EMNAG05

Kep. 4: Data-Level Parallelism
(DLP) in Vector, SIMD, and GPU

Architectures

Slides based on notes from book web page Computer
Architecture A Quantitative Approach, Fifth Edition

Copyright © 2012, Elsevier Inc. All rights reserved.

Parallelism Classification

SISD: single instruction single data

= Single PC (single control flow sequencer)

= one instruction operates on one piece of data

= [raditional processors

SIMD: single instruction multiple data <= Today’s Lecture
= Single PC

= one instruction operates on multiple data pieces
= Vector, Media extensions, GPUs

MIMD: multiple instructions multiple data

= Multiple PCs (multiple sequencers)

= Multiple instructions each operate on one data

= Multicores, multiprocessors

Combinations

Introduction

= SIMD architectures can exploit significant data-
level parallelism for:

= matrix-oriented scientific computing
= media-oriented image and sound processors

= SIMD is more energy efficient than MIMD
= Only needs to fetch one instruction per data operation
= Makes SIMD attractive for personal mobile devices

» SIMD allows programmer to continue to think
sequentially

uoIONPOJU|

SIMD Parallelism

s Vector architectures
s SIMD extensions
s Graphics Processor Units (GPUs)

uoIONPOJU|

Vector Architectures

= Basic idea:
= Read sets of data elements into “vector registers”
= Operate on those registers
= Disperse the results back into memory

= Registers are controlled by compiler
= Used to hide memory latency
= Leverage memory bandwidth

S8.INJ038YDIY J0JOSA

Example Vector Architecture and Microarchitecture

s Loosely based on Cray-1

s Vector Register File: 8 Vector registers
= Each register holds a 64-element, 64 bits/element vector

= Scalar registers
= 32 general-purpose registers
= 32 floating-point registers

= Microarchitecture

= Vector Register file has 16 read ports and 8 write ports

= Vector functional units
« Fully pipelined
= Data and control hazards are detected (dynamically)

= Vector load-store unit
« Fully pipelined
= One word per clock cycle after initial latency

= Vector Processors no L1 D$. The VRF acts as data cache
= 8x64x8B=22B =4KB

S8INJ08)IYDIY JOJON

DAXPY

double A[64],B[64],a;
Int I;

1.‘c.).r(i=0;i<64;++i)
BIi] = BJi] + Ali]*a

Scalar Code
R1<=A

R2 <=B

FR3 <=a
R4<=A+64*8

L1:

Id.d FR4,0(R1)
mul.d FR5,FR4,FR3
Id.d FR6,0(R2)
add.d FR7,FR6,FR5
sd.d FR7,0(R2)

add R1,R1,8

add R2,R2,8

sub R8,R1,R4

bnz R8, L1

For 64 elements, 9x64= 576 instructions

Vector Instructions

ADDVV.D: add two vectors (64 elements)
MULVS.D: add vector to a scalar
LV/SV: vector load and vector store from address

Example: DAXPY

L.D FO,a . load scalar a

LV V1,Rx - load vector X
MULVS.D V2,V1,FO , vector-scalar multiply
LV V3,Ry - load vector Y
ADDVV V4.\V2,V3 - add

SV Ry,V4 ; store the result

Requires 6 instructions vs. almost 600 with non-vector

S8INJ08)IYDIY JOJON

Vector Execution Time

= Execution time depends on three factors:
= Length of operand vectors
= Structural hazards
= Data dependencies

m Assume vector functional units consume one
element per clock cycle

= Execution time is approximately the vector length

s Convey

= Set of vector instructions that could potentially
execute together

= Permitted by structural hazards

S8.INJ038YDIY J0JOSA

Chimes

s Sequences with read-after-write dependency
hazards can be in the same convey via chaining

= Chaining

= Allows a vector operation to start as soon as the
individual elements of its vector source operand
become available

s Chime

= Unit of time to execute one convey
= M conveys executes in m chimes

= For vector length of n approximately requires m x n clock
cycles (without considering startup latency and chaning)

= N=64, m=3 =>192 cycles

S8INJ08)IYDIY JOJON

Convey and Chaining

LV V1,Rx ' load vector X
MULVS.D V2, V1,F0 ; vector-scalar multiply
load V1.0

load V1.2 mulvs V2.1,V1.1,F0
mulvs V2.2,V1.2,F0

load V1.1 %:mulvs V2.0,V1.0,FO

load V1 .63\
mulvs V2.63,V1.63,F0

MULVS.D
ADDVV.D

Example

LV V1,Rx
MULVS.D V2,V1,FO
LV V3,Ry
ADDVV.D V4, V2 V3
SV Ry,V4
Convoys:

1 LV

2 LV

3 Y,

;load vector X
;vector-scalar multiply
;load vector Y

;add two vectors
;store the sum

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5
For 64 element vectors, requires 64 x 3 = 192 clock cycles

Why not 1 convoy?

