
ΕΠΛ605

Κεφ. 4: Data-Level Parallelism
(DLP) in Vector, SIMD, and GPU
Architectures

Slides based on notes from book web page Computer
Architecture A Quantitative Approach, Fifth Edition

Copyright © 2012, Elsevier Inc. All rights reserved.

Parallelism Classification
 SISD: single instruction single data

 Single PC (single control flow sequencer)
 one instruction operates on one piece of data
 Traditional processors

 SIMD: single instruction multiple data <= Today’s Lecture
 Single PC
 one instruction operates on multiple data pieces
 Vector, Media extensions, GPUs

 MIMD: multiple instructions multiple data
 Multiple PCs (multiple sequencers)
 Multiple instructions each operate on one data
 Multicores, multiprocessors

 Combinations

Introduction
 SIMD architectures can exploit significant data-

level parallelism for:
 matrix-oriented scientific computing
 media-oriented image and sound processors

 SIMD is more energy efficient than MIMD
 Only needs to fetch one instruction per data operation
 Makes SIMD attractive for personal mobile devices

 SIMD allows programmer to continue to think
sequentially

Introduction

SIMD Parallelism
 Vector architectures
 SIMD extensions
 Graphics Processor Units (GPUs)

Introduction

Vector Architectures
 Basic idea:

 Read sets of data elements into “vector registers”
 Operate on those registers
 Disperse the results back into memory

 Registers are controlled by compiler
 Used to hide memory latency
 Leverage memory bandwidth

Vector A
rchitectures

Example Vector Architecture and Microarchitecture

 Loosely based on Cray-1
 Vector Register File: 8 Vector registers

 Each register holds a 64-element, 64 bits/element vector
 Scalar registers

 32 general-purpose registers
 32 floating-point registers

 Microarchitecture
 Vector Register file has 16 read ports and 8 write ports
 Vector functional units

 Fully pipelined
 Data and control hazards are detected (dynamically)

 Vector load-store unit
 Fully pipelined
 One word per clock cycle after initial latency

 Vector Processors no L1 D$. The VRF acts as data cache
 8 x 64 x 8 B = 212 B = 4KB

Vector A
rchitectures

DAXPY
double A[64],B[64],a;
int i;
…
…
for(i=0;i<64;++i)

B[i] = B[i] + A[i]*a

Scalar Code
R1 <= A
R2 <= B
FR3 <= a
R4 <= A + 64 * 8
L1:
ld.d FR4,0(R1)
mul.d FR5,FR4,FR3
ld.d FR6,0(R2)
add.d FR7,FR6,FR5
sd.d FR7,0(R2)
add R1,R1,8
add R2,R2,8
sub R8,R1,R4
bnz R8, L1

For 64 elements, 9x64= 576 instructions

Vector Instructions
 ADDVV.D: add two vectors (64 elements)
 MULVS.D: add vector to a scalar
 LV/SV: vector load and vector store from address

 Example: DAXPY
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

 Requires 6 instructions vs. almost 600 with non-vector

Vector A
rchitectures

Vector Execution Time
 Execution time depends on three factors:

 Length of operand vectors
 Structural hazards
 Data dependencies

 Assume vector functional units consume one
element per clock cycle
 Execution time is approximately the vector length

 Convey
 Set of vector instructions that could potentially

execute together
 Permitted by structural hazards

Vector A
rchitectures

Chimes
 Sequences with read-after-write dependency

hazards can be in the same convey via chaining

 Chaining
 Allows a vector operation to start as soon as the

individual elements of its vector source operand
become available

 Chime
 Unit of time to execute one convey

 m conveys executes in m chimes
 For vector length of n approximately requires m x n clock

cycles (without considering startup latency and chaning)
 n=64, m=3 =>192 cycles

Vector A
rchitectures

Convey and Chaining

T
i
m
e

LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply

load V1.0
load V1.1
load V1.2
…
…
load V1.63

mulvs V2.0,V1.0,F0
mulvs V2.1,V1.1,F0
mulvs V2.2,V1.2,F0
…
…
mulvs V2.63,V1.63,F0

Example
LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVV.D V4,V2,V3 ;add two vectors
SV Ry,V4 ;store the sum
Convoys:
1 LV MULVS.D
2 LV ADDVV.D
3 SV
3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles

Why not 1 convoy?
1. LV MULVS.D LV ADDVV.D SV

Vector A
rchitectures

Challenges
 Start up time

 Latency of vector functional unit
 Assume the same as Cray-1

 Floating-point add => 6 clock cycles
 Floating-point multiply => 7 clock cycles
 Floating-point divide => 20 clock cycles
 Vector load => 12 clock cycles

