
Prepared by Chris Panayiotou for
EPL 602

Apache

Brief introduction in Apache Web
Server

EPL 602

What is Apache?

o A public-domain open source Web server
developed by a loosely-knit group of programmers
core development of the Apache Web server is performed by a
group of volunteer programmers, called the Apache Group

o The first version of Apache, based on the NCSA httpd Web
server, was developed in 1995

o Because the source code is freely available, anyone can adapt the
server for specific needs

there is a large public library of Apache add-ons
similar to development of the Linux operating system

o The original version of Apache was written for UNIX
now there are versions that run under OS/2, Windows and other
platforms

o The name is a tribute to the Native American Apache Indian
tribe, a tribe well known for its inexhaustible endurance and skill
in warfare

EPL 602

What is Apache?

o is a powerful, flexible, HTTP/1.1 compliant web server
o implements the latest protocols, including HTTP/1.1 (RFC2616)
o is highly configurable and extensible with third-party modules
o can be customized by writing 'modules' using the Apache module

API
o provides full source code and comes with an unrestrictive

license
o runs on Windows NT/9x, Netware 5.x and above, OS/2, and

most versions of Unix, as well as several other operating
systems

o is actively being developed
o encourages user feedback through new ideas, bug reports and

patches

EPL 602

Apache’s Features

o implements many frequently requested features, including:
DBM databases for authentication

allows to easily set up password-protected pages with enormous
numbers of authorized users, without bogging down the server

Customized responses to errors and problems
allows to set up files, or even CGI scripts, which are returned by the
server in response to errors and problems
e.g. setup a script to intercept 500 Server Errors and perform on-the-
fly diagnostics

Multiple DirectoryIndex directives
allows you to say DirectoryIndex index.html index.cgi, which instructs
the server to either send back index.html or run index.cgi when a
directory URL is requested, whichever it finds in the directory

Unlimited flexible URL rewriting and aliasing
Apache has no fixed limit on the numbers of Aliases and Redirects
which may be declared in the config files.
in addition, a powerful rewriting engine can be used to solve most URL
manipulation problems.

EPL 602

Apache’s Features

Content negotiation
automatically serve clients of varying sophistication and HTML
level compliance, with documents which offer the best
representation of information that the client is capable of
accepting.

Virtual Hosts
distinguish between requests made to different IP addresses
or names (mapped to the same machine). Apache also offers
dynamically configurable mass-virtual hosting.

Configurable Reliable Piped Logs
generate logs in the format that you want.
on most Unix architectures, can send log files to a pipe, allowing
for log rotation, hit filtering, real-time splitting of multiple
vhosts into separate logs, and asynchronous DNS resolving on
the fly.

EPL 602

Why Apache?

o Notable for playing a key role in the initial growth of the WWW
o Apache has been the most popular web server on the Internet

since April of 1996
continues to be the most popular web server in use
the November 2006 WWW server site survey by Netcraft found
that 60.3% of the web sites on the Internet are using Apache

more widely used than all other web servers combined
o The de facto reference platform against which other web

servers are designed and judged
o The goal of this project is to provide a secure, efficient and

extensible server which provides HTTP services in sync with the
current HTTP standards

o It has a free license and it’s public domain, open source

EPL 602

Basic Configuration

o Generally, for the home hobbyist, there is no need to
do any editing at all to apache's configuration file

o You can locate the config file usually by looking for
the file /etc/httpd/conf/httpd.conf

o The config file is broken up into three sections
the Global Section
the Main (or default server) section
and the Virtual Hosts section.
In older versions of Apache, two additional files, srm.conf
and access.conf controlled resources and access rights.

still kept around, but are now deprecated.

EPL 602

Section 1: Global Section
o This section controls behavior that is global to all instances of

apache running on your system
o The example configuration file contains excellent documentation

for each of the options
Directive Hints
ServerRoot If you configured sysconfdir to be /etc/httpd/conf then make this

"/etc/httpd"
LockFile This file is used by apache to decide if it's running or not. If the path does

not start with "/" will assume path is relative to the ServerRoot.
pidfile This file is where apache stores the process id of the server. If the path

does not start with "/" will assume path is relative to the ServerRoot.
ScoreBoardFile This file stores internal server information, but is not needed on most

Linux configurations. Just to be safe, create a place for it.
TimeOut This is the number of seconds before net traffic times out. The default on

this is 300. Values below 30 tend to cause problems.
KeepAlive Allows persistent connections. Unless you have a good reasons to not want

them, set this to "on".
MaxKeepAliveRequests This determines the maximum number of Requests allowed on a persistent

channel before it closes. 100 is a reasonable number.

