
Intermediary Systems: A Survey

“Intermediary Infrastructures for the WWW,” M. Dikaiakos, Computer Networks 45 (2004), 421-447

Δευτέρα, 11 Απριλίου 2011

Outline

• Introduction.

• End-to-end arguments.

• Extending the edges.

• Proxies and CDNs.

• Intermediaries beyond proxies.

2
Δευτέρα, 11 Απριλίου 2011

Definition
• Software entities that intervene in the client-server exchanges

taking place at the application layer of the Internet.

• Deployed on hosts of the wireline and wireless network, along
the route taken by client requests and server replies through the
network (content path).

• From simple relaying and caching to more complex
transformations involving the modification of requests and
replies, and the creation of content.

• Extend the functionality and application performance offered by
the network to its end-users, without violating the end-to-end
principles of Internet design.

• Provide a “reusable and expandable set of services and
functions, commonly needed by many applications to function
well in a networked environment” [Middleware].

3
Δευτέρα, 11 Απριλίου 2011

Motivation

• Intermediaries are important:
– A useful abstraction for designing and studying emerging

software infrastructures for the Internet services.
– Will permeate the Internet because of the increasing demand for

scalability, high-availability, personalization, localization, and
ubiquity.

• Our goals:
– Provide a survey of a wide range of intermediary systems and

identify common characteristics and functional properties.
– Examine the requirements and identify key components of

intermediary systems.
– Define a framework for comparing, modeling, and designing

intermediaries.

4
Δευτέρα, 11 Απριλίου 2011

“End-to-end” arguments in systems design

• Application-level functions usually cannot, and preferably
should not, be built into the lower levels of a system.

• Functionality can completely and correctly be
implemented only with the knowledge and the help of the
applications standing at the endpoints of the
communication system. Providing that functionality as a
feature of communication systems is not possible
[Saltzer et al., ACM Trans. Comput. Syst., Vol. 2, No. 4,
1984]

5
Δευτέρα, 11 Απριλίου 2011

Benefits of “End-to-end” arguments

• Flexibility
– Can easily connect together computers with unknown applications.
– Easy application upgrading at the end-point.

• Better performance
– Lower-level system is common to all applications and it may not have as

much information as the higher level.

• Lower cost and complexity in core of network.
– Simplified network design.

• Application delivery guarantee
– The communication layer can only guarantee delivery to the host.

• FIFO message delivery guarantee

• User empowerment.
– Can run whatever application.

6
Δευτέρα, 11 Απριλίου 2011

Example: Delivery guarantee

• The ack message in ARPANET was never found to be
helpful to applications using ARPANET, why?

• Because knowing for sure that message was delivered to
the target host is not very important.

• What the application wants to know is whether or not the
target host has acted on the message!

• All manner of disaster might have struck after message
delivery but before completion of the action requested by
the message.

• The acknowledgement that is really desired is an end-to-
end one, which can only by the target application—”I did
it”, or “I didn’t”.

7
Δευτέρα, 11 Απριλίου 2011

Core vs. e2e

• The end-to-end argument is not an absolute rule but rather a
guideline.

• Application layer has more information about the data and the
semantic of the service.

• A lower layer subsystem has more information about
constraints in data transmission (e.g., packet size, error rate)

• A new functionality at a lower level should have minimum
performance impact on the applications that do not use the
functionality.

• Lower layer implementation improves performance of a large
number of applications

8
Δευτέρα, 11 Απριλίου 2011

Tradeoffs

• Using the e2e arguments sometimes requires a subtlety
of analysis of application requirements.

 Example: if low levels of a telephone system try to
accomplish bit-perfect communication, they will probably
introduce uncontrolled delays in packet delivery. Such
delays are disruptive to voice apps. It is better off to
accept the damaged data and the participant to say
“excuse me?”.

9
Δευτέρα, 11 Απριλίου 2011

“End-to-end” principles and the Web

• The system architecture of the World-Wide Web is based
on end-to-end principles: functionality and complexity are
put at Web clients and Web servers.

10
Δευτέρα, 11 Απριλίου 2011

Departing from e2e

• Excessive loads of Web traffic: large latencies, overloaded Web
servers.

• Wireless connectivity and mobile services: disconnected operation,
content and service adaptation.

• More demanding applications: streaming media with stringent
bandwidth requirements.

• Need for service differentiation: added-value, different service-levels,
personalization, context and location awareness.

• Less sophisticated users: delegating configuration, protection, and
control to a common point, part of the application execution context.

• Diversity of terminal devices: Support for wireless, mobility and
ubiquity.

• Operation in an untrustworthy world.

11
Δευτέρα, 11 Απριλίου 2011

Departing from e2e (ctd)

• Third party intervention
– ISPs want to sell services, add value, and make money.
–More complex role for commercial ISPs

 vertical integration of transport/QoS with applications
 control of what applications users can use.
 filtering of unacceptable behavior.

• Need to control traffic:
–Firewalls, Traffic filters, Network address translation

elements

• Need for anonymity and accountability.

