2/12/02

EFNAG0S: INpoxwpnuevn ApXITEKTOVIKN
YTTOAOYIOTWYV

Navvog 2aleidng

Keo. 3 ka1 Appendix H: Static ILP
Static (Compiler Based) Scheduling

AlaBaoTe ke. 3 kol H

Eapivé E¢aunvo 2017

StaticILP.1

Today's Theme and Contents

Let compiler uncover the ILP

- Objective:more ilp possibly simpler hardware/faster
clock/less power

- Static ilp can be useful for dynamically scheduled processors
* How:

- Static (Local) Scheduling

- Loop Unrolling

Processor Architecture for Statically scheduled
Multiple Issue: VLIW

IA-64 and Itanium

2/12/02 StaticILP.2

2/12/02

How to uncover the ILP

* Violate program order and control dependences

* But maintain correctness

- same dataflow and exception behavior

+ Do above effectively AND efficiently!

* Dynamically (hardware based approach)
- Statically (more compiler control - may be some

hardware help and support from ISA)

StaticILP.3

Basic Idea

- The compiler moves/rearranges dependent instructions apart to
avoid hazards
+ This means:
- such instructions exist (if not there employ transformations)

- Static ILP applicable to statically* and dynamically scheduled
processors

- May help simplify hardware to find parallelism (ex. in-order superscalar)

- the compiler knows implementation details
» latency AND superscalarity (issue width)
* What happens if implementation changes?

- Correctness preserved but may be less benefits

*Statically scheduled processors: the compiler dictates which
instructions can execute together (scheduling done in software) -
I5A support

2/12/02 StaticILP.4

2/12/02

Compiler Techniques for Exposing ILP

» Pipeline scheduling

- Separate dependent instruction from the source
instruction by the pipeline latency of the source
instruction

- assume simple scalar pipeline
- If something not ready stall

sanbiuyos] Jajidwon

+ Example:
for (i=999; i>=0; i=i-1)
x[i] = x[i] + s:

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

StaticILP.5

2/12/02

Pipeline Stalls

Loop: L.D FO,0(R1)
stall
ADD.D F4,FO,F2
stall
stall
S.D F4,0(R1)
DADDUI R1,R1,#-8
stall (assume integer load latency is 1)
BNE R1,R2,Loop

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

sanbiuyos] Jajidwon

iticILP.6

2/12/02

Pipeline Scheduling

(Local Scheduling within a BB)

Scheduled code:

Loop: L.D FO,0(R1)
DADDUI R1,R1,#-8
ADD.D F4,FO,F2
stall
stall
S.D F4,8(R1)
BNE R1,R2,Loop

sanbiuyos] Jajidwon

Instruction producing result Instruction using result Latency in clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1
Load double Store double 0

StaticILP.7

2/12/02

Loop Unrolling

* Loop unrolling

- Unroll by a factor of 4 (assume # elements is
divisible by 4)

- Eliminate unnecessary instructions

sanbiuyos] Jajidwon

Loop:

L.D FO,0(R1)
ADD.D F4,FO,F2 Unroll body of loop
S.D F4,0(R1) ;drop DADDUI & BNE Sever\al times

L.D F6,-8(R1) :

ADD. D F8 F6.F2 How many times???
S.D F8,-8(R1) ;drop DADDUI & BNE

L.D F10,-16(R1)

ADD.D F12,F10,F2

S.D F12,-16(R1) :drop DADDUI & BNE

L.D F14,-24(R1)

ADD.D F16,F14,F2 B note: number
S.D F16,-24(R1) of live

DADDUI R1,R1,#-32 :
BNE R1,R2,Loop PZQISTZPS VS.
original loop

StaticILP.8

2/12/02

Loop Unrolling/Pipeline Scheduling

- Pipeline schedule the unrolled loop:

Loop:

L.D FO,0(R1)

L.D F6,-8(R1)

L.D F10,-16(R1)
L.D F14,-24(R1)
ADD.D F4,FO,F2
ADD.D F8,F6,F2
ADD.D F12,F10,F2
ADD.D F16,F14,F2
S.D F4,0(R1)

S.D F8,-8(R1)
DADDUI R1,R1,#-32
S.D F12,16(R1)
S.D F16,8(R1)
BNE R1,R2,Loop

sanbiuyoa] Jajidwon

StaticILP.9

Strip Mining

* Unknown number of loop iterations?
- Number of iterations = n
- Goal: make k copies of the loop body
- Generate pair of loops:
» First executes n mod A times
» Second executes n / k times
» “Strip mining”

2/12/02

sanbiuyos] Jajidwon

StaticILP.10

Trace Scheduling [Ellis 1985]

trace scheduling -

« originally for VLIW architectures, now superscalars also

trace scheduling wall work for non-loop situations

takes most common paths in program and schedules Instrs

Software speculation/Global Scheduling

0 1o by Hill, W, S0k, CSECE T32 Lechure Howes: Dynaimec: ILP 15
Samilth, 3ned Wijayinmed

2/12/02 StaticILP.11

Trace Scheduling

L[1] = "old®
ali] =
if (a[i] = 0} then
[i1i] = “new": CoMon Case
else
A
endif

a[1i] =

& 1500 bay Hill, Wi, S0dki, CSFECE T2 Leciare HOwe-s: Dynaimec: BLP 14
ST, aivd Wiy med

2/12/02 StaticILP.12

Trace Scheduling: Top Level Algorithm

until done
+ select most common path - called atrace HOW??