EPL 602

Section 1: Global Section

Directive Hints
KeepAliveTimeout Determines how long a KeepAlive channel will remain open if idle. 15 is a good

number.
MinSpareServers Sets the desired number of servers that are idle, awaiting requests. If there

are ever less than this many of idle child processes, apache will start spawning
more until this number is reached. Too many wastes resources. Too few and
spikes in server hits could degrade performance. 2 is a good number for home
or SOHO, 3 - 5 for a business or small university.

MaxSpareServers Sets the maximum desired number of idle servers. If there are more idle
servers than desired, apache will begin to kill off children, reclaiming their
resources. 10 is the default, while for the hobbyist or SOHO user, a value of
5 can be used to save resources.

StartServers The number of children to spawn at startup. The default is 5. Busy sites
should set this higher, but not too high or you'll spend your first minute and a
half spawning children and not serving requests. Apache will dynamically
adjust the number of processes later, so setting this value very high is almost
never useful.

MaxClients This sets a ceiling on the number of child processes that can be spawned. It
can be set up to 256 without modifying source code.

EPL 602

Section 1: Global Section

Directive Hints
MaxRequestsPerChild This sets the maximum number of requests that a child process will handle

before dying. It is mainly useful on IRIX and SunOS where there are
noticeable memory leaks in the libraries. A value of 0 will allow unlimited
requests per child, and is claimed to be safe on Linux. I recommend a value of
1000, or 10000 for heavily loaded sites.

Listen Determines the address and port number that apache will bind. This can be
used to limit apache to a specific address. For instance, you can use Listen
127.0.0.1:80 to cause apache to respond only to requests from the localhost.
The usual value is 80, which tells apache to listen on the HTTP port of all
interfaces. Multiple Listen directives can be used.

BindAddress Determines which IP addresses apache will respond to. This is used on
machines with multiple IP addresses (either through multiplexing or using
multiple interfaces). The normal value is *, which causes apache to listen on all
addresses.

ExtendedStatus This is only useful if you have loaded mod_status, and tells apache to keep
track of extended information on a per request basis. It cannot be used on a
virtualhost by virtualhost basis. Set this value to "on" if you've decided to
compile mod_status as a built-in module (recommended).

EPL 602

Section 1: Global Section

Directive Hints
ClearModuleList Apache has a list of modules that should be active. This directive clears that

list. It is assumed that you will then turn on what you want using the
AddModule directive.

AddModule Modules are sort of complicated. When you compile apache, it gets a list of
included modules, not all of which are "turned on". This directive is used to
activate a built-in module. It can be used even if you haven't used the
ClearModuleList directive.

LoadModule This directive is used to load a dynamically loaded module (as opposed to a
built-in module. Order of execution can be important, so pay close attention
to the example configuration and the documentation for any alternative
modules you load.

<IfDefine></IfDefine> This is used to conditionally execute directives based on whether or not a
specific value is defined, usually by means of a command line switch (-D foo).
One use for this is for a startup script to check for the existence of a
module, and load/configure it if it exists.

EPL 602

Section 2: Main (Default Server)
Section
o Deals with the default server

The default server (or main server) is the one that will handle any requests not
captured by a <VirtualHost>

o Directives and instructions that you set in this section are, in general, inherited
by virtualhosts as well

can set some good default behaviors here rather than duplicating a lot of effort
settings inside <VirtualHost> will override these options for that particular virtualhost

Directive Hints
Port Here for historical reasons, and for setting the SERVER_PORT environment variable

for CGI and SSI. Set this to whatever your HTTP port will be (usually 80). Note: This
does NOT apply to virtualhosts.

User Sets the user that apache will handle requests as. For security reasons, apache
changes its effective UID before handling requests, so all of your documents must be
accessible to this user. For this reason, it is useful to create a user called www or
apache to use with your webserver. Running as the user nobody or as UID -1 does not
work on all systems or with all libraries.

Group Just as apache changes its UID, it also changes its GID. This is the group to change
to. Once again, nobody can cause you some difficult to track-down problems, so it's
probably a good idea to create a group.

ServerAdmin Set this to the e-mail address that should receive all error notifications.
ServerName Set this to the fully qualified domain name of the server. Also used when setting up

name-based virtual hosts. If you don't, you will likely encounter problems on startup.

EPL 602

Section 2: Main Section
Directive Hints
DocumentRoot Set this to the directory to search for the main index file for this server.

Apache will search for a file that matches your DirectoryIndex in this directory
to display when no other page is requested

UserDir When using the mod_userdir module, this allows you to map requests to user's
home directories instead of to the document root tree. Set this to "www" to map
requests for http://example.org/~foo to ~foo/www on the example.org server,
for example. For security reasons, if you use this, also use UserDir Disabled
root.

DirectoryIndex Used with mod_dir, this option sets the search order for files when a user
requests a directory listing by specifying a "/" at the end of a directory name or
for the document root. Normally this will just return "index.html", but you could
specify DirectoryIndex index.html index.php index.pl index.cgi to have
apache search for each of these files, returning the first one it found.

