
1

Διαδικτυακά Πρωτόκολλα Μεταφοράς
(Transport Protocols)

Το πρωτόκολλο TCP



2

Role of Transport Layer

• Application layer
–Communication for specific applications
–E.g., HyperText Transfer Protocol (HTTP), File Transfer 

Protocol (FTP), Network News Transfer Protocol (NNTP)

• Transport layer
–Communication between processes (e.g., socket)
–Relies on network layer and serves the application layer
–E.g., TCP and UDP

• Network layer
– Logical communication between nodes
–Hides details of the link technology
–E.g., IP



3

Transport Protocols

• Provide logical communication 
between application processes 
running on different hosts

• Run on end hosts 
–Sender: breaks application 

messages into segments, 
and passes to network layer

–Receiver: reassembles 
segments into messages, 
passes to application layer

• Multiple transport protocol 
available to applications
– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport



4

Internet Transport Protocols

• Datagram messaging service (UDP)
–No-frills extension of “best-effort” IP

• Reliable, in-order delivery (TCP)
–Connection set-up
–Discarding of corrupted packets
–Retransmission of lost packets
–Flow control
–Congestion control 

• Other services not available
–Delay guarantees
–Bandwidth guarantees



5

Multiplexing and Demultiplexing

• Host receives IP datagrams
–Each datagram has source 

and destination IP address, 
–Each datagram carries one 

transport-layer segment
–Each segment has source 

and destination port number 

• Host uses IP addresses and 
port numbers to direct the 
segment to appropriate socket

source port # dest port #

32 bits

application
data 

(message)

other header fields

TCP/UDP segment format



6

Unreliable Message Delivery Service

• Lightweight communication between processes
–Avoid overhead and delays of ordered, reliable delivery
–Send messages to and receive them from a socket

• User Datagram Protocol (UDP)
– IP plus port numbers to support (de)multiplexing
–Optional error checking on the packet contents

 SRC port  DST port

checksum length

DATA



7

Why Would Anyone Use UDP?

• Finer control over what data is sent and when
–As soon as an application process writes into the socket
–… UDP will package the data and send the packet

• No delay for connection establishment 
–UDP just blasts away without any formal preliminaries
–… which avoids introducing any unnecessary delays

• No connection state
–No allocation of buffers, parameters, sequence #s, etc.
–… making it easier to handle many active clients at once

• Small packet header overhead
–UDP header is only eight-bytes long



8

Popular Applications That Use UDP

• Multimedia streaming
–Retransmitting lost/corrupted packets is not worthwhile
–By the time the packet is retransmitted, it’s too late
–E.g., telephone calls, video conferencing, gaming

• Simple query protocols like Domain Name System
–Overhead of connection establishment is overkill
–Easier to have application retransmit if needed

“Address for www.cnn.com?”

“12.3.4.15”



9

Transmission Control Protocol (TCP)

• Connection oriented
– Explicit set-up and tear-down of TCP session
– State maintained at both hosts

• Stream-of-bytes service
– Sends and receives a stream of bytes, not messages
– Division of data into datagrams, headers etc are invisible to the 

application above

• Reliable, in-order delivery
– Checksums to detect corrupted data
– Acknowledgments & retransmissions for reliable delivery
– Sequence numbers to detect losses and reorder data
– Adapt to network congestion for the greater good

• Full duplex transfer
– Allows data transfer between two applications in both directions 

at the same time



Transmission Control Protocol (TCP)

• Flow control
– Prevent overflow of the receiver’s buffer space

• Congestion control
–Regulates the rate at which the network can transfer the 

data

10



11

Challenges of Reliable Data Transfer

• Over a perfectly reliable channel
–All of the data arrives in order, just as it was sent
–Simple: sender sends data, and receiver receives data

• Over a channel with bit errors
–All of the data arrives in order, but some bits corrupted
–Receiver detects errors and says “please repeat that”
–Sender retransmits the data that were corrupted

• Over a lossy channel with bit errors
–Some data are missing, and some bits are corrupted
–Receiver detects errors but cannot always detect loss
–Sender must wait for acknowledgment (“ACK” or “OK”)
–… and retransmit data after some time if no ACK arrives



12

TCP Support for Reliable Delivery
• Checksum

– Used to detect corrupted data at the receiver
– …leading the receiver to drop the packet

• Sequence numbers
– Used to detect missing data
– ... and for putting the data back in order

• Retransmission
– Sender retransmits lost or corrupted data
– Timeout based on estimates of round-trip time
– Fast retransmit algorithm for rapid retransmission



13

TCP Segments



TCP Segments

• TCP breaks the data stream into segments, which 
the network layer encapsulates into IP datagrams.

