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Abstract

Subjecting a mobile computing system to wireless network
conditions that are realistic yet reproducible is a challenging
problem. In this paper, we describe a technique called trace

modulation that re-creates the observed end-to-end charac-
teristics of a real wireless network in a controlled and re-
peatable manner. Trace modulation is transparent to appli-
cations and accounts for all network tra�c sent or received
by the system under test. We present results that show that
it is indeed capable of reproducing wireless network perfor-
mance faithfully.

1 Introduction

How does one subject a mobile computing system to real-
istic yet reproducible wireless networking conditions? Re-
producible behavior is important for three reasons. First, it
is essential for thorough evaluation of the performance of a
mobile computing system. Second, it is necessary for com-
parative evaluations of alternative system designs. Third,
it is valuable in debugging mobile systems because it en-
ables the re-creation of conditions that trigger rare but seri-
ous bugs. Unfortunately, obtaining repeatable performance
is extremely di�cult because the quality of wireless net-
works can vary dramatically and unpredictably over time
and space [6, 12].

In this paper we describe a solution, called trace mod-

ulation, which combines three distinct ideas. First, perfor-
mance of a real, wireless network is captured through trace
collection. Second, these complex network observations are
reduced to a list of parameters of a simple, time-varying
network model. Third, the network performance described
by these parameters is reproduced in a controlled manner.
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Applications run unmodi�ed in the resulting emulated net-
work, and experience end-to-end performance mirroring the
original, physical network.

Trace modulation di�ers from super�cially similar ap-
proaches such as trace replay and trace-driven simulation
in that it creates a synthetic networking environment rather
than a synthetic workload. This synthetic environment is
transparent to applications and the network protocol stack
above the data link layer. Further, it accounts for all net-
work tra�c sent or received by the modulated host, not just
that of speci�c applications.

We show that trace modulation accurately reproduces
the original wireless environment. Our validation experi-
ments consist of three benchmarks | Web browsing, FTP
transfers, and the Andrew Benchmark [7] | run in four
di�erent WaveLAN [2] wireless networking scenarios. In the
few cases where the measurements indicate signi�cant diver-
gence, our analysis suggests that the use of �ne-granularity,
low-drift, synchronized clocks would substantially improve
accuracy. Unfortunately, such clocks are not yet readily
available on mobile platforms.

Section 2 explains why mobile system evaluation is di�-
cult, introduces our methodology, and compares it to related
work. Section 3 describes the details of our implementation.
Our strategy for validation is laid out in Section 4, and its
results appear in Section 5. We conclude in Section 6 with
a summary of our work, and a discussion of its potential for
broader application.

2 Background and Overview

2.1 Experimental Control in Mobile Systems

There are numerous di�culties in evaluating mobile, wire-
less systems. Unlike wired networks, the medium over which
wireless messages travel is di�cult to isolate. Mobile clients
which are not part of the evaluation may perturb results
by polluting the wireless spectrum. The shared use of un-
licensed spectrum by wireless networks and devices such as
cordless phones is a further challenge to experimental con-
trol.

Even if the relevant region's wireless spectrum could be
isolated, experimental control remains a challenge. Wireless
propagation is a�ected by environmental factors that are
both spatially and temporally dependent. Further, precise
duplication of physical motion is very di�cult. Good exper-
imental control is nearly impossible to achieve under these
conditions, and interpretation of results is complicated by
the presence of many confounding factors.

Our solution to this problem is to provide an emulation
environment that is controlled and repeatable while also be-
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ing faithful to the real mobile environment under consider-
ation. To do this, we use a trace-based approach, recording
the performance of a real wireless deployment and reproduc-
ing that performance in a controlled manner. Unlike most
trace-based systems, modulation inuences the environment
in which a system operates rather than generating the work-
load for that system. In other words, we create a synthetic
environment in which to execute a real workload, rather
than create a synthetic workload in a real environment.

While trace modulation is especially valuable for wire-
less networks, it can also be useful in other contexts. In
general, it is di�cult to reproduce the precise behavior of
live networks supporting complex distributed systems. Our
methodology o�ers the potential for improved reproducibil-
ity in evaluating such systems.

Of course, trace modulation is not a panacea. A single
trace can only capture a snapshot of the varying perfor-
mance along a particular path. Further, even trace-based
evaluation cannot o�er precisely reproducible results be-
cause network processes are nondeterministic. In spite of
these limitations, our approach strikes an excellent balance:
it comes close to the realism of live experiments, while pre-
serving much of the exibility, ease of use, and reproducibil-
ity of simulation.

2.2 Methodology

Our methodology consists of three phases: collection, distil-
lation, and modulation. In the collection phase, an exper-
imenter with an instrumented mobile host physically tra-
verses some path. During the traversal, packets from a
known workload are generated. The mobile host records ob-
servations of these packets as well as network device charac-
teristics. At the end of the traversal, the list of observations
represents an accurate trace of real network behavior. By
performing multiple traversals of the same path, one can ob-
tain a trace family that captures network quality variation
on that path.

The distillation phase transforms a collected trace into a
form suitable for modulation. For each instant in time, dis-
tillation examines the performance of the known workload
and produces a set of parameters for a simple network per-
formance model. By composing these, distillation produces
a concise, time-varying description of network performance.