12
Δευτέρα, 11 Απριλίου 2011

Extending the edges

13
Δευτέρα, 11 Απριλίου 2011

Dynamic content management
• Web pages as collections of:

– Dynamic information fragments extracted from back-end applications and
databases (WebSphere).

– XML fragments derived through queries to back-end databases (Weave).

• High-level abstractions for Web-site structure:
– Object Dependence Graphs persistent data-structures (IBM’s WebSphere).
– OO Declarative programs (WeaveL language, INRIA’s Weave project).

• Run-time policies for update propagation and consistency with
back-end systems specified via:
– Trigger monitors integrated with ODG’s (WebSphere)
– Declarative specification languages (WeavePRL).

• Run-time adaptability - flexibility to choose at run-time which
codes to invoke is provided by the Accessible Business Rules
framework which contain run-time decision points (WebSphere).

14
Δευτέρα, 11 Απριλίου 2011

Efficient Creation of Dynamic Content
• Source: “A Publishing System for Efficiently Creating Dynamic Web Content,” J.

Challenger et al., INFOCOM 2000.
• A system employed for the Olympic Games 2000 Web

sites.
• Problems with dynamic content:

– A typical dynamic page may require several orders of magnitude
more CPU time to serve than a typical static page of
comparable size.

– Correctly and consistently updating dynamic pages whenever
there are changes in underlying data (a change in underlying
data may affect multiple pages).

– Invalidating dynamic pages cached in main memory or file
systems, whenever there are updates in the pages’ content:
 which cached pages are affected by updates in underlying data?

15
Δευτέρα, 11 Απριλίου 2011

Managing Dynamic Content (ctd)

• Dynamic pages are implicitly updated any time an
embedded fragment changes.

• Consistency becomes an issue with the fragment-
based approach when the pages are being published
to a cache or file system.

• The fragment-based approach for generating Web
pages:
– Makes it easier to design Web sites with a common look and

feel.
– Facilitates the embedding of common information into several

Web pages.
– Enhances the management of sets of Web pages which

contain similar information.
16

Δευτέρα, 11 Απριλίου 2011

Managing Dynamic Content (ctd)
• Composition of dynamic pages out of fragments:

– Fragments represent parts of Web pages which change together.
– When a change to underlying data occurs which affects several Web pages, the

fragments affected by the change can easily be identified.
– It is possible for a fragment to recursively embed another fragment: fragments are

either atomic or complex.

• The overhead of composing a page from simpler fragments is
usually minor if compared to the overhead of constructing the
page from scratch.

• Using the fragment approach, it is possible to achieve significant
performance improvement without caching dynamic pages and
dealing with the difficulties of keeping caches consistent.

• It is possible, however, to cache dynamic pages - this capability
is integrated with the fragment management system.

17
Δευτέρα, 11 Απριλίου 2011

Elements of the IBM approach (WebSphere)

• A system for authoring Web pages as collections of fragments:
employ templates written in a markup language.

• A system for extracting inclusion relationships between fragments
and pages: parsing templates and constructing an Object
Dependence graph (ODG).

• A system for managing the propagation of changes in underlying
data to the pages of the Web site: employing graph traversal
algorithms on the ODG to determine propagation steps.
– ODG incorporated into the Accessible Business Rules framework

(ABR), which provides developers with access to business rules

• Accessible Business Rules (ABR) middleware: enables application
development where time and situation-variable parts are
determined by business rules.

18
Δευτέρα, 11 Απριλίου 2011

Business Rules [Wikipedia]

• A Business rule is a statement that defines or constrains some aspect
of the business. It is intended to assert business structure or to control or
influence the behavior of the business. Business rules:
– describe the operations, definitions and constraints that apply to an organization.
– can apply to people, processes, corporate behavior and computing systems in an

organization, and are put in place to help the organization achieve its goals.

• A business rules engine is a software system that executes one or
more business rules in a runtime production environment.
– The rules might come from legal regulation, company policy ("All customers that

spend more than $100 at one time will receive a 10% discount"), or other sources.
– A business rule system enables these company policies and other operational

decisions to be defined, tested, executed and maintained separately from application
code.

– Rule engine software is commonly provided as a component of a business rule
management system which, among other functions, provides the ability to: register,
define, classify, and manage all the rules, verify consistency of rules definitions, define
the relationships between different rules, and relate some of these rules to IT
applications that are affected or need to enforce one or more of the rules.

19
Δευτέρα, 11 Απριλίου 2011

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Business_rules
http://en.wikipedia.org/wiki/Business_rules
http://en.wikipedia.org/wiki/Regulation
http://en.wikipedia.org/wiki/Regulation
http://en.wikipedia.org/wiki/Information_Technology
http://en.wikipedia.org/wiki/Information_Technology

WebSphere’s Accessible Business Rules

• Applications contain decision points, which query an ABR Server at run-
time and retrieve the business rules that apply under a given context.

• Once retrieved, these rules are “fired,” adapting the behavior of the
application at the particular decision point.

• Business rules are managed externally to the application.

