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Flynn’s Taxonomy
• Flynn classified by data and control streams in 1966

Single Instruction Single Data 
(SISD)
(Uniprocessor)

Single Instruction Multiple 
Data SIMD
(single PC: Vector, SIMD ext, 
GPU)

Multiple Instruction Single 
Data (MISD)
(????)

Multiple Instruction Multiple 
Data MIMD
(Clusters, SMP servers, DC)

M.J. Flynn, "Very High-Speed Computers", 
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.



Multicore, Manycore, Multiple Sockets



Rack, Supercomputers, Data 
Centers



MIMD, TLP

• Thread-Level parallelism
– Have multiple program counters (sequencers)
– With n cores, can run n threads

• Amount of computation assigned to each 
thread = grain size
– For multi-core typical threads large (coarse 

grain)
– data-level parallelism fine grain



Who benefits: Parallel Programs
Matrices a[n][n], b[n][n], c[n][n], 

for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++) {

double s = 0;
for (int k = 0; k < n; k++) {

s += a[i][k] * b[k][j];
}
c[i][j] = s;

}

Assign to each processor fraction of the work (n3)



Who benefits: Internet Services
• Numerous requests per second
• Mostly read-only
• Data parallel

– divided and processed by independent tasks. 
• Amenable to computing infrastructures with 

large number of computing elements and 
high throughput => Data Centers. 

• Data are replicated and partitioned
– replicated for throughput
– partitioned for parallel execution and shorter 

response latency



Basics
• “A parallel computer =  collection of processing 

elements that cooperate and communicate to solve 
large problems fast.”

• Parallel Architecture = Computer Architecture + 
Communication Architecture

• 2 classes of multiprocessors (memory view):
1. Centralized Memory Multiprocessor (SMP)

• Chip Multiprocessors: several cores/chip
• < few dozen processor chips (and ~100s of cores) in 

2017
• Large caches filter memory requests
• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor
• Larger number processors
• BW demands  Memory distributed among 

processors



Centralized vs. Distributed Memory
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Centralized Memory Distributed Memory 

Scale

•This picture true also for on-chip cache (instead of 
memory replace with LLC – last level cache and banking)



Distributed Memory Multiprocessor 
• Pro: Cost-effective way to scale 

memory bandwidth (no special 
interconnect)
• If most accesses are to local memory

• Pro: Reduces latency of local 
memory accesses

• Con:  Communicating data between 
processors more complex

• Con: need software support to take 
advantage of increased memory BW



2 Models for Communication and 
Memory Architecture

1. Communication occurs through a shared address 
space (via loads and stores): 
shared memory multiprocessors two forms:
• UMA (Uniform Memory Access time) for shared address, 

centralized memory MP
• NUMA (Non Uniform Memory Access time multiprocessor) for 

shared address, distributed memory MP, banking

2. Communication occurs by explicitly passing messages 
among the processors: 
message-passing multiprocessors



Challenges of Parallel Processing

• First challenge is % of program inherently 
sequential

• Goal 80X speedup from 100 processors. 
What fraction of original program can be 
sequential?
a.10%
b.5%
c.1%
d.<1%



Amdahl’s Law Answers 
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Challenges of Parallel Processing
• Second challenge is long latency to remote 

memory
• Suppose 32 CPU MP, 2GHz, 200 ns remote 

memory, all local accesses hit memory 
hierarchy and base CPI is 0.5. (Remote 
access = 200/0.5 = 400 clock cycles.) 