+ schedule trace across basic blocks

+ basic block -
+ code block with single entry point, single exat point

+« repair other paths

Static prediction, profile, frequency, path
Which is better the above or dynamic prediction?

5 1500 by Hill, Wood, S0k, CECE T2 Lecture Howes: Dynamic ILF v
S1mith, and Vipylume

2/12/02 StaticILP.13

Trace Scheduling

trace to be scheduled:
L[i] = "“old®

al[i] =

B[1i] = "new"

af[1] =

if (a[i] ==0) goto labell
labels:

repair code
lakbell:

restore old b[1]
X

recaloulate o[1]7

S 1000 by Hill, Wooud, S0k CSECE 752 Lecture Howes: Dynaamic ILF 1
S1mith, and ¥ipylum

2/12/02 StaticILP.14

Static Scheduling: Summary

loop unrolling
+ large block to schedule

+ reduces branch frequency
— expands code size

_ have to handle “extra” iterations Register pressure

2/12/02 StaticILP.15

Static Scheduling: Summary

trace scheduling
+ works for non-loops

— more complex than unrolling

— does not seem to handle more general cases

- Predicting dependences accurately

- Code pressure

& 1500 by Hill, Wi, S0k, CSYECE T2 Lecihare HOowes: Dynaimec: P o
SITRT, ol Wijayio med

2/12/02 StaticILP.16

Maybe dependences

maybe {(ambiguous) memory dependences

e.d.,
*otr]l = ———— sgtore instr
tmp = *ptrz ———— load instr
add [(tmp+4d) ———— wWill cause stalls due Lo
———— dependence on Comp
& 194909 by Hill, Wi, S0k, CSECE T5Z Lerture Bole-s- Dynaimec: B P n

2mith, and Wipyinme

2/1z/u¢ StaticILP.17

Maybe dependences

Is a dependence possible?

for (i=0; i<=100;: i++)
A[a = § + b] = & [*= Kk + d]

If dependence exists then GCD{c a) must divide (d-b)
e.q.,

for (i=0:; i<=100: ji++)
A[21i+3] = & [21] + 4:

a=2,b=3,c=2,d=0,GCD{a,c)=2andd-b =-3.

+ Software speculation for memory dependences
$0 No dependence - Possible same as sw based control speculation

« problem are exceptions from instructions not in
program order (same for control sw specula‘rlon)

© 1990 by Hll, Wiood, S0ki, CRIECE 752 Lecture Howes: Dynaimac 1P

Samith, and Wi pyinImes
2/12/02

StaticILP.18

Software vs. Hardware

equivalent techniques, ditter in applicability

hardware
+ high branch prediction accuracy

+ has dynamic information on latencies like cache misses

+ works for generic, non-loop, irregular code
+ 2 (., databases, deskiop applications, compilers

— limited reorder buffer size - imited “lookahead”

— high cost/complexity

B 1900 by Hill, Winieil, S0, CSFECE To2 Lectune HOowe-s: Dynaimec: 1P)
ST, aind Whjayianmed

2/12/02 StaticILP.19

Software vs, Hardware

software
+ can look at large amounts of code - large “lookahead”

+ no hardware cost
+ works for regular code - fortran codes”

+ 2., engineenng applications, weather prediction
— low branch prediction accuracy - can improve by profiling

Does not have dynamic information on latencies like cache misses
+ run code once to figure branches/cache misses
+ Use a different input, not real input

@ 1990 by Hill, Wi, S0k, CSECE T2 Lechure Holes: Dynaamec: ILP o
Smith, and ¥iplome

2/12/02 StaticILP.20

Software vs. Hardware

How did hardware do all our software examples?

unrolling
+ branch prediction, renaming

trace scheduling
+ prediction + renaming + rearder buffer + squashes

¢ frace cache

code from the past

& 1500 by Hill, Wi, S0ki, CSECE T2 Lechre Howes: Dynaimec: BLFP pla
ST, i Wi mel

2/12/02 StaticILP.21

Hardware/Software Tradeoffs

hardware scheduling
+ uses runtime info == Increased ILP, flexability

+ complicated hardware

+ limited scope tor finding ILP

software scheduling
+ Uses only compile-time info

+ simple hardware

+ broader scope of finding ILP

@ 100 by Hill, Wi, S0dki, CSECE To2 Lecthure Howes: Dynaimec: P x
ESmith, 2 ¥ijpyionme

2/12/02 StaticILP.22

Hardware/Software Tradeoffs

Mitigating 1ssues for hardware
compiler can still do higher level scheduling

will hardware control slow clock™?