 Improvements:
 > 1 element per clock cycle (parallelism)
 IF statements in vector code
 Memory system optimizations to support vector processors
 Non-64 wide vectors
 Multiple dimensional matrices
 Sparse matrices
 Programming a vector computer

Vector A
rchitectures

Multiple Lanes
 Element ith of vector register A is “paired” to element ith

of vector register B
 Allows for multiple hardware lanes each with separate

functional unit (improve parallelism)
 E.g. with four lanes vector operations x4 faster

Vector A
rchitectures

Vector Mask Registers
 Consider:

for (i = 0; i < 64; i=i+1)
if (X[i] != 0)

X[i] = X[i] – Y[i];
 Use vector mask register to “disable” elements:

LV V1,Rx ;load vector X into V1
LV V2,Ry ;load vector Y
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1,V1,V2 ;subtract under vector mask
SV Rx,V1 ;store the result in X

 Reminds a little of predication
 GFLOPS rate decreases!

Vector A
rchitectures

Memory Banks
 Memory system must be designed to support high

bandwidth for vector loads and stores
 Spread accesses across multiple banks

 Control bank addresses independently
 Load or store non sequential words

 Example:
 32 processors, each generating 4 loads and 2 stores/cycle
 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
 How many memory banks needed?

Vector A
rchitectures

Vector Length Register
 Vector length not known at compile time?
 Know the Maximum Vector Length (MVL), eg 64
 Use Vector Length Register (VLR)
 Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/
VL = MVL; /*reset the length to maximum vector length*/

}

Vector A
rchitectures

Which part of loop
can be vectorized?

Stride
 Consider (matrix multiplication):

for (i = 0; i < 100; i=i+1)
for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;
for (k = 0; k < 100; k=k+1)
A[i][j] = A[i][j] + B[i][k] * C[k][j];

}

Vector A
rchitectures

CB X

A

i

j

i

j

Which part of
loop can be
vectorized?

Stride
 Consider (matrix multiplication):

for (i = 0; i < 100; i=i+1)
for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;
for (k = 0; k < 100; k=k+1)
A[i][j] = A[i][j] + B[i][k] * C[k][j];

}
 Must vectorize multiplication of rows of B with columns of C
 Use unit stride to fetch one vector (B assume row major)
 Use non-unit stride to fetch from memory C

 Special memory operation defines load vector, starting address and stride

 Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
 Bank busy time: time needed between able to initiate consecutive

accesses

Vector A
rchitectures

CB X

A

i

j

i

j

Stride at granularity of 8
 B0: 0, 64, 128,…
 B1: 8, 72, 136,…
 B2: 16, 80, 144,…
 B3: 24, 88, 152,…
 B4: 32, 96, 160,…
 B5: 40, 104, 168,…
 B6: 48, 112, 176,…
 B7: 56, 120, 184,…

• With 8 banks, each bank 8 bytes, 6 cycle busy, 1 access initiated per cycle:
• stride access = 1 double (8bytes), by the time go back (8 cycles) to same

bank previous access is done
• stride access = 8 doubles (64 bytes), every access goes to same bank;

consecutive accesses need to wait previous busy time

Stride Number of
accesses back
to same bank

Wait

8 8 0
16 4 2
32 2 4
64 1 5
40 ? ?

Scatter-Gather
 Consider:

for (i = 0; i < n; i=i+1)
A[K[i]] = A[K[i]] + C[M[i]];

 Use index vector:
LV Vk, Rk ;load K
LVI Va, (Ra+Vk) ;load A[K[]] - indirect
LV Vm, Rm ;load M
LVI Vc, (Rc+Vm) ;load C[M[]] - indirect
ADDVV.D Va, Va, Vc ;add them
SVI (Ra+Vk), Va ;store A[K[]] - inidrect

Vector A
rchitectures

Programming Vec. Architectures
 Compilers can provide feedback to programmers
 Programmers can provide hints to compiler
 Following 1991 analysis

Vector A
rchitectures

SIMD Extensions
 Media applications operate on data types narrower than the

native word size
 Hardware support: disconnect carry chains to “partition” a

64-bit adder into 8 8-bit adders

 Limitations, compared to vector instructions:
 Number of data operands encoded into op code (no VL)
 No sophisticated addressing modes (strided, scatter-

gather)
 No mask registers

 Historically SIMD extensions have been improving providing
more and more vector operations capabilities MMX, SSE,
SSE2, SSE3, SSSE3, SSE4, AVX, AVX2, AVX512

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

SIMD Implementations
 Implementations:

 Intel MMX (1996)
 Eight 8-bit integer ops or four 16-bit integer ops

 Streaming SIMD Extensions (SSE) (1999)
 Eight 16-bit integer ops
 Four 32-bit integer/fp ops or two 64-bit integer/fp ops