1.LV MULVS.D

LV

ADDVV.D SV

S8INJ08)IYDIY JOJON

Challenges

Start up time

Latency of vector functional unit

= Assume the same as Cray-1

» Floating-point add => 6 clock cycles

» Floating-point multiply => 7 clock cycles
» Floating-point divide => 20 clock cycles
» Vector load => 12 clock cycles

Improvements:

> 1 element per clock cycle (parallelism)

IF statements in vector code

Memory system optimizations to support vector processors
Non-64 wide vectors

Multiple dimensional matrices

Sparse matrices

Programming a vector computer

S8INJ08)IYDIY JOJON

Multiple Lanes

= Element ith of vector register A is “paired” to element i
of vector register B

= Allows for multiple hardware lanes each with separate
functional unit (improve parallelism)

» E.g. with four lanes vector operations x4 faster

Lane 0 Lane 1 Lane 2 Lane 3
I e e e ™
aray] |z
e FP add FP add FP add FP add
ipa 0 ipe 1 ipe 2 ipe 3
a1l larm pip FIp pip PR
L L & L A L
ars]| |mre]
L
AL51 |25 Wector Wector Wector Wector
registars: registers: registers: registars:
Al4]] |Br4] elements alements elements elements
0,4,8,... 1,5,8,... 2,68, 10, ... 3,711, ...
A3 |23 j T [
apz1| |zr2) i I Y | 1 1
arni| |zr1a FP mul. FP mul. FP mul. FF mul.
¢ ‘ pipe 0 pipe 1 pipe 2 pipe 3

. A AN AN S

Vector load-store unit

S8INJ08)IYDIY JOJON

Vector Mask Registers

s Consider:
for (i = 0; i < 64; i=i+1)
if (X[i] != 0)
X[i] = X[i] = YTi];
s Use vector mask register to “disable” elements:
LV V1,Rx ‘load vector X into V1
LV V2,Ry ‘load vector Y
L.D FO,#0 ‘load FP zero into FO
SNEVS.D V1,FO ;sets VM(i) to 1 if V1(i)!=FO0
SUBVV.D V1,V1,V2 'subtract under vector mask
SV Rx,V1 'store the result in X

s Reminds a little of predication
s GFLOPS rate decreases!

S8.INJ038YDIY J0JOSA

Memory Banks

= Memory system must be designed to support high
bandwidth for vector loads and stores

s Spread accesses across multiple banks
= Control bank addresses independently
= Load or store non sequential words

= Example:
= 32 processors, each generating 4 loads and 2 stores/cycle
» Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns
= How many memory banks needed?

S8.INJ038YDIY J0JOSA

Vector Length Register

s Vector length not known at compile time?
= Know the Maximum Vector Length (MVL), eg 64
s Use Vector Length Register (VLR)

= Use strip mining for vectors over the maximum length:

low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { "outer loop*/
for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/ Which part of |00p

Y[i] = a * X[i] + Y[i] ; /*main operation*/ can be vectorized?

low = low + VL,; /*start of next vector*/
VL = MVL,; /*reset the length to maximum vector length*/

Value of | 0 1 2 3 . - VL
Range of i 0 m (i MVL) (s 2 MVL) L. (n=MWL)
(m-1) (m-1) (m-1) (m-1) (r-1)

+MVL +2xMVL +3xMVL

S8.INJ038YDIY J0JOSA

Stride | I
= Consider (matrix multiplication): B
for (i=0;i<100; i=i+1)
for (j = 0;j < 100; j=j+1) {

Which part of
loop can be
vectorized?

