
ΕΠΛ605

Κεφ. 4: Data-Level Parallelism
(DLP) in Vector, SIMD, and GPU
Architectures

Slides based on notes from book web page Computer
Architecture A Quantitative Approach, Fifth Edition

Copyright © 2012, Elsevier Inc. All rights reserved.

Parallelism Classification
 SISD: single instruction single data

 Single PC (single control flow sequencer)
 one instruction operates on one piece of data
 Traditional processors

 SIMD: single instruction multiple data <= Today’s Lecture
 Single PC
 one instruction operates on multiple data pieces
 Vector, Media extensions, GPUs

 MIMD: multiple instructions multiple data
 Multiple PCs (multiple sequencers)
 Multiple instructions each operate on one data
 Multicores, multiprocessors

 Combinations

Introduction
 SIMD architectures can exploit significant data-

level parallelism for:
 matrix-oriented scientific computing
 media-oriented image and sound processors

 SIMD is more energy efficient than MIMD
 Only needs to fetch one instruction per data operation
 Makes SIMD attractive for personal mobile devices

 SIMD allows programmer to continue to think
sequentially

Introduction

SIMD Parallelism
 Vector architectures
 SIMD extensions
 Graphics Processor Units (GPUs)

Introduction

Vector Architectures
 Basic idea:

 Read sets of data elements into “vector registers”
 Operate on those registers
 Disperse the results back into memory

 Registers are controlled by compiler
 Used to hide memory latency
 Leverage memory bandwidth

Vector A
rchitectures

Example Vector Architecture and Microarchitecture

 Loosely based on Cray-1
 Vector Register File: 8 Vector registers

 Each register holds a 64-element, 64 bits/element vector
 Scalar registers

 32 general-purpose registers
 32 floating-point registers

 Microarchitecture
 Vector Register file has 16 read ports and 8 write ports
 Vector functional units

 Fully pipelined
 Data and control hazards are detected (dynamically)

 Vector load-store unit
 Fully pipelined
 One word per clock cycle after initial latency

 Vector Processors no L1 D$. The VRF acts as data cache
 8 x 64 x 8 B = 212 B = 4KB

Vector A
rchitectures

DAXPY
double A[64],B[64],a;
int i;
…
…
for(i=0;i<64;++i)

B[i] = B[i] + A[i]*a

Scalar Code
R1 <= A
R2 <= B
FR3 <= a
R4 <= A + 64 * 8
L1:
ld.d FR4,0(R1)
mul.d FR5,FR4,FR3
ld.d FR6,0(R2)
add.d FR7,FR6,FR5
sd.d FR7,0(R2)
add R1,R1,8
add R2,R2,8
sub R8,R1,R4
bnz R8, L1

For 64 elements, 9x64= 576 instructions

Vector Instructions
 ADDVV.D: add two vectors (64 elements)
 MULVS.D: add vector to a scalar
 LV/SV: vector load and vector store from address

 Example: DAXPY
L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

 Requires 6 instructions vs. almost 600 with non-vector

Vector A
rchitectures

Vector Execution Time
 Execution time depends on three factors:

 Length of operand vectors
 Structural hazards
 Data dependencies

 Assume vector functional units consume one
element per clock cycle
 Execution time is approximately the vector length

 Convey
 Set of vector instructions that could potentially

execute together
 Permitted by structural hazards

Vector A
rchitectures

Chimes
 Sequences with read-after-write dependency

hazards can be in the same convey via chaining

 Chaining
 Allows a vector operation to start as soon as the

individual elements of its vector source operand
become available

 Chime
 Unit of time to execute one convey

 m conveys executes in m chimes
 For vector length of n approximately requires m x n clock

cycles (without considering startup latency and chaning)
 n=64, m=3 =>192 cycles

Vector A
rchitectures

Convey and Chaining

T
i
m
e

LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply

load V1.0
load V1.1
load V1.2
…
…
load V1.63

mulvs V2.0,V1.0,F0
mulvs V2.1,V1.1,F0
mulvs V2.2,V1.2,F0
…
…
mulvs V2.63,V1.63,F0

