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OBSERVATION: for most apps, most execution 
units lie idle

From: Tullsen, 
Eggers, and Levy,
“Simultaneous 
Multithreading: 
Maximizing On-chip 
Parallelism, ISCA 
1995.

For an 8-way 
superscalar.
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Same hardware do both ILP and TLP? 
(TLP: thread level parallelism)

• TLP and ILP exploit two different kinds of 
parallel structure in a program

– TLP: Increase throughput of computers by running 
independent programs OR parallel programs

• Could a processor oriented at ILP to exploit 
TLP?

– functional units are often idle in data path designed for 
ILP because of either stalls or dependences in the code 

– Could the TLP be used as a source of independent 
instructions that might keep the processor busy during 
stalls? 

– Could TLP be used to employ the functional units that 
would otherwise lie idle when insufficient ILP exists?
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Alternative to ILP: Multithreaded Execution

• Multithreading: multiple threads to share 
the functional units of 1 processor via 
overlapping

– processor must duplicate independent state of each thread 
e.g., a separate copy of register file, a separate PC, and 
for running independent programs, a separate/larger TLB

– memory shared through the virtual memory mechanisms, 
which already support multiple processes

– HW for fast thread switch; much faster than full process 
switch  1 to 1000s of clocks

• When to switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, 

another thread can be executed (coarse grain)
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Fine-Grained Multithreading (FGMT)
• Switches between threads on each cycle, 
causing the execution of multiples threads 
to be interleaved 

– Usually done in a round-robin fashion, skipping any stalled 
threads

– CPU must be able to switch threads every clock
– Advantage it can hide both short and long stalls, since 

instructions from other threads executed when one 
thread stalls 

– Disadvantage it slows down execution of individual 
threads, since a thread ready to execute without 
stalls will be delayed by instructions from other 
threads: trade-off throughput for latency

• Conceptually at any given time 
– one thread owns pipe stage
– But different threads can own different stages
– threads can be switched very quickly

• Used in Niagara (some variation in GPUs)
– No or simple forwarding – simpler hardware
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Coarse-Grained Multithreading 
(CGMT)

• Switches threads only on costly stalls, such as L2 cache 
misses

• Advantages 
– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other 

threads issued only when the thread encounters a costly stall
• Disadvantage

– hard to overcome throughput losses from shorter stalls, due to 
pipeline start-up costs

– Since CPU issues instructions from 1 thread, when a stall 
occurs, the pipeline must be emptied or frozen 

– New thread must fill pipeline before instructions can complete 
• Because of this start-up overhead, coarse-grained 

multithreading is better for reducing penalty of high cost 
stalls, where pipeline refill << stall time

• Conceptually at any given time 
– one thread owns entire pipeline

• Used in IBM AS/400
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Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): dynamically scheduled 
processor already has many HW mechanisms to support 
multithreading

– Large set of physical registers that can be used to hold the 
register sets of independent threads 

– Register renaming provides unique register identifiers, so 
instructions from multiple threads can be mixed in datapath without 
confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of 
order, and get better utilization of the HW 

• Just adding a per thread renaming table and keeping 
separate PCs, prediction history, TIDs in caches

– Independent commit can be supported by logically keeping a 
separate reorder buffer for each thread

• Conceptually at any given time 
– many thread can share pipe stages
– Ease of implementation: some stages owned by one thread 

at a time (e.g. fetch, commit)
• Used in Intel, IBM and AMD processors
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Design Challenges in SMT

• Larger register file needed to hold register state 
for multiple threads

• More pressure on shared resources, such as 
register, caches, predictors, fu, buses

• Not affecting clock cycle time, especially in 

• Selection tricky:
– If can fetch, rename and complete from one thread at a time, 

how to choose next thread at each stage?
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Power 4

Single-threaded predecessor to 
Power 5.  8 execution units in
out-of-order engine, each may
issue an instruction each cycle.
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Power 5 SMT
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Changes in  Power 5 to support SMT
• Two PCs
• Increased associativity of L1 instruction 

cache and the instruction address 
translation buffers 

• Added per thread load and store queues 
• Increased size of the L2 (1.92 vs. 1.44 

MB) and L3 caches
• Added separate instruction prefetch and 

buffering per thread
• Increased the number of physical (virtual) 

registers from 152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than 

the Power4 core because of the addition of 
SMT support
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Performance of SMT (intel i7)
running two threaded parallel program
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And in conclusion …

• Limits to ILP (power efficiency, 
dependencies, stalls …) seem to limit to 4 to 
8 issue for practical options

– Still critical to improve
– Amdahl’s Law

• Improve utilization with Multithreading
• Coarse grain vs. Fine grained multihreading

– Only on big stall vs. every clock cycle
– Can help simplify hardware

• Simultaneous Multithreading: fine grained 
multithreading based on superscalar 
microarchitecture
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Conclusion/Trends
• ILP Trends: 

– Still interesting but power efficient
– Complex hardware is power hungry and hot
– Use more efficiently power
– Power/Temp considerations motivate shift to multi-cores

• Compiler based ILP
– Low cost 
– Complimentary to dynamic ILP
– VLIW do all in sw with specially designed ISA and uarch

• SMT-cores to exploit idle resources
– Threaded program
– Independent programs

• Is there enough thread level parallelism
– Depends on application
– Beyond SMT: SIMD, DLP, multi-core, many-core, accelerators
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F D E M WB
1 T1
2 T2 T1
3 T3 T2 T1
4 T4 T3 T2 T1
5 T5 T4 T3 T2 T1
6 T6 T5 T4 T3 T2
7 T1 T6 T5 T4 T3
8 T2 T1 T6 T5 T4
9 T3 T2 T1 T6 T5
10 T4 T3 T2 T1 T6
11 T5 T4 T3 T2 T3

Fine grain multithreading

• 6 Threads on a 5 stage pipeline
• No hazards 

• Without MT: CPI 1 
• With MT 6 threads CPI = 1 cycle
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F D E M WB
1 T1
2 T2 T1
3 T3 T2 T1
4 T4 T3 T2 T1
5 T5 T4 T3 ---- T1
6 T6 T5 T4 T3 ----
7 T1 T6 T5 T4 T3
8 T3 T1 T6 T5 T4
9 T4 T3 T1 T6 T5
10 T5 T4 T3 T1 T6
11 T6 T5 T4 T3 T1
12 T1 T6 T5 T4 T3
13 T2 T1 T6 T5 T4
14 T3 T2 T1 T6 T5
15 T4 T3 T2 T1 T6

Fine grain multithreading

• Say 10% of LDs miss, 40% loads, 10 cycle penalty
• Assume no miss for more than a thread at 

the same time
• Without MT: 1.4 
• With MT 6 Threads = 1.04 cycles


