D ¢

2uoThuata MNMeAdarn-ESutrnpeTnTn OTO
Ai1adikTuo

/

End System: Computer on the ‘Net

Also known as a “‘host”..

/

Clients and Servers

=
> |
D=
==

D
PNz

» Client program » Server program
—Running on en_d host —Running on end host
—Requests service —Provides service
—E.g., Web browser

—E.g., Web server

GET /index.html

“Site under construction”

~
Clients Are

Not Necessarily Human

—Automated

« Example: Web crawler (or spider)

client program

—Tries to discover & download many Web pages
—Forms the basis of search engines like Google

» Spider client
—Start with a
—Download t
—Parse the I-

base list of popular Web sites
ne Web pages
TML files to extract hypertext links

—Download t
—And repeat,

nese Web pages, too
and repeat, and repeat...

/

Client-Server Communication

NN
S

x

* Client “sometimes on”
—Initiates a request to the
server when interested
—E.g., Web browser on
your laptop or cell phone
—Doesn’'t communicate
directly with other clients

— Needs to know the
server’'s address

« Server is “always on”

— Services requests from
many client hosts

—E.g., Web server for the
www.chn.com Web site

—Doesn't initiate contact
with the clients

— Needs a fixed, well-
known address

(
Client and Server Processes

* Program vs. process
— Program: collection of code
— Process: a running program on a host

 Communication between processes

— Same end-host: inter-process communication
e Governed by the operating system on the end host

— Different end hosts: exchanging messages
e Governed by the network protocols

 Client and server processes

— Client process: process that initiates communication
— Server process: process that waits to be contacted

~
Socket: End Point of Communication

« Sending message from one process to another
—Message must traverse the underlying network

* Process sends and receives through a “socket”
—In essence, the doorway leading in/out of the house

« Socket as an Application Programming Interface
— Supports the creation of network applications

User process User process

socket socket

System «* ¥ System

[

Identifying the Receiving Process

» Sending process must identify the receiver
—Name or address of the receiving end host
— ldentifier that specifies the receiving process

* Receiving host
— Destination address that uniquely identifies the host
—An IP address is a 32-bit quantity

* Receiving process
— Host may be running many different processes
— Destination port that uniquely identifies the socket
— A port number is a 16-bit quantity

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for

128.2.194.242:80

(i.e., the Web server)

Service request for
128.2.194.242:7

(i.e., the echo server)

[

Knowing What Port Number To Use

* Popular applications have well-known ports
—E.qg., port 80 for Web and port 25 for e-mail
— Well-known ports listed at http://www.iana.org

* Well-known vs. ephemeral ports

— Server has a well-known port (e.g., port 80)
 Between 0 and 1023

— Client picks an unused ephemeral (i.e., temporary) port
* Between 1024 and 65535

* Uniquely identifying the traffic between the hosts

— Two IP addresses and two port numbers
— Underlying transport protocol (e.g., TCP or UDP)

/

Delivering the Data: Division of Labor

Network
—Deliver data packet to the destination host

—Based on the destination |IP address
Operating system @

—Deliver data to the destination socket
—Based on the protocol and destination port #

Application
—Read data from the socket
—Interpret the data (e.g., render a Web page)

W

-
UNIX Socket API

» Socket interface
— Originally provided in Berkeley UNIX
— Later adopted by all popular operating systems
— Simplifies porting applications to different OSes

* In UNIX, everything is like a file
—All input is like reading a file
— All output is like writing a file
—File is represented by an integer file descriptor

« System calls for sockets

— Client: create, connect, write, read, close
— Server: create, bind, listen, accept, read, write, close

o

&4
4 e

Typical Client Program

* Prepare to communicate
—Create a socket

—Determine server address and port number
—Initiate the connection to the server

* Exchange data with the server
—Write data to the socket
—Read data from the socket
—Do stuff with the data (e.g., render a Web page)

* Close the socket

_ s

/ b e
Creating a Socket: socket()

 Operation to create a socket

— Returns a descriptor (or handle) for the socket
— Originally designed to support any protocol suite

* domain: protocol family
— PF_INET for the Internet
— PF_PACKET: direct access to network interface (bypass TPC/IP)

* type: semantics of the communication
— SOCK_STREAM: reliable byte stream
— SOCK _DGRAM: message-oriented service

* protocol: specific protocol
— UNSPEC: unspecified
— (PF_INET and SOCK_STREAM already implies TCP)

. s

[

4 b ¢
Connecting the Socket to the Server

 Translating the server’'s name to an address

— Argument: the name of the host (e.g., “www.cnn.com”)
— Returns a structure that includes the host address