Q1:
 SELECT * FROM RULEUSETABLE WHERE
 CONTEXTID LIKE ‘customerLevel’
 AND TYPE LIKE ‘classifier’
 AND COMPLETIONSTATUS LIKE ‘ready’

Q2(userClassification):
 SELECT * FROM RULEUSETABLE WHERE
 CONTEXTID LIKE ‘promotion’
 AND CLASSIFICATION LIKE $1
 AND TYPE LIKE ‘situational’
 AND COMPLETIONSTATUS LIKE ‘ready’

20
Δευτέρα, 11 Απριλίου 2011

IBM WebSphere: General Purpose Cache

• ABR framework architecture: three tiers

21

Dynamic content presentation and user interaction

Managing business rules and caching
query results

Data resources

Application
Server

Web
Server

Back-end
DB

Δευτέρα, 11 Απριλίου 2011

IBM WebSphere: General Purpose Cache
• In the Accessible Business Rules (ABR) middleware:

– A cache reduces the number of queries to remote databases by storing query
results.

• General-Purpose Software (GPS cache) cache :
– efficient code for storing data in memory, on disk, or both.
– optimized support for invalidating objects based on expiration times and for logging

cache transactions.
• The GPS cache in ABR, stores results of queries ultimately made to a database.

– Problem: how to keep the cache current after database updates. Determine which
queries are affected by changes that occur to the database.

• Solution: Data Update Propagation (DUP).
– Dependency relationships between attributes and query are represented by an object

dependence graph (ODG).
– DUP Value-aware update policy :

 When attributes change, consider old and new attributes values to determine how to update
cache.

 Automatically generate ODG's from the queries within an ABR application.

22
Δευτέρα, 11 Απριλίου 2011

Web-page fragments and ODG’s

f4

f2

f1

f5

f2

P1

f3 P1

f3

f1

f5

f2

f5

23
Δευτέρα, 11 Απριλίου 2011

Publish Process

 Trigger monitor: Takes objects
from sources, constructs
pages and writes them to
sinks.

24
Δευτέρα, 11 Απριλίου 2011

INRIA Weave
Source: K. Yagoub, D. Florescu, P. Valduriez, V. Issarny, "Caching Strategies

for Data-Intensive Web Sites" , Proc. of the Int. Conf. on Very Large Data
Bases (VLDB) ,Cairo, Egypt, 10-14 September , 2000

 Main goal: separate three key concerns of Web-site management:
 Web site structure and content specification
 Web-page presentation and graphical style
 Implementation: content assembly and HTML creation

25
Δευτέρα, 11 Απριλίου 2011

INRIA Weave
 Caching data-intensive Web sites

 Content is dynamically extracted from a database.
 Relies on the declarative specification of web sites
 Specification of website is distinguished from its implementation.

The mapping between raw data and logical model of web is
described by declarative language (WeaveL)

 Specification of website structure and content is separated from
the graphical representation of the pages.

 Weave: tools for design, implementation, profiling, deployment
and monitoring of site.

26
Δευτέρα, 11 Απριλίου 2011

INRIA Weave (ctd)
 Website declarative specification:

 WeaveL program: XML graph data model to describe structure and content.
An instance for a site is called XML site graph.

 XSLT to describe graphical representation.
 WeaveL program: Consists of a site class specification modeling

a collection of homogeneous pages in a website. Each page is an
instance of a class. The specification includes:
 declaration of parameters identifying an instance
 SQL query that gives all the instances of the class
 the specification of the data contained in an instance of the class
 the db queries that have to be evaluated to build the correct links between

the pages
 the specifications of the forms embedded in the page.

 A page request specifies the class of the file and values for zero
or more parameters.

27
Δευτέρα, 11 Απριλίου 2011

INRIA Weave (ctd)
 Data Materialization: re-using intermediate results of various

computations to answer subsequent queries.
 What kind of data must be materialized?

 Results of db queries, XML fragments and HTML files.
 When must materialization must be performed?

 (i) proactively, (ii) upon request, (iii) prefetching
 Where should the materialized intermediate result be placed for

effective performance improvements?
 (i)database server, (ii)web server, (iii) proxy, (iv) web client.

 How are updates propagated to the materialized data?
 (i)push, (ii)pull.

 Which data must be materialized or computed upon request?
 Expensive to compute, do not require frequent propagation, and

requested frequently.

28
Δευτέρα, 11 Απριλίου 2011

Architecture of Weave
•Scheduler: Interprets the runtime policy
and coordinates the behavior of the
other components.

•Cache manager: Retrieves components
with data related to the page. Enforces
policies.

•Repositories: Store the data. Multiple
caches for scalability.

•XML Generator: Issues queries to the
DBMS and produces XML fragments.

•HTML Generator: Generates HTML
pages from fragments and XSLT
programs

•Statistics Manager: In charge of storing
and summarizing data about runtime
behavior.

29
Δευτέρα, 11 Απριλίου 2011

INRIA Weave (ctd): WeaveL

30
Δευτέρα, 11 Απριλίου 2011

INRIA Weave (ctd): XML Fragment

31
Δευτέρα, 11 Απριλίου 2011

INRIA Weave (ctd): WeaveRPL

• The data materialization process is driven by a declarative
specification of runtime and caching policies described in
WeaveRPL.

32
Δευτέρα, 11 Απριλίου 2011

Proxies and Content-Distribution Networks

• Proxy caches reduce response times, server loads, HTTP traffic.