• TCP segment header supports: connection 
management, reliable delivery, flow control

14

MAC
Header

IP Packet
Header

TCP Segment
Header

Application
Data

TCP Payload

IP Payload

Frame Payload



TCP Header Fields

• Source and Destination port  numbers: for multiplexing/
de-multiplexing at the hosts

• Sequence number: the offset of a segment in a byte 
stream (the sequence number of the first segment byte 
in the byte stream)

• Acknowledgment number: confirms that the sender of 
the segment has received all bytes up to this number 
from the other host (valid when the ACK bit is set)

• Code bits field (flags): deal with connection management 
and urgency of the content of the segment (SYN, FIN, 
RST, ACK)

• Window field: used for flow control
15



16

TCP Header

Source port Destination port

Sequence number
Acknowledgment

Advertised windowHdrLen Flags0
Checksum Urgent pointer

Options (variable)

Data

Flags:
SYN
FIN
RST
PSH
URG
ACK



17

TCP “Stream of Bytes” Service

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

B
yte 80



18

…Emulated Using TCP “Segments”

B
yte 0

B
yte 1

B
yte 2

B
yte 3

B
yte 0

B
yte 1

B
yte 2

B
yte 3

Host A

Host B

B
yte 80

TCP Data

TCP Data

B
yte 80

Segment sent when:
1. Segment full (Max Segment Size),
2. Not full, but times out, or
3. “Pushed” by application.



19

TCP Segment

• IP packet
–No bigger than Maximum Transmission Unit (MTU)
–E.g., up to 1500 bytes on an Ethernet

• TCP packet
– IP packet with a TCP header and data inside
–TCP header is typically 20 bytes long

• TCP segment
–No more than Maximum Segment Size (MSS) bytes
–E.g., up to 1460 consecutive bytes from the stream

IP Hdr
IP Data

TCP HdrTCP Data (segment)



20

Sequence Numbers

Host A

Host B

TCP Data

TCP Data

TCP 
HDR

TCP 
HDR

ISN (initial sequence number)

Sequence 
number = 1st 

byte
ACK sequence 
number = next 
expected byte



21

Initial Sequence Number (ISN)

• Sequence number for the very first byte
–E.g., Why not a de facto ISN of 0?

• Practical issue
– IP addresses and port #s uniquely identify a connection
–Eventually, though, these port #s do get used again
–… and there is a chance an old packet is still in flight
–… and might be associated with the new connection

• So, TCP requires changing the ISN over time
–Set from a 32-bit clock that ticks every 4 microseconds
–… which only wraps around once every 4.55 hours!

• But, this means the hosts need to exchange ISNs



22

TCP Three-Way Handshake



23

Establishing a TCP Connection

SYN

SYN 
ACK

ACK
Data

A B

Data

Each host tells its 
ISN to the other 
host.

• Three-way handshake to establish connection
–Host A sends a SYN (open) to the host B
–Host B returns a SYN acknowledgment (SYN ACK)
–Host A sends an ACK to acknowledge the SYN ACK



24

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number
Acknowledgment

Advertised window20 Flags0
Checksum Urgent pointer

Options (variable)

Flags:
SYN
FIN
RST
PSH
URG
ACK

A tells B it wants to open a connection…



25

Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number
A’s ISN plus 1

Advertised window20 Flags0
Checksum Urgent pointer

Options (variable)

Flags:
SYN
FIN
RST
PSH
URG
ACK

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data



26

Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1
Advertised window20 Flags0

Checksum Urgent pointer
Options (variable)

Flags:
SYN
FIN
RST
PSH
URG
ACK

A tells B it is okay to start sending

Sequence number

… upon receiving this packet, B can start sending data



27

What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost
–Packet is lost inside the network, or
–Server rejects the packet (e.g., listen queue is full)

• Eventually, no SYN-ACK arrives
–Sender sets a timer and wait for the SYN-ACK
–… and retransmits the SYN-ACK if needed

• How should the TCP sender set the timer?
–Sender has no idea how far away the receiver is
–Hard to guess a reasonable length of time to wait
–Some TCPs use a default of 3 or 6 seconds



28

SYN Loss and Web Downloads

• User clicks on a hypertext link
–Browser creates a socket and does a “connect”
–The “connect” triggers the OS to transmit a SYN

• If the SYN is lost…
–The 3-6 seconds of delay may be very long
–The user may get impatient
–… and click the hyperlink again, or click “reload”

• User triggers an “abort” of the “connect”
–Browser creates a new socket and does  a “connect”
–Essentially, forces a faster send of a new SYN packet!
–Sometimes very effective, and the page comes fast



