4/2/02

ENMAGO0S:Ipoxwpnuévn APXITEKTOVIKN
YTTOAOYIOTWYV

Navvog Zadeidng
Keg. 3: MT and SMT
how to execute multiple threads

AlaBaocTe Ke@. 3

Eapivé E¢aunvo 2017

€S252/Culler
Lec 18.1

OBSERVATION: for most apps, most execution
units lie idle

. ! E. AANHEABEE For an 8-way
o AEEAR superscalar.
5 & E memory conflict
50 » E long fp
short fp
70 long integer
g‘ E short integer
'! 60 N load delays
) [control hazards
50 N branch misprediction
E E E deache miss
40 \f.: [III 1cache miss
E N E aub miss
30 N B iu1b miss
3-: . processor busy
20 ::
Q From: Tullsen,
Lo Eggers, and Levy,
“Simultaneous
0 l - ® Multithreading:
! !E-Ei %%i g .! ! E & Maximizing On-chip

8 Parallelism, ISCA
€s252/Culler

4/2/02 Applications " 1995. Lec 18.2

Same hardware do both ILP and TLP?
(TLP: thread level parallelism)

* TLP and ILP exploit two different kinds of
parallel structure in a program
- TLP: Increase throughput of computers by running
independent programs OR parallel programs
» Could a processor oriented at ILP to exploit
TLP?
- functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code

- Could the TLP be used as a source of independent
instructions that might keep the processor busy during
stalls?

- Could TLP be used to employ the functional units that
would otherwise lie idle when insufficient ILP exists?

€S252/Culler

4/2/02 Lec 18.3

Alternative to ILP: Multithreaded Execution

* Multithreading: multiple threads to share
the functional units of 1 processor via
overlapping

- processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and
for running independent programs, a separate/larger TLB

- memory shared through the virtual memory mechanisms,
which already support multiple processes

- HW for fast thread switch. much faster than full process
switch ~ 1 to 1000s of clocks

- When to switch?

- Alternate instruction per thread (fine grain)

- When a thread is stalled, perhaps for a cache miss,
another thread can be executed (coarse grain)

€S252/Culler

4/2/02 Lec 18.4

Fine-6Grained Multithreading (FGMT)

- Switches between threads on each cycle
causing the execution of multiples threads
to be interleaved

- Usually done in a round-robin fashion, skipping any stalled
threads

- CPU must be able to switch threads every clock

- Advantage it can hide both short and Iorég stalls, since
instructions from other threads executed when one
thread stalls

- Disadvantage it slows down execution of individual
threads, since a thread ready to execute without
stalls will be dela%/ed by instructions from other
threads: trade-off throughput for latency

» Conceptually at any given time

- one thread owns pipe stage
- But different threads can own different stages
- threads can be switched very quickly

» Used in Niagara (some variation in GPUs)

4/2/02 - No or simple forwarding - simpler hardware €5252/Culler
Lec 18.5

4/2/02

Coarse-Grained Multithreading
(CGMT)

- Switches threads only on costly stalls, such as L2 cache

misses

- Advantages

- Relieves need to have very fast thread-switching

- Doesn't slow down thread, since instructions from other
threads issued only when the thread encounters a costly stall
Disadvantage

- hard to overcome throughput losses from shorter stalls, due to
pipeline start-up costs

- Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

- New thread must fill pipeline before instructions can complete
Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

- Conceptually at any given time

- one thread owns entire pipeline

- Used in IBM AS/400

€S252/Culler
Lec 18.6

Simultaneous Multithreading (SMT)

- Simultaneous multithreading (SMT): dynamically scheduled
processor already has many HW mechanisms to support
multithreading

- Large set of physical registers that can be used to hold the
register sets of independent threads

- Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath without
confusing sources and destinations across threads

- Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

- Just adding a per thread renamin%_mble and keeping
separate PCs, prediction history, TIDs in caches

- Independent commit can be supported by logically keeping a
separate reorder buffer for each thread

» Conceptually at any given time
- many thread can share pipe stages

- Ease of implementation: some stages owned by one thread
at a time &.g. fetch, commit)

* Used in Intel, IBM and AMD processors

€S252/Culler

4/2/02 Lec 18.7

Multithreaded Categories

Simultaneous

’q')\ Superscalar Fine-Grained Coarse-Grained Multithreading
- O [] e NN
— o= N
o O el B E NN
S EEEE NNNO EEEE
= Il SN EENNY :
“E’ DEN i RIEIN
= NININ
=B e []

J EE S e NE

I Thread 1 Thread 3

N Thread 2 | Thread4

4/2/02

Thread 5
|dle slot

€s252/cCuller
Lec 18.8

Design Challenges in SMT

Larger register file needed to hold register state
for multiple threads

More pressure on shared resources, such as
register, caches, predictors, fu, buses

Not affecting clock cycle time, especially in

Selection tricky:

- If can fetch, rename and complete from one thread at a time,
how to choose next thread at each stage?

€S252/Culler

4/2/02 Lec 18.9

Power 4

Single-threaded predecessor to
Power 5. 8 execution units In
out-of-order engine, each may
Issue an instruction each cycle.