• Organized as hierarchical and co-operative caching infrastructures.

• Content Distribution Networks: belong to one administrative entity and
comprise geographically distributed collections of cooperating edge
proxies.

Edge
Servers

33
Δευτέρα, 11 Απριλίου 2011

Content-Distribution Networks (CDN)

• The purpose of a CDN is to proactively replicate the content
of one or more related Web sites to strategically chosen
locations across the Internet, then transparently redirect
browsers to the nearest or most responsive cache.

• Getting content to the edge to improve service availability and
reduce latency.

• Performance tradeoffs with caching hierarchies
– Reduced server load, reduced network traffic and reduced end-user

latency
but

– Inter-cache communication overhead, delays incurred at each level of
the hierarchy and performance bottlenecks at higher-level proxies

– (P.Rodriguez, C. Spanner, E.Biersack. Web caching architectures: Hierarchical and distributed
caching. In Proceedings of the 4th Web Caching Workshop, 37–48, San Diego, CA,1999.)

34
Δευτέρα, 11 Απριλίου 2011

Beyond Web proxies
 We examine intermediaries that extend the paradigm of typical Web

intermediaries along three dimensions:
1. The functionality provided by an intermediary beyond proxying and

content caching: capabilities, services, policies.
2. The system architecture of an intermediary, describing its

composition in terms of components, the division of roles and
functions between them, their inter-relationships, their placement
across the network and their ownership.

3. The interaction between intermediaries and their counterparts,
described in terms of communication patterns, supported protocols,
access models.

35
Δευτέρα, 11 Απριλίου 2011

Functionality
• Customization: restructuring the presentation of content according to user-

preferences, terminal-device capabilities, context of use, location, etc.

• Filtering: semantic analysis of content retrieved from origin servers; pertinent to
intelligent techniques for service personalization and localization, protection
from viruses, indecent content, etc.

• Annotation: generation and dissemination of additional information and meta-
information (summaries, keywords, highlights, ad banners).

• Transcoding: transformation from one format to another, to enable presentation
in different terminals and to optimize transportation across wireless links.

• Protocol Translation between wireless and wireline protocols.

• Content creation: produced from application code off-loaded, cached and
executed on intermediaries, or from the aggregation of content retrieved from
multiple origin servers.

36
Δευτέρα, 11 Απριλίου 2011

System Architecture
• Structure: centralized/tightly integrated versus distributed intermediaries.

• Deployment: near origin server, near client, in the network, in the intranet.

• Ownership: client device, ISP, intermediary service provider, CDN, content
provider, enterprise intranet, etc.

• Complexity: special purpose, “light” components vs. components with complex
functionality (caching, versioning, indexing, profiling).

• Support for configurability and programmability:
– Configuration parameters: determine the set of operations to be invoked in a

given context; hard-wired or extracted from meta-data files
– Generic execution environments: supporting the dynamic off-loading of

intermediary entities into the infrastructure (JVM, Mobile agents, Jini); provide
APIs, libraries, patterns for programming new services.

– Compositional frameworks: providing components used as building blocks for
defining new services according to higher-level programming models.

37
Δευτέρα, 11 Απριλίου 2011

Interaction

• Communication mode: synchronous (on-demand) versus
asynchronous.

• Access model: push (server-initiated) versus pull (client-
initiated).

• Protocol support: HTTP, stripped-down HTTP, SMTP, NNTP,
WAP.

• Supported media: wireline versus wireless.

38
Δευτέρα, 11 Απριλίου 2011

Classifying Intermediaries
• We examine three categories of intermediary systems (based on their

functionality and focus):

– Notification intermediaries (aka information-dissemination systems): driven
by end-user profiles, operate asynchronously, even when an end-user is
disconnected.

– Intermediaries for wireless and mobile services.

– Intermediary infrastructures: overlay networks extending the support of the
core network for the development and deployment of new services.

39
Δευτέρα, 11 Απριλίου 2011

Notification Intermediaries
• Monitor content in origin Web servers on behalf of subscribed users.

• Evaluate the relevance of changes with respect to stored user profiles (long-
term, continuously evaluated queries).

• Notify subscribers accordingly (push or pull).

• Provide support for filtering, annotation and aggregation of content.

• Examples of notification Systems:
– SIFT (Stanford Univ.) - for Usenet News; information-retrieval style profiles
– AIDE (AT&T Research) - for the Web; emphasis on versioning and

differencing of Web pages.
– Grand Central Station (IBM) - for the Web, Usenet news, email; boolean-

structured predicated language for profile specification; combined with Web
casting dissemination.

– FIGI (Univ. Cyprus) - for the Web, Usenet news, email; XML profiles; mobile-
agent based architecture, dissemination with mobile agents, email, and SMS.

40
Δευτέρα, 11 Απριλίου 2011

Stanford Information Filtering Tool (SIFT SIFT)

• Geared towards efficient large-scale information dissemination services to users
that subscribe their interests to SIFT servers.

