
CS252/Culler
Lec 18.14/2/02

EΠΛ605:Προχωρημένη Αρχιτεκτονική
Υπολογιστών

Γιάννος Σαζεϊδης
Κεφ. 3: MT and SMT

hοw to execute multiple threads

∆ιαβάστε κεφ. 3

Εαρινό Εξάμηνο 2017

CS252/Culler
Lec 18.24/2/02

OBSERVATION: for most apps, most execution
units lie idle

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

For an 8-way
superscalar.

CS252/Culler
Lec 18.34/2/02

Same hardware do both ILP and TLP?
(TLP: thread level parallelism)

• TLP and ILP exploit two different kinds of
parallel structure in a program

– TLP: Increase throughput of computers by running
independent programs OR parallel programs

• Could a processor oriented at ILP to exploit
TLP?

– functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code

– Could the TLP be used as a source of independent
instructions that might keep the processor busy during
stalls?

– Could TLP be used to employ the functional units that
would otherwise lie idle when insufficient ILP exists?

CS252/Culler
Lec 18.44/2/02

Alternative to ILP: Multithreaded Execution

• Multithreading: multiple threads to share
the functional units of 1 processor via
overlapping

– processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and
for running independent programs, a separate/larger TLB

– memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process
switch 1 to 1000s of clocks

• When to switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss,

another thread can be executed (coarse grain)

CS252/Culler
Lec 18.54/2/02

Fine-Grained Multithreading (FGMT)
• Switches between threads on each cycle,
causing the execution of multiples threads
to be interleaved

– Usually done in a round-robin fashion, skipping any stalled
threads

– CPU must be able to switch threads every clock
– Advantage it can hide both short and long stalls, since

instructions from other threads executed when one
thread stalls

– Disadvantage it slows down execution of individual
threads, since a thread ready to execute without
stalls will be delayed by instructions from other
threads: trade-off throughput for latency

• Conceptually at any given time
– one thread owns pipe stage
– But different threads can own different stages
– threads can be switched very quickly

• Used in Niagara (some variation in GPUs)
– No or simple forwarding – simpler hardware

CS252/Culler
Lec 18.64/2/02

Coarse-Grained Multithreading
(CGMT)

• Switches threads only on costly stalls, such as L2 cache
misses

• Advantages
– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly stall
• Disadvantage

– hard to overcome throughput losses from shorter stalls, due to
pipeline start-up costs

– Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can complete
• Because of this start-up overhead, coarse-grained

multithreading is better for reducing penalty of high cost
stalls, where pipeline refill << stall time

• Conceptually at any given time
– one thread owns entire pipeline

• Used in IBM AS/400

CS252/Culler
Lec 18.74/2/02

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): dynamically scheduled
processor already has many HW mechanisms to support
multithreading

– Large set of physical registers that can be used to hold the
register sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath without
confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

• Just adding a per thread renaming table and keeping
separate PCs, prediction history, TIDs in caches

– Independent commit can be supported by logically keeping a
separate reorder buffer for each thread

• Conceptually at any given time
– many thread can share pipe stages
– Ease of implementation: some stages owned by one thread

at a time (e.g. fetch, commit)
• Used in Intel, IBM and AMD processors

CS252/Culler
Lec 18.84/2/02

Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le) Superscalar Fine-Grained Coarse-Grained

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

CS252/Culler
Lec 18.94/2/02

Design Challenges in SMT

• Larger register file needed to hold register state
for multiple threads

• More pressure on shared resources, such as
register, caches, predictors, fu, buses

• Not affecting clock cycle time, especially in

• Selection tricky:
– If can fetch, rename and complete from one thread at a time,

how to choose next thread at each stage?

CS252/Culler
Lec 18.104/2/02

Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

CS252/Culler
Lec 18.114/2/02

Power 5 SMT

CS252/Culler
Lec 18.124/2/02

Changes in Power 5 to support SMT
• Two PCs
• Increased associativity of L1 instruction

cache and the instruction address
translation buffers

• Added per thread load and store queues
• Increased size of the L2 (1.92 vs. 1.44

MB) and L3 caches
• Added separate instruction prefetch and

buffering per thread
• Increased the number of physical (virtual)

registers from 152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than

the Power4 core because of the addition of
SMT support

CS252/Culler
Lec 18.134/2/02

Performance of SMT (intel i7)
running two threaded parallel program

CS252/Culler
Lec 18.144/2/02

And in conclusion …

• Limits to ILP (power efficiency,
dependencies, stalls …) seem to limit to 4 to
8 issue for practical options

– Still critical to improve
– Amdahl’s Law

• Improve utilization with Multithreading
• Coarse grain vs. Fine grained multihreading

– Only on big stall vs. every clock cycle
– Can help simplify hardware

• Simultaneous Multithreading: fine grained
multithreading based on superscalar
microarchitecture

CS252/Culler
Lec 18.154/2/02

Conclusion/Trends
• ILP Trends:

– Still interesting but power efficient
– Complex hardware is power hungry and hot
– Use more efficiently power
– Power/Temp considerations motivate shift to multi-cores

• Compiler based ILP
– Low cost
– Complimentary to dynamic ILP
– VLIW do all in sw with specially designed ISA and uarch

• SMT-cores to exploit idle resources
– Threaded program
– Independent programs

• Is there enough thread level parallelism
– Depends on application
– Beyond SMT: SIMD, DLP, multi-core, many-core, accelerators

CS252/Culler
Lec 18.164/2/02

F D E M WB
1 T1
2 T2 T1
3 T3 T2 T1
4 T4 T3 T2 T1
5 T5 T4 T3 T2 T1
6 T6 T5 T4 T3 T2
7 T1 T6 T5 T4 T3
8 T2 T1 T6 T5 T4
9 T3 T2 T1 T6 T5
10 T4 T3 T2 T1 T6
11 T5 T4 T3 T2 T3

Fine grain multithreading

• 6 Threads on a 5 stage pipeline
• No hazards

• Without MT: CPI 1
• With MT 6 threads CPI = 1 cycle

CS252/Culler
Lec 18.174/2/02

F D E M WB
1 T1
2 T2 T1
3 T3 T2 T1
4 T4 T3 T2 T1
5 T5 T4 T3 ---- T1
6 T6 T5 T4 T3 ----
7 T1 T6 T5 T4 T3
8 T3 T1 T6 T5 T4
9 T4 T3 T1 T6 T5
10 T5 T4 T3 T1 T6
11 T6 T5 T4 T3 T1
12 T1 T6 T5 T4 T3
13 T2 T1 T6 T5 T4
14 T3 T2 T1 T6 T5
15 T4 T3 T2 T1 T6

Fine grain multithreading

• Say 10% of LDs miss, 40% loads, 10 cycle penalty
• Assume no miss for more than a thread at

the same time
• Without MT: 1.4
• With MT 6 Threads = 1.04 cycles