Branch redirects

I ;
i Instruction fetch

| IF
- |

I‘

IC

-of-order processing
' BR
MP = IS8 EX WB — Xfer
BP
MP 1 IS8 EA 1 DC] Fot [WB [Xfer CP =
: FX
Do D1 n2 D3 — Xfer— GD |~ MP 1 ISS EX WH | Xfer
Instruction crack and
group formation MP 1 IS5 I FP
Fa WB I—‘ Xfer

Interrupts and flushes

4/2/02

€S252/Culler
Lec 18.10

Power 5 SMT

Branch prediction _] ir?sh;pl?c?::n
: selection
: Shared
Shared :
Program Return| | Target Eekine execution
counter stack | | cache queues Units
LSUO Data Data
s =2 Alternate FXUD Translation ~Cache
Instruction ,
InftrialioR buffer 0 Group formation : . - -
sk Instruction decode ; . e e RGN e S
Dispatch FPLUO completion gueus
Instruction]
translation sk
BXU |
Thread CAL Data Data
priority Shared- Read Write translation | |cache
register shared- shared- P
mapoaers register files register files B
cache
| I Shared by two threade [Thread 0 resources I Thread 1 resources]
4/2/02 €s252/Culler

Lec 18.11

4/2/02

Changes in Power 5 to support SMT

* Two PCs
- Increased associativity of L1 instruction

cache and the instruction address
translation buffers

+ Added per thread load and store queues
+ Increased size of the L2 (1.92 vs. 1.44

MB) and L3 caches

* Added separate instruction prefetch and

buffering per thread

 Increased the number of 8hysical (virtual)

registers from 152 to 24

* Increased the size of several issue queues
* The Power5 core is about 24% larger than

the Power4 core because of the addition of
SMT support

€S252/Culler
Lec 18.12

Performance of SMT (intel i7)
running two threaded parallel program

2.00 -

1.75 4

1.50 -

i7 SMT performance and energy efficiency ratio

@ Speedup —I— Energy efficiency

WINAYLIY .,

D'?S I I I I] 1 | I] I I 1 I I |] I | |
] Q& B o & S N > . o @ & & .o M
@‘Qﬁ @@e’:e\{\“ § "\ﬁé\ 3 ‘O@Q c\pa‘@ & QQ@ &@@Q2’¢ @ Q@& \Qé .;5500 N -IEE}
N & & o T T &
N\ A& Ny @
Q < 2y
~.252/Culler

4/2/02

Lec 18.13

4/2/02

And in conclusion ...

+ Limits to ILP (power efficiency,

dependencies, stalls ..) seem to limit to 4 to
8 issue for practical options

- Still critical to improve
- Amdahl’'s Law

* Improve utilization with Multithreading
» Coarse grain vs. Fine grained multihreading

- Only on big stall vs. every clock cycle
- Can help simplify hardware

+ Simultaneous Multithreading: fine grained

multithreading based on superscalar
microarchitecture

€S252/Culler
Lec 18.14

Conclusion/Trends

ILP Trends:

- Still interesting but power efficient

- Complex hardware is power hungry and hot

- Use more efficiently power

- Power/Temp considerations motivate shift to multi-cores

Compiler based ILP

- Low cost
- Complimentary to dynamic ILP
- VLIW do all in sw with specially designed ISA and uarch

SMT -cores to exploit idle resources
- Threaded program
- Independent programs

Is there enough thread level parallelism
- Depends on application
- Beyond SMT: SIMD, DLP, multi-core, many-core, accelerators

CS252/Culler
Lec 18.15

4/2/02

Fine grain multithreading

___|F_[D |E M |WB
1 T1
» 6 Threads on a 5 stage pipeline 2 T2 T
» No hazards 3 ™ T2 T
* Without MT: CPT 1
* With MT 6 threads CPI =1 cycle 4 T4 T3 T2 Tl
5 H T4 T3 T2 TI
6 T6 T5 T4 T3 T2
7 TIT T6 T5 T4 T3
8 T2 T1 Té6 TH T4
9 T3 T2 T1 T6 TH
10 T4 T3 T2 T1 T6
11 T5 T4 T3 T2 T3

€s252/cCuller

v Lec 18.16

« Say 10% of LDs miss, 40% loads, 10 cycle penalty

4/2/02

Fine grain multithreading

« Assume no miss for more than a thread at
the same time

 Without MT: 1.4

* With MT 6 Threads = 1.04 cycles

O 00 N O O p W N =

[T T G S N S
O D w NN —~ O

T1
T2
T3
T4
T5
T6
T1
T3
T4
T5
T6
T1
T2
T3
T4

T1
T2
T3
T4
T5
T6
T1
T3
T4
T5
T6
T1
T2
T3

T1
T2
T3
T4
T5
T6
T1
T3
T4
T5
T6
T1
T2

T1
T3
T4
T5
T6
T1
T3
T4
T5
T6
T1

T1
T3
T4
T5
T6
T1
T3
T4
T5
T6