In the modulation phase, mobile system and application
software is subjected to the network behavior described by
the distilled trace. Unmodi�ed software is run on a LAN-
attached host whose kernel has been extended to read the
trace and to delay or drop packets in accordance with its
model parameters. The mobile software thus experiences a
network environment indistinguishable from that recorded
in the trace, but experiments can be carried out without
mobile network hardware or physical motion. It is important
to note that trace modulation is fully transparent to mobile
software | no source or binary changes have to be made,
and all network tra�c into and out of the mobile host is
accounted for.

2.3 Related Work

The original contribution of our methodology lies in its syn-
thesis of three distinct ideas:

� trace collection to accurately capture observed net-
work behavior;

� reduction of observations into a time series of param-
eters for a simple network model;

� application-transparent network emulation through
model-driven delays and losses of packets in a layer
below the API of an operating system.

We are not aware of any previous work, published or un-
published, that combines these ideas in a similar manner.
However, each aspect of our methodology has been investi-
gated in isolation by other researchers.

The best-known system for network tracing is the Berke-
ley Packet Filter [11], which is typically used in conjunction
with tcpdump [9]. This architecture is e�cient and exi-
ble, and has rightly found great favor with the networking
community. Our trace collection mechanism di�ers from
the Berkeley Packet Filter in that we record device char-
acteristics in addition to information from packets. While
not strictly necessary for trace modulation, such a record of
device behavior in actual use is valuable for a better under-
standing of wireless networks [12].

The notion of reducing complex network observations
to simple parameters through controlled workloads is com-
monly used in modelling physical channels. Our determina-
tion of bottleneck bandwidth is quite similar to the packet-
pair approach used by Keshav [10], but our workload enables
derivation of additional network parameters.

The network emulation package most similar to our mod-
ulation kernel is hitbox, which was used in evaluating the
performance of TCP Vegas [1]. Unlike trace modulation,
hitbox models networks with relatively static performance.
A more exible system, the Probe/Fault Injection Tool [4],
allows any protocol layer to be encapsulated by a lower layer
to perturb existing tra�c, and a higher layer to generate test
tra�c. However, these layers are driven only by synthetic
models, not by empirically derived ones. The Lancaster em-
ulator [3] uses a central server rather than an emulation layer
in each host.

More broadly, the use of user-level libraries for network
emulation is widespread. Examples include Delayline [8]
and the slow mechanism of RPC2 [16]. While useful, such
libraries have two shortcomings: they require recompilation
or relinking of applications, and they only inuence tra�c
to or from the applications in question.

3 Design and Implementation

3.1 Collection Phase

There are two key issues in trace collection: what to col-
lect and how to collect it. We have de�ned a trace for-
mat [13] that is exible and extensible while remaining fully
self-descriptive. We collect both packet tra�c information
and characteristics of mobile network devices; our collection
platform incurs modest overhead, and reliably detects lost
data.

3.1.1 Data Collected

Trace collection logs every outgoing and incoming packet,
along with the time at which it was sent or received. Where
relevant, we also collect protocol-speci�c information such as
sequence numbers, ags, and destination and source ports.

2



Our known workload, a modi�ed version of the ping util-
ity, consists of ICMP ECHO and ECHOREPLY packets.
For ECHO packets, we collect the id �eld, which is the pro-
cess id that generated the ECHO, and the time at which the
packet was generated. For ECHOREPLY packets, we again
record the id �eld. We also record the round-trip time, ob-
tained by subtracting the time the ECHOREPLY was re-
ceived from the time carried in the packet's payload. Since
all timestamps are provided by a single host, synchronized
clocks are not needed.

Our trace format supports measurements from a vari-
ety of network devices; however, this paper focuses exclu-
sively on the AT&T WaveLAN packet radio device. This
device operates in the 900MHz region, and o�ers a nomi-
nal bandwidth of 2 Mb/s. The static infrastructure for our
WaveLAN network consists of a collection of base stations
called WavePoints that serve as bridges to an Ethernet. A
roaming protocol triggers hando�s between WavePoints as a
WaveLAN host moves. The WaveLAN device reports signal
characteristics such as signal level, signal quality and silence
level, which we record along with packet tra�c.

3.1.2 Collection Method

To collect traced information we have an in-kernel imple-
mentation, similar to other network data collection plat-
forms [9, 11], that provides accurate timing with modest
overheads. Hooks are placed in the input and output rou-
tines of traced devices to allow the tracing software access to
packets. If tracing is enabled, the packet tracing routine ex-
amines the media header and encapsulated packet to ensure
that the packet is one of the traced types. It then copies
relevant information from the packet into a circular bu�er.
Periodically, the kernel examines the device performance pa-
rameters and places that information into the same bu�er.
Since the kernel bu�er is limited in size, it may be overrun.
In that case, we are careful to keep track of the number and
type of lost records.

The kernel exports a pseudo-device supporting open,
close, and read operations: opening the pseudo-device en-
ables tracing; closing it disables tracing. A daemon process
periodically extracts collected data from the pseudo-device
and writes it to disk.

3.2 Distillation Phase

Trace distillation is the process of transforming a collected
trace into a list of performance parameters for a simple net-
work model. This list is called a replay trace, and each entry
in it speci�es latency, bandwidth, and loss rate for the du-
ration of time indicated in that entry.

