
Κεφ. 5: Πολυεπεξεργαστές I
Multiprocessors

(σημειώσεις από U Berkeley και το Βιβλίο)

Εαρινό Εξάμηνο 2017

Flynn’s Taxonomy
• Flynn classified by data and control streams in 1966

Single Instruction Single Data
(SISD)
(Uniprocessor)

Single Instruction Multiple
Data SIMD
(single PC: Vector, SIMD ext,
GPU)

Multiple Instruction Single
Data (MISD)
(????)

Multiple Instruction Multiple
Data MIMD
(Clusters, SMP servers, DC)

M.J. Flynn, "Very High-Speed Computers",
Proc. of the IEEE, V 54, 1900-1909, Dec. 1966.

Multicore, Manycore, Multiple Sockets

Rack, Supercomputers, Data
Centers

MIMD, TLP

• Thread-Level parallelism
– Have multiple program counters (sequencers)
– With n cores, can run n threads

• Amount of computation assigned to each
thread = grain size
– For multi-core typical threads large (coarse

grain)
– data-level parallelism fine grain

Who benefits: Parallel Programs
Matrices a[n][n], b[n][n], c[n][n],

for (int j = 0; j < n; j++) {
for (int i = 0; i < n; i++) {

double s = 0;
for (int k = 0; k < n; k++) {

s += a[i][k] * b[k][j];
}
c[i][j] = s;

}

Assign to each processor fraction of the work (n3)

Who benefits: Internet Services
• Numerous requests per second
• Mostly read-only
• Data parallel

– divided and processed by independent tasks.
• Amenable to computing infrastructures with

large number of computing elements and
high throughput => Data Centers.

• Data are replicated and partitioned
– replicated for throughput
– partitioned for parallel execution and shorter

response latency

Basics
• “A parallel computer = collection of processing

elements that cooperate and communicate to solve
large problems fast.”

• Parallel Architecture = Computer Architecture +
Communication Architecture

• 2 classes of multiprocessors (memory view):
1. Centralized Memory Multiprocessor (SMP)

• Chip Multiprocessors: several cores/chip
• < few dozen processor chips (and ~100s of cores) in

2017
• Large caches filter memory requests
• Small enough to share single, centralized memory

2. Physically Distributed-Memory multiprocessor
• Larger number processors
• BW demands  Memory distributed among

processors

Centralized vs. Distributed Memory

P1

$

Interconnection network

$

Pn

Mem Mem

P1

$

Interconnection network

$

Pn

Mem Mem

Centralized Memory Distributed Memory

Scale

•This picture true also for on-chip cache (instead of
memory replace with LLC – last level cache and banking)

Distributed Memory Multiprocessor
• Pro: Cost-effective way to scale

memory bandwidth (no special
interconnect)
• If most accesses are to local memory

• Pro: Reduces latency of local
memory accesses

• Con: Communicating data between
processors more complex

• Con: need software support to take
advantage of increased memory BW

2 Models for Communication and
Memory Architecture

1. Communication occurs through a shared address
space (via loads and stores):
shared memory multiprocessors two forms:
• UMA (Uniform Memory Access time) for shared address,

centralized memory MP
• NUMA (Non Uniform Memory Access time multiprocessor) for

shared address, distributed memory MP, banking

2. Communication occurs by explicitly passing messages
among the processors:
message-passing multiprocessors

Challenges of Parallel Processing

• First challenge is % of program inherently
sequential

• Goal 80X speedup from 100 processors.
What fraction of original program can be
sequential?
a.10%
b.5%
c.1%
d.<1%

Amdahl’s Law Answers

 

 

 

%75.992.79/79Fraction

Fraction8.0Fraction8079

1)
100

Fraction
 Fraction 1(80

100
Fraction

 Fraction 1

1 08

Speedup
Fraction

 Fraction 1

1 Speedup

parallel

parallelparallel

parallel
parallel

parallel
parallel

parallel

parallel
enhanced

overall













Challenges of Parallel Processing
• Second challenge is long latency to remote

memory
• Suppose 32 CPU MP, 2GHz, 200 ns remote

memory, all local accesses hit memory
hierarchy and base CPI is 0.5. (Remote
access = 200/0.5 = 400 clock cycles.)

• What is performance impact if 0.2%
instructions involve remote access?
a. 1.5X
b. 2.0X
c. 2.5X

CPI Equation
• CPI = Base CPI +

Remote request rate
x Remote request cost

• CPI = 0.5 + 0.2% x 400 = 0.5 + 0.8
= 1.3

• Without communication:1.3/0.5 or
2.6 faster as compared with 0.2%
instructions involve remote access

Challenges of Parallel Processing

1. Application parallelism  primarily via new algorithms that
have better parallel performance, easy programming language

2. Long remote latency impact  both by architect and by the
programmer
– For example, reduce frequency of remote accesses either by

• Caching shared data, prefetching, reduce traffic (HW)
• Restructuring the data layout to make more accesses local (SW)

