
Caching Techniques

for Web Content

1

Δευτέρα, 11 Απριλίου 2011

Got Milk?

Client

Server

Transport

 Annoyed cow (high server load),
 Exhausted milk man (high network load),
 Delayed breakfast (high access latency).

2
Δευτέρα, 11 Απριλίου 2011

Get Milk The Better Way

Client

Server
Transport

Cache

Closer is better!

3
Δευτέρα, 11 Απριλίου 2011

But How Big A Refrigerator?

Client

Server
Transport

Cache

or

4
Δευτέρα, 11 Απριλίου 2011

But What About Sour Milk?

Expiration Date:
Yesterday

5
Δευτέρα, 11 Απριλίου 2011

From Cows And Milk To Web Caching

6
Δευτέρα, 11 Απριλίου 2011

Client/Server Architecture

• The Web is based on a
Client/Server architecture.
– Client sends request to Web

server,
– Web server sends requested

data back to the client.

• Data transfer is done using
unicast transmission.

• Problems:
– High server load,
– High network load,
– High access latency.

Internet

Web
Server

Client
7

Internet

Web
Server

Client

Δευτέρα, 11 Απριλίου 2011

Solution Multicast?

• Benefits:
– Reduced server load,
– Reduced network load.

• Problems:
– Multicast requires

synchronous receiver (i.e.
receivers request same data
at the same time),

– Multicast not yet widely
deployed,

– Multicast does not address
the problem of high access
latency.

Internet

Server

Client

8
Δευτέρα, 11 Απριλίου 2011

Web Caching

• Clients request web
pages via the Web
cache.

• Web cache stores
previously received data
to serve future requests
for the same data from
the local disk.

• Benefits:
– Reduced network load,
– Reduced server load,
– Reduced latency.

Internet

Origin
Server

Client

9

Internet

Origin
Server

Client
11

Δευτέρα, 11 Απριλίου 2011

The Origins Of (Web) Caching
• Many centuries ago, the French used the word “cacher”, meaning “to

hide”.
– Became the modern word “cache”, meaning “a hiding place used especially for

storing provisions”.

• Caching is a widely used technique in computer systems architecture.
– E.g. processor cache, disk cache, graphic board cache, etc.

• Most Web browsers include a local cache mechanisms that stores
Web content on the local disk.
– Pitfall: Could be responsible for serving stale content.

• First Web server (httpd) had an associated proxy server that included
a cache.
– Built at CERN, early 1990s.

• Caching was already an important aspect of HTTP/1.0.
– Early experiments in 1994 demonstrated significant benefits of Web caching.

10
Δευτέρα, 11 Απριλίου 2011

Web Caching types

• Caching on the server:
– Store previously generated content to avoid regenerating

identical content for multiple requests
– Cache pre-compiled code, database queries or anything

else that can decrease the time necessary to dynamically
create content

• Caching on the client

• Proxy caching
– Public proxies: shared by multiple clients - located near the

servers
– Private proxies: not shared - located near the clients that

they serve

11
Δευτέρα, 11 Απριλίου 2011

• Goals: Improve user experience and network/server
scalability.
– Speed up user access to Web content,
– Reduce network load,
– Reduce origin server load.

• But: In case of a cache miss, a Web cache can slow
down access and increase network load.
– Need to carefully analyze deployment scenario and

properly engineer the Web caching system.
• Features to assist with system administration and

monitoring are essential.
• Most important: “First, do no harm”.

– Do not serve stale content,
– Do not fail.

Motivation And Goals Of Web Caching

12
Δευτέρα, 11 Απριλίου 2011

Web Caching Benefits (1)

• Cache deployed at a local ISP
in New Jersey.

• ISP is connected to the
Internet via three T1 links =>
4.5 Mbps capacity overall.

• Incoming Data Traffic:
– Data coming from the Internet,

over the 3 x T1 connection.

• Outgoing Data Traffic:
– Data between cache and clients.

• Without a cache: incoming
data traffic = outgoing data
traffic.

Internet

Client

Local ISP

3 x T1

13
Δευτέρα, 11 Απριλίου 2011

Web Caching Benefits (2)

• Without a cache, ISP would have to pay for additional T1
links very soon, while there is enough bandwidth left for
future growth after deploying the cache.