This section begins with a discussion of our network per-
formance model, and then describes the algorithm which
derives parameters for this model. It is important to note
that the model is separable from the methodology. The use
of a di�erent model may, of course, require changes to details
in all phases of the methodology.

3.2.1 A Simple, Instantaneous Network Model

Simplicity rather than sophistication is the keystone of our
network model. Our goal is to use the simplest possible
model capable of yielding accurate results in modulation.
Much of the complexity of wireless networks arises from
temporal variation caused by changes in location, physical
environment, or cross tra�c. We cope with this complex-
ity while preserving simplicity by decomposing time-varying

behavior into a sequence of short intervals of invariant be-
havior, much as a complex curve can be approximated by
many short line segments.

We place three constraints on the model used in modula-
tion. First, it must be possible to obtain the parameters of
the model solely from observations at an endpoint. Second,
the workload required by the model in the trace collection
phase should not signi�cantly perturb the network. Third,
it must be cheap to compute the parameters, and to use
them during modulation.

Single Packet Consider two hosts, H1 and H2, with H1

sending packets to H2 over some network N . This net-
work may also be carrying cross tra�c, de�ned as any tra�c
through N that is not between H1 and H2. Such cross tra�c
may change over time, and will a�ect the delays and losses
experienced by any tra�c between H1 and H2.

We can model the end-to-end path from H1 to H2 as
a series of m service queues, q1; q2; : : : qm. We model each
queue's instantaneous service time deterministically, as

tk = fk + svk (1)

where tk is the total delay imposed by queue qk, fk is a
�xed, per-packet cost, s is the size of the packet in bytes,
and vk is a variable, per-byte cost. In physical terms, vk is
the inverse of the instantaneous bandwidth of the network
element k; fk is the current transmission latency of that
element, and is the sum of queueing, per-packet processing,
and propagation delays. For a single packet traversing this
network, the total delay experienced from H1 to H2 is:

� =
X

fk + s
X

vk (2)

= F + sV (3)

It is important to note that each queue k services cross
tra�c as well as direct tra�c between H1 and H2. This
means that the delays and losses experienced by tra�c be-
tween H1 and H2, and hence the values of fk and vk, change
over time as cross-tra�c load changes. The quantities fk
and vk are thus intended to capture delays as experienced
by tra�c from host H1 to H2, rather than some static prop-
erties of the queue.

Multiple Packets In keeping with the constraints on our
model, we take a simplistic approach to queueing delay when
considering multiple packets from H1 to H2 through N . As
above, an individual queue's service time is broken up into
fk, the transmission latency over that portion of the net-
work, and vk, the per-byte cost induced by bandwidth con-
straints. Our model holds that the maximum throughput at
any individual queue is dependent only on the vk term and
the sizes of packets. Single single-byte latency, fk, can be
overlapped and causes no queuing delay.

Since the connection between hosts H1 and H2 is a serial
string of such queues, the overall throughput is determined
by the largest per-byte cost, max(vk) at some particular qk .
We call this bottleneck queue qb, its per-byte costs, Vb, and
the residual per-byte costs, Vr . By de�nition, V = Vb + Vr ,
allowing us to rewrite Equation 3 as

� = F + s(Vb + Vr) (4)

For a given time segment of duration d, there are a single
set of delay parameters: F;Vb; and Vr ; we combine these into
a delay tuple of the form hd;F; Vb; Vri. By composing a set
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of these delay tuples into a list, D, we can model arbitrary
changes in delay as perceived by tra�c owing from H1 to
H2 over N .

However, delay is only one aspect of network perfor-
mance; the other is packet loss. We model losses as a
probability L of dropping a given packet during the in-
terval d; each packet in d has the same chance of being
dropped. Our model, which is above the datalink layer, as-
sumes that corrupt packets are coerced to lost ones. We can
combine instantaneous loss and delay behavior into a se-
quence of �ve-element network quality tuples, S, of the form
hd;F; Vb; Vr ; Li. Such a sequence, the replay trace, describes
network quality over time.

3.2.2 Obtaining Model Parameters

Our strategy for producing a replay trace involves observ-
ing the loss and delay behavior of a known, �xed workload
on the network. Since clock drift on our trace collection
hardware can be signi�cant relative to the time scale of net-
work quality variation, we are forced to use a strategy that
depends only on timestamps taken on a single host. This im-
plies that the workload must consist of round-trips, and that
we must assume that network delays are symmetric. These
assumptions could be removed if our trace collection hosts
were equipped with high-resolution, low-drift, synchronized
clocks.

As mentioned in Section 3.1.1, the known workload is
provided by a variant of the ping program. Our workload
sends out a group of three packets each second, in two stages.
In the �rst stage, ping sends an ECHO request with a small
data payload of size s1 to a target host. When the corre-
sponding ECHOREPLY is received, ping begins the second
stage by sending two larger ECHO requests of size s2, back-
to-back, to the same host. As described in Section 3.1.1, we
record the time at which the ECHOREPLY packets arrive,
the round-trip times, and the sizes of those packets. Since
these three packets were sent very close together in time,
we normally assume they observed the same network condi-
tions; our technique detects and corrects for situations when
this assumption does not hold.