3. BW Limited CMP: many cores on a chip but not
enough BW to off-chip DRAM =>

technology (3D stacking)

• Today’s lecture how HW helps memory latency via caches

Shared-Memory Architectures
• Caches in multiprocessors hold both

– Private data used by a single core
– Shared data used by multiple cores

• Caching shared data (creates duplicates):
+ reduces: latency to shared data, memory bandwidth
for shared data and interconnect bandwidth
- cache coherence problem

Example Cache Coherence Challenges

I/O devices

Memory

P1

$ $ $

P2 P3

u:5
1

u :5

Example Cache Coherence Challenges

I/O devices

Memory

P1

$ $ $

P2 P3

u:5
1

u :5

2

u :5

Example Cache Coherence Challenges

I/O devices

Memory

P1

$ $ $

P2 P3

u:5
1

u :5

2

u :5

3

u= 7

Example Cache Coherence Challenges

I/O devices

Memory

P1

$ $ $

P2 P3

4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

Example Cache Coherence Challenges

– Processors see different values for u after event 3
– With write back caches, value written back to memory

depends on which cache flushes or writes back value
when

• Processes accessing main memory may see stale(old) value

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

Example Cache Coherence Challenges

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

1. If P3 gets u=7 and then P1 or P2 reads u=5
2. If P2 gets value u=7 and then P1 gets later u=5
Coherent or non-coherent?

Example Cache Coherence Challenges

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

If P3 gets u=7 then P1 or P2 reads u=7
Coherent or non-coherent?

Example

• Coherent:

P1 P2

/*Assume initial value of A is 0*/
A = 1; print A

printA

Cache Coherence

• Coherence
– Requirement: writes to the same location by

any two processors are seen in the same
order by all processors

– Order of stores observed in the same location
• HOW: on a write to a shared variable

inform others variable copies (caches)
learn that that their value is incoherent
– How? before a write inform other copies about

the write
– How long it takes? It depends…

Example Illustrating Consistency
Problem

• Intuition not guaranteed by coherence
• Expect memory to respect order between accesses to different

locations issued by a given processor
• Coherence is not enough!

– pertains only to single location
• Memory Order seen by one processor different from

another!

P1 P2

/*Assume initial value of A and flag is 0*/
A = 1; while (flag == 0); /*spin idly*/
flag = 1; print A;

Consistency
• Requirement: if a processor writes location

A followed by location B, any processor
that sees the new value of B must also
see the new value of A

• Order of stores observed in different
locations

• When a written value will be returned by a
read

• Simplest consistency: sequential (but too
strict)

C
entralized S

hared-M
em

ory A
rchitectures

Basic Schemes for Enforcing
Coherence

• Program on multiple processors will normally have copies
of the same data in several caches

• Reduces both latency of access and contention for read shared data and
bandwidth demand on the shared memory

• Use a HW protocol to maintain coherent caches

2 Classes of Cache Coherence
Protocols

1. Snooping — Every core tracks sharing status of
blocks

2. Directory based — Sharing status of a block of
physical memory is kept in just one location, the
directory (directory can be distributed)

Snoopy Cache-Coherence
Protocols

• Cache Controller “snoops” all transactions on
the shared medium (bus or network)
– Check addresses on bus
– take action to ensure coherence if having a match

• invalidate, update, or supply value
– depends on state of the block and the protocol

• Writes: get exclusive access before write via
write invalidate or update all copies on write

State
Address
Data

I/O devicesMem

P1

$

Bus snoop

$

Pn

Cache-memory
transaction

Cache Line

State used for coherence

Example: Write-thru Invalidate

• Must invalidate before step 3
• Write update uses more broadcast medium

BW
 typically MPs use write invalidate

I/O devices

Memory

P1

$ $ $

P2 P3

5

u = ?
4

u = ?

u:5
1

u :5

2

u :5

3

u= 7

u = 7

Coherence Building Blocks
1. Cache block state transition diagram for each cache

block
1. FSM specifying how state of block changes

• invalid, valid, dirty, shared etc
2. Broadcast Medium Transactions (e.g., bus)

1. Logically single set of wires connect several devices
2. Protocol: arbitration, command/addr, data
3. SNOOPY: Every device observes every transaction

3. Broadcast medium helps enforces serialization of read
or write accesses  Write serialization
1. Cannot complete write until it obtains bus
2. 1st processor to get medium invalidates other copies
3. All coherence schemes require serializing accesses to same

cache block
4. Need to find up-to-date copy of cache block

1. Cache coherence requests from other processors

Bus Orders Writes

• Writes establish a partial order
• Doesn’t constrain ordering of reads

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

Locate up-to-date copy of data
• Write-through: get up-to-date copy from memory

– Write through simpler if enough memory BW

• Write-back harder
– Most recent copy can be in a cache
– Use snooping mechanism
1. Snoop every address placed on the bus
2. If a processor has dirty copy of requested cache block, it

provides it in response to a read request and aborts the
memory access

– Complexity from retrieving cache block from a processor cache, which
can take longer than retrieving it from memory (chip2chip)