Outgoing Data Traffic Incoming Data Traffic

14
Δευτέρα, 11 Απριλίου 2011

Web Caching Concerns

• User receives a stale response

• User receives personalized content intended for
another user

• Sensitive information is cached, exposing it to a
greater risk of compromise

15
Δευτέρα, 11 Απριλίου 2011

Recap: Client/Server Interaction In HTTP

HTTP: GET

HTTP: RESPONSE

Server

TCP: SYN

TCP: ACK

TCP: SYN/ACK

A
cc

es
s

La
te

nc
y

Client

16
Δευτέρα, 11 Απριλίου 2011

Basic Web Cache Operation: Cache Miss

Client
TCP: SYN

TCP: ACK
TCP: SYN/ACK

HTTP: GET

HTTP: RESPONSE

Server

HTTP: GET

HTTP: RESPONSE

TCP: SYN

TCP: ACK

TCP: SYN/ACK

Cache

A
cc

es
s

La
te

nc
y

17
Δευτέρα, 11 Απριλίου 2011

Basic Web Cache Operation: Cache Hit

Client
TCP: SYN

TCP: ACK
TCP: SYN/ACK

HTTP: GET

HTTP: RESPONSE

ServerCache

A
cc

es
s

La
te

nc
y

18
Δευτέρα, 11 Απριλίου 2011

Basic Web Cache Operation: Flow Chart

HTTP: RESPONSE

CacheClient Server

HTTP: GET

?

HTTP: GET

Is it
Stored? Is it

Fresh?

HTTP:
RESPONSE

HTTP: GET

Yes

HTTP: RESPONSE

Modify
Web pageStore Copy?

No

19
Δευτέρα, 11 Απριλίου 2011

Terminology
• Object: A file (containing HTML text, an image, an applet, an A/V

clip) addressable by a single URL.
• Client: The client requests web content (e.g. web browser)
• Origin Server: Web server that is the official host of the object

(identified by the host name in the URL).
• Web Cache: An intermediate server that intercepts and handles

client requests; a cache acts as both a server and a client.
• Hit Ratio: Fraction of requests to a cache that can be satisfied by

the cache (e.g. hit ratio of 35% means that 35% of the requests
can be served by the cache without contacting the origin server).

• Dynamic Content: Objects or components of objects that
are generated dynamically upon request (e.g. CGI scripts,
rotating advertisement banners, etc.).

20
Δευτέρα, 11 Απριλίου 2011

Caching Challenges

• Dynamic Content
– Caches might decide to not cache outputs of CGI/PHP/

ASP scripts.

• Cookies
– Client requests including a COOKIE header might indicate

non-cacheable content.

• Hit counts
– Caches can cause hit counts calculations to fail.

• Less-savvy users and privacy-concerned users
– How do you get a user to point his browser to a cache?

• Access control
– How to make sure that the content provider gets paid?
– Legal and security restrictions.

21
Δευτέρα, 11 Απριλίου 2011

Caching Challenges (contd.)

• Cache replacement
– When should a Web cache store a Web object?
– What happens when the Web cache runs out of storage?

• Cache consistency
– Conditional GET,
– Expiration time,
– Consistency heuristics,
– Cache invalidation,
– Cache update
– Invalidation contracts.

22
Δευτέρα, 11 Απριλίου 2011

Cache Replacement

• A Web cache typically attempts to store a copy of a Web
object when it is requested.
– Object store has only finite capacity.

• Web cache replacement rules determine the action to be
taken when the object store is full.
– Should the Web cache store the new Web object?
– If yes, which Web object should be removed from the object store

to make room for the new one?
• Most simple/popular replacement rules:

– LRU (replace least recently used page),
– LFU (replace least frequently used page).

• More sophisticated replacement rules and combinations of
multiple rules are possible.

23
Δευτέρα, 11 Απριλίου 2011

Cache Replacement Considerations
• The probability of the object being accessed in the near

future.
– Can be known a-priori or estimated based on past access patterns.

• The number of accesses to the object in the past.
– An object that has been accessed frequently in the past is likely to be

accessed again.
• The time since the last modification of the object.

– An object that has not changed for a long time is unlikely to change in
the near future.

• Cost of fetching the object (e.g. Web cache distance from
Web server).

• Cost of storing the object (e.g. object size).
• Importance of client requesting the object.
• Government and enterprise policies.

24
Δευτέρα, 11 Απριλίου 2011

Common Cache Replacement Strategies
• Least Recently Used (LRU): Replace the object that has gone

without a request for the longest time – cache will fill with the most
recently requested objects.

• Least Frequently Used (LFU): Replace the object that has had the
fewest requests since it was first stored – cache will fill with the
most frequently requested objects.

• Next To Expire (NTE): Replace the Object that is forecast to expire
the soonest – cache will fill with the most stable objects.

• Largest File First (LFF): Replace the largest object, freeing up the
most space for new objects – cache will fill with smallest objects.

• Hyper-G: Combines LFU, LRU, and LFF.

