical divider, the
reintegration barrier, is placed in the CML. During
reintegration, the portion of the CML in front of the barrier is
frozen. Only records at the back are examined for optimization.

Reintegrating all records older than A in one chunk could
saturate a slow network. To bound the duration of degradation.
The reintegration chunk size is made adaptive. If a file is very
large, it is transferred in a series of fragments, each smaller than
the currently acceptable chunk size.

 16

Case Studies: Coda

•= Selective Service of Cache Misses

User's patience threshold for a file: the maximum time that a
user is willing to wait for that particular file The initial patience
model is logarithmic to the hoard priority of the file. If for the
current bandwidth, the estimated cache miss service time for a
file is below its patience threshold, Venus services the miss
transparently; otherwise Venus reports the miss by returning an
error.

•= Cache Coherence

To detect updates at the server, upon reconnection, the client
must validate its cache.

Multiple levels for cache granularity [8]. A server maintains
version stamps for each of its volumes, in addition to stamps on
individual objects.

Mobility

A Coda client can transparently connect to any of the replicated
servers.

 17

Case Studies: WebExpress

IBM's WebExpress [2] is a system for optimizing web browsing
in a wireless environment.

Based especially on the predictability of running typical
commercial transaction processing applications over wireless
networks.

System Architecture

Mobile-transparent support to any web-applications

A pair-of-agent model called the client/intercept/server model: a
client-side intercept agent (CSI) and a server-side intercept
agent (SSI) inserted into the data path between the web client
and the web server.

A web server can be a proxy server, a socket server, or the target
web server. The CSI process runs on the end-user client mobile
device, while the SSI process runs within the fixed network.

For scalability, the SSI supports multiple clients.

 18

Case Studies: WebExpress

The CSI communicates with the web browser over a local TCP
connection via the HTTP protocol.

Only change at the browser the specification the (local) IP
address of the CSI as the browser's proxy address. The actual
proxy or socket server address is specified as part of the SSI
configuration.

The CSI communicates with an SSI process over a TCP
connection using a reduced version of HTTP. The SSI
reconstitutes the HTML data stream and forwards it to the
designated web proxy server.

Likewise, for responses, or proxies, the CSI reconstitutes an
HTML data stream received from the SSI and sends it to the
web browser over the local TCP connection.

Connectivity and Weak Connectivity

•= Caching

At both the CSI and the SSI.

The SSI cache is populated by responses from the requested web
servers.

If the URL specifies an object in the CSI's cache, the object is
returned; otherwise, the cache at the SSI is checked

 19

Case Studies: WebExpress

The client cache replacement policy is an LRU (least recently
used) policy augmented with an option that allows users to
specify indefinite persistence of specific objects.

The server cache is also LRU managed and is designed to adapt
to the browsing patterns of a set of users. Others may reuse
information retrieved by one user.

Objects loaded into the client's or server's cache persist across
browser sessions. This increases the cache hit ratios but
introduces cache coherency problems.

•= An age-based cache coherency method

WebExpress associates a coherency interval (CI) with each
cached object. The CI specifies when the object should be
checked for changes and is set by each user or the administrator

When a cached object is referenced, the CSI checks whether the
coherency interval has been exceeded. If not, the cached object
is used. Otherwise, the CSI and SSI execute a protocol to
determine whether a fresh copy of the object has to be fetched.

 20

Case Studies: WebExpress

•= Differencing

HTML byte streams that represent query responses to the same
program often contain a lot of unchanging formatting data.

A common base object is cached at both the CSI and SSI. When
a response is received, the SSI computes the difference between
the base object and the response and then transmits the
difference to the CSI. The CSI merges the difference with its
base object to create the browser response.

•= Single Connection

In the normal HTTP protocol, the browser establishes a new
TCP/IP connection for each image referenced in a document and
for each selection of a hyper-link on the displayed page.

A single TCP/IP connection between the CSI and the SSI.

For each request received from the CSI, the SSI establishes a
connection with the destination server and forwards the request.
When the SSI receives the response from the server, it closes the
connection with the server and sends the document to the CSI
via the open TCP/IP connection without closing it. The CSI then
forwards the document to the browser and closes its TCP/IP
connection with the browser.

