
StaticILP.12/12/02

EΠΛ605: Προχωρημένη Αρχιτεκτονική
Υπολογιστών

Γιάννος Σαζεϊδης

Κεφ. 3 και Appendix Η: Static ILP
Static (Compiler Based) Scheduling

∆ιαβάστε κεφ. 3 και H

Εαρινό Εξάμηνο 2017

StaticILP.22/12/02

Today’s Theme and Contents

• Let compiler uncover the ILP
– Objective:more ilp possibly simpler hardware/faster

clock/less power
– Static ilp can be useful for dynamically scheduled processors

• How:
– Static (Local) Scheduling
– Loop Unrolling

• Processor Architecture for Statically scheduled
Multiple Issue: VLIW

• IA-64 and Itanium

StaticILP.32/12/02

How to uncover the ILP

• Violate program order and control dependences

• But maintain correctness
– same dataflow and exception behavior

• Do above effectively AND efficiently!

• Dynamically (hardware based approach)
• Statically (more compiler control – may be some

hardware help and support from ISA)

StaticILP.42/12/02

Basic Idea

• The compiler moves/rearranges dependent instructions apart to
avoid hazards

• This means:
– such instructions exist (if not there employ transformations)

• Static ILP applicable to statically* and dynamically scheduled
processors
– May help simplify hardware to find parallelism (ex. in-order superscalar)
– the compiler knows implementation details

» latency AND superscalarity (issue width)

• What happens if implementation changes?
– Correctness preserved but may be less benefits

• *Statically scheduled processors: the compiler dictates which
instructions can execute together (scheduling done in software) –
ISA support

StaticILP.52/12/02

Compiler Techniques for Exposing ILP
• Pipeline scheduling

– Separate dependent instruction from the source
instruction by the pipeline latency of the source
instruction

– assume simple scalar pipeline
– If something not ready stall

• Example:
for (i=999; i>=0; i=i-1)
x[i] = x[i] + s;

C
om

piler Techniques

StaticILP.62/12/02

Pipeline Stalls

Loop: L.D F0,0(R1)
stall
ADD.D F4,F0,F2
stall
stall
S.D F4,0(R1)
DADDUI R1,R1,#-8
stall (assume integer load latency is 1)
BNE R1,R2,Loop

C
om

piler Techniques

StaticILP.72/12/02

Pipeline Scheduling

Scheduled code:
Loop: L.D F0,0(R1)

DADDUI R1,R1,#-8
ADD.D F4,F0,F2
stall
stall
S.D F4,8(R1)
BNE R1,R2,Loop

C
om

piler Techniques

(Local Scheduling within a BB)

StaticILP.82/12/02

Loop Unrolling
• Loop unrolling

– Unroll by a factor of 4 (assume # elements is
divisible by 4)

– Eliminate unnecessary instructions
Loop: L.D F0,0(R1)

ADD.D F4,F0,F2
S.D F4,0(R1) ;drop DADDUI & BNE
L.D F6,-8(R1)
ADD.D F8,F6,F2
S.D F8,-8(R1) ;drop DADDUI & BNE
L.D F10,-16(R1)
ADD.D F12,F10,F2
S.D F12,-16(R1) ;drop DADDUI & BNE
L.D F14,-24(R1)
ADD.D F16,F14,F2
S.D F16,-24(R1)
DADDUI R1,R1,#-32
BNE R1,R2,Loop

C
om

piler Techniques

 note: number
of live

registers vs.
original loop

Unroll body of loop
several times
How many times???

StaticILP.92/12/02

Loop Unrolling/Pipeline Scheduling
• Pipeline schedule the unrolled loop:

Loop: L.D F0,0(R1)
L.D F6,-8(R1)
L.D F10,-16(R1)
L.D F14,-24(R1)
ADD.D F4,F0,F2
ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
S.D F4,0(R1)
S.D F8,-8(R1)
DADDUI R1,R1,#-32
S.D F12,16(R1)
S.D F16,8(R1)
BNE R1,R2,Loop

C
om

piler Techniques

StaticILP.102/12/02

Strip Mining

• Unknown number of loop iterations?
– Number of iterations = n
– Goal: make k copies of the loop body
– Generate pair of loops:

» First executes n mod k times
» Second executes n / k times
» “Strip mining”

C
om

piler Techniques

StaticILP.112/12/02

Software speculation/Global Scheduling

StaticILP.122/12/02

StaticILP.132/12/02

HOW??