Example
LV V1,Rx ;load vector X
MULVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVV.D V4,V2,V3 ;add two vectors
SV Ry,V4 ;store the sum
Convoys:
1 LV MULVS.D
2 LV ADDVV.D
3 SV
3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles

Why not 1 convoy?
1. LV MULVS.D LV ADDVV.D SV

Vector A
rchitectures

Challenges
 Start up time

 Latency of vector functional unit
 Assume the same as Cray-1

 Floating-point add => 6 clock cycles
 Floating-point multiply => 7 clock cycles
 Floating-point divide => 20 clock cycles
 Vector load => 12 clock cycles

 Improvements:
 > 1 element per clock cycle (parallelism)
 IF statements in vector code
 Memory system optimizations to support vector processors
 Non-64 wide vectors
 Multiple dimensional matrices
 Sparse matrices
 Programming a vector computer

Vector A
rchitectures

Multiple Lanes
 Element ith of vector register A is “paired” to element ith

of vector register B
 Allows for multiple hardware lanes each with separate

functional unit (improve parallelism)
 E.g. with four lanes vector operations x4 faster

Vector A
rchitectures

Vector Mask Registers
 Consider:

for (i = 0; i < 64; i=i+1)
if (X[i] != 0)

X[i] = X[i] – Y[i];
 Use vector mask register to “disable” elements:

LV V1,Rx ;load vector X into V1
LV V2,Ry ;load vector Y
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0
SUBVV.D V1,V1,V2 ;subtract under vector mask
SV Rx,V1 ;store the result in X

 Reminds a little of predication
 GFLOPS rate decreases!

Vector A
rchitectures

Memory Banks
 Memory system must be designed to support high

bandwidth for vector loads and stores
 Spread accesses across multiple banks

 Control bank addresses independently
 Load or store non sequential words

 Example:
 32 processors, each generating 4 loads and 2 stores/cycle
 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
 How many memory banks needed?

Vector A
rchitectures

Vector Length Register
 Vector length not known at compile time?
 Know the Maximum Vector Length (MVL), eg 64
 Use Vector Length Register (VLR)
 Use strip mining for vectors over the maximum length:

low = 0;
VL = (n % MVL); /*find odd-size piece using modulo op % */
for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/
Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/
VL = MVL; /*reset the length to maximum vector length*/

}

Vector A
rchitectures

Which part of loop
can be vectorized?

Stride
 Consider (matrix multiplication):

for (i = 0; i < 100; i=i+1)
for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;
for (k = 0; k < 100; k=k+1)
A[i][j] = A[i][j] + B[i][k] * C[k][j];

}

Vector A
rchitectures

CB X

A

i

j

i

j

Which part of
loop can be
vectorized?

Stride
 Consider (matrix multiplication):

for (i = 0; i < 100; i=i+1)
for (j = 0; j < 100; j=j+1) {

A[i][j] = 0.0;
for (k = 0; k < 100; k=k+1)
A[i][j] = A[i][j] + B[i][k] * C[k][j];

}
 Must vectorize multiplication of rows of B with columns of C
 Use unit stride to fetch one vector (B assume row major)
 Use non-unit stride to fetch from memory C

 Special memory operation defines load vector, starting address and stride

 Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:
 Bank busy time: time needed between able to initiate consecutive

accesses

Vector A
rchitectures

CB X

A

i

j

i

j

Stride at granularity of 8
 B0: 0, 64, 128,…
 B1: 8, 72, 136,…
 B2: 16, 80, 144,…
 B3: 24, 88, 152,…
 B4: 32, 96, 160,…
 B5: 40, 104, 168,…
 B6: 48, 112, 176,…
 B7: 56, 120, 184,…

• With 8 banks, each bank 8 bytes, 6 cycle busy, 1 access initiated per cycle:
• stride access = 1 double (8bytes), by the time go back (8 cycles) to same

bank previous access is done
• stride access = 8 doubles (64 bytes), every access goes to same bank;

consecutive accesses need to wait previous busy time

Stride Number of
accesses back
to same bank

Wait

8 8 0
16 4 2
32 2 4
64 1 5
40 ? ?