• The user submits to the system profiles - one per topic of interest

• Profile includes :
– Query : Boolean or Vector Space Model
– Frequency of notification
– Amount of info to receive
– Life of profile
– Email address, profile identifier

• Implementation:
– Collect new documents daily from USENET News
– Match each article against stored queries
– Generate notifications - daily and non-daily
– Sort files by (user, profile) and mail document to users

41
Δευτέρα, 11 Απριλίου 2011

AT&T Internet Difference Engine (AIDE)

• Tool for tracking and viewing modifications to World-
Wide-Web resources.

• It is comprised of a centralized notification server, a
version archive and a difference engine that identifies
and displays changes in webpage content.

• Users subscribe a list of URLs and configuration
parameters.

• AIDE supports recursive tracking and differencing of
pages.

• Changes to an HTML are presented with highlighting.

42
Δευτέρα, 11 Απριλίου 2011

Grand Central Station - IBM

• Designed to find and summarize information on the Web as soon
as it becomes available.

• GCS pushes the results to a variety of devices from a desktop to
Personal Digital Assistants (PDA).

• The task of collecting and sorting through vast amounts of
information is split to several geographically-divided GCS
Gatherers.

• Crawlers search out information from both readily available and
obscure data sources, Web servers, news servers, database
systems and file systems

• Data is then organized by a Recognizer according to type --
graphics, database files, Web documents, e-mails or sounds.

• Subsequently the Selector filters the information to remove
irrelevant material before handing it off to the Summarizer.

43
Δευτέρα, 11 Απριλίου 2011

Grand Central Station – IBM (ctd)

• The Summarizer is a collection of plug-in programs distinguished
by data type; it produces a summary represented in a metadata
format known as the SOIF (Summary Object Interchange Format).

• A Web server associated with each Gatherer makes the SOIFs
available to a central component called the Collector. From the
SOIFs, the Collector creates a database that is essentially a map
of the digital universe.

• The Profile Engine matches this information to the interests and
needs of users, starting with the user's queries, it constructs
information profiles that it constantly matches against the incoming
information.

• When new information is discovered, it distributes them to
Administration Servers that deliver them to the client's desktop
machine or PDA.

44
Δευτέρα, 11 Απριλίου 2011

Intermediaries for Mobility & Wireless: Requirements

• Optimize client-server communication over the wireless medium.

• Support personal, physical, and service mobility.

• Support both synchronous and asynchronous interaction, coping with
frequent disconnections.

• Support seamless access from a variety of devices.

• Adapt content to terminals of different type.

• Support the provision of content in multiple formats (HTML, WML,
XML) to the same device over the same link.

• Adapt content to s i tuat ional and personal preferences
(personalization, localization, context-awareness).

• Guarantee high availability, robustness, and performance scalability.
45

Δευτέρα, 11 Απριλίου 2011

Distributed agent-based approaches

• Deploy special-purpose, “light” components (“agents”) on
the wireline network and/or the mobile hosts.

• These agents collaboratively mediate the communication
between origin servers and mobile terminals.

46
Δευτέρα, 11 Απριλίου 2011

IBM’s WebExpress

• By IBM [Housel, Samaras, Linguist, 1998].

• Supports wireless WWW access.

• Provides HTTP optimization over wireless channel, header caching,
disconnection management.

47
Δευτέρα, 11 Απριλίου 2011

IBM’s WebExpress (ctd)
• Client/intercept/server model: a client-side intercept agent (CSI) and a server-side

intercept agent (SSI) inserted into the data path between the client and the server.
• Only change: Specify at the browser the (local) IP address of the CSI as the browser's

proxy.
• The CSI communicates with an SSI process using a reduced version of HTTP. The SSI

reconstitutes the HTML stream and forwards it to the designated proxy server.
• Caching: At both the CSI and the SSI.

– The SSI cache is populated by responses from the requested web servers.
– If requested object is in CSI's cache, it is returned; otherwise, the cache at the SSI is checked.

When a cached object is referenced, the CSI checks whether the coherency interval has been
exceeded.

– The client cache replacement policy is an LRU (least recently used) policy .
• Differencing : HTML streams often contain a lot of unchanging data. A common base

object is cached at both the CSI and SSI. SSI computes difference between base object
and response and transmits the difference. The CSI merges the difference with its base
object.

• Header Reduction : The CSI allows HTTP header to flow in the 1st request and only the
new information is sent subsequently.

• Disconnected Operation: The client relies solely on CSI cache. “Asynchronous-
disconnected" mode: requests are queued and resumed when connectivity is re-
established.

48
Δευτέρα, 11 Απριλίου 2011

Web Stream Customizers

• Steinberg & Pasquale (WWW 2003). Provides redirection of HTTP traffic,
protocol and content adaptation, compression and caching.

• Local Component Server attached to client; hosts multiple local
components (one per origin server).

• Remote Component Server attached to origin server; hosts multiple
remote components (one per client).

49
Δευτέρα, 11 Απριλίου 2011

End-to-end solutions
• Origin servers store content in multiple formats compatible

with various wireless clients or adapt it on-the-fly according
to client, connection, or end-user profiles.

• However: adapted content or adaptation software has to be
inserted at each origin server (and updated as new
terminals and protocols become available).