}

Ali][] = 0.0;
for (k = 0: k < 100; k=k+1)
Al]0] = Ali]GT + Blillk] * CLK]L];

Stride i

Consider (matrix multiplication): B X C

for (i=0;i<100; i=i+1)
for (j = 0;j < 100; j=j+1) {
Ali][j] = 0.0; j
for (k = 0; k < 100; k=k+1)
AliN1 = AlilDT + BRIIK] = CIKI;
}
Must vectorize multiplication of rows of B with columns of C
Use unit stride to fetch one vector (B assume row major)

Use non-unit stride to fetch from memory C
= Special memory operation defines load vector, starting address and stride

Bank conflict (stall) occurs when the same bank is hit faster than
bank busy time:

= Bank busy time: time needed between able to initiate consecutive
accesses

Stride at granularity of 8

= BO: 0, 64, 128,...
= B1: 8, 72, 1306,...
= B2: 16, 80, 144,...

= B3:24 88 152.... 8 8 0

. 16 4 2
= B4:32 96, 160.... . , .
= B5:40. 104, 168.... o 1 ;
= B6: 48 112, 176.... 40))

wm B7: 56, 120, 184,...

- With 8 banks, each bank 8 bytes, 6 cycle busy, 1 access initiated per cycle:

. stride access = 1 double (8bytes), by the time go back (8 cycles) to same
bank previous access is done

. stride access = 8 doubles (64 bytes), every access goes to same bank;
consecutive accesses need to wait previous busy time

Scatter-Gather

s Consider:
for (i=0; i< n; i=i+1)
ALK = AIK[I]] + CIMI[i]];

s Use index vector:

LV Vk, Rk load K

LVI Va, (Ra+VKk) load A[K[]] - indirect
LV Vm, Rm ;load M

LVI Ve, (Rc+Vm) ‘load C[M[]] - indirect
ADDVV.D Va, Va, Vc ‘add them

SVI (Ra+Vk), Va ;store A[K]]] - inidrect

S8INJ08)IYDIY JOJON

Programming Vec. Architectures

s Compilers can provide feedback to programmers
s Programmers can provide hints to compiler
= Following 1991 analysis

Operations executed Operations executed

Benchmark in vector mode, in vector mode, Speedup from
name compiler-optimized with programmer aid hint optimization
BDNA 96.1% 97.2% 1.52
MG3D 05.1% 04.5% 1.00
FLOS52 01.5% 88.7% N/A
ARC3D 01.1% 02.0% 1.01
SPECT7 90.3% 90.4% 1.07
MDG 87.7% 04.2% 1.49
TRFD 69.8% 73.7% 1.67
DYFESM 68.8% 65.6% N/A
ADM 42.9% 59.6% 3.60
OCEAN 42.8% 01.2% 3.92
TRACK 14.4% 54.6% 2.52
SPICE 11.5% 79.9% 4.06

QCD 4.2% 715.1% 2.15

S81N108)IY2Jy JOJOBA

SIMD Extensions

» Media applications operate on data types narrower than the
native word size

= Hardware support: disconnect carry chains to “partition” a
64-bit adder into 8 8-bit adders

= Limitations, compared to vector instructions:
= Number of data operands encoded into op code (no VL)

= No sophisticated addressing modes (strided, scatter-
gather)

= No mask registers

eIpawi}|n|A Jo) suoisua)x3 18 uonanasul diNIs

m Historically SIMD extensions have been improving providing
more and more vector operations capabilities MMX, SSE,
SSE2, SSE3, SSSE3, SSE4, AVX, AVX2, AVX512

SIMD Implementations

= Implementations:

= Intel MMX (1996)

= Eight 8-bit integer ops or four 16-bit integer ops
s Streaming SIMD Extensions (SSE) (1999)

« Eight 16-bit integer ops

= Four 32-bit integer/fp ops or two 64-bit integer/fp ops
= Advanced Vector Extensions - AVX(2010)