• GreedyDual: Associates a utility value to Web objects.
Different replacement strategies are often combined and

augmented with heuristics to provide the most practical solution.
25

Δευτέρα, 11 Απριλίου 2011

Trends In Cache Replacement
• Clever cache replacement strategies were a big issue

in the early days of Web caching.
– Many research papers focused exclusively on this topic.
– Possible cost savings were the main driver.

• With recent developments, the focus shifts from
efficiency to simplicity:
– Steadily falling cost of hard disks,
– Less Web traffic is cacheable,
– Simple cache replacement strategies satisfy most situations

and are less complex to implement,
– Frequent updates of Web objects reduces the value of

having large storage capacity.

Research on cache replacement has generally
faded from the practical arena.

26
Δευτέρα, 11 Απριλίου 2011

Cache Consistency

• Problem: How to make sure that the cached version
of a web object is up-to-date and not staled?

HTTP: GET

HTTP: RESPONSE

Cache ClientServer

HTTP: RESPONSE

HTTP: GET

(for index.html)

HTTP: GET

(for index.html)

Modification
of index.html

???

27
Δευτέρα, 11 Απριλίου 2011

• Cache uses conditional GET to check whether a cached
object is stale.

• Example: First request from cache to origin server (due to a
cache miss).

• Example (contd.): Response from origin server to cache.

Cache Consistency – Conditional GET (1)

GET index.html HTTP/1.0
User-Agent: Mozilla/4.0
Accept: text/html image/gif, image/jpeg

HTTP/1.0 200 OK
Date: Wed, 21 Jun 2000 04:29:01 GMT
Server: Apache/1.3.12 (Unix)
Last-Modified: Wed, 21 Jun 2000 01:10:42 GMT
Content-Type: text/html <CR/LF>
<data>

28
Δευτέρα, 11 Απριλίου 2011

Cache Consistency – Conditional GET (2)

• Example (contd.): Conditional GET from cache to
origin server (due to a cache hit).

• Example (contd.): Response from origin server to
cache.

HTTP/1.0 304 Not Modified
Date: Fri, 23 Jun 2000 04:29:01 GMT
Server: Apache/1.3.12 (Unix) <CR/LF>
(empty entity body)

GET index.html HTTP/1.0
User-Agent: Mozilla/4.0
Accept: text/html image/gif, image/jpeg
If-modified-since: Wed, 21 Jun 2000 01:10:42

29
Δευτέρα, 11 Απριλίου 2011

Cache Consistency – Expiration Time
• Strong consistency (ισχυρή συνέπεια) and a freshness

guarantee can be provided by using a conditional GET for
every cache hit. However, this results in
– Unnecessary delay and bandwidth consumption for requests yield

not modified.
• Origin server can set an expiration time for web pages,

which will be included in the entity header of HTTP
responses:
– A web page will not be modified before it expires.
– There is no need for consistency checks (e.g. using conditional

GET) ahead the expiration time.
• However, servers rarely use this option (except the

expiration time “now”).

Why expiration time “now”?

30
Δευτέρα, 11 Απριλίου 2011

Cache Consistency - Heuristic

• Strong consistency might not always be required.

• It is not always necessary to provide strong consistency, which
allows the usage of heuristics instead of explicit freshness checks.

• Idea: Documents which have not changed for a long time are
unlikely to change.

• Update heuristic: Hold document for a time proportional to the
known lifetime of the object (e.g. using the 50% rule); example:

– Hold document for 7 days until 29 Jun 1998 04:29:01 GMT.

HTTP/1.0 200 OK
Date: Mon, 22 Jun 1998 04:29:01 GMT
Server: Apache/1.3.12 (Unix)
Last-Modified: Mon, 8 Jun 1998 04:29:01 GMT
Content-Type: text/html <CR/LF>

31
Δευτέρα, 11 Απριλίου 2011

Cache Invalidation

• Idea: Server knows best when a Web page is updated!

• Server remembers where its pages are cached.

• When a page is modified, server notifies the caches which
have a copy of this page.

• Caches mark page as stale.

• Subsequent client requests will fetch fresh copy from server.

32
Δευτέρα, 11 Απριλίου 2011

Example: Cache Invalidation

Time

Clients Cache Server

Content
changed

Content
changed

invalidate

Request 1

Request 2

Request 3

Request 4

33
Δευτέρα, 11 Απριλίου 2011

Cache Update

• Server remembers where its pages are cached.

• When a page is modified, server notifies the caches
and gives them an updated version of the page
(usually used together with application layer multicast).

• Caches always assume that they have the latest
content.

34
Δευτέρα, 11 Απριλίου 2011

Example: Update

Time

Clients Cache Server

Content
changed

Content
changed

Request 1

Request 2

Request 3

Request 4

update

35
Δευτέρα, 11 Απριλίου 2011

Invalidation Contracts

• Invalidation/update traffic can be very large.