50
Δευτέρα, 11 Απριλίου 2011

Proxy-based solutions
• Deploy powerful adaptation intermediaries in the net, to

act as delegates for a specific family of devices.

• Can be combined with end-to-end solutions.

51
Δευτέρα, 11 Απριλίου 2011

WAP Gateways and Web Clippings
• Combine the end-to-end approach (“specialized” ends) with the proxy-based

solution (proxy providing optimization of communication).

• Provide translation between HTTP and wireless protocols, and lower-level
optimizations for the provision of Web access over wireless devices.

• Presume the publishing of content into specific formats (WML and HTML3.2,
respectively).

52
Δευτέρα, 11 Απριλίου 2011

Handspring’s Blazer

• Combination of a powerful adaptation proxy with a
device-specific micro-browser.

53
Δευτέρα, 11 Απριλίου 2011

Intermediary Infrastructures
• Intermediary solutions need to support, additionally:

– Large numbers of simultaneous end-users.
– Big heterogeneity of terminal devices.
– High-throughput of requests for service.
– Bursty workloads.
– High-availability and incremental scalability in service provision.
– Ease in the definition and deployment of new services.

• Requirements:
– To shift computation, storage and complexity from centralized proxies,

terminals, mobile-base stations, into the networking infrastructure.
– Distributed, cooperating, network-centric components.
– Enhance the programmability or configurability of intermediary components.

54
Δευτέρα, 11 Απριλίου 2011

Intermediary Infrastructures

• Proposed approaches suggest a separation of concerns:
– Content presentation.
– Communication optimization.
– Aggregation of content.
– Orchestration of functions.
– Robust execution.

• Solutions typically include some type of multi-tier
architecture:
– Lower tiers provide the execution environments of intermediary

services, offering support for load-balancing, high-availability, etc.
– Middle tiers provide mechanisms for specifying the orchestration of

intermediary functions.
– Upper tiers provide support for adapting the content to particular

terminal devices and network connections.
55

Δευτέρα, 11 Απριλίου 2011

Examples of Intermediary Infrastructures
 BARWAN project (UC/Berkeley): support service access from mobile clients roaming

across heterogeneous wireless networks.
 Lower tier: Scalable Network Services
 Middle tier:TACC servers (transcoding, annotation, caching, customization)
 Upper tier: handles presentation of data to various terminals.
 Compositional framework: inspired by UNIX pipes.
 Basic component: TACC workers,supporting basic functionalities (transformation,

aggregation, customization, caching).

 Ninja architecture: robust, Java-based infrastructure for Internet services
 Lower tier: Bases and vSpace execution environment.
 Middle tier: Active Proxies provide transformational support between services and

clients.
 Upper tier: Units represent terminal devices in the infrastructure.
 Compositional framework: introduces a path abstraction, comprising operators and

connectors, put together according to four patters (wrap, pipeline, combine,
replicate).

56
Δευτέρα, 11 Απριλίου 2011

Examples of Intermediary Infrastructures

• WBI (Web Browser Intelligence, IBM Almaden): assembles complex
intermediary systems from simpler components.

• Compositional framework:
– Based on five building blocks: request editors [upper tier], generators [lower

tier], document editors [middle tier], monitors and autonomous functions
[logging and book-keeping functions].

– These are composed into information streams, packaged as WBI plugins,
and connecting origin servers with terminal devices.

– Multiple WBI plugins can be composed into WBI services.
– Composition of WBI plugins can be dynamic, using a rule-based approach.

• iMobile (ATT research):
– iProxy: programmable proxy server designed to host agents and services in

Java.
– Programming abstractions: devlets, applets, infolets.

57
Δευτέρα, 11 Απριλίου 2011

Bay Area Research Wireless Access Network (BARWAN)
project (UC/Berkeley)

• Provide service to mobile clients roaming across
heterogeneous wireless networks.

• Key Concepts:
– Overlay networking: the unification of several heterogeneous

networks, of varying coverage and performance, into a single
logical network that provides the best of all the networks.
Traditional cell-based (horizontal) roaming and transparent
roaming across the constituent networks (vertical roaming)
TCP enhancements and corrective agents in the infrast.

– Dynamic Adaptation: Deals with varying network conditions and
client heterogeneity. Includes adaptive mechanisms for TCP,
format conversion, real-time video transcoding, dynamic quality/
performance tradeoffs, and dynamic generation of customized UI
for small devices.

58
Δευτέρα, 11 Απριλίου 2011

BARWAN project (ctd)-Architecture

Service: Service-specific code
Workers present human interface to what TACC modules do, including device-
specific presentation
User interface to control the service
Complex services: implement directly on SNS layer

TACC: Transformation, Aggregation, Caching, Customization
API for composition of stateless data transformation and content aggregation
modules
Uniform caching of original, post-aggregation and post-transformation data
Transparent access to Customization database

SNS: Scalable Network Service support

Incremental and absolute scalability
Worker load balancing and overflow management
Front-end availability, fault tolerance mechanisms
System monitoring and logging

59
Δευτέρα, 11 Απριλίου 2011

BARWAN project (ctd)

• TACC: Compositional framework: inspired by UNIX
pipes. Simplifies service creation and hides the details of
the SNS layer.