Scatter-Gather
 Consider:

for (i = 0; i < n; i=i+1)
A[K[i]] = A[K[i]] + C[M[i]];

 Use index vector:
LV Vk, Rk ;load K
LVI Va, (Ra+Vk) ;load A[K[]] - indirect
LV Vm, Rm ;load M
LVI Vc, (Rc+Vm) ;load C[M[]] - indirect
ADDVV.D Va, Va, Vc ;add them
SVI (Ra+Vk), Va ;store A[K[]] - inidrect

Vector A
rchitectures

Programming Vec. Architectures
 Compilers can provide feedback to programmers
 Programmers can provide hints to compiler
 Following 1991 analysis

Vector A
rchitectures

SIMD Extensions
 Media applications operate on data types narrower than the

native word size
 Hardware support: disconnect carry chains to “partition” a

64-bit adder into 8 8-bit adders

 Limitations, compared to vector instructions:
 Number of data operands encoded into op code (no VL)
 No sophisticated addressing modes (strided, scatter-

gather)
 No mask registers

 Historically SIMD extensions have been improving providing
more and more vector operations capabilities MMX, SSE,
SSE2, SSE3, SSSE3, SSE4, AVX, AVX2, AVX512

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

SIMD Implementations
 Implementations:

 Intel MMX (1996)
 Eight 8-bit integer ops or four 16-bit integer ops

 Streaming SIMD Extensions (SSE) (1999)
 Eight 16-bit integer ops
 Four 32-bit integer/fp ops or two 64-bit integer/fp ops

 Advanced Vector Extensions - AVX(2010)
 Four 64-bit integer/fp ops

 Operands must be consecutive and aligned memory
locations

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Example SIMD Code using 4-operand SIMD
instructions

 Example DXPY:
L.D F0,a ;load scalar a
MOV F1, F0 ;copy a into F1 for SIMD MUL
MOV F2, F0 ;copy a into F2 for SIMD MUL
MOV F3, F0 ;copy a into F3 for SIMD MUL
DADDIU R4,Rx,#512 ;last address to load

Loop: L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3] F4,F5,F6,F7
MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3]
L.4D F8,0[Ry] ;load Y[i], Y[i+1], Y[i+2], Y[i+3]
ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3]
S.4D 0[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3]
DADDIU Rx,Rx,#32 ;increment index to X
DADDIU Ry,Ry,#32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,Loop ;check if done

Scalar: 576 instructions, Vector: 6 instructions, SIMD: 144 instructions

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Roofline Performance Model
 Basic idea:

 Plot peak floating-point throughput as a function of
arithmetic intensity

 Ties together floating-point performance and memory
performance for a target machine

 Arithmetic intensity
 Floating-point operations per byte read

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Examples
 Attainable GFLOPs/sec
 Min(Peak Memory BW × Arithmetic Intensity,

Peak Floating Point Perf.)

S
IM

D
 Instruction S

et E
xtensions for M

ultim
edia

Graphical Processing Units
 Given the hardware invested to do graphics well,

how can supplement it to improve performance
of a wider range of applications?

 Basic idea:
 Heterogeneous execution model

 CPU is the host, GPU is the device

 Develop a C-like programming language for GPU
 Programming model is “Single Instruction Multiple

Thread” (SIMT)

G
raphical P

rocessing U
nits

DAXPY in CUDA

// Invoke DAXPY with 256 threads per Thread Block
__host__
int nblocks = (n+ 255) / 256;
daxpy<<<nblocks, 256>>>(n, 2.0, x, y);

// DAXPY in CUDA
__device__
void daxpy(int n, double a, double *x, double *y)
{

int i = blockIdx.x*blockDim.x + threadIdx.x;
if (i < n) y[i] = a*x[i] + y[i];

}

Threads and Blocks
 A thread is associated with each data element
 Threads are organized into blocks
 Blocks are organized into a grid

 GPU hardware handles thread management, not
applications or OS

G
raphical P

rocessing U
nits

Block

Grid (kernel)

Warp

Thread

SIMD instruction

NVIDIA GPU Architecture
 Similarities to vector machines:

 Works well with data-level parallel problems
 Scatter-gather transfers
 Mask registers
 Large register files