Delay The production of one estimate of instantaneous
network delay requires two steps. The �rst step is deter-
mining the end-to-end latency, F , and the total per-byte
costs, V . The second step involves discovering the relative
proportions of Vb and Vr. During these two steps, we im-
plicitly observe and record losses.

The �rst packet takes some time t1 for its round-trip, the
second some longer time t2. Since their round-trips were en-
tirely non-overlapping, we know the second packet incurred
no queueing delay due to the �rst packet. For these packets,
each taking a round trip, our model says that:

t1 = 2(F + s1V ) (5)

t2 = 2(F + s2V ) (6)

From these equations we can determine F and V .
The second and third packets each have size s2, but the

second takes time t2, and the third t3, where t3 > t2. Since
they were sent back-to-back, the third packet is subject to
queueing delay behind the second. Hence our model says
that:

t2 = 2(F + s2(Vb + Vr)) (7)

t3 = 2(F + s2(Vb + Vr)) + s2Vb (8)

That is, that the third packet is delayed behind the second
at the bottleneck queue, and that delay is exactly s2Vb. Note
that the bottleneck cost is paid only on the outbound leg;
on the inbound leg, the third packet is already delayed far
enough behind the second to get through the bottleneck
queue without extra delay. These two equations, together
with the �rst two, give us one set of F;Vb; Vr estimates.

Occasionally, solving these equations for a single group
of packets results in a negative value for one or more of
the parameters. Such values arise when the packets in the
group experienced substantially di�erent networking condi-
tions from each other. In such situations, we plug in the
immediately preceding observed parameters, and take the
di�erence between the expected and observed times. We
apply the di�erence to F and reuse the previous Vb and
Vr , reasoning that short-term performance variation is most
likely due to media access delay. We are careful not to let
this corrective factor cascade.

We use a sliding-window algorithm to convert these es-
timates into components of an element of D, a delay tuple.
Each step produces an average of estimates in the current
window. Our choice of window width, �ve seconds, balances
the desire to discount outlying estimates with the need to
be reactive to true change in network conditions.

Loss To estimate the loss rate, L, we examine sequence
numbers of the ECHOREPLY packets in and immediately
surrounding the current window. This tells us, for the time
from the last packet before the window to the �rst packet
after the window, how many ECHOREPLY packets were
expected but failed to arrive. We know that we received
b ECHOREPLY packets, but expected to receive a, the
number of ECHO packets sent. Let P = 1 � L be the un-
known probability that a packet sent arrives without being
dropped. Thus, we know that a ECHO packets were sent,
of which Pa arrived at the target host. For each of those Pa
packets, the target host responds with an ECHOREPLY, of
which P 2a arrive back at the original sender. But, since we
know we received b ECHOREPLY packets:

b = P 2a (9)

L = 1�
p
b=a (10)

Combining L and D, we obtain a network quality tuple,
which is an element of S. The algorithm to produce the
entire list runs in the order of the length of the trace, and
comprises a single pass.

No clocks are used in calculating L, so in fact we could
dispense with the symmetry assumption for loss informa-
tion. However, to simplify the implementation, we preserve
the more restrictive assumption of symmetry already needed
for calculating delay parameters. While we have observed
slightly asymmetric loss rates in our wireless devices, our
assumption of symmetry does not signi�cantly a�ect the
accuracy of modulation.

3.3 Modulation Phase

Once we have a description of network behavior in a replay
trace, we must reproduce that behavior in a wired network-
ing environment. We do this through two components: a
user-level daemon process and an in-kernel modulation layer.
The daemon feeds lists of network quality tuples, S, to the
kernel, which subjects all inbound and outbound tra�c to
delays and drops according to the model.
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When modulation begins, the daemon opens a pseudo-
device much like that described in Section 3.1.2. The dae-
mon then reads the quality tuples from a �le, and writes
them to the pseudo-device. This device is backed by an
in-kernel, �xed-sized bu�er. When the bu�er is full, the
daemon blocks until there is room to write new tuples. The
daemon may write a �le of tuples once and then close the
pseudo-device, or it may loop over the �le until interrupted.

The modulation layer is placed between the IP and Eth-
ernet layers of the protocol stack. This modi�ed protocol
stack is used by the host on which we wish to run experi-
ments. This layer uses an on-line scheduling algorithm to
delay and drop packets according to the parameters found
in a replay trace.

The modulation layer reads out entries from this bu�er
as they are needed, and subjects packet tra�c to these pa-
rameters by placing them in a delay/drop queue, where they
are scheduled asynchronously. Given our linear model, de-
lay calculations are straightforward. To ensure that out-
bound and inbound packets interfere with one another, we
use a single delay queue. Outbound and inbound packets
are scheduled exactly the same way by this queue. In addi-
tion to calculating a packet's delay, we generate a random
number to decide whether or not to drop it. Lost packets are
dropped only after they pass through the bottleneck queue.