 Advanced Vector Extensions - AVX(2010)
 Four 64-bit integer/fp ops

 Operands must be consecutive and aligned memory
locations

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Example SIMD Code using 4-operand SIMD
instructions

 Example DXPY:
L.D F0,a ;load scalar a
MOV F1, F0 ;copy a into F1 for SIMD MUL
MOV F2, F0 ;copy a into F2 for SIMD MUL
MOV F3, F0 ;copy a into F3 for SIMD MUL
DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3] F4,F5,F6,F7
MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]
L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]
ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]
S.4D 0[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]
DADDIU Rx,Rx,#32 ;increment index to X
DADDIU Ry,Ry,#32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,Loop ;check if done

Scalar: 576 instructions, Vector: 6 instructions, SIMD: 144 instructions

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Roofline Performance Model
 Basic idea:

 Plot peak floating-point throughput as a function of
arithmetic intensity

 Ties together floating-point performance and memory
performance for a target machine

 Arithmetic intensity
 Floating-point operations per byte read

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Examples
 Attainable GFLOPs/sec
 Min(Peak Memory BW × Arithmetic Intensity,

Peak Floating Point Perf.)

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Graphical Processing Units
 Given the hardware invested to do graphics well,

how can supplement it to improve performance
of a wider range of applications?

 Basic idea:
 Heterogeneous execution model

 CPU is the host, GPU is the device

 Develop a C-like programming language for GPU
 Programming model is “Single Instruction Multiple

Thread” (SIMT)

G
raphical P

rocessing U
nits

DAXPY in CUDA

// Invoke DAXPY with 256 threads per Thread Block
__host__
int nblocks = (n+ 255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA
__device__
void daxpy(int n, double a, double *x, double *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

Threads and Blocks
 A thread is associated with each data element
 Threads are organized into blocks
 Blocks are organized into a grid

 GPU hardware handles thread management, not
applications or OS

G
raphical P

rocessing U
nits

Block

Grid (kernel)

Warp

Thread

SIMD instruction

NVIDIA GPU Architecture
 Similarities to vector machines:

 Works well with data-level parallel problems
 Scatter-gather transfers
 Mask registers
 Large register files

 Differences:
 No scalar processor
 Uses multithreading to hide memory latency

 Memory gap wider today than 1970s

 Has many functional units, as opposed to a few
deeply pipelined units like a vector processor

G
raphical P

rocessing U
nits

Example
 Multiply two vectors of length 8192

 Code that works over all elements is the grid
 Thread blocks break this down into manageable sizes

 512 threads per block
 Influenced by implementation: memory latency, number of

lanes, depth of pipeline, scheduler

 Thus grid size = 16 blocks
 Block is assigned to a multithreaded SIMD processor

(Streaming Multiprocessor - SM) by the thread block
scheduler - TBS

 Current-generation GPUs many (4-15) multithreaded
SIMD processors

G
raphical P

rocessing U
nits

Terminology
 Thread block scheduler (TBS) schedules blocks

to SIMD processors
 Within each SIMD processor:

 Many (2x16) SIMD lanes
 Wide and shallow compared to vector processors

 Threads of SIMD instructions
 Each has its own PC
 Thread scheduler (TS) uses scoreboard to dispatch
 No data dependencies between thread of SIMDs!
 SIMD processor keeps track of up to 48 threads of

SIMD instructions
 Hides memory latency with multithreading

 SIMD instruction executes on 32 elements at a time

G
raphical P

rocessing U
nits

Example
 GPU with 32768x32b registers/SM

 RF Divided into lanes
 Fermi has 16 physical SIMD lanes, each containing

2048x32b registers or 1024x64b registers
 64 vector registers of 32 32-bit elements
 32 vector registers of 32 64-bit elements

 Each SIMD thread is limited to 64 registers
 Software does spilling

G
raphical P

rocessing U
nits

NVIDIA Instruction Set Arch.
 ISA is an abstraction of the hardware instruction

set
 “Parallel Thread Execution (PTX)”
 Uses virtual registers
 Translation to machine code is performed in software
 Example (DAXPY):
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID
ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
mul.f64 RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

G
raphical P

rocessing U
nits

Conditional Branching
 Like vector architectures, GPU branch hardware uses

internal masks
 Also uses

 Branch synchronization stack
 Entries consist of masks for each SIMD lane
 I.e. which threads commit their results (all threads execute)

 Instruction markers to manage when a branch diverges into
multiple execution paths
 Push on divergent branch

 …and when paths converge
 Act as barriers
 Pops stack

 Per-thread-lane 1-bit predicate register, specified by
programmer

G
raphical P

rocessing U
nits

Example
if (X[i] != 0)