= Four 64-bit integer/fp ops

= Operands must be consecutive and aligned memory
locations

eIpawi}|n|A Jo) suoisua)x3 18 uonanasul diNIs

Example SIMD Code using 4-operand SIMD »
Instructions %
2
= Example DXPY: S
L.D FO,a ;load scalar a a
MOV F1, FO ;copy a into F1 for SIMD MUL @
MOV F2, FO ;copy a into F2 for SIMD MUL g
MOV F3, FO ;copy a into F3 for SIMD MUL %
DADDIU R4,Rx,#512 ;last address to load =)
Loop: L.4D F4,0[Rx] Jload X[i], X[i+1], X[i+2], X[i+3] F4,F5,F6,F7 g,,
MUL.4D F4,F4,FO ;axX[i],axX[i+1],axX[i+2],axX[i+3] %
L.4D F8,0[Ry] Jload YTi], Y[i+1], Y[i+2], Y[i+3] =
ADD.4D F8,F8,F4 ;axX[i]+Y]i], ..., axX[i+3]+Y][i+3] ?D'
S.4D O[Ry],F8 ;store into Y[i], Y[i+1], Y[i+2], Y[i+3] g‘-
DADDIU Rx,Rx,#32 ;increment index to X
DADDIU Ry,Ry,#32 ;increment index to Y
DSUBU R20,R4,Rx ;compute bound
BNEZ R20,Loop ;check if done

Scalar: 576 instructions, Vector: 6 instructions, SIMD: 144 instructions

Roofline Performance Model

s Basic idea:

= Plot peak floating-point throughput as a function of
arithmetic intensity

= Ties together floating-point performance and memory
performance for a target machine

= Arithmetic intensity
= Floating-point operations per byte read

BIpSWIYN|A JO} Suoisua)lxg }8S uononisul aiNIs

o(1) OlloalN O(N)
- - — {IDE\E 1}_ e
'S ™~
< Arithmetic Intens
[] [] L L]
Spectral
Sparse methods Dense N-body
maitrex matrix .
FFT Particle
(SpMV) (FFTs) (BLAS3) fnemods.)
Structured | Structured
grids grids

(Stencils, (Lattice
PDEs) methods)

Examples

= Attainable GFLOPs/sec
= Min(Peak Memory BW x Arithmetic Intensity,

Double precision GLFOP/sec

Peak Floating Point Perf.)

R NEC SX-9 CPU
2% T
128 102.4 GFLOP/s

L/
64

[s]
Mo

/

=
L2

y
A

P
&

&

4

2
18 1/412 1 2 4 8 16

Arithmetic intensity

Double precision GLFOP/sec

Intel Core i7 920

056 4 (Nehalem)
128

64 42 .66 GFLOP/s|
32

16 A

b S

8 6

4

2 »
18 1/4 12 1 2 4 8 16

Arithmetic intensity

BIpSWIYN|A JO} Suoisua)lxg }8S uononisul aiNIs

Graphical Processing Units

= Given the hardware invested to do graphics well,
how can supplement it to improve performance
of a wider range of applications?

s Basic idea:

= Heterogeneous execution model
=« CPU is the host, GPU is the device

= Develop a C-like programming language for GPU

= Programming model is “Single Instruction Multiple
Thread” (SIMT)

suun buissaooud |eoiydels

DAXPY in CUDA

I/l Invoke DAXPY with 256 threads per Thread Block
__host___

int nblocks = (n+ 255) / 256;

daxpy<<<nblocks, 256>>>(n, 2.0, X, y);

/ DAXPY in CUDA
__device
void daxpy(int n, double a, double *x, double *y)

{

int i = blockldx.x*blockDim.x + threadldx.x;
if (i <n) y[i] =a™x[i] + y[if;

Threads and Blocks

= A thread is associated with each data element
= [hreads are organized into blocks
= Blocks are organized into a grid

= GPU hardware handles thread management, not

applications or OS
Grid (kernel)

Warp \ Block

=07 T

SIMD instruction

suun buissaooud |eoiydels

NVIDIA GPU Architecture

= Similarities to vector machines:
= Works well with data-level parallel problems
= Scatter-gather transfers
= Mask registers
= Large register files

s Differences:
= No scalar processor

= Uses multithreading to hide memory latency
= Memory gap wider today than 1970s

= Has many functional units, as opposed to a few
deeply pipelined units like a vector processor

suun buissaooud |eoiydels

Example

= Multiply two vectors of length 8192
= Code that works over all elements is the grid

= [hread blocks break this down into manageable sizes
= 512 threads per block
= Influenced by implementation: memory latency, number of
lanes, depth of pipeline, scheduler

= Thus grid size = 16 blocks

= Block is assigned to a multithreaded SIMD processor
(Streaming Multiprocessor - SM) by the thread block
scheduler - TBS

= Current-generation GPUs many (4-15) multithreaded
SIMD processors

suun buissaooud |eoiydels

Terminology

s [hread block scheduler (TBS) schedules blocks
to SIMD processors

= Within each SIMD processor:
= Many (2x16) SIMD lanes
= Wide and shallow compared to vector processors

= [hreads of SIMD instructions
= Each has its own PC
= Thread scheduler (TS) uses scoreboard to dispatch
= No data dependencies between thread of SIMDs!