* |dentifying the service’s port number

— Arguments: service (e.g., “ftp”) and protocol (e.g., “tcp”)

 Establishing the connection

— Arguments: socket descriptor, server address, and address size
— Returns 0 on success, and -1 if an error occurs

/

Sending and Receiving Data

\—

Sending data

— Arguments: socket descriptor, pointer to buffer of data to
send, length of the buffer, flags controlling details

— Returns the number of characters written, and -1 on error

Receiving data

— Arguments: socket descriptor, pointer to buffer to place the
data, size of the buffer, flags controlling details

— Returns the number of characters read (where 0 implies
“end of file”), and -1 on error

Closing the socket

6T

-
Byte Ordering: Little and Big Endian

O
S
) @

D ¢

* Hosts differ in how they store data
—E.qg., four-byte number (byte3, byte2, byte1, byte0)

* Little endian (“little end comes first”) < Intel PCs!!!

— Low-order byte stored at the lowest memory location
—ByteO, byte1, byte2, byte3

» Big endian (“big end comes first”)

— High-order byte stored at lowest memory location
—Byte3, byte2, byte1, byte O

* |IP is big endian (aka "network byte order”)
—Use htons() and htonl() to convert to network byte order
— Use ntohs() and ntohl() to convert to host order

.

~
Why Can’t Sockets Hide These Details?

* Dealing with endian differences is tedious
— Couldn’t the socket implementation deal with this
— ... by swapping the bytes as needed?

* No, swapping depends on the data type
— Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)
— Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs. (byte
0, byte 1, byte 2, byte 3)
— String of one-byte charters: (char O, char 1, char 2, ...) in
both cases

» Socket layer doesn’t know the data types
— Sees the data as simply a buffer pointer and a length
—Doesn’t have enough information to do the swapping

\—

/

Servers Differ From Clients

» Passive open
— Prepare to accept connections

— ... but don’t actually establish one
— ... until hearing from a client

* Hearing from multiple clients
— Allow a backlog of waiting clients
—... In case several try to start a connection at once

* Create a socket for each client
— Upon accepting a new client
— ... create a new socket for the communication

NN
S

/

Typical Server Program

x

.

Prepare to communicate
— Create a socket
— Associate local address and port with the socket

Wait to hear from a client (passive open)
—Indicate how many clients-in-waiting to permit
— Accept an incoming connection from a client

Exchange data with the client over new socket
— Receive data from the socket

— Do stuff to handle the request (e.g., get a file)

— Send data to the socket

— Close the socket

Repeat with the next connection request

| b e
Server Preparing its Socket

* Bind socket to the local address and port number

— Arguments: socket descriptor, server address, address
length

—Returns 0 on success, and -1 if an error occurs

« Define how many connections can be pending

— Arguments: socket descriptor and acceptable backlog
— Returns 0 on success, and -1 on error

~
Accepting a New Client Connection

* Accept a new connection from a client

— Arguments: socket descriptor, structure that will provide
remote client address and port, and length of the structure

— Returns descriptor for a new socket for this connection (the old

socket still exists and corresponds to the passive open, to be
used for future invocations of accept)

* Questions
—What happens if no clients are around?
* The accepft() call blocks waiting for a client

—What happens if too many clients are around?

e Some connection requests don’t get through
e ... But, that’'s okay, because the Internet makes no promises

s

Putting it All Together

socket ()

v

bind ()

v

listen()

v

accept ()

Client

socket ()
establish *

nection
con —» connect ()

process
request

write ()

v

d re est
sen i write ()

Send response

—» read ()

s

[

Serving One Request at a Time?

» Serializing requests is inefficient
— Server can process just one request at a time
— All other clients must wait until previous one is done

 Need to time share the server machine

— Alternate between servicing different requests

* Do a little work on one request, then switch to another

e Small tasks, like reading HTTP request, locating the associated file,
reading the disk, transmitting parts of the response, etc.

— Or, start a new process to handle each request
» Allow the operating system to share the CPU across processes

— Or, some hybrid of these two approaches

Wanna See Real Clients and Servers?

* Apache Web server
— Open source server first released in 1995
—Name derives from “a patchy server” ;-)
— Software available online at http://www.apache.org

* Mozilla Web browser
— http://www.mozilla.org/developer/

« Sendmail
— http://www.sendmail.org/

* BIND Domain Name System
— Client resolver and DNS server
— http://www.isc.org/index.pl?/sw/bind/

20 Things | Learned About Browsers and the Web
L) Patp: / /www . 20thingsilearned com/# fhome

mm.’{ TARECETHINGS FORDWORD CRIOITS

What's a cookie? How
do 1 protect myself T
on the web? And
Bl 20 THinGs
What happers If a i
truck runs over my '
laptop?