Static prediction, profile, frequency, path
Which is better the above or dynamic prediction?

StaticILP.142/12/02

StaticILP.152/12/02

Register pressure

StaticILP.162/12/02

- Predicting dependences accurately

- Code pressure

StaticILP.172/12/02

StaticILP.182/12/02

• Software speculation for memory dependences
• Possible same as sw based control speculation
• problem are exceptions from instructions not in

program order (same for control sw speculation)

StaticILP.192/12/02

StaticILP.202/12/02

Does not have

StaticILP.212/12/02

StaticILP.222/12/02

StaticILP.232/12/02

The various compiler techniques allow to violate program
order and/or control flow dependences without violating data
flow

Applicable to dynamically ooo processors
But more useful for dynamic in-order processors

Static ILP issue: how to deal with imprecise exceptions when
using speculation

Statically scheduled processors? (different ISA, uarch)

StaticILP.242/12/02

LockStep: any hazard stall / NOPs if not enough //ism

StaticILP.252/12/02

StaticILP.262/12/02

Predicated Execution &
Conditional Moves

Convert control dependences to data dependences
if (a=0) s=t; a-R1 s-R2 t-R3

bnez R1,L
addu R2,R3,0

L:

cmovzR2,R3,R1

Above for all itypes is called predication…
Ax+(1-x) < B => x < (B-1)/(A-1)
A misprediction penalty
B latency to execute both paths
+/-?

StaticILP.272/12/02

bnz r1, L1
lw r2,0(r3)
add r2,r2,1
sw r2,0(r3)
j L2
L1:
lw r2,0(r4)
add r2,r2,-1
sw r2,0(r4)
L2:

cz.lw r2,0(r3), r1
cz.add r2,r2,1, r1
cz. sw r2,0(r3), r1
cnz.lw r2,0(r4), r1
cnz.add r2,r2,-1, r1
cnz.sw r2,0(r4), r1

3x + 9(1-x) ? 6
9-6x ? 6

3 < 6x
0.5 <x

StaticILP.282/12/02

Speculative Loads

Bypass stores speculative - repair code in case of
mispeculation
Use an address buffer

1. LookUp Table: updated by address of speculative load

2. Updated by addresses of intervening stores

3. Check instruction: that no store conflicted and release
Entry

check instruction is inserted at the place of original
instruction

StaticILP.292/12/02

IA64 - Based on VLIW (EPIC)
Architectural Approach

• Registers
– 128 x 64 bit GPR
– 128 x 82 bit FPR
– 64 x 1 bit predicates
– 8 x 64 bit Branch Registers
– system registers
– Register Stack Engine

• Instructions
– Bundle - 3 instructions (total 128 bits)
– 5 bit template and 3x41 instructions

• Instruction Group
– sequence of independent instructions (can be as long as it needs but

ends with a stop bit)
– stop bit part of template

• 5 instructions classes: Alu, Ioalu, Move, Fp και Βr

StaticILP.302/12/02

IA64 - Based on EPIC Architectural
Approach

• Predication
– many predicate registers
– compare instructions that set two predicates
– almost all instructions can be predicated

• Speculation
– control and data (memory)
– deferred exceptions

» exception flag propagated
» either caught by a non-speculative check
instruction or a store

» two types of checks for memory speculation
• Reload (idempotent), jump to fixup routine

StaticILP.312/12/02

StaticILP.322/12/02

StaticILP.332/12/02

Conclusion/Future

• Static ILP very useful transformations to increase
performance

– Applicable to all processors
– More beneficial to simple processors and statically scheduled (VLIW)

• VLIW
– For general purpose: does not seems work
– Works well for scientific
– For embedded: big market

• Other compiler trends:
– Dynamic Compilation/Optimization
– Virtual Machines (online optimization)
– Emulation of instructions