• To limit invalidations server gives invalidation
contracts to caches.
– Contracts have expiration time.

• When content changes server notifies only those
caches whose contract has not expired.

36
Δευτέρα, 11 Απριλίου 2011

Example 1: Invalidation Contracts

Time

Clients Cache Server

if-modified-since

unmodified

Content
changedRequest 1

Request 2

Request 3

Request 4

Contract

37
Δευτέρα, 11 Απριλίου 2011

Example 2: Invalidation Contracts

Clients Cache Server

Time

Content
changed

Content
changed

Request 1

Request 2

Request 3

Request 4

invalidate

Contract

if-modified-since

38
Δευτέρα, 11 Απριλίου 2011

Deciding Whether To Cache An Object

• Web cache must decide whether
an object should be cached or not.

• Different Web caches can have
different ways to make decision.

• Common criteria are:
– Is the object cacheable?

 Are there protocol
requirements that prevent the object from being cached?

 Is the content typically uncacheable?

– Is the cached object likely to be used again?
– Will the decision to cache a particular object lead

to the replacement of one or more stored
objects?

• A Web cache can use some or all of these
criteria.

39
Δευτέρα, 11 Απριλίου 2011

What Is Cacheable?
• Web cache can decide whether a Web object is cacheable

based on two factors:
– Content-specific considerations,
– HTTP-specific considerations.

• Content-specific considerations are separated from the
protocol issues.
– Deal with business and/or political aspects.
– Also affected by policies for cache consistency/revalidation.

• HTTP-specific considerations require Web caches to abide
to the various directives embedded in HTTP messages.
– Might impact hit ratio of Web cache.
– Not all Web caches on the market strictly follow these rules.
– Might be overwritten by content-specific considerations.

40
Δευτέρα, 11 Απριλίου 2011

Content-Specific Considerations
• Web cache makes a local decision about the cacheability

of an object separate from protocol restrictions, e.g. based
on
– Object size, URL, indicators for dynamic content, etc.

• Motivation for content-specific cacheability considerations:
– Cache consistency and object freshness,
– Business interests (e.g. the ability to charge for more bytes

delivered if object is returned rather than “304 Not Modified”),
– Storage considerations (e.g. do not cache large objects),
– Privacy issues,

• Processing load on a Web cache might also have an
impact.
– Busy Web cache might decide to not cache a response coming

back as result of a cache miss.
41

Δευτέρα, 11 Απριλίου 2011

HTTP-Specific Considerations

• HTTP embeds cacheability information in the HTTP header.
– Cache control directives (e.g. Cache-Control: no-cache)

• HTTP defines rules indicating what HTTP responses are
cacheable.
– A response is cacheable only if request method and headers, and

response status and headers all indicate so.
 E.g. responses to PUT, DELETE, OPTIONS are not cacheable.

 E.g. response to POST is not cacheable unless indicated otherwise.

• Some responses include object-specific information from the
origin server that may preclude caching of the message.

• A well-behaved Web cache must abide by the constraints
imposed by HTTP.
– Not all Web caches do so!

42
Δευτέρα, 11 Απριλίου 2011

Cache Control Directives: Motivation

• Client might not want to get a cached object, e.g.
– When hitting the [CTRL/F5] reload button in the browser.

• Content provider might not want an object to be
cached, e.g.
– Objects which rapidly change,
– Password protected objects,
– Hit counts.

• Server could use an expiration time “now” to increase
probability of a freshness check.
– Inefficient, makes proper usage of expiration time impossible.

• HTTP/1.1 defines cache control directives that must
be obeyed by all systems (i.e. network caches and
client software).
– But...

43
Δευτέρα, 11 Απριλίου 2011

Cache Control Directives In HTTP/1.1

• Cacheability of an object can be controlled using the Cache-
Control header in an HTTP request or response.

• Some of the directives in requests/responses:
– no-cache: client forces freshness check with origin server,
– no-store: do not store any portion of this request or response,
– max-age=n:

• client is prepared to accept object without freshness check if age is < n seconds
• server imposes freshness check after n seconds.

• Some of the directives in responses:
– public: Object is cacheable by client and network caches,
– private: Object can be cached only on private caches (client),
– no-cache: Object must not be cached,
– no-transform: No content transformation allowed,
– must-revalidate: Cache must revalidate expired content
– proxy-revalidate: similar, but revalidation not required for private

caches

44
Δευτέρα, 11 Απριλίου 2011

Cache Control Directives: Examples

• HTTP Request

• HTTP Response

GET index.html HTTP/1.0
User-Agent: Mozilla/4.0
Cache-Control: no-cache
Accept: text/html image/gif, image/jpeg

HTTP/1.0 200 OK
Date: Wed, 16 Feb 2005 04:29:01 GMT
Server: Apache/1.3.12 (Unix)
Last-Modified: Wed, 16 Feb 2005 01:10:42 GMT
Cache-Control: private
Content-Type: text/html <CR/LF>
<data>

45
Δευτέρα, 11 Απριλίου 2011

HTTP Headers vs. HTML Meta Tags

• Problem: HTTP headers can only be set by the Web server,
i.e. content authors do not have direct control over setting
HTTP headers.