The various compiler techniques allow to violate program
order and/or control flow dependences without violating data
flow

Applicable to dynamically ooo processors
But more useful for dynamic in-order processors

Static ILP issue: how to deal with imprecise exceptions when
using speculation

Statically scheduled processors? (different ISA, uarch)

2/12/02 StaticILP.23

VLIW,: All Software

very long instruction word

implement a number of iIndependent functional urits
provide a long instruction word with one operation per FL
Instruction latencies are fixed

compiler packs independent instructions into VLIW
+ compiler schedules all hardware resources

entire long word Issues as a “unit”

result: ILP with simple hardware , simple control, fast clock

LockStep: any hazard stall / NOPs if not enough //ism

O 100 by Hill, Wi, S0ki, CSECE T52 Lechare Holes: Dynaimec ILP »

Simith, 3w Wiyl m
2/12/02

StaticILP.24

VLIW: Software

code scheduling in software only
loop unrolling, software pipelining, trace scheduling

architectural support
+ deferred interrupts
+ enhanch scheduling opportunities

+ predicated execution - e_g., conditional moves
+ |ess need for hardware prediction

+ more reqisters
+ renaming less important

1990 by Hll, Wiood, S0ki, CSECE 752 Lecture Howes: Dynamec BLP

Samith, and Wi EyinImes
2/12/02

StaticILP.25

Predicated Execution &

Conditional Moves
Convert control dependences to data dependences

if (a=0) s=t; a-R1 s-R2 t-R3

bnez R1,L
addu R2,R3,0
L:

cmovzR2,R3,R1

Above for all itypes is called predication...
Ax+(1-x) < B => x < (B-1)/(A-1)
A misprediction penalty
B latency to execute both paths
2ol =2

StaticILP.26

bnz r1, L1 cz.lw r2,0(r3), ri

lw r2,0(r3) cz.add r2,r2,1, ri
add r2,r2,1 cz. sw r2,0(r3), ri
sw r2,0(r3) cnz.lw r2,0(r4), rl
JL2 chz.add r2,r2,-1, rli
L1: cnz.sw r2,0(r4), ri
lw r2,0(r4)
add r2,r2,-1
sw r2,0(r4) 3x + 9(1-x) ? 6
L2: 9-6x? 6

3 < 6x

2/12/02 0.5 <x .
StaticILP.27

Speculative Loads

Bypass stores speculative - repair code in case of
mispeculation
Use an address buffer

1. LookUp Table: updated by address of speculative load
2. Updated by addresses of intervening stores

3. Check instruction: that no store conflicted and release
Entry

check instruction is inserted at the place of original
instruction

2/12/02 StaticILP.28

2/12/02

IA64 - Based on VLIW (EPIC)
Architectural Approach

Registers

- 128 x 64 bit GPR

- 128 x 82 bit FPR

- 64 x 1 bit predicates

- 8 x 64 bit Branch Registers
- system registers

- Register Stack Engine

Instructions
- Bundle - 3 instructions (total 128 bits)
- 5 bit template and 3x41 instructions

Instruction Group

- sequence of independent instructions (can be as long as it needs but
ends with a stop bit)

- stop bit part of template
5 instructions classes: Alu, Ioalu, Move, Fp kai Br

StaticILP.29

IA64 - Based on EPIC Architectural
Approach

* Predication
- many predicate registers
- compare instructions that set two predicates
- almost all instructions can be predicated

+ Speculation
- control and data (memory)
- deferred exceptions
» exception flag propagated

» either caught by a non-speculative check
instruction or a store

»two types of checks for memory speculation
* Reload (idempotent), jump to fixup routine

2/12/02 StaticILP.30

it o L1 instruction cache
and ITLE |=a——
- - fetch/prefeich engine
Branch
prediction Decoupling [B2
buffer 8 bundles Harods
| and
* conirol
(eflefs] [mfmij{1] [F]F]
Register stack enginefremapping i
oG-Kbyte + - * # - - 4-Mbyte
L2 @ Branch and 128 integer 128 floating-point L
cache 2 predicate registers registers cache
(=1
@ A
@
s It Diual fiid
= nteqer ual-
O ﬂr:—&l_‘nc:h and port
™ units MM 1
i :
té units data ALAT Floating-
& cache point
E H | units
3
=
[=]
&
B = SIMD
g FrAMC
L1
Bus controller ol

Figure 4_ltaniurm processor block diagram.

2/12/02 StaticILP.31

200

Number of systems

100

- = W

Processor Famil

x86-64 (Intel)
x86-64 (AMD)
POWER
MIPS

x86-32 (Intel)
x86-32 (AMD)
Sparc
PA-RISC
Cray

Alpha

Fujitsu
Itanium (Intel)
NEC

Intel i860
Hitachi SR8000
TMC CM2
Hitachi

KSR

Convex
Maspar
Others

nCube
IBM3090

StaticILP.32

Conclusion/Future

+ Static ILP very useful transformations to increase
performance
- Applicable to all processors
- More beneficial to simple processors and statically scheduled (VLIW)

- VLIW

- For general purpose: does not seems work
- Works well for scientific
- For embedded: big market

* Other compiler trends:
- Dynamic Compilation/Optimization
- Virtual Machines (online optimization)
- Emulation of instructions

2/12/02 StaticILP.33