Scheduling Granularity In our current implementation,
clock-based interrupt resolution on our hosts is only 10 mil-
liseconds. To cope with this limited resolution, we make
the simplifying assumption that packet arrivals, and hence
departures, are uniformly distributed between clock ticks.
Hence, if we schedule on the closest clock tick, the long
term average error should tend to zero. Because packets to
be delayed less than half a clock tick are sent immediately,
sparse tra�c modeled over relatively high-performance links
will not be su�ciently delayed. This simplifying assumption
could be avoided in one of two ways. One approach would
be to use a custom hardware clock, but this would preclude
our ability to run on stock machines. The other approach,
which we rejected in the interests of minimal system pertur-
bation, would be to raise the frequency of clock interrupts
as described by Ahn et al [1].

Delay Compensation Our intent is to provide symmetric
delay of inbound and outbound tra�c; that is, for a �xed set
of modulation parameters, inbound tra�c should perform
exactly the same as outbound tra�c. However, because the
uni�ed delay queue is placed at an endpoint, inbound and
outbound delays are slightly asymmetric, as shown in Fig-
ure 1. In this �gure, a synthetic trace roughly equivalent
to that of a WaveLAN is used to modulate FTP transfers
of varying sizes, both inbound and outbound. The upper-
most, dashed curve in this �gure shows the fetch FTP per-
formance with this implementation; the solid line shows the
store FTP performance. Without modi�cations, inbound
tra�c has signi�cantly lower throughput than outbound, an
artifact of the asymmetric placement of the delay queue.
An accurate realization of our model would delay these two
streams identically.

To correct for this, we compensate for the additional de-
lays on inbound tra�c. To determine the amount of com-
pensation, we measure the physical network over which mod-
ulation will take place, using the same tools described here.
This measurement need occur only once; it is independent of
the network to be emulated. We then take the long-term av-
erage of the modulating network's bottleneck per-byte costs,
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Figure 1: E�ect of Delay Compensation

Vb. This term is subtracted from the replay trace's bottle-
neck per-byte costs for modulation of inbound packets

The e�ectiveness of compensation is shown in Figure 1.
Store throughput does not change, but fetch throughput
with compensation, shown by the dotted curve, is much
closer to that of send. To validate the assertion that compen-
sation depends only on the modulation setup, an experiment
with a synthetic trace was run for a much slower network.
The results con�rm that compensation is independent of the
traced network performance.

4 Validation Approach

Our goal in trace modulation is to subject a system to a
networking environment indistinguishable from the one on
which the trace was collected. To gauge our success in this,
we collected and distilled traces from a small set of inter-
esting mobile networking scenarios. We then compared the
end-to-end performance of three benchmarks under trace
modulation to live performance on those scenarios.

We chose WaveLAN because we depend on it heavily in
day-to-day use, and understanding its detailed characteris-
tics is important to our community. However, this choice is
an especially stressful test case for our methodology because
WaveLAN is a fast medium and packet delays are short. The
accuracy of emulation is therefore likely to be particularly
sensitive to limitations of our model and shortcomings in
our implementation.

4.1 Mobile Scenarios and Traces

The four scenarios we have chosen for evaluation were con-
ducted at Carnegie Mellon University, and were chosen to
cover a wide range of user behavior and network quality.
Figures 2 through 5 present key network characteristics of
these scenarios.

The topmost component of each �gure depicts the ob-
served signal level in WaveLAN-speci�c units. Higher levels
indicate stronger signals; levels below 5 are assumed to be
background noise by the WaveLAN driver. The other three
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components of each �gure depict quantities derived from the
distilled traces: latency in milliseconds, bandwidth in kilo-
bits per second, and loss rate in percent. To account for
temporal variation, four trials were obtained of each sce-
nario. Each graph combines the observations from all four
trials.

In Figures 2 through 4, the X axis represents location,
with labels indicating checkpoints along the path. Although
every e�ort was made to keep physical speed identical across
trials of a scenario, perfect consistency is impossible. To
account for this, we normalized inter-checkpoint intervals
to be of the same length across di�erent trials of a given
scenario; these lengths roughly correspond to the proportion
of time that interval took with respect to the entire trace.
At each X value, the vertical line represents the range of
observed parameter values at that location across di�erent
trials. For example, at location x4 in the �rst graph of
Figure 2, the minimum observed signal level was 17 and the
maximum was 22.

Since the fourth scenario does not involve motion, it is
meaningless to attempt to correlate parameter values with
locations. Hence Figure 5 depicts the occurrence of observed
values as histograms.

4.1.1 Porter: Inter-Building Travel

The Porter trace, depicted in Figure 2, begins in the main
lobby of Wean Hall (location x0 in the graphs), then tra-
verses an outdoor patio to Porter Hall (x1-x3), and �nally
enters and traverses Porter Hall (x4-x6).

Signal level is highly variable initially, but steadily im-
proves as the Wean-Porter patio is crossed. It falls o� again
as Porter Hall is traversed. Close to location x5 in Porter
Hall, signal level again becomes highly variable. The la-
tency graph indicates several spikes as high as 100 millisec-
onds, but typically hovers between 1.5 and 10 milliseconds.
The bandwidth graph shows typical rates between 1.4Mb/s
and 1.6Mb/s, but also indicates spikes as low as 900Kb/s.
Loss rates are typically below 10%, the worst cases being
the early portion of the Wean-Porter patio, and the end of
Porter Hall.