 Differences:
 No scalar processor
 Uses multithreading to hide memory latency

 Memory gap wider today than 1970s

 Has many functional units, as opposed to a few
deeply pipelined units like a vector processor

G
raphical P

rocessing U
nits

Example
 Multiply two vectors of length 8192

 Code that works over all elements is the grid
 Thread blocks break this down into manageable sizes

 512 threads per block
 Influenced by implementation: memory latency, number of

lanes, depth of pipeline, scheduler

 Thus grid size = 16 blocks
 Block is assigned to a multithreaded SIMD processor

(Streaming Multiprocessor - SM) by the thread block
scheduler - TBS

 Current-generation GPUs many (4-15) multithreaded
SIMD processors

G
raphical P

rocessing U
nits

Terminology
 Thread block scheduler (TBS) schedules blocks

to SIMD processors
 Within each SIMD processor:

 Many (2x16) SIMD lanes
 Wide and shallow compared to vector processors

 Threads of SIMD instructions
 Each has its own PC
 Thread scheduler (TS) uses scoreboard to dispatch
 No data dependencies between thread of SIMDs!
 SIMD processor keeps track of up to 48 threads of

SIMD instructions
 Hides memory latency with multithreading

 SIMD instruction executes on 32 elements at a time

G
raphical P

rocessing U
nits

Example
 GPU with 32768x32b registers/SM

 RF Divided into lanes
 Fermi has 16 physical SIMD lanes, each containing

2048x32b registers or 1024x64b registers
 64 vector registers of 32 32-bit elements
 32 vector registers of 32 64-bit elements

 Each SIMD thread is limited to 64 registers
 Software does spilling

G
raphical P

rocessing U
nits

NVIDIA Instruction Set Arch.
 ISA is an abstraction of the hardware instruction

set
 “Parallel Thread Execution (PTX)”
 Uses virtual registers
 Translation to machine code is performed in software
 Example (DAXPY):
shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29)
add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID
ld.global.f64 RD0, [X+R8] ; RD0 = X[i]
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
mul.f64 RD0, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a)
add.f64 RD0, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i])
st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i])

G
raphical P

rocessing U
nits

Conditional Branching
 Like vector architectures, GPU branch hardware uses

internal masks
 Also uses

 Branch synchronization stack
 Entries consist of masks for each SIMD lane
 I.e. which threads commit their results (all threads execute)

 Instruction markers to manage when a branch diverges into
multiple execution paths
 Push on divergent branch

 …and when paths converge
 Act as barriers
 Pops stack

 Per-thread-lane 1-bit predicate register, specified by
programmer

G
raphical P

rocessing U
nits

Example
if (X[i] != 0)

X[i] = X[i] – Y[i];
else X[i] = Z[i];

ld.global.f64 RD0, [X+R8] ; RD0 = X[i] – assume R8 is known
setp.neq.s32 P1, RD0, #0 ; P1 is predicate register 1
@!P1, bra ELSE1, *Push ; Push old mask, set new mask bits

; if P1 false, go to ELSE1
ld.global.f64 RD2, [Y+R8] ; RD2 = Y[i]
sub.f64 RD0, RD0, RD2 ; Difference in RD0
st.global.f64 [X+R8], RD0 ; X[i] = RD0
@P1, bra ENDIF1, *Comp ; complement mask bits

; if P1 true, go to ENDIF1
ELSE1: ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i]

st.global.f64 [X+R8], RD0 ; X[i] = RD0
ENDIF1: <next instruction>, *Pop ; pop to restore old mask

G
raphical P

rocessing U
nits

NVIDIA GPU Memory Structures
 Each SIMD Lane has private section of off-chip DRAM

 “Private memory”
 Contains stack frame, spilling registers, and private

variables
 Each multithreaded SIMD processor also has

local memory
 Shared by SIMD lanes / threads within a block

 Memory shared by SIMD processors is GPU
Memory
 Host can read and write GPU memory