Bl LEARNED ABOUT

always wanted to

il | BROWSERS AND | :

But were afraid to

s resson THE WEB

OPEN BOOKX

oo
m\C]

20 TINGS: 4

¢ ¥ ‘ 3
Publnhed by the Google Chrome Team, ©2010 Google Inc. Al Rights Reserved

' £ < -
surinook @0 @ ow -

Ciemintmook [A

£ L=

[

Ocpata YAotroinong NpwTtokOAAwvV

* MovTtEAo Aigepyaaiac (process model)

* Alepyacia ava TTpwTOKOAAO (process-per-protocol):
— Kd&0Be TpwTtOKOAAO UAOTTOIEITOI OQV DIAPOPETIKN diEpyaaia

—"Eva yrivuua 1Tou dIaTtpEXEl TNV OToIRA TWV TTPWTOKOAAWY,
TTEPVAEI ATTO HIA OIEQPYATia TTPWTOKOAAOU OTNV AAAN.

* Alepyacia ava ynvuua (process-per-message):

— Kd&Be mTpwTOKOAAO Bewpeital oav “oTaTIKOG” KWOIKAC

— KdaBe ynvupua avrioToixietal o€ yia dIA@OPETIKN dlEpyaaia.

—H “01a0poun” TNG oToIRAC TWV TTPWTOKOAAWYV YiveTal e
KANOEIG OIAOIKATIWV.

[

Ocpata YAotroinong NpwTtokOAAwvV

l

Process-per-protocol

Process-per-message

/

OfpyaTta YAotroinong NpwTtokKOAAwvV

> |
D
S

D
PNz

.

Process-per-protocol model:
— AKoUYETal EUKOAOTEPO OTNV UAOTTOINON

— A\IyOTEPO ATTOOOTIKO ATTO TO process-per-message model: n
kKArjon dl1adikaaoiag gival pia Ta¢n peyEBouc TTIo ypryopn
aT1ro 1O context switch

2TNV TTPACN, Ta unvuuaTa “Katefaivouv” Tnv oToifa
TWV TTPWTOKOAAWYV UE HIO OEIPA KANOEWV O1adIKOTIaC
send Kal “avelaivouv’ TN oToiRa TWV TTPWTOKOAAWY
UE MO o€Ipa KANoewvV dladikaaiag deliver.

A TTapaAafn HNVUPATWY OTTO TIC EQAPUOYEC ViveTAl
UE TNV KANON AEITOUPYiIQGC receive, N OTTOIA TTPOKOAEI
context switch.

NN
S

4 b ¢
Ocpata YAotroinong NpwTtokOAAwvV

¢ 2€ ECEPXOMEVA UNVUNATA, TO TTPWTOKOAAO MIAG DIOCTPWHUATWONG
EKTEAEI AciToupyia send TTPOC TO TTPWTOKOAAO TNC XAUNAOTEPNG
OlIAOTPWHATWONC:
— H Aeitoupyia aut) uttopei eUKoAa va uAoTtroinBei ue KARonN

dladikaaiag, oTroTe Oev XpelaleTal aAAayr) ouyKeipEvou (context
switch)

* ['la Tn dlaxeipIon EI0EPXOPEVWV UNVUUATWY, TO TIPWTOKOAAO HIAG
OIAOTPWHATWONG EKTEAEI AcITOUpYia receive Kal JTTAOKAPEI,
TTEPIMEVOVTAG ATTO TO TTIPWTOKOAAO TNC XAUNAOTEPNG
OIAOTPWHATWONG VA TTAPAdOCEl KATTOIO EICEPXOUEVO UNVUUO

— To ytTAOKApPICUO CUVETTAYETAI AQAAAYT) OUYKEIMEVOU

— ['a Tnv atro@uyn Tou KOOTOUG AUTOU OTIC UAOTTOINCEIG TWV
TTPWTOKOAAWYV, QVTi TNG receive YiveTal xpnon Asitoupyiag deliver
(ME KANON d1adIKaCiag atrd TTPWTOKOAAO XOUNAOTEPNG O€

TTPWTOKOAAO uYWNAOTEPNC DIAOTPWHATWONG)
N 4

/

KataxwpnTéS HMNVUNATWY

buffers

Application Process

\/

Send ()

deliver ()