4.1.2 Flagsta�: Outdoor Travel

Flagsta�, the next scenario, is depicted in Figure 3. The
path for this scenario leaves Porter Hall (y0-y1) to walk
along the back edge of the campus in Schenley Park (y1-
y5), then around Flagsta� Hill (y5-y9). The entire trace
takes place outdoors, but at all times we remain in the line
of sight of buildings housing WavePoint base stations.

Overall, signal quality during the Flagsta� traces is some-
what below that of the Porter traces. It starts o� highly
variable, then falls o� sharply as soon as Schenley Park is
entered, and stays roughly constant at a low level there-
after. On the whole, latency is much better in Flagsta�
than in Porter. Average bandwidth is somewhat better in
the Flagsta� traces than Porter. Where the Flagsta� traces
are signi�cantly worse than the Porter traces is in loss rate,
particularly later in the traversal.

4.1.3 Wean: Traveling to Classroom

The next scenario is traveling from a graduate student o�ce
to a classroom, all within Wean Hall. This trace, depicted
in Figure 4, is called the Wean trace. The trace begins in
an o�ce with known poor connectivity (z0), then traverses
a hallway to the building's elevator (z0-z3). We wait for the
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This �gure shows observed signal quality and de-
rived model parameters for the Porter scenario. At

each X value, the vertical line gives the range of ob-
servations at that location across trials. Note the log

scale for latency.

Figure 2: Porter Traces
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This �gure shows observed signal quality and de-
rivedmodel parameters for the Flagsta� scenario. At

each X value, the vertical line gives the range of ob-
servations at that location across trials. Note the log

scale for latency.

Figure 3: Flagsta� Traces
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This �gure shows observed signal quality and de-
rived model parameters for the Wean scenario. At
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Figure 4: Wean Traces
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elevator (z3-z4), then enter and ride it three oors (z4-z5).
We then exit the elevator and walk to the classroom (z5-
z7). Since this scenario involves discontinuous motion, the
graphs in this �gure are broken into four regions: the walk
to the elevator, the wait for the elevator, riding the elevator,
and the walk to the classroom.

Signal level is variable, but acceptable for the entire walk
to the elevator. While waiting, signal level is quite good, but
on the elevator ride it drops precipitously. On exiting the
elevator, signal level is again good during the walk to the
classroom. Latency is good except during the elevator ride,
peaking at 350 milliseconds. Bandwidth is somewhat lower
than that found in the Porter traces. Loss rates are low
except for the duration of the elevator ride, where they are
atrocious.

4.1.4 Chatterbox: Busy Conference Room

The �nal scenario is intended to capture the e�ect of inter-
fering wireless tra�c rather than physical motion. The trace
collection host is placed in a room with �ve other laptops
also using WaveLAN. Each of the other laptops continuously
executes a workload produced by SynRGen [5], a synthetic
�le reference generator. The synthetic workload models a
user in a edit-debug cycle on �les stored on a remote NFS
[15] �le server.

We refer to this scenario as the Chatterbox scenario, de-
picted in Figure 5. This �gure di�ers from the depictions
of the previous three scenarios because there is no physi-
cal motion. We use simple histograms rather than plotting
parameter values along a sequence of checkpoint locations.
The di�erence in depiction limits us to coarse comparisons
to the previous scenarios.

Figure 5 shows that signal level is consistently high, typ-
ically around 18. In spite of high signal level, the presence
of interfering tra�c results in poorer latency and bandwidth
relative to previous scenarios. Loss rates are reasonable.

4.2 Benchmarks

We have selected three benchmarks to test the accuracy of
trace modulation. The �rst benchmark involves a World
Wide-Web workload [17]. Web reference traces of �ve users
performing search tasks are replayed as fast as possible on a
modi�ed Mosaic v2.6 browser. To ensure good experimental
control, all objects referenced in these traces were copied to
a private Web server, and all URLs in the Web traces were
changed to refer to this server.

The second benchmark is FTP. In this benchmark, we
transfer a single 10MB �le disk-to-disk, both to and from
a laptop. This benchmark makes heavy use of the wireless
network, and is designed to highlight any potential asymme-
try in WaveLAN performance. This is especially important
given the assumption of network symmetry forced upon us
by the lack of synchronized clocks during trace collection,
as discussed in Section 3.2.2.

The third benchmark is the Andrew benchmark run on
NFS, a commonly-used network �le system. Since NFS was
not designed for a mobile environment, it makes no special
attempt to defer or eliminate tra�c on networks of low qual-
ity. We are careful to ush the NFS cache before each trial
of the experiment. This benchmark contains an interesting
mix of network tra�c, and uses UDP as its transport pro-
tocol; in contrast, both FTP and HTTP use TCP as their
transport protocol.
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This �gure shows observed signal quality and de-
rived model parameters for the Chatterbox scenario.

Unlike previous scenarios, there is no physical move-
ment. Thus, all graphs depict distributions of ob-

served values. Note the log scale for loss rate.

Figure 5: Chatterbox Traces
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5 Experimental Results

5.1 Experimental Conditions

Trace collection and benchmarking were performed on an
IBM ThinkPad 701c laptop with an Intel 80486 75MHz DX4
processor and 24MB of memory. We used a WaveLAN radio
modem on the laptop, and relied on an infrastructure of
several dozen WavePoint base stations to provide service
to the mobile host through a single IP router. The laptop
communicated with an Intel Pentium 90MHz workstation
with 32MB of memory connected to the campus network via
Ethernet. For modulation experiments, we used these same
machines, but connected them with an isolated Ethernet.
Both machines ran NetBSD version 1.2, customized for trace
collection and modulation. In our experiments, only the
ThinkPad performed collection or modulation.