= SIMD processor keeps track of up to 48 threads of
SIMD instructions
« Hides memory latency with multithreading

s SIMD instruction executes on 32 elements at a time

suun buissaooud |eoiydels

Example

s GPU with 32768x32b registers/SM

s RF Divided into lanes

= Fermi has 16 physical SIMD lanes, each containing
2048x32b registers or 1024x64b reqisters
= 64 vector registers of 32 32-bit elements
= 32 vector registers of 32 64-bit elements

= Each SIMD thread is limited to 64 registers

» Software does spilling

suun buissaooud |eoiydels

NVIDIA Instruction Set Arch.

s I[SA is an abstraction of the hardware instruction

set

= ‘Parallel Thread Execution (PTX)”

= Uses virtual registers

= Translation to machine code is performed in software

= Example (DAXPY):
shl.s32 R8, blockldx, 9
add.s32 R8, R8, threadldx;
Id.global.f64 RDO, [X+R8]
d.global.f64 RD2, [Y+R8]
mul.f64 RDO, RDO, RD4

add.f64 RDO, RDO, RD2

st.global.f64 [Y+R8], RDO

; Thread Block ID * Block size (512 or 2°)

R8 =i=my CUDA thread ID

;, RDO = X[i]

; RD2 = Y[i]

, Product in RDO = RDO * RD4 (scalar a)
; Sum in RDO = RDO + RD2 (YTi])

; Y[i] = sum (X[i]*a + YTi])

suun buissaooud |eoiydels

Conditional Branching

s Like vector architectures, GPU branch hardware uses
internal masks

m Also uses

= Branch synchronization stack
= Entries consist of masks for each SIMD lane
= |.e. which threads commit their results (all threads execute)

= Instruction markers to manage when a branch diverges into
multiple execution paths

= Push on divergent branch
= ...and when paths converge

= Act as barriers

= Pops stack

s Per-thread-lane 1-bit predicate register, specified by
programmer

suun buissaooud |eoiydels

Example
if (X[i]!=0)
X[il = X[i] = Y[if;
else X[i] = Z]i];
|d.global.f64 RDO, [X+R8] ; RDO = X[i] — assume R8 is known
setp.neq.s32 P11, RDO, #0 ; P1 is predicate register 1
@!'P1, bra ELSE1, *Push : Push old mask, set new mask bits
; if P1 false, go to ELSE1
|d.global.f64 RD2, [Y+R8] ; RD2 = YIi]
sub.f64 RDO, RDO, RD2 . Difference in RDO
st.global.f64 [X+R8], RDO ; X[i] = RDO
@P1, bra ENDIF1, *Comp ; complement mask bits
; if P1 true, go to ENDIF1
ELSE1: |d.global.f64 RDO, [Z+R8] ; RDO = Z][i]

st.global.f64 [X+R8], RDO ; X[i] = RDO
ENDIF1: <next instruction>, *Pop ; pop to restore old mask

suun buissaooud |eoiydels

NVIDIA GPU Memory Structures

s Each SIMD Lane has private section of off-chip DRAM
= “Private memory”

= Contains stack frame, spilling registers, and private
variables

s Each multithreaded SIMD processor also has
local memory
= Shared by SIMD lanes / threads within a block

s Memory shared by SIMD processors is GPU
Memory
= Host can read and write GPU memory

s Private, Local, Shared

suun buissaooud |eoiydels

Fermi Multithreaded SIMD Proc.