Topmost protocol

/

MeTpikég ETridoong - performance metrics

« Bandwidth (throughput) - {wviko eupocg/eupog (wvng

—[1oooTNTa HETAPEPOUEVWY DEDOUEVWV AVA XPOVIKN OTIYUN

—Link vs end-to-end
— KB = 210 pytes
—Mbps = 10° bits per second

1 second

UUUUUUUL... JUT

1 second

1Mbps
(each bit 1 microseconds wide)

2 Mbps
(each bit 0.5 microseconds wide)

Bandwidth of a Truck

Semi Tractor-Trailer 30'L x 10'H x 8W = 2500 ft3

DVDs (Digital Videodisks)
— @5 GB each, 2000 GB (2 terabytes)/ ft°

— Semi holds 5 million GB = 5 petabytes (enough to store
every book ever published)

Pittsburgh - San Francisco = 3000 miles

— @ 50 miles/hour = 60 hours = 200,000 seconds

— Bandwidth = 25 GB / second = 200 gigabits/sec
200 times the bandwidth of gigabit Ethernet!

Problem: latency = 60 hours

e

Bandwidth by Technology

1.000.000
750.000
500.000
Kbits/sec
250.000
-«
56K Mo

~
MeTpikég ETridoong - performance metrics

* Latency - xpovik uoTtépnon
— XPOVOC TTOU ATTAITEITAI VIO ATTOOTOAN INVUPATOC (transmission time)
atro onueio A o€ onueio B oto dikTUuO
— Movn ¢ kaTteuBuvong Q| Yer emoTpoPn (RTT)
— YTToAOYIOUOG:
* Latency = Propagation + Transmit + Queue
* Propagation = Distance / SpeedOfLight
* Transmit = Size / Bandwidth
— Speed of light:
e 3.0 x 108 meters/second 010 KeVO

e 2.3 x 108 meters/second oe KaAwdio
e 2.0 x 108 meters/second o€ oTITIKN iva

* O xpovog HETADOONG EVOG MIKPOU PNVUMATOC O€ TOTTIKO QiKTUO gival ouvROwe KATW
ToUu 1Tms — 1000 1mé apyog atrd Tov XpOvo KAONG MIAG AEITOUPYIaG KATTOIOG
dlepyaciag TTou BpioKeTAl POPTWHEVN OTNV KEVTPIKA uvAun vog HYY.

* Q0oT1600, 0 XPOVOG AUTOC Eival OUYKPIOIKMOG (A Kal TTIO PIKPOG) ATTO TOV XPOVOo
avAyvwaong Tou uNvUPaTog atro évav okANpo 0iko (AOyw uoTépnong Kal pubuou
ueTddoong).
- s

-
Yotépnon vs Eupoc Zwvng

o] o
S8

=
AN

“9\4

e 2XETIKN ONpacgia eUpoug wvng Kal uotTepnong
— 2€ MIKPA pnvupata (1 byte): 1ms vs 100ms dominates
1Mbps vs 100 Mbps
— 2.€ JeyaAa unvuparta (25 MB): Mbps vs 100 Mbps
dominates 1ms vs 100 ms

* Delay x Bandwidth = mooa bits TTpETTel va OTEIAEl O
QTTOOTOAEQC TTPIV TNV APICN TOU TTPWTOU bit oTov
TTAPAANTITN

dalay

il
=

.y

L |

s

Yotépnon vs Eupoc Zwvng

1-Mpbs cross-country link

‘ Source |

-1

* ain
Mb

.1 Mb

.1 Mb

Takes 80 RTT to transmit 1 MB file;,

1.25% of the file is sent during each RTT

1-Gpbs cross-country link
‘ Sourcei I Dest \

1 MB

A 1 MB file does not even fill 1RTT worth

1 RTT worth of the Gbps link

e

%
>~

-
Network Exponentials

S>>
.
\;‘7‘;

e

* Network vs. computer performance
— Computer speed doubles every 18 months
— Network speed doubles every 9 months
— Difference = order of magnitude per 5 years

* 1986 to 2000

— Computers: x 500
— Networks: x 340,000

2001 to 2010

— Computers: x 60
— Networks: x 4000

Doubling Time
{months)

_ Performance per Dollar Spent

912 18

Siicon Computer Chrps
{(number of transistos sg

Opﬂcal Fnber
S per 5ec on)

Data Storage
{bits periquare inch)

“ Number of Years

Moore's Law vs. storage improvements vs. optical improvements. Graph from Scientific American

(Jan-2001) by Cleo Vilett, source Vined Khoslan, Kleiner, Caufield and Perkins.

20