• Content authors can “imitate” cache control directives by
adding appropriate HTML Meta Tags to their content, e.g.
<HTML>
<HEAD>
<TITLE> HTML Meta Tags Example </TITLE>
<META HTTP-EQUIV="CACHE-CONTROL" CONTENT="NO-CACHE">
</HEAD>
<BODY>blablabla</BOFY></HTML>

• But: HTML meta tags are not very effective.
– Are usually only honored by Web browser caches,

– Web caches normally do not parse HTML payload.

46
Δευτέρα, 11 Απριλίου 2011

• Authentication goal: Control access to
server documents.
– Basic Authentication – a

challenge/response mechanism.

• Stateless: Client must present
authorization in each request.

• Authorization: typically name,
password
– Authorization: header line in

request
– if no authorization presented,

server refuses access, sends
 WWW-authenticate:
header line in response

Client Server
usual http request msg

401: authorization req.
WWW-Authenticate:

usual http request msg
+ Authorization:line

usual http response msg

usual http request msg
+ Authorization:line

usual http response msg

Recap: HTTP Authentication

47
Δευτέρα, 11 Απριλίου 2011

HTTP Authentication

• Client requests object from origin server

• Server responds with “401 Authorization Required” status
code

• Client software receives 401 status code and prompts user for
username and password

• Client resends the request, this time with the proper
AUTHORIZATION header

• Authorization is done for all subsequent requests to the server
 Browser remembers the username and password and includes them

in subsequent requests

How to make sure that a cache does not deliver password
protected sites to unauthorized users?

48
Δευτέρα, 11 Απριλίου 2011

Authentication And Web Caching

• HTTP/1.1 specifies mechanisms for handling password protected
objects.

• Whenever an origin server distributes a password-protected
object, it includes in the response an HTTP header
CACHE-CONTROL: proxy-revalidate.

• A cache is allowed to cache the object, but it has to mark it with
“proxy-revalidate”.

• Later, when a request for the object arrives, the cache sends a
conditional GET to the origin server.
– If the conditional GET includes a valid AUTHORIZATION header, origin

server responds with “301 Not Modified” and the cache forwards the
object to the client.

– If the conditional GET does not include valid authorization, origin server
responds with “401 Authorization Required” and the cache forwards
it to the client.

49
Δευτέρα, 11 Απριλίου 2011

Caching and Online Advertisement
• Content providers sell web space for advertisement (banners and

inline images with links to the company that the ad promotes).

• Content providers need to determine the number of hits to the
page hosting the advertisement.
– Advertisers want to know the exposure of their ad,
– Billing to advertisers may be based on the hit count.

• Content providers also want to know from where the requests
come and the number of individual user hits (e.g. using cookies).

• Caching prevents sites from getting accurate access counts.

• Solutions used in practice:
– Mark Web pages non-cacheable, thus forcing requests to reach the origin

server,
– Providing Web cache logs to the content providers,
– Usage of non-cacheable Web bugs.

50
Δευτέρα, 11 Απριλίου 2011

Web Bugs

• “Web bugs” are little transparent graphics embedded in
Web pages.
– Typically marked as non-cachecable.
– Trigger a download from the origin server

• Web bugs have been used in controversial ways in the
past, leading to privacy concerns and giving them a “bad
taste”.

<HTML>
 <HEAD>
 <TITLE> Web Bug Example </TITLE>
 </HEAD>
 <BODY>
 You won’t see anything on this page.

 </BODY>
</HTML>

51
Δευτέρα, 11 Απριλίου 2011

Summary: Caching Snags

• Dynamic content,

• Secure transactions and encrypted content,

• Cookies,

• Hit counters,

• Online advertisement,

• Access control,

• Privacy-concerned users.

52
Δευτέρα, 11 Απριλίου 2011

Web Cache Deployment Options

• Two main methods to deploy Web caches,
depending on whom the caching service is provided
for.
– Forward proxy

 Proxy acts of behalf of the content consumer and helps the
content consumer in retrieving requested content.

 Also referred to as avatar or delegate.
– Reverse proxy

 Proxy acts on behalf of the origin server and helps the origin
server to deliver its content.

 Also referred to as surrogate.
 Can be deployed either in front of the origin server or at the network

edge.