• What is performance impact if 0.2% 
instructions involve remote access?
a. 1.5X
b. 2.0X
c. 2.5X



CPI Equation 
• CPI = Base CPI + 

Remote request rate 
x Remote request cost

• CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8 
= 1.3

• Without communication:1.3/0.5 or 
2.6 faster as compared with 0.2% 
instructions involve remote access



Challenges of Parallel Processing

1. Application parallelism  primarily via new algorithms that 
have better parallel performance, easy programming language

2. Long remote latency impact  both by architect and by the 
programmer 
– For example, reduce frequency of remote accesses either by 

• Caching shared data, prefetching, reduce traffic (HW) 
• Restructuring the data layout to make more accesses local (SW)

3. BW Limited CMP: many cores on a chip but not
enough BW to off-chip DRAM => 

technology (3D stacking)

• Today’s lecture how HW  helps memory latency via caches



Shared-Memory Architectures
• Caches in multiprocessors hold both

– Private data used by a single core
– Shared data used by multiple cores

• Caching shared data (creates duplicates):
+ reduces: latency to shared data, memory bandwidth 
for shared data and interconnect bandwidth
- cache coherence problem



Example Cache Coherence Challenges
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Example Cache Coherence Challenges

– Processors see different values for u after event 3
– With write back caches, value written back to memory 

depends on which cache flushes or writes back value 
when

• Processes accessing main memory may see stale(old) value
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Example Cache Coherence Challenges

I/O devices
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1. If P3 gets u=7 and then P1 or P2 reads u=5
2. If P2 gets value u=7 and then P1 gets later u=5
Coherent or non-coherent?



Example Cache Coherence Challenges

I/O devices

Memory
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$ $ $
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If P3 gets u=7 then P1 or P2 reads u=7
Coherent or non-coherent?



Example

• Coherent:

P1 P2

/*Assume initial value of A is 0*/
A = 1; print A

printA



Cache Coherence

• Coherence
– Requirement: writes to the same location by 

any two processors are seen in the same 
order by all processors

– Order of stores observed in the same location
• HOW: on a write to a shared variable 

inform others variable copies (caches) 
learn that that their value is incoherent
– How? before a write inform other copies about 

the write
– How long it takes? It depends…



Example Illustrating Consistency 
Problem

• Intuition not guaranteed by coherence
• Expect memory to respect order between accesses to different

locations issued by a given processor
• Coherence is not enough!

– pertains only to single location
• Memory Order seen by one processor different from 

another!

P1 P2

/*Assume initial value of A and  flag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;



Consistency
• Requirement: if a processor writes location 

A followed by location B, any processor 
that sees the new value of B must also 
see the new value of A

• Order of stores observed in different 
locations

• When a written value will be returned by a 
read

• Simplest consistency: sequential (but too 
strict)

C
entralized S

hared-M
em

ory A
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Basic Schemes for Enforcing 
Coherence

• Program on multiple processors will normally have copies 
of the same data in several caches

• Reduces both latency of access and contention for read shared data and 
bandwidth demand on the shared memory

• Use a HW protocol to maintain coherent caches



2 Classes of Cache Coherence 
Protocols

1. Snooping — Every core tracks sharing status of 
blocks

2. Directory based — Sharing status of a block of 
physical memory is kept in just one location, the 
directory (directory can be distributed)



Snoopy Cache-Coherence 
Protocols

• Cache Controller “snoops” all transactions on 
the shared medium (bus or network)
– Check addresses on bus
– take action to ensure coherence if having a match

• invalidate, update, or supply value
– depends on state of the block and the protocol

• Writes: get exclusive access before write via 
write invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Cache Line

State used for coherence



Example: Write-thru Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium 

BW
 typically MPs use write invalidate
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Coherence Building Blocks
1. Cache block state transition diagram for each cache 

block
1. FSM specifying how state of block changes

• invalid, valid, dirty, shared etc
2. Broadcast Medium Transactions (e.g., bus)

1. Logically single set of wires connect several devices
2. Protocol: arbitration, command/addr, data
3. SNOOPY: Every device observes every transaction

3. Broadcast medium helps enforces serialization of read 
or write accesses  Write serialization
1. Cannot complete write until it obtains bus
2. 1st processor to get medium invalidates other copies
3. All coherence schemes require serializing accesses to same 

cache block
4. Need to find up-to-date copy of cache block

1. Cache coherence requests from other processors



Bus Orders Writes

• Writes establish a partial order
• Doesn’t constrain ordering of reads
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Locate up-to-date copy of data
• Write-through: get up-to-date copy from memory

– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache
– Use snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache block, it

provides it in response to a read request and aborts the
memory access

– Complexity from retrieving cache block from a processor cache, which
can take longer than retrieving it from memory (chip2chip)

• Write-back consumers less memory bandwidth  (why?)
 Support larger numbers of faster processors 
 Most multiprocessors use write-back caches



Cache Resources for WB Snooping

• Normal cache tags can be used  for snooping
– check address on bus if in the processor cache

• Valid bit per block used to invalidate
• Read misses  handled by snooping
• Writes  Need to know whether any other

copies of the block are cached
– Extra state per block indicates this
– No other copies  No need to place write on bus for

WB (if a core owner can write it)
– Other copies  Need to place invalidate on bus (if not

owner inform others)



Example Protocol
• Snooping coherence protocol is usually 

implemented by incorporating a finite-state 
controller in each core

• Each block separate state (not per word)
– That is, snooping operations or cache requests for 

different blocks can proceed independently
• In implementations, a single controller allows 

multiple operations to distinct blocks to proceed 
in interleaved fashion 

– that is, one operation may be initiated before another 
is completed, even through only one cache access or 
one bus access is allowed at time 



Write-through Invalidate 
Protocol• 2 states per block in each cache

– as in uniprocessor
• Writes invalidate all other cache 

copies in other processors
– can have multiple simultaneous readers 

of block, but write invalidates them
I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State  Tag   Data

I/O devicesMem

P1

$ $

Pn

Bus

State  Tag   Data

Processor Action/ Bus Action

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus WriteWhat happens on a bus read?

What happens when block evicted? •No-write allocate



Example Write Back Snoopy 
Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If it has a dirty copy of requested block, provides that block 

in response to the read request and aborts the memory 
access

• Each memory block is in one state:
– Clean in all caches and up-to-date in memory (Shared)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : one cache has copy, its writeable, and dirty
– OR Invalid : block contains no data (in uniprocessor cache 

too)



CPU Read hit
Write-Back State Machine - CPU

• State 
machine
for CPU
requests
for each 
cache block

• Non-resident 
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write 
Miss on bus

CPU Write
Place Write Miss on Bus

CPU read hit
CPU write hit

Cache Block
State



Write-Back State Machine- Bus 
request• State machine

for bus
requests
for each 
cache block

Invalid Shared
(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss 
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)



Block-replacement
• State machine

for CPU requests
for each 
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State



Place read miss
on bus

Write-back State Machine-III 
• State machine

for CPU requests
for each 
cache block and
for bus requests
for each 
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write 
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory 
access)

Write miss
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2



Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2



Example

P1 P2 Bus Memory
step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValu

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

•Assume block A2 evicts A1



Cache behavior in response to bus
• For every bus transaction each core must check 

the cache-address tags
– could potentially interfere with core cache accesses

• A way to reduce interference is to duplicate tags
– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2 
tags

– Since L2 less heavily used than L1
 Every entry in L1 cache must be present in the L2 

cache, called the inclusion property
– If Snoop gets a hit in L2 cache, then it must arbitrate 

for the L1 cache to update the state and possibly 
retrieve the data, which usually requires a stall of the 
processor



Summary
• Parallelism challenges: % parallalizable, long latency to 

remote memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for Larger MP
• Shared Address vs Message Passing
• Snooping cache over shared medium for smaller MP by 

invalidating other cached copies on write
– Uniform access time vs. Non-uniform access time

• Sharing cached data  Coherence (values returned by 
a read), Consistency (when a written value will be 
returned by a read)

• Shared medium serializes writes 





Write Serialization/Consistency
• A write does not complete (and allow the next 

write to occur) until all processors have seen 
the effect of that write

• For now assume the processor does not 
change the order of any write with respect to 
any other memory access

 if a processor writes location A followed by 
location B, any processor that sees the new 
value of B must also see the new value of A 

• These restrictions allow the processor to 
reorder reads, but forces the processor to 
finish writes in program order