For each benchmark on each scenario, we ran four live
trials, and collected four traces for distillation, interleaving
trials with traces. We then distilled each of the four traces
for use in modulation, and ran a trial of the benchmark
over each of these distilled traces. As one might expect, two
trials of the same benchmark over the same distilled trace
show little variance. When the same benchmark is run over
distinct distilled traces intended to duplicate the same path,
the results can show signi�cant variance.

5.2 World Wide Web Benchmark

Figure 6 presents the results from the World Wide Web
benchmark. In all scenarios, the di�erence between the
means of real and modulated elapsed times is less than the
sum of their standard deviations. This indicates that trace
modulation is accurate within the bounds of experimental
error for these scenarios.

5.3 FTP Benchmark

The FTP benchmark is important for two reasons. First, it
is network-limited, and therefore most sensitive to network
performance. Second, since send and receive performance
are largely independent, it allows us to explore the impact
of our network symmetry assumption forced by the lack of
synchronized clocks during trace collection.

Figure 7 presents our results. In the Wean and Chat-
terbox scenarios, real and modulated performance are com-
parable: the di�erence between the means is less than the
sum of their standard deviations. While this is not true of
the Flagsta� scenario, the real send and receive performance
di�er by more than 20 seconds. Both modulated send and
receive performance are very close to the mean of real send
and receive, and hence an accurate recapturing of the traced
environment given our symmetry limitations. The Porter
scenario is the only troubling one, not su�ciently delaying
either send or receive tra�c. Modulated send performance is
o� by 1.05 times the sum of the standard deviations; receive
is o� by 1.56 times.

The substantial di�erence between send and receive per-
formance over the real WaveLAN in these scenarios indicates
that network performance is in fact quite asymmetric. This
contradicts the modeling assumption of symmetry stated in
Section 3.2.2, and further emphasizes the need for synchro-
nized clocks during trace collection; such clocks would allow
us to trace one-way performance. Also of note is the large
standard deviation in the Chatterbox scenario. This high
variance is shown in almost all of our real and modulated
results.

Scenario Real (s) Modulated (s)
Wean 161.47 (7.82) 160.04 (2.60)

Porter 159.83 (5.07) 150.65 (5.83)

Flagsta� 157.82 (6.58) 148.64 (9.61)

Chatterbox 169.07 (17.63) 157.62 (10.18)

Ethernet 140.30 (3.07) | |

This table gives the mean elapsed time in seconds

of four trials of the World Wide Web benchmark for
eachmobile scenario. For reference, the last row gives

the performance of the benchmark over the Ethernet
used for modulation. Figures in parentheses are stan-
dard deviations. Note that due to a problemwith our

experimental setup, the real Porter numbers come
from only three trials rather than four.

Figure 6: Elapsed Times for World Wide Web Benchmark

Scenario Real (s) Modulated (s)

Wean
send
recv

79.88 (10.88)

64.93 (0.93)

72.65 (3.33)

67.83 (2.34)

Porter
send
recv

86.38 (4.94)

82.23 (1.92)

76.65 (4.29)

72.95 (4.01)

Flagsta�
send
recv

88.15 (1.60)

61.85 (1.12)

74.88 (2.97)

70.80 (3.36)

Chatterbox
send
recv

116.83 (30.49)

96.83 (42.15)

92.13 (20.13)

87.28 (17.18)

Ethernet
send
recv

20.50 (0.08)

18.83 (0.17)
|

This table gives the mean elapsed times in sec-
onds of four trials of the FTP benchmark. Send and
receive performance are reported separately. For ref-

erence, the �nal row gives benchmark performance
over the Ethernet used for modulation. Numbers in
parentheses are standard deviations.

Figure 7: Elapsed Times for FTP Benchmark

5.4 Andrew Benchmark on NFS

The input to the Andrew Benchmark is a tree of about
70 source �les occupying about 200KB. There are �ve dis-
tinct phases in the benchmark: MakeDir, Copy, ScanDir,
ReadAll, and Make. The benchmark is run over �les stored
in NFS. Roughly, there are two classes of NFS operations:
status checks and data exchanges. The former are typically
very small messages, while the latter are larger. For most
NFS clients, the ScanDir and ReadAll phases operate on
warm caches, and transmit only status-check messages.

Figure 8 presents the elapsed times for each phase under
real and modulated network conditions, as well as the total
times for the benchmark. In three of the four scenarios |
Wean, Porter, and Chatterbox | the di�erence between the
means of real and modulated total times is within the sum
of their standard deviations. In two of those three, Porter
and Chatterbox, this is also true of all individual phases of
the benchmark.

In the Wean trace, the ScanDir and ReadAll phases are
both under-delayed in modulation. We suspect this is due to
our inability to schedule delays at granularities shorter than
10 milliseconds. Many of the short, infrequent messages
exchanged during those two phases do not have calculated
delays large enough to be acted upon.