• Basic component: TACC workers supporting:
–Transformation (“one-to-one”): changes on a single data

object
–Aggregation (“many-to-one”): Search engines, crawlers,

“my headlines”
–Caching: Both original and TACC-generated content
–Customization : Per user: content generation, Per device:

data delivery, content “packaging”

60
Δευτέρα, 11 Απριλίου 2011

BARWAN project (ctd)

• Easy to write applications:
– Rapid prototyping

 Isolate workers from details
– Easy to incorporate existing/legacy code

 Few assumptions about code structure
 Must support variety of languages

– Composition to leverage existing code

61
Δευτέρα, 11 Απριλίου 2011

Ninja Architecture (UC/Berkeley)

• Robust platform to enable dynamic service composition.

• Goals:
– Enable the broad innovation of robust, scalable, distributed

Internet services and
– Permit the emerging class of extremely heterogeneous devices

to seamlessly access these services [GWB00].

• Service:
–Software embedded in the Internet infrastructure that

exports a network-accessible, typed, programmatic
interface, and that provides strong operational guarantees.

– It must exhibit scalability, availability, fault tolerance, data
consistency and persistence.

62
Δευτέρα, 11 Απριλίου 2011

Ninja Architecture

• Ninja architecture: robust, Java-based
infrastructure for Internet services
– Lower tier: Bases and vSpace execution environment.
– Middle tier: Active Proxies provide transformational support

between services and clients.
– Upper tier: Units represent terminal devices in the infrastructure.
– Compositional framework: introduces a path abstraction,

comprising operators and connectors, put together according to
four patters (wrap, pipeline, combine, replicate).

– Supports dynamic composition of horizontal services into a path,
as well as adaptation along that path.
 Adaptation is done by active proxies: they transform data types, adapt

protocols or content.

63
Δευτέρα, 11 Απριλίου 2011

Ninja Architecture (ctd)

• The composition process involves five entities:
– Internet Service Providers: Resource providers for information

requested by a query.
– Network Service Providers: Provide connection to the various

devices through varying type of networks.
– Automatic Path Creation Service Provider (APC): Coordination

of composition of services. Automatically finds paths between
system components and creates connections.

– Service Discovery Service (SDS): Provides a directory service
mechanism (like Jini lookup service) and a mechanism by
which users and programs can locate announcements across
the wide area. Encompasses authentication and access control
services.

– End Clients: Fixed/mobile devices with Internet access.

64
Δευτέρα, 11 Απριλίου 2011

Ninja Path (ctd)

• User provides the APC facility a specification of the endpoints of the required
path. The path construction process consists of four steps:

• Step 1: Logical Path Creation: The APC facility searches through operators’
XML descriptions for sequences that could compute what the user
requested. List of possible operator sequences.

• Step 2: Physical Path Creation: Mapping of a particular logical path onto
physical nodes which execute the operators. This is done by the APC facility,
which finds the lowest cost nodes that meet the requirements.

• Step 3: Path Instantiation and Execution: The APC facility starts required
dynamic operators, and sets up appropriate connectors between operators.
Operator nodes report problems to repair the path when necessary.

• Step 4: Path Tear-Down: When a path is no longer needed, the user informs
the APC facility that it should be removed. The APC facility then stops the
data, removes connectors, and shuts down any dynamic operators.

65
Δευτέρα, 11 Απριλίου 2011

WBI (Web Browser Intelligence, IBM Almaden):

• Assembles complex intermediary systems from simpler
components.

• Compositional framework:
– Based on five building blocks: request editors [upper tier],

generators [lower tier], document editors [middle tier], monitors
and autonomous functions [logging and book-keeping
functions].

– These are composed into information streams, packaged as
WBI plugins, and connecting origin servers with terminal
devices.

– Multiple WBI plugins can be composed into WBI services.
– Composition of WBI plugins can be dynamic, using a rule-based

approach.

66
Δευτέρα, 11 Απριλίου 2011

WBI Dataflow

rules

request
editors

M

DE

G

gen

document
editors monitors

RE RE

GDE

M

WBI

67
Δευτέρα, 11 Απριλίου 2011

WBI Example: Wireless Web

• three plugins work together
– cache with prefetch
– compressed protocol extension
– image distillation

M

DE

G

A

G G

prefetch

cache

compressed
protocol

image
distillation

68
Δευτέρα, 11 Απριλίου 2011

WBI Rules

• Boolean expressions with wildcards
– rejection allows other selection criteria

• switch on structured data in req/doc
– URL, content-type, client addr, protocol, etc.

• priority
– chaining (editors)
– ordering (generators)
host=*.stanford.edu & content-type=text/*

69
Δευτέρα, 11 Απριλίου 2011

iMobile (ATT research)

• Proxy-based platform that addresses issues in building mobile services.

• Message gateway:
– mobile devices using various protocols on different access networks to relay

messages to each other.
– clients access internet services, corporate databases, and control various

networked devices.

• Programming abstractions: devlets, infolets, applets

• The let engine, core of iMobile, implements framework for maintaining
applets, devlets and infolets, supports user and device profiles for
personalization and transcoding, and invokes applets and infolets to answer
requests from a devlet.