53
Δευτέρα, 11 Απριλίου 2011

Forward Proxy

InternetClients Origin
Servers

54
Δευτέρα, 11 Απριλίου 2011

Example: Forward Proxy Deployment

Web Clients

Web Cache
Forward Proxy

IP=proxy.stateu.edu

HTTP Request:
GET http://www.content-networking.com/index.html HTTP/1.1
Host: www.content-networking.com
User-Agent: Mozilla/6.0
Accept: text/html, image/gif, image/jpeg

Workgroup
LAN

Web Server
IP=www.content-networking.com

Internet

State University
Chemistry Department

A

B

C

Gateway
Router

WAN Link

55
Δευτέρα, 11 Απριλίου 2011

Example: Interception Proxy

Web Clients

Web Cache
Interception Proxy

IP=proxy.thisisp.com

ISP
LAN

Gateway
Router

Web Server
IP=www.content-networking.com

Internet

A

B

Web Switch

RAS

Internet Service Provider

HTTP Request:
GET index.html HTTP/1.1
Host: www.content-networking.com
User-Agent: Mozilla/6.0
Accept: text/html, image/gif, image/jpeg

WAN Link

56
Δευτέρα, 11 Απριλίου 2011

Reverse Proxy

Internet Origin
Servers

Clients

57

Also known as surrogate proxies
or web accelerators.

Δευτέρα, 11 Απριλίου 2011

Distributed Reverse Proxy

Internet Origin
Servers

Clients

58
Δευτέρα, 11 Απριλίου 2011

Example: Reverse Proxy Deployment

Web Clients

Web Cache Reverse Proxy
IP=www.content-networking.com

Server Farm
Gateway
Router

Web Server
IP=s1.content-networking.com

Internet

HTTP Request:
GET index.html HTTP/1.1
Host: www.content-networking.com
User-Agent: Mozilla/6.0
Accept: text/html, image/gif, image/jpeg

Server Farm
LAN

Content-Networking
Server Farm

B

A

WAN Link

59
Δευτέρα, 11 Απριλίου 2011

Anonymous Web Surfing

Internet

Web
Servers

Your PC

Local
ISP

Web
Proxies

SSL Tunnel

“Regular” Web Access
(HTTP or HTTPS)

“Man in the Middle” can
eavesdrop and create
user profiles.

Servers can identify
users based on
IP address

60
Δευτέρα, 11 Απριλίου 2011

Caching vs. Replication

• Content replication can be seen as an alternative to Web
caching.
– Caching moves requested content closer to the user,
– Replication copies content of an origin server to mirror sites.

• With replication, all content of an origin server may be
available at all times at the mirror sites.
– Protocols other than HTTP can be used for content replication.
– Replication can be scheduled for low-traffic times (e.g. overnight).
– Multicast can be used for efficient replication.
– Content staleness can be avoided through update mechanisms.

• But: Typically less efficient with respect to storage needs.
– Also more management overhead.

61
Δευτέρα, 11 Απριλίου 2011

Measuring Web Cache Performance

• Throughput of a Web cache expressed in either
– Requests per second – limited by the processing speed of the Web

cache, or
– Bytes per second – can be limited by the bandwidth of the network

connection.

• Hit ratio is a measure of network savings provided by the cache.
– Request hit ratio,
– Bandwidth hit ratio.

• Response time measures time between making a request and
starting to receive the corresponding response.
– Distinguish between cache hit and cache miss.
– Consider the distribution of response times and lowest, average, longest

times.

62
Δευτέρα, 11 Απριλίου 2011

Challenges In Measuring Cache
Performance
• Definition: The workload of a Web cache consists of all inputs (e.g.

HTTP requests) received by the Web cache over time.

• Web cache performance strongly depends on the workload
characteristics, e.g.
– Time between user requests,
– Size of the requested objects,
– Popularity of the various objects,
– Cacheability of the various objects.

• Workloads used for performance measurements must be realistic.
– Careful analysis of Web cache/server logs is useful.

• Popularity of Web objects is often expressed following a Zipf-like
distribution.
– P(i) = ki-c (exponent “c” typically close to unity).

63
Δευτέρα, 11 Απριλίου 2011

Challenges In Benchmarking Web Caches

• Web cache selection factors include not only
performance, but also
– Price,
– Reliability,
– Recovery from failures,
– Total object store size.

• Need to related price with performance.
– Throughput normalized by price can give a rough estimate of

Web cache cost effectiveness (e.g. hits per second per $1000).

• Web cache benchmarking by independent, third party
organizations is helpful, e.g.,
– “Cache-Offs” by The Measurement Factory, using the their Web

Polygraph performance tool.