[SIMD thread scheduler | [SIMD thread schediler |

Dispatch unit | | Dispatch unit

Fermi streaming multiprocessor (SM)

sjun buisseoold |eaiydels

Fermi Architecture Innovations

s Each SIMD processor has

= [Two SIMD thread schedulers, two instruction dispatch units

= 16 SIMD lanes (SIMD width=32, 2 cycles), 16 load-store units, 4
special function units

= Thus, two threads of SIMD instructions are scheduled every two
clock cycles

= Fast double precision

= Caches for GPU memory

s 64-bit addressing and unified address space
= Error correcting codes

= Faster context switching

s Faster atomic instructions

suun buissaooud |eoiydels

Loop-Level Parallelism

s Focuses on determining whether data accesses in later
iterations are dependent on data values produced in
earlier iterations

= Loop-carried dependence

= Example 1:

for (i=999; i>=0; i=i-1)
x[i] = x[i] + s:

wsla|jeied |ana1-doo buioueyug pue bunosayeq

= No loop-carried dependence => can parallelize

Loop-Level Parallelism

= Example 2:

B[i+1] = B[i] + Ai+1]; /* S2 */

for (i=0; i<100; i=i+1) { @D
Ali+1] = A[i] + C[i]; /* S1 %/

s S1 and S2 use values computed by S1 in
previous iteration

s S2 uses value computed by S1 in same iteration

|]9||eJed [oAa1-doo Buioueyug pue bunoslaq

wiSlI

Loop-Level Parallelism

= Example 3:
for (i=0; i<100; i=i+1) {
Ali] = Ali] + BIi]; /* S1*/
B[i+1] = C[i] + DIi; /* S2 */
}

s S1 uses value computed by S2 in previous iteration but dependence
IS not circular so loop is parallel

s [ransform to:
A[0] = AJO] + BIO];

for (i=0; i<99; i=i+1) { A[0] <=A[0] + B[0] A[0] <=A[0] + B[0]

B[i+1] = C[i] + DIi; B[1] <=C[0]+DI[0]
Ali+1] = A[i+1] + B[i+1]

|I9]|eJed [oAa1-doo Buioueyug pue bunoslaq

wiSlI

B[1] <=C[0]+D[0]
A[1]<= A[1]+B[1] A[1]<= A[1]+B[1]
B[2]<=C[1]+D[1]

}
B[100] = C[99] + D[99];

B[2]<=C[1]+D[1]
A[2]<=A[2]+B[2] A[2]<=A[2]+B[2]

Loop-Level Parallelism

= Example 4.
for (i=0;i<100;i=i+1) {
Ali] = BI[i] + CIi;
DIi] = Ali] * E[i];
}

= Example 5:
for (i=1;i<100;i=i+1) {
Y[i] = Y[i-1] + Y[i];
}

wsla|jeied |ana1-doo buioueyug pue bunosayeq

Finding dependencies

s Assume indices are affine:
= axli+Db(iis loop index)

m Assume:
= Storetoaxi+ Db, then
» Load fromcxi+d
= I runs frommton

= Dependence exists if:
= Givenj,ksuchthatm<j<n m<k<n
« Storetoaxj+b,loadfromaxk+d,andaxj+b=cxk+d

wsla|jeied |ana1-doo buioueyug pue bunosayeq

Finding dependencies

s Generally cannot determine at compile time

= [est for absence of a dependence:

s GCD test:
= |If a dependency exists, GCD(c,a) must evenly divide (d-b)

s Example:
for (i=0; i<100; i=i+1) {
X[2*i+3] = X[2*] * 5.0
}

wsla|jeied |ana1-doo buioueyug pue bunosayeq

Reductions

= Reduction Operation:
for (i=9999; i>=0; i=i-1)
sum = sum + X[i] * vy[i];

= Transform to...
for (i=9999; i>=0; i=i-1)
sum [i] = x[i] * y[i];
for (i=9999; i>=0; i=i-1)
finalsum = finalsum + sumi];

wsla|jeied |ana1-doo buioueyug pue bunosayeq

= Do on p processors:
for (i=999; i>=0; i=i-1)
finalsum[p] = finalsum[p] + sum[i+1000*p];
= Note: assumes associativity!

Finding dependencies

= Example 2:

for (i

Y

< N X

}

s Watch for antidependencies and output

=0; i<100; i=i+1) {
1= X[i]/ c; I* S1*
il +c; /* S2 */
il +c; /* S3 %/

=c-Y[i]; /* S4 */

dependencies

wsla|jeied |ana1-doo buioueyug pue bunosayeq

Finding dependencies

= Example 2:

for (i

Y

< N X

}

s Watch for antidependencies and output

=0; i<100; i=i+1) {
1= X[i]/ c; I* S1*
il +c; /* S2 */
il +c; /* S3 %/

=c-Y[i]; /* S4 */

dependencies

wsla|jeied |ana1-doo buioueyug pue bunosayeq