• Write-back consumers less memory bandwidth (why?)
 Support larger numbers of faster processors
 Most multiprocessors use write-back caches

Cache Resources for WB Snooping

• Normal cache tags can be used for snooping
– check address on bus if in the processor cache

• Valid bit per block used to invalidate
• Read misses handled by snooping
• Writes  Need to know whether any other

copies of the block are cached
– Extra state per block indicates this
– No other copies  No need to place write on bus for

WB (if a core owner can write it)
– Other copies  Need to place invalidate on bus (if not

owner inform others)

Example Protocol
• Snooping coherence protocol is usually

implemented by incorporating a finite-state
controller in each core

• Each block separate state (not per word)
– That is, snooping operations or cache requests for

different blocks can proceed independently
• In implementations, a single controller allows

multiple operations to distinct blocks to proceed
in interleaved fashion

– that is, one operation may be initiated before another
is completed, even through only one cache access or
one bus access is allowed at time

Write-through Invalidate
Protocol• 2 states per block in each cache

– as in uniprocessor
• Writes invalidate all other cache

copies in other processors
– can have multiple simultaneous readers

of block, but write invalidates them
I

V
BusWr / -

PrRd/ --
PrWr / BusWr

PrWr / BusWr

PrRd / BusRd

State Tag Data

I/O devicesMem

P1

$ $

Pn

Bus

State Tag Data

Processor Action/ Bus Action

PrRd: Processor Read
PrWr: Processor Write
BusRd: Bus Read
BusWr: Bus WriteWhat happens on a bus read?

What happens when block evicted? •No-write allocate

Example Write Back Snoopy
Protocol

• Invalidation protocol, write-back cache
– Snoops every address on bus
– If it has a dirty copy of requested block, provides that block

in response to the read request and aborts the memory
access

• Each memory block is in one state:
– Clean in all caches and up-to-date in memory (Shared)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : one cache has copy, its writeable, and dirty
– OR Invalid : block contains no data (in uniprocessor cache

too)

CPU Read hit
Write-Back State Machine - CPU

• State
machine
for CPU
requests
for each
cache block

• Non-resident
blocks invalid

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

Place read miss
on bus

Place Write
Miss on bus

CPU Write
Place Write Miss on Bus

CPU read hit
CPU write hit

Cache Block
State

Write-Back State Machine- Bus
request• State machine

for bus
requests
for each
cache block

Invalid Shared
(read/only)

Exclusive
(read/write)

Write Back
Block; (abort
memory access)

Write miss
for this block

Read miss
for this block

Write miss
for this block

Write Back
Block; (abort
memory access)

Block-replacement
• State machine

for CPU requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Place read miss
on bus

Write-back State Machine-III
• State machine

for CPU requests
for each
cache block and
for bus requests
for each
cache block

Invalid
Shared

(read/only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write
Miss on bus
CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Cache Block
State

Write miss
for this block

Write Back
Block; (abort
memory
access)

Write miss
for this block

Read miss
for this block

Write Back
Block; (abort
memory access)

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

Example

P1 P2 Bus Memory
step State Addr ValueState Addr ValueActionProc.Addr ValueAddrValu

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 A1 10
Shar. A1 10 RdDa P2 A1 10 A1 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 A1 10
P2: Write 40 to A2 WrMs P2 A2 A1 10

Excl. A2 40 WrBk P2 A1 20 A1 20

P1: Read A1
P2: Read A1

P1 Write 10 to A1

P2: Write 20 to A1
P2: Write 40 to A2

•Assume block A2 evicts A1

Cache behavior in response to bus
• For every bus transaction each core must check

the cache-address tags
– could potentially interfere with core cache accesses

• A way to reduce interference is to duplicate tags
– One set for caches access, one set for bus accesses

• Another way to reduce interference is to use L2
tags

– Since L2 less heavily used than L1
 Every entry in L1 cache must be present in the L2

cache, called the inclusion property
– If Snoop gets a hit in L2 cache, then it must arbitrate

for the L1 cache to update the state and possibly
retrieve the data, which usually requires a stall of the
processor

Summary
• Parallelism challenges: % parallalizable, long latency to

remote memory
• Centralized vs. distributed memory

– Small MP vs. lower latency, larger BW for Larger MP
• Shared Address vs Message Passing
• Snooping cache over shared medium for smaller MP by

invalidating other cached copies on write
– Uniform access time vs. Non-uniform access time

• Sharing cached data  Coherence (values returned by
a read), Consistency (when a written value will be
returned by a read)

• Shared medium serializes writes

Write Serialization/Consistency
• A write does not complete (and allow the next

write to occur) until all processors have seen
the effect of that write

• For now assume the processor does not
change the order of any write with respect to
any other memory access

 if a processor writes location A followed by
location B, any processor that sees the new
value of B must also see the new value of A

• These restrictions allow the processor to
reorder reads, but forces the processor to
finish writes in program order

