
1

Αρχιτεκτονικά Μοντέλα
Κατανεµηµένων Συστηµάτων

Υπολογιστικό Μοντέλο ΠΠΠ

2

Architectural Models

3

4

Descriptive Models

• Models are intended to provide an abstract,
simplified and consistent description of a relevant
aspect of Distr. System design.

• Architectural models of D/S define the way in
which components of systems:
– Interact with one another
– Are mapped onto an underlying network of computers

5

Architecture of D/S

• Architecture of a system: its structure in terms of
separately specified components.

• Goal: to ensure that the structure will meet
present and likely future demands on it.

• Concerns:
– Reliability
– Manageability
– Adaptability
– Cost-effectiveness

6

Why Discuss Architecture?
• Descriptive

– Provide a common vocabulary for use when describing systems

• Guidance
– Identify key areas in which services are required

• Prescriptive
– Define standard protocols and APIs to facilitate creation of

interoperable systems and portable applications

7

Architectural Models
• Simplify and abstract the functions of the individual

components of a D/S.

• Represent the placement of the components across a
network of computers, seeking to define useful patterns for
distribution of data and workload.

• Capture the interrelationships between the components –
that is, their functional roles and the patterns of
communication between them.

8

Basic Notions: resource components
• Resource and Computational Components:
– composing elements of an architecture

• Resource components:
–Embody architectural elements representing passive data

or physical devices
–Entities meant to be shared

 E.g., computers, storage, data, software
–Do not have to be physical entities
– E.g., Condor pool, distributed file system, …
–Defined in terms of interfaces, not devices

 E.g. scheduler such as LSF and PBS define a compute resource
 Open/close/read/write define access to a distributed file system, e.g. NFS,

AFS, DFS

9

Basic Notions: computational components

• Embody a flow of control
–E.g. process, thread

• Characterized by state, which includes:
–Private data
–State of execution
–Bindings to other components (code and resource)

• Examples:
–Client processes (διεργασίες πελάτη)
–Server processes (διεργασίες εξυπηρετητή) : a process

accepting requests from other processes.
–Peer processes (διεργασίες οµοτίµων)

10

Basic notions: interactions & sites
• Events that involve 2 or more components
–Message exchanged between 2 computational

components

• Sites:
–Execution environments: they host components and

provide support for the execution of computational
components.

–Sites embody the intuitive notion of location.
– Local vs remote interactions.

11

Basic Notions: Network Enabled Services
• Implementation of a protocol that defines a set of

capabilities
– Protocol defines interaction with service
– All services require protocols
– Not all protocols are used to provide services (e.g. IP)

• Examples: FTP and Web servers

Web Server

IP Protocol
TCP Protocol
TLS Protocol
HTTP Protocol

FTP Server

IP Protocol
TCP Protocol

FTP
Protocol

Telnet
Protocol

12

Basic Notions: Network Protocol

• A formal description of message formats and a set of rules
for message exchange
– Rules may define sequence of message exchanges
– Protocol may define state-change in endpoint, e.g., file system state

change

• Good protocols designed to do one thing
– Protocols can be layered

• Examples of protocols
– IP, TCP, TLS (was SSL), HTTP, Kerberos

13

Basic Notions: Application Programming Interface

• A specification for a set of routines to facilitate application
development
– Refers to definition, not implementation
– E.g., there are many implementations of MPI

• Spec often language-specific (or IDL)
– Routine name, number, order and type of arguments; mapping to

language constructs
– Behavior or function of routine

• Examples
– GSS API (security), MPI (message passing)

14

Basic Notions: Software Development Kit

• A particular instantiation of an API

• SDK consists of libraries and tools
–Provides implementation of API specification

• Can have multiple SDKs for an API

• Examples of SDKs
–MPICH, Motif Widgets

15

Basic Notions: Syntax
• Rules for encoding information, e.g.

– XML, Condor ClassAds, Globus RSL
– X.509 certificate format (RFC 2459)
– Cryptographic Message Syntax (RFC 2630)

• Distinct from protocols
– One syntax may be used by many protocols (e.g., XML); &

useful for other purposes

• Syntaxes may be layered
– E.g., Condor ClassAds -> XML -> ASCII
– Important to understand layerings when comparing or

evaluating syntaxes

16

A Protocol can have Multiple APIs
• TCP/IP APIs include BSD sockets, Winsock, System V

streams, …

• The protocol provides interoperability: programs using
different APIs can exchange information

• I don’t need to know remote user’s API

TCP/IP Protocol: Reliable byte streams

WinSock API Berkeley Sockets API

Application Application

17

An API can have Multiple Protocols
• MPI provides portability: any correct program compiles & runs

on a platform

• Does not provide interoperability: all processes must link
against same SDK
– E.g., MPICH and LAM versions of MPI

ApplicationApplication

MPI API MPI API
LAM SDK

LAM protocol
MPICH-P4 SDK

MPICH-P4 protocol
TCP/IP TCP/IP

Different message
formats, exchange

sequences, etc.