We conjecture that the Flagsta� scenario, where real
and modulated performance diverge the most, also su�ers
from this phenomenon. As shown in Figures 2 through 5,
Flagsta� latency and bandwidth tend to be comparable to
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Scenario MakeDir (s) Copy (s) ScanDir (s) ReadAll (s) Make (s) Total (s)

Wean
Real
Mod.

3.00
2.50

(0.00)

(1.00)

18.00
19.25

(0.82)

(3.69)

13.50
10.00

(0.58)

(1.83)

23.00
19.00

(0.82)

(0.82)

105.50
112.00

(3.87)

(4.97)

163.00
162.75

(4.40)

(4.86)

Porter
Real
Mod.

3.00
2.50

(0.00)

(1.00)

20.00
16.75

(1.41)

(3.86)

18.50
12.00

(4.65)

(4.24)

23.50
20.25

(1.29)

(2.87)

104.50
99.50

(1.29)

(4.20)

169.50
151.00

(5.45)

(14.09)

Flagsta�
Real
Mod.

2.75
2.75

(0.50)

(0.50)

19.25
15.00

(0.50)

(2.71)

15.25
10.75

(1.26)

(3.59)

28.00
20.00

(1.83)

(2.83)

111.75
97.25

(2.99)

(4.92)

177.00
145.75

(4.69)

(5.91)

Chatterbox
Real
Mod.

3.50
4.00

(1.00)

(0.82)

22.50
30.75

(5.69)

(19.43)

18.25
21.00

(3.96)

(18.92)

27.25
30.00

(6.55)

(12.44)

109.25
117.00

(11.18)

(20.61)

180.75
202.75

(27.61)

(50.79)

Ethernet Real 2.25 (0.50) 12.50 (0.58) 7.75 (0.50) 17.50 (0.58) 84.00 (1.41) 124.00 (1.63)

This table gives the per-phase mean elapsed times in seconds, and the total benchmark time, of four trials of the Andrew
Benchmark under real and modulated network conditions. For reference, the �nal row gives benchmark performance over
the Ethernet used for modulation. Standard deviations are given in parentheses.

Figure 8: Elapsed Times for Andrew Benchmark Phases

or better than those of the other three scenarios. Thus,
many of the shorter NFS messages that are present in the
benchmark will have delays below our threshold.

5.5 Discussion

As our benchmarks show, trace modulation is an e�ective
way to provide reproducible yet realistic network perfor-
mance in a controlled experimental environment. While the
technique works quite well, there are some avenues for fur-
ther investigation. As the FTP performance over WaveLAN
clearly shows, we have need for �ne-grained, low-drift, syn-
chronized clocks to accurately model asymmetric network
behavior. As the Andrew Benchmark shows, another use
for such clocks would be to schedule delayed packets more
accurately than the current NetBSD kernel allows.

While Chatterbox results show that we adequately cap-
ture a congested environment, we have some reservations
with our approach; the variance observed during our bench-
marks is high enough to warrant further study. Such vari-
ance may be from several sources such as the bursty behav-
ior of our SynRGen synthetic users, and media contention.
Our current approach of including extra delay encountered
by one or more packets in a triplet as extra latency performs
reasonably well, but we suspect a more complicated model
will be required to fully capture the behavior exhibited in
this scenario.

6 Conclusion

In this paper, we have shown how the characteristics of
a complex network can be captured and reproduced. Al-
though motivated by the demands of wireless networks, this
approach also holds promise for wired networks given a suf-
�ciently fast network on which to perform modulation.

The essence of our strategy is a trace-based approach
involving three phases. The �rst phase records observations
of the wireless network when it is subjected to a known
workload from a moving host. The second phase interprets
these observations in the light of a simple network model,
and transforms them into a replay trace. The third phase
uses the replay trace to modulate the loss and delay behavior
of a LAN attached to a static host. During modulation,
unmodi�ed application and system software on the static
host perceive time-varying network quality faithful to that
seen by the moving host during the �rst phase.

Our validation experiments con�rm the e�ectiveness of
this approach, but point out a need for �ne-grain, low-drift,

synchronized clocks. Such clocks would enable us to elim-
inate our assumption of network symmetry and hence al-
low us to use one-way rather than round-trip measurements.
They would also allow us to accurately reproduce short de-
lays.

While this paper has focused on the use of traces from
real networks, it is also possible to modulate using synthetic
traces. These can be used to generate characteristics that
can only be approximated by actual networks. For example,
a recent paper [14] reports on the use of synthetic traces
to explore the behavior of an adaptive mobile system in
response to step and impulse variations in bandwidth.

We are con�dent that the trace-based methodology de-
scribed here will prove to be useful and versatile. Analyses
of traces can o�er broad design insights for mobile systems
and help in choosing system parameter values. Tracing can
play an important role in debugging by deterministically re-
producing the network conditions under which a subtle bug
was originally uncovered. Traces exported from demanding
environments enable a new mobile system to be stress-tested
under real-life conditions before it is ready for deployment.
A set of traces can be used as a benchmark family for evalu-
ating and comparing the adaptive capabilities of alternative
mobile system designs. Overall, the strength of our method-
ology lies in its ability to combine realism with reproducibil-
ity | an asset that will prove invaluable in many aspects of
mobile system design, implementation and evaluation.
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