 21

Case Studies: WebExpress

•= Header Reduction

HTTP requests and responses are prefixed with headers that
contain a list of MIME content-types.

The CSI allows this information to flow in the first request after
the CSI-to-SSI connection has been established. Both the CSI
and the SSI save this list as part of the connection state
information.

For each request received from the browser, the CSI compares
the list received with its saved version.

Unlike the request headers, HTTP response headers are
normally dissimilar. However, in general, only a few bytes (e.g.,
date time) vary among responses. Encoding the constant data
(e.g., content-type) can reduce the response to just a few bytes.

Disconnected Operation

While disconnected, relies solely on the CSI cache.

To address lost connections, "asynchronous-disconnected" mode
that permits requests to be automatically queued when
connectivity is lost and resumed when connectivity is re-
established.

Multiple web requests without having to wait for their
respective replies. Subsequently arriving responses are queued
for the user to view.

 22

References

[1] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer,
and B. Welch. The Bayou Architecture: Support for Data
Sharing Among Mobile Users. In Proceedings of the IEEE
Workshop on Mobile Computing Systems and Applications,
pages 2-7, Santa Cruz, CA, December 1994.
[2] B C. Housel, G. Samaras, and D. B. Lindquist. WebExpress:
A Client/Intercept Based System for Optimizing Web Browsing
in a Wireless Environment. ACM/Baltzer Mobile Networking
and Applications (MONET), 1997. Special Issue on Mobile
Networking on the Internet. To appear. Also, University of
Cyprus, CS-TR 96-18, December 1996.
[3] A. D. Joseph, J. A. Tauber, and M. F. Kaashoek. Mobile
Computing with the Rover Toolkit. IEEE Transactions on
Computers, February 1997.
[4] J. J. Kistler and M. Satyanarayanan. Disconnected Operation
in the Coda File System. ACM Transactions on Computer
Systems, 10(1):213-225, February 1992.
[5] P. Kumar and M. Satyanarayanan. Log-based Directory
Resolution in the Coda File System. In Proceedings of the 2nd
International Conference on Parallel and Distributed
Information Systems, San Diego, CA, January 1993.
[6] P. Kumar and M. Satyanarayanan. Flexible and Safe
Resolution of File Con icts. In Proceedings of the USENIX
Winter 1995 Conference, New Orleans, LA, January 1995.
[7] Q. Lu and M. Satyanarayanan. Improving Data Consistency
in Mobile Computing Using Isolation-Only Transactions. In
Proceedings of the Fifth Workshop on Hot Topics in Operating
Systems, Orcas Island, Washington, May 1995.
[8] L. Mummert and M. Satyanarayanan. Large Granularity
Cache Coherence for Intermittent Connectivity. In Proceedings
of the 1994 Summer USENIX Conference, Boston, MA, June
1994.

 23

[9] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan.
Exploiting Weak Connectivity for Mobile File Access. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles, December 1995.
[10] B. Noble and M. Satyanarayanan. An Empirical Study of a
Highly-Available File System. In Proceedings of the 1994
Sigmetrics Conference, Nashville, TN, May 1994.
[11] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A Highly Available File
System for a Distributed Workstation Environment. IEEE
Transactions on Computers, 39(4):447-459, 1990.
[12] M. Satyanarayanan, J. J. Kistler, L. B. Mummert, M. R.
Ebling, P. Kumar, and Q. Lu. Experience with Disconnected
Operation in a Mobile Computing Environment. In Proceedings
of the 1993 USENIX Symposium on Mobile and Location-
Independent Computing, Cambridge, MA, August 1993.
[13] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M.
Theimer, and B. Welch. Session Guarantees for Weakly
Consistent Replicated Data. In Proceedings of the International
Conference onParallel and Distributed Information Systems,
pages 140-149, September 1994.
[14] D. B. Terry, M. M Theimer, K. Petersen, A. J. Demers, M.
J Spreitzer, and C. H. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In
Proceedings of the 15th ACM Symposium on Operating
Systems Principles, December 1995.