64
Δευτέρα, 11 Απριλίου 2011

Polygraph Benchmark
• Polygraph benchmark originally defined by IRCache, a

small group of people that were employed by the
University of California San Diego.
– Funding came primarily from the National Science Foundation.
– Now spun off into a separate company, named “The

Measurement Factory”.

• Polygraph is a de-facto Industry-standard benchmark for
Web caches.

• Several workload types, e.g. DataCom-1 workload:
– Uniform request pattern,
– 80% cacheable content,
– 55% hit ratio,
– 12 KB mean object size,
– 4-hour long test,
– Persistent connections.

65
Δευτέρα, 11 Απριλίου 2011

Recipes for a better Cache
• Bigger hardware:

– Many disks (varies from 1 disk to 14 disks .. can be more),
– Faster NIC (1 Gbps or multiple 100 Mbps),
– Faster CPU.

• Better software:
– Parallel processes/multiple threads to leverage multiple

disks,
– Smarter disk read/write (e.g. read/write in large chunks),
– Raw disk read/write,
– More efficient data structures and smarter algorithms,
– Efficient garbage collection in disks.

• Can provide up to two orders of magnitude higher
throughput. In a large network, it requires more than

having a single efficient cache…
66

Δευτέρα, 11 Απριλίου 2011

Recap: Get Milk The Better Way

Client

Server
Transport

Cache

67
Δευτέρα, 11 Απριλίου 2011

Getting Milk – An Even Better Way

Client

Server
Transport

Cache

Neighbor

Store

68
Δευτέρα, 11 Απριλίου 2011

Backbones, ISPs, and NAPs

• The topology of the Internet is loosely hierarchical.
– National, regional and local/institutional ISPs,
– National ISPs in different countries can peer.

• Within one country there can be multiple regional ISPs.
– They interconnect at NAPs - Network (or National) Access Points.
– Also called MAEs: metropolitan access exchanges.

69
Δευτέρα, 11 Απριλίου 2011

Hierarchical Caching

• Each ISP has at least one (typically many) caches.

• A cache that is located in an ISP higher up in hierarchy
– provides service to ISPs lower in hierarchy,
– serves as an aggregation point for all caches lower in the hierarchy.

70
Δευτέρα, 11 Απριλίου 2011

HIT = .4

HIT = .33

HIT = .25

 Illustrative
Hit Probabilities

Hierarchical Caching – Hit Rates

• Probability that object is found in institutional cache: .4

• Probability that object is found in regional cache: .33*(1-.4) = .2

• Probability that object is found in national cache: .25*(1-.4-.2)= .1

• Probability that object is found in the cache hierarchy: .4 + .2 + .1 = .7
71

Δευτέρα, 11 Απριλίου 2011

no cache:

one cache: user configures browser to point to cache:

chain of caches: user configures browser to point to cache;
 first cache points to second cache:

client server

client servercache

client servercachecache

Cache Chaining

• Hierarchies use cache chaining

72
Δευτέρα, 11 Απριλίου 2011

Insert: Hop-by-Hop Headers

• Problem:
– A pair of adjacent caches in a chain could use alternate

way to exchange HTTP messages
 For example, different compression techniques

– Requires inclusion of special metadata only between
those caches

• Lead to the introduction of Hop-by-Hop headers
– Are valid only for a single transport-layer connection
– Cannot be stored by caches or forwarded by proxies
– Are identified by Connection: header field, for example

Connection: header 1, header2
indicates that header1 and header 2 are hop-by-hop

73
Δευτέρα, 11 Απριλίου 2011

no cache:

one cache: user configures browser to point to cache:

chain of caches: user configures browser to point to cache;
 first cache points to second cache:

client server

client servercache

client servercachecache

Cache Chaining

• Hierarchies use cache chaining

• All communication along chain can be over HTTP

• Leads to higher latency on cache misses

• Does not leverage cached content of peers
74

Δευτέρα, 11 Απριλίου 2011

clients

ISP

sibling
caches

Cooperative Caching (1)

• Multiple sibling caches within a single ISP.
• One or more of the siblings could contain the requested object.
• Cooperation:

– ICP (Internet Cache Protocol): siblings send messages to each other to find a
copy of object.

– Alternative: centralized control
• Can have cooperating sibling caches in each ISP in each tier of a hierarchy.

75
Δευτέρα, 11 Απριλίου 2011

Cooperative Caching (2)

• With “pure” hierarchical caching, each client and cache points to at most
one other cache.

• With cooperative caching, a cache can directly obtain an object from one of
many neighboring caches. The neighboring caches can be:
– in the ISP (sibling caches).
– or outside the ISP

76
Δευτέρα, 11 Απριλίου 2011

Overview of ICP (1)
• A simple protocol for querying neighboring caches

(RFC 2186)
• Application-layer protocol implemented on top of UDP
• “Fast” way to determine:

– which neighboring cache has the object;
– the relative speed of the neighboring caches.