18

APIs and Protocols are Both Important

• Standard APIs/SDKs are important
– They enable application portability
– But w/o standard protocols, interoperability is hard (every

SDK speaks every protocol?)

• Standard protocols are important
– Enable cross-site interoperability
– Enable shared infrastructure
– But w/o standard APIs/SDKs, application portability is hard

(different platforms access protocols in different ways)

19

Programming & Systems Problems

• The programming problem
–Facilitate development of sophisticated apps
–Facilitate code sharing
–Requires programming environments

 APIs, SDKs, tools

• The systems problem
–Facilitate coordinated use of diverse resources
–Facilitate infrastructure sharing

 e.g., certificate authorities, information services
–Requires systems

 protocols, services

20

System architecture

• The structuring of software as layers or modules in a
single site or in terms of services offered and
requested between processes located in the same
or different sites.
– Client-server
– Client-proxy-server
– Push model
– Remote evaluation
– Code on demand
– Mobile agent: running program+data migrating

Some basic notions
• Client processes (διεργασίες πελάτη)

• Server processes (διεργασίες εξυπηρετητή) : a
process accepting requests from other processes.

• Peer processes (διοµότιµες διεργασίες)

• Software architecture: the structuring of software as
layers or modules in a single computer or in terms of
services offered and requested between processes
located in the same or different computers.

21

Software and hardware layers

22

Some basic notions

• Platforms for D/S and applications: the lowest-level
hardware and software layers. Provide services to
layers above them.

• Middleware (µεσολογισµικό;) a layer of software
whose purpose is to mask heterogeneity and
provide a convenient programming model to
application programmers.

• Middleware is represented by processes or objects
in a set of computers that interact with each other to
achieve communication and resource sharing.

23

Some basic notions
• Middleware is concerned with providing useful building

blocks for the construction of software components that
can work with one another in a D/S.

• It enables communication at higher levels of abstraction
by providing things like:
– remote method invocation
– group communication
– event notification
– data replication
– real-time transmission of data.

24

Some basic notions
• Middleware can also provide infrastructural services

for use by application programs:
–Naming
–Security
–Transactions
–Persistent storage
–Event notification

25

From centralized to client-server

26

Centralization: mainframes

27

Centralization: time-sharing

28

Personal Computing: some degree of
decentralization (thanks to Moore’s law)

29

Centralized vs Distributed

• Centralized computing
– Low cost: time-sharing, amortizing building cost
–Expert management

• Distributed approach:
–Richer user interface: higher bandwidth available locally
–Greater autonomy

30

Client-server Computing

31

“Client-server”

32

Client Server

Not very popular for the masses

Browser

33

The browser gradually became a “platform”

Browsers as platforms

34

True client-server computing with
browsers

35

Client Server

What happens behind the schene?

36

Client Server

Data Center

XML

HTML

Javascript

SQL

PHP

HTTP

System Architecture

• Client-server model.

• Services provided by multiple servers in separate
hosts.
–Partitioned data: Web server example.
–Replicated data: NIS example.

• Replication is used to increase performance and
availability and to improve fault tolerance – provides
multiple consistent copies of data in processes
running in different computers.

• At what cost?

37

Variations of Client-Server

• Mobile code, e.g., applets (Code-on-demand).

• Push model: the server instead of the client initiates
interactions.

• Mobile agents: running program+data migrating.

38

39

Clients invoke individual servers

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Site:

40

A service provided by multiple servers

Server

Server

Server

Service

Client

Client

41

Web proxy server

Client

Proxy

Web

server

Web

server

server
Client

42

A distributed application based on peer
processes

Coordination

Application

code

Coordination

Application

code

Coordination

Application

code

43

Web applets

a) client request results in the downloading of applet code

Web
server

Client
Web
serverApplet

Applet code
Client

b) client interacts with the applet

Designing Distributed Applications with Mobile Code Paradigms

A. Carzaniga, G.P. Picco and G. Vigna

Proceedings of the 19th International Conference in Software
Engineering, 1997.

44

Code Mobility

• The capability to reconfigure dynamically, at run
time, the binding between the software components
of an application and their physical location within a
computer network.

• Two types of mobility:
–Strong mobility: the ability of a MCL to allow Execution

Units to move their code and execution state to a different
site.

–Weak mobility: the ability of a MCL to allow an EU in a site
to be bound dynamically to code coming from a different
site.