• Allows new access devices and protocols to be added to its framework
without changes in the service logic.

• iProxy: programmable proxy server designed to host agents and services in
Java.

70
Δευτέρα, 11 Απριλίου 2011

iMobile architecture

71
Δευτέρα, 11 Απριλίου 2011

iMobile Devlet

• A devlet is a driver attached to the proxy that receives
and sends messages through a particular protocol for
mobile devices.

• Each devlet interacts with the let engine in a standard
way:
–Receive each request as a character stream.
–Send the stream interpreted as an iMobile command

and associated parameters to the let engine.
–Return results in a MIME type acceptable by the

receiving device determined by the device profile
stored at the let engine.

72
Δευτέρα, 11 Απριλίου 2011

iMobile Infolet

• An infolet hosted on iMobile uses an appropriate access
method to provide an abstract view of an information
space. spaces. Retrieved information may be passed to
an applet for further processing.

• Examples of Information Spaces:
– Access websites (Stock quote, weather, flight schedule, ...)
– Corporate Database (Accessed through the JDBC and ODBC

interfaces)
 iMobile hosts a JDBC infolet that allows mobile users to access or update

enterprise database information (employee data, sales data, etc) through
SQL-like queries.

– Network/Infrastructure Resources (Accessed through the
CORBA interfaces)
 iMobile hosts a CORBA infolet that allows mobile users to request

services from CORBA objects.

73
Δευτέρα, 11 Απριλίου 2011

iMobile Applet

• An applet implements service or application
logic by processing information from various
infolets and relaying results to various
destination devices.

• It may simply sends a message from one
device to another without using any information
sources OR have complex interaction with other
infolets.

74
Δευτέρα, 11 Απριλίου 2011

iMobile Let engine

• Core of iMobile
• Implements framework for maintaining applets,
devlets and infolets, supports user and device
profiles for personalization and transcoding, and
invokes applets and infolets to answer service
requests from a devlet.

• All devlets, infolets and applets must be
registered at the let engine before
communication with other agents can occur.

75
Δευτέρα, 11 Απριλίου 2011

iMobile Device Profiles

• Every device must register its profile with let engine.
• DEVICE NAME: protocol:acct_id
• A device profile is a list of attribute-value pairs e.g.:dev.format.accept=text/html,*/*

dev.page.size=-1
•Each device has to be mapped to a registered iMobile user.

•limiting access to legitimate iMobile users only and
•to personalize a service based on the user profile.

•Typical device-to-user map stored under iMobile (rarp.ini):
sms:+886936731826=herman
sms:+19087376842=chen
mail:dchang@research.att.com=difa
aim:webciao=chen

Default profile for an email device

76
Δευτέρα, 11 Απριλίου 2011

Infrastructures for Dynamic Content
• Intermediary infrastructures presented earlier, do not support the retrieval,

execution, and caching of service code from dynamic-content providers to the
intermediary infrastructure.

• In that context, several issues need to be addressed:
– Specification and composition of intermediary services out of code

components retrieved dynamically from service providers.
– Consistency maintenance, security management, and resource

management.

• Approaches in that direction focus on a three-tier architecture of a service,
comprising: presentation, business logic and database tiers:
– Active Cache system [Univ. Wisconsin].
– Websphere Edge Services (IBM)
– EdgeSuite CDN (Akamai) - based on the ESI specification of W3C.
– IETF’s Open Pluggable Edge Services (OPES) working group.

77
Δευτέρα, 11 Απριλίου 2011

General Framework

 IETF Open Pluggable Edge Services (OPES)
 Flows: sequence of message exchanges between client and

server.
 Entities: Processes operating on flows

 Service applications/Proxylets
 Data dispatcher/Engines

 Rules: Standardized schema to encode conditions and related
actions

78
Δευτέρα, 11 Απριλίου 2011

OPES architecture

 OPES entities: processes running on OPES processors
deployed on the network.

 OPES flows: flows of data between OPES entities.

 OPES rules: specify when and how OPES services are
injvoked

79
Δευτέρα, 11 Απριλίου 2011

OPES Model

80
Δευτέρα, 11 Απριλίου 2011

OPES flows

81
Δευτέρα, 11 Απριλίου 2011

Callout Servers

82
Δευτέρα, 11 Απριλίου 2011

Conclusions
• Existing intermediaries lack the semantics and the system support to be used as

open and dynamic overlay networks.

• Recent intermediary infrastructures offer some support for composability of
services and for hosting code retrieved from remote providers.

• Many challenges still exist:
– Programmability support: need for programming models, languages, APIs,

generic compositional frameworks, execution environments, well-defined
interfaces.

– Extended Communication support: mechanisms for specifying and
standardizing richer interaction semantics between intermediary components.

– Adaptability: system support for dynamic adaptation, in terms of performance
and context monitors, execution environments for execution-state migration,
etc.

– Support from Middleware: explicit description and management of adaptation
conditions, resource availability; standardization of services for data
management, for policy implementation.

83
Δευτέρα, 11 Απριλίου 2011