• When one cache queries another, there are three
possible outcomes:
– ICP hit message returned
– ICP miss message returned
– no response

 proxy server down or overloaded, or
 network connection down or overloaded

77
Δευτέρα, 11 Απριλίου 2011

Overview of ICP (2)

• When ICP cache cannot fulfill a request from its own
cache, then typically:
– cache queries all neighbors with ICP
– cache obtains object from first neighbor to respond with a

hit
– cache stores copy of object and forwards copy to requestor.
– If there are no hits:

 cache either forwards request to parent in hierarchy
 or forwards request directly to origin server

• Cache waits up to two seconds for response to
query.

78
Δευτέρα, 11 Απριλίου 2011

Using The ICP Protocol

Sibling Web Caches

Parent Web Caches

Local
Web Cache

Origin Server

79

ICP_OP_QUERY

ICP_OP_MISS

Δευτέρα, 11 Απριλίου 2011

Institutional Example 1

80
Δευτέρα, 11 Απριλίου 2011

Institutional Example 2

81
Δευτέρα, 11 Απριλίου 2011

Institutional Example 3

82
Δευτέρα, 11 Απριλίου 2011

Child and parent ISP have a peering
agreement.

ISP Example 1 - Peering

• Siblings in child ISP query
each other using ICP.

• Siblings in child ISP also
query one or more caches in
parent ISP using ICP.

• Siblings in parent ISP query
each other using ICP.

• Typically, caches in parent
ISP do not query caches in
child ISP. (Instead, parent ISP
climbs hierarchy or directly
contacts origin server)

83
Δευτέρα, 11 Απριλίου 2011

National ISP

(Germany)

1

2
3

4

National ISP (USA)

ISP Example 2 – National Peers

84
Δευτέρα, 11 Απριλίου 2011

Drawbacks of ICP

• Reactive nature of ICP results in increased access
delays

• ICP message overhead
– Whenever there is a miss, each sibling has to process an

ICP request and response message (processing and
bandwidth overhead)

• Popular objects get replicated in all the caches
– Wastes disk and memory resources

85
Δευτέρα, 11 Απριλίου 2011

Cache Digest Protocol

• Utilizes digests to help eliminate the need of peer
queries

• Digest: a compressed summary of a cache’s
contents
– A digest is usually made available by a cache as a URL
– Digest exchange between peer caches uses HTTP/TCP
– Example:

GET /cache_digest HTTP/1.1
Host: proxy.localdomain

• A cache keeps a digest for each of its peers

86
Δευτέρα, 11 Απριλίου 2011

Cache Array Resolution Protocol (CARP)
• Allows multiple caching proxies to function as a single proxy.

• Works by generating a hash for each URL requested. A different hash
is generated for each URL and by splitting the hash namespace into
equal (or unequal parts, if uneven load is intended) the overall number
of requests can be distributed to multiple servers.

• Each HTTP response that is cached by a CARP group is labeled with
its URL and the identity of the cache storing it

• Participating caches use CARP to determine where a copy of a
particular resource is located rather than having to query several
peers

• Concerns:
– Load balancing - it can potentially overwork some caching proxies

while under-utilizing others
– Reconfiguration if changes in participating members of the array

occur
87

Δευτέρα, 11 Απριλίου 2011

• Each local ISP has a cache with:

– Internet connection
– Huge storage capacity
– Satellite dish for receiving

• Master site has:

– Internet connection
– Satellite transmitter

• No intermediate regional or national caches.

• How it works: When there is a miss at some local cache:
– that local cache obtains document from origin server using HTTP.
– local cache sends URL to master site.
– master site obtains document from origin server using HTTP.
– master site transmits document into satellite channel.
– all local caches receive document and cache it.

Satellite Technology: Paradigm Shift?

88
Δευτέρα, 11 Απριλίου 2011

Satellite Technology: Illustration

Internet

Master
Site

ClientOrigin
Server

89
Δευτέρα, 11 Απριλίου 2011

• The user populations at each of the local ISPs are aggregated
together to form one huge user population.
– The greater the user population, the greater the likelihood of

repeated requests, the greater the hit rate.
– High hit rates = low response times and less wasted bandwidth in

the Internet
• Brings the Web to the edge of the network.
• And why not install the local caches in user homes?

– Users keep their PCs on all the time and fill their disks from
satellite.

– A user applies filtering methods to reject uninteresting pages.
• For example, only accept pages in the domains .com, .org

and .edu .

Satellite Technology: The Result

90
Δευτέρα, 11 Απριλίου 2011