45

46

Louise and Christine make a cake

• Cake -- result of the service

• Recipe -- know-how / code

• Ingredients -- resource component / data

• Louise -- computational component A

• Christine -- computational component B

• Louise’s home -- Site A

• Christine’s home -- Site B

47

Request of cake

Read the recipe
Bake the cake
Deliver the cake

Traditional Client and Server Model: (CS)

Server
X Windows System

Site B: Christine

Client

Site A: Louise

Wants to
Eat cake

48

Remote Evaluation Model: (REV)

Site B: ChristineSite A: Louise

Wants to
Eat cake

Recipe

Get the recipe
Bake the cake
Deliver the cake

Unix: rsh command
PostScript printer

49

Code on Demand (COD)

Site A: Louise
Wants to
Eat cake

Request for
Recipe

Recipe

Terminal gets a new type of document. Document header may contain a
reference (URL address) to the code that is needed to interpret the
document. Then the principle will go to the reference and download the
necessary code and execute it afterwards.

Site B: Christine

50

 Louise
Has:

Recipe

Lack:
Ingredients

Mobile Agent Model: (MA)

Has:
Ingredients

Lack:
Don’t care

Site A: Louise Site B: Christine
Louise moves
to Site B along
with recipe and
ingredients

Cake

51

Paradigm Recap

Before After

A and B is already in execution

52

Choosing the Right Paradigm

• No paradigm is absolutely better than others.

• The choice of paradigm must be performed on a
case-by-case basis, taking into account issues such
as the cost of network communication, availability
and performance of resources, etc.

53

Case study: Information Retrieval
Application
• Data managers:
–Store a set of documents
–Store an index of documents kept in their storage
–Documents contain:

 Document header: contains update time and keywords
 Document content: contains text and links to other Data

Managers that contain interesting documents
• Browser:
–Given a description of interests, searches for data-

manager nodes to find and retrieve relevant documents
–Looks into documents to discover new data-manager

nodes

Browser Algorithm

• Data structure:
–Browser maintains a “see also” list of nodes to be visited
–This list should be initialized with a “seed” of known nodes

(at least one node in the seed).

• Browser Algorithm:
–Extract the first node from the “see also” list
– Loop:

 Contact the node and query its data manager to retrieve an index of
documents stored

 Request the headers of all documents that are present on that node
 Check which documents are “interesting” and retrieve their bodies
 Extract links to other nodes from retrieved documents and insert

them into the “see also” list.

54

55

Browser

Data
Manager Data

Manager

Data
Manager

Data
Manager

Support for:
•HEAD
•GET

“See also”
list

INDEX

INDEX

56

Case Study: Information Retrieval Application

Assumptions:

• Sites communicate by exchanging messages with a reliable
protocol.

• Communication Cost -- only proportional to the bytes that
are transmitted. Zero if two components are on the same
node.

• CPU time -- zero

• Each node can access every other node without overhead
of access control and authentication.

57

Assumptions Continued

• Each node holds same number D of documents

• The relevant information is uniformly distributed
among a set of N nodes

• i is the ratio between relevant and total documents.

• Documents have constant length. h and b are the
size of the header and the body, respectively.

• All requests have a fixed length (r): message
header size and all auxiliary data of the request/
reply

58

Client - Server
• For each node, browser issues:
–D requests for doc headers
– i x D requests for doc bodies

Tcs = (D + i D) r N + (D h + i D b) N

59

Remote Evaluation

• Remote Evaluation could perform the filtering task
on the node!

• Crev -- size of the code to execute on remote
 node

Trev = (r + Crev + i D b) N

60

Mobile Agent

• The browser migrates on each relevant node

• Performs filtering locally

• Saves the state of all relevant information and the
see-also list

• At each hop, the mobile agent carries its code and
state across the network.

61

Mobile Agent (ctd)
• Traffic for each hop of the MA:
–Tj = r + Cma + Sj where:

 Cma -- size of the agent
 Sj = dSAlist + s + ∑1

j (i D b) -- state carried with the agent
 s -- size of internal data structures representing the state of

the computation
 ∑1

j (i D b) -- information collected by the agent at each
visited node

• Assumming that i, D, b, dSAlist and s do not depend
the node, we have:
–TMA = ∑j= 0(r + Cma + s + ∑1

j (i D b))
–TMA = (r + Cma + s + NiDb/2)(N+1)

62

• Useful information: I = iDbN

• Overheads:

Ocs = Tcs - I = (r + ir + h)DN

Orev = Trev - I = (r + Crev)N

Oma = Tma - I

 = (r + Cma + Sa) (N+1) + I/2 (N - 1)

REV vs. CS

Assuming r << Crev

 (r + ir + h) D > Crev

Comparison