X[i] = X[i] – Y[i];
else X[i] = Z[i];

ld.global.f64 RD0, [X+R8] ; RD0 = X[i] – assume R8 is known
setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1
@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
sub.f64 RD0, RD0, RD2 ; Difference in RD0
st.global.f64 [X+R8], RD0 ; X[i] = RD0
@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1
ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0
ENDIF1: <next instruction>, *Pop ; pop to restore old mask

G
raphical P

rocessing U
nits

NVIDIA GPU Memory Structures
 Each SIMD Lane has private section of off-chip DRAM

 “Private memory”
 Contains stack frame, spilling registers, and private

variables
 Each multithreaded SIMD processor also has

local memory
 Shared by SIMD lanes / threads within a block

 Memory shared by SIMD processors is GPU
Memory
 Host can read and write GPU memory

 Private, Local, Shared

G
raphical P

rocessing U
nits

Fermi Multithreaded SIMD Proc.
G

raphical P
rocessing U

nits

Fermi Architecture Innovations
 Each SIMD processor has

 Two SIMD thread schedulers, two instruction dispatch units
 16 SIMD lanes (SIMD width=32, 2 cycles), 16 load-store units, 4

special function units
 Thus, two threads of SIMD instructions are scheduled every two

clock cycles

 Fast double precision
 Caches for GPU memory
 64-bit addressing and unified address space
 Error correcting codes
 Faster context switching
 Faster atomic instructions

G
raphical P

rocessing U
nits

Loop-Level Parallelism
 Focuses on determining whether data accesses in later

iterations are dependent on data values produced in
earlier iterations
 Loop-carried dependence

 Example 1:
for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

 No loop-carried dependence => can parallelize

D
etecting and E

nhancing Loop-Level P
arallelism

Loop-Level Parallelism
 Example 2:

for (i=0; i<100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

 S1 and S2 use values computed by S1 in
previous iteration

 S2 uses value computed by S1 in same iteration

D
etecting and E

nhancing Loop-Level P
arallelism

S1

S2

Loop-Level Parallelism
 Example 3:

for (i=0; i<100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}
 S1 uses value computed by S2 in previous iteration but dependence

is not circular so loop is parallel
 Transform to:

A[0] = A[0] + B[0];
for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[100] = C[99] + D[99];

D
etecting and E

nhancing Loop-Level P
arallelism

A[0] <=A[0] + B[0]

B[1] <=C[0]+D[0]
A[1]<= A[1]+B[1]

B[2]<=C[1]+D[1]
A[2]<=A[2]+B[2]

A[0] <=A[0] + B[0]
B[1] <=C[0]+D[0]

A[1]<= A[1]+B[1]
B[2]<=C[1]+D[1]

A[2]<=A[2]+B[2]

Loop-Level Parallelism
 Example 4:

for (i=0;i<100;i=i+1) {
A[i] = B[i] + C[i];
D[i] = A[i] * E[i];

}

 Example 5:
for (i=1;i<100;i=i+1) {

Y[i] = Y[i-1] + Y[i];
}

D
etecting and E

nhancing Loop-Level P
arallelism

Finding dependencies
 Assume indices are affine:

 a x i + b (i is loop index)

 Assume:
 Store to a x i + b, then
 Load from c x i + d
 i runs from m to n
 Dependence exists if:

 Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n
 Store to a x j + b, load from a x k + d, and a x j + b = c x k + d

D
etecting and E

nhancing Loop-Level P
arallelism

Finding dependencies
 Generally cannot determine at compile time
 Test for absence of a dependence:

 GCD test:
 If a dependency exists, GCD(c,a) must evenly divide (d-b)

 Example:
for (i=0; i<100; i=i+1) {

X[2*i+3] = X[2*i] * 5.0;
}

D
etecting and E

nhancing Loop-Level P
arallelism

Reductions
 Reduction Operation:

for (i=9999; i>=0; i=i-1)
sum = sum + x[i] * y[i];

 Transform to…
for (i=9999; i>=0; i=i-1)

sum [i] = x[i] * y[i];
for (i=9999; i>=0; i=i-1)

finalsum = finalsum + sum[i];

 Do on p processors:
for (i=999; i>=0; i=i-1)

finalsum[p] = finalsum[p] + sum[i+1000*p];
 Note: assumes associativity!

D
etecting and E

nhancing Loop-Level P
arallelism

Finding dependencies
 Example 2:

for (i=0; i<100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

 Watch for antidependencies and output
dependencies

D
etecting and E

nhancing Loop-Level P
arallelism

Finding dependencies
 Example 2:

for (i=0; i<100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

 Watch for antidependencies and output
dependencies

D
etecting and E

nhancing Loop-Level P
arallelism