Performance implications

• TCP performance is suboptimal for transfers of 
small Web objects:
– nearly all TCP implementations send the first data after the 

handshake is completed
– this adds an additional round-trip time (RTT) to the 

application-layer data transfer

29



30

Tearing Down the Connection



31

Tearing Down the Connection

• Closing the connection
–Finish (FIN) to close and receive remaining bytes
–And other host sends a FIN ACK to acknowledge
–Reset (RST) to close and not receive remaining bytes

SY
N

SY
N

 A
CK

A
CK

D
at

a

FI
N

FIN
 A

CK

A
CK

time
A

B
FIN

A
CK



32

Sending/Receiving the FIN Packet

• Sending a FIN: close()
–Process is done sending 

data via the socket
–Process invokes 

“close()” to close the 
socket

–Once TCP has sent all of 
the outstanding bytes…

–… then TCP sends a FIN

• Receiving a FIN: EOF
–Process is reading data 

from the socket
–Eventually, the attempt 

to read returns an EOF



Flow Control

33



Principles of TCP Flow Control

• Flow control limits the transmission rate to a rate 
that the receiver can absorb the data

• TCP makes the sender wait for an ACK after 
transmitting a certain amount of data

• To decide how much data to send before waiting, 
TCP uses the sliding window protocol

• With every  ACK segment, the receiver advertises a 
window in bytes, using the WINDOW header field
– this window size indicates how many more bytes the 

receiver is able to accept into its buffers

34



35

Motivation for Sliding Window

• Stop-and-wait is inefficient
–Only one TCP segment is “in flight” at a time
–Especially bad when delay-bandwidth product is high

• Numerical example
– 1.5 Mbps link with a 45 msec round-trip time (RTT)

 Delay-bandwidth product is 67.5 Kbits (or 8 KBytes)
–But, sender can send at most one packet per RTT

 Assuming a segment size of 1 KB (8 Kbits)
 … leads to 8 Kbits/segment / 45 msec/segment  177 Kbps
 That’s just one-eighth of the 1.5 Mbps link capacity



36

Sliding Window

• Allow a larger amount of data “in flight”
–Allow sender to get ahead of the receiver
–… though not too far ahead

Sending process Receiving process

Last byte ACKed

Last byte sent

TCP TCP

Next byte expected

Last byte written Last byte read

Last byte received



37

Receiver Buffering

• Window size
–Amount that can be sent without acknowledgment
–Receiver needs to be able to store this amount of data

• Receiver advertises the window to the sender
–Tells the sender the amount of free space left
–… and the sender agrees not to exceed this amount

Window Size

Outstanding
Un-ack’d data

Data OK 
to send

Data not OK 
to send yet

Data ACK’d 



38

TCP Header for Receiver Buffering

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
FIN
RST
PSH
URG
ACK



TCP congestion control
• Applied in order to avoid packet drops and retransmissions 

that would further increase the congestion.

• TCP congestion control mechanism:
– Congestion window: specifies the number of unacknowledged 

segments one host may send to the other

• Basic idea:
– sender monitors the loss of packets; when this occurs, the 

sender reduces quickly (multiplicatively) its transmission 
rate.

– if there are no lost packets, sender increases slowly its 
transmission rate - one segment per congestion window of 
data acknowledged

– additive increase, multiplicative decrease algorithm

39



Slow start mechanism

• Start with a small transfer rate (allow only two unacknowledged 
segments)

• Initially, increase the congestion window by one segment for each 
acknowledged segment:
– this leads to an exponential increase of transfer rate

• If a packet is lost, reduce drastically the transfer rate by reducing 
the congestion window by half

• Later: increase the congestion window by one segment only after 
the sender receives acks for the number of segments equal to 
the congestion window

• Several packet losses in quick succession may trigger the repeat 
of the slow start from scratch

40



Performance implications

• The throughput of one large TCP transfer is usually higher 
than the throughput of many short ones, with the 
exception of very short connections that fit into the initial 
congestion window of two segments (~3KB)

• Short TCP transfers are affected mostly by the TCP 
handshake overhead, which cannot be amortized over the 
life of a connection

41



42

TCP Retransmissions



Retransmissions

• A mechanism to deal with unreliability (loss of 
packets)

• TCP sender retransmits segments that have not 
been acknowledged by the receiver within a 
certain time after the initial transmission (timeout)

• The timeout value is adapted according to 
previously observed RTT and RTT variance 
between two communicating hosts

• Initial timeout value set to a predefined value

43



44

Automatic Repeat reQuest (ARQ)

Time

Packet

ACKTi
m

eo
ut

Automatic Repeat Request
Receiver sends acknowledgment 
(ACK) when it receives packet
Sender waits for ACK and timeouts if 
it does not arrive within some time 
period
Simplest ARQ protocol
Stop and wait
Send a packet, stop and wait until 
ACK arrives 

Sender Receiver