 Private, Local, Shared

G
raphical P

rocessing U
nits

Fermi Multithreaded SIMD Proc.
G

raphical P
rocessing U

nits

Fermi Architecture Innovations
 Each SIMD processor has

 Two SIMD thread schedulers, two instruction dispatch units
 16 SIMD lanes (SIMD width=32, 2 cycles), 16 load-store units, 4

special function units
 Thus, two threads of SIMD instructions are scheduled every two

clock cycles

 Fast double precision
 Caches for GPU memory
 64-bit addressing and unified address space
 Error correcting codes
 Faster context switching
 Faster atomic instructions

G
raphical P

rocessing U
nits

Loop-Level Parallelism
 Focuses on determining whether data accesses in later

iterations are dependent on data values produced in
earlier iterations
 Loop-carried dependence

 Example 1:
for (i=999; i>=0; i=i-1)

x[i] = x[i] + s;

 No loop-carried dependence => can parallelize

D
etecting and E

nhancing Loop-Level P
arallelism

Loop-Level Parallelism
 Example 2:

for (i=0; i<100; i=i+1) {
A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}

 S1 and S2 use values computed by S1 in
previous iteration

 S2 uses value computed by S1 in same iteration

D
etecting and E

nhancing Loop-Level P
arallelism

S1

S2

Loop-Level Parallelism
 Example 3:

for (i=0; i<100; i=i+1) {
A[i] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i]; /* S2 */

}
 S1 uses value computed by S2 in previous iteration but dependence

is not circular so loop is parallel
 Transform to:

A[0] = A[0] + B[0];
for (i=0; i<99; i=i+1) {

B[i+1] = C[i] + D[i];
A[i+1] = A[i+1] + B[i+1];

}
B[100] = C[99] + D[99];

D
etecting and E

nhancing Loop-Level P
arallelism

A[0] <=A[0] + B[0]

B[1] <=C[0]+D[0]
A[1]<= A[1]+B[1]

B[2]<=C[1]+D[1]
A[2]<=A[2]+B[2]

A[0] <=A[0] + B[0]
B[1] <=C[0]+D[0]

A[1]<= A[1]+B[1]
B[2]<=C[1]+D[1]

A[2]<=A[2]+B[2]

Loop-Level Parallelism
 Example 4:

for (i=0;i<100;i=i+1) {
A[i] = B[i] + C[i];
D[i] = A[i] * E[i];

}

 Example 5:
for (i=1;i<100;i=i+1) {

Y[i] = Y[i-1] + Y[i];
}

D
etecting and E

nhancing Loop-Level P
arallelism

Finding dependencies
 Assume indices are affine:

 a x i + b (i is loop index)

 Assume:
 Store to a x i + b, then
 Load from c x i + d
 i runs from m to n
 Dependence exists if:

 Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n
 Store to a x j + b, load from a x k + d, and a x j + b = c x k + d

D
etecting and E

nhancing Loop-Level P
arallelism

Finding dependencies
 Generally cannot determine at compile time
 Test for absence of a dependence:

 GCD test:
 If a dependency exists, GCD(c,a) must evenly divide (d-b)

 Example:
for (i=0; i<100; i=i+1) {

X[2*i+3] = X[2*i] * 5.0;
}

D
etecting and E

nhancing Loop-Level P
arallelism

Reductions
 Reduction Operation:

for (i=9999; i>=0; i=i-1)
sum = sum + x[i] * y[i];

 Transform to…
for (i=9999; i>=0; i=i-1)

sum [i] = x[i] * y[i];
for (i=9999; i>=0; i=i-1)

finalsum = finalsum + sum[i];

 Do on p processors:
for (i=999; i>=0; i=i-1)

finalsum[p] = finalsum[p] + sum[i+1000*p];
 Note: assumes associativity!

D
etecting and E

nhancing Loop-Level P
arallelism

Finding dependencies
 Example 2:

for (i=0; i<100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

 Watch for antidependencies and output
dependencies

D
etecting and E

nhancing Loop-Level P
arallelism

Finding dependencies
 Example 2:

for (i=0; i<100; i=i+1) {
Y[i] = X[i] / c; /* S1 */
X[i] = X[i] + c; /* S2 */
Z[i] = Y[i] + c; /* S3 */
Y[i] = c - Y[i]; /* S4 */

}

 Watch for antidependencies and output
dependencies

D
etecting and E

nhancing Loop-Level P
arallelism