HostNameLookups Generally set to "off" to save the latency time of the DNS lookup, you can set
this to either "on" or "double". "On" is useful to pass the hostname as
REMOTE_HOST to CGI/SSI's and "Double" is the ultra-paranoid setting to
detect spoofed requests. On heavily loaded sites this can cause some real
slowdown, and most poeple don't need it.

ErrorLog Sets the name of the file to use for error logging. As of version 1.3, you can also
direct errors to the syslog facility.

EPL 602

Section 2: Main Section
Directive Hints
LogLevel Sets the level of information that apache will send to the error log. Defaults to

"error". Possible options are "emerg", "alert", "crit", "error", "warn", "notice",
"info", and "debug"

LogFormat When using mod_log_config (recommended), this directive allows you to
customize the format of the log file. The options are many and various. Read the
documentation. The most commonly used is
LogFormat "%h %l %u %t \"%r\" %>s %b" for main host, and
LogFormat "%v %l %u %t \"%r\" %>s %b" for virtual hosts.

Alias Allows for transparent redirection of requests. Typically used for icon, library
image, and cgi directory redirection on a wholesale basis. Aliases are processed
after <Location> stanzas and before <Directory> stanzas.

ScriptAlias Has the same result as Alias, but also marks the directory as containing cgi
scripts, so apache will process them as such.

AddHandler If using mod_mime (recommended) this directive maps file extensions to
handlers. An example of this is using AddHandler cgi-script .cgi to cause any
file with the extension .cgi to be treated as a cgi file. This overrides any
previous mappings.

EPL 602

Section 2: Main Section
Directive Hints
AddType If using mod_mime (recommended) this directive maps file extensions to MIME

types. One particularly forward looking use for this directive is mapping the
".xhtml" extension to text/html. An example of this is using
AddType text/html .xhtml
to cause any file with the extension .xhtml to be treated as html by the client.
Converting your html to xhtml will generally only have small impacts on
presentation, which can almost always be mediated with proper adjustments to
CSS. While it isn't fully desirable to treat xhtml as html, no major browser is
fully XHTML aware as of yet.

ErrorDocument Allows you to set custom pages or scripts to handle HTTP exceptions and errors.
This lets you get away from the canned error messages and allows for a more
friendly and effective way to handle things like broken links and access denial.
Example: ErrorDocument 404 errordocs/404.cgi would invoke a custom error
script when a file is not found on the server (bad typing or broken/obsolete link).

EPL 602

Section 3: Virtual Servers
o Virtual servers are a way for a single invocation of

apache to serve multiple domain names.
o Three ways to go about it:

port based
commonly used to serve HTTP and HTTPS from the same server

address based
used primarily for backward compatibility to HTTP 1.0 clients,
which don't transmit the desired hostname as part of the request.

named based
the most commonly used method
multiple domain names share the same IP address (CNAME
aliasing)

• commonly used by web hosting services to preserve IP space
• SOHO's who wish to serve something like www.my_business.com and

www.my_personal_page.net from the same server
cannot be used with SSL secure servers because of the way the
SSL protocol works.

EPL 602

Section 3: Virtual Servers

o The third section of the apache configuration file
deals with virtual servers

Virtual servers are defined in a <VirtualHost> stanza
Stanzas are almost like HTML tags

• they start with a <keyword> in angle braces, and end with
</keyword>

Directives inside stanzas only apply within the scope defined by
that stanza. E.g.:

• <Directory /home/foouser/public_html/*>
Order Deny, Allow
Deny from Joe
Allow from All

</Directory>
User Joe would have no access to files located under
/home/foouser/public_html, but his access would remain
unaffected for all other areas

EPL 602

Setting up name based virtual hosts
o Assume that www.example.com and www.foo.org point to the same IP

address
o In httpd.conf file add the following:

NameVirtualHost *
<VirtualHost>

ServerAdmin webmaster@example.com
DocumentRoot /www/docs/example.com
ServerName example.com
ErrorLog logs/example.com_error

</VirtualHost>
<VirtualHost>

ServerAdmin webmaster@foo.org
DocumentRoot /www/docs/foo.org
ServerName foo.org
ErrorLog logs/foo.org_error

</VirtualHost>

o You may want to enable or disable certain features for each virtual
host

Simply place the appropriate directives in the virtual hosts stanza

EPL 602

Setting up name based virtual hosts
o What if you want to host hundreds of virtual hosts?

httpd.conf would grow huge, be slow to load, and consume a lot of resources
o Dynamically configured mass virtual hosting provided by mod_vhost_alias
o If you enable this module, either as a dynamic module or built-in, you can

use something like this:
Turn off Canonical Names so CGI/SSI works properly
UseCanonicalName off

Set the logging format for all virtual hosts
LogFormat "%V %h %l %u %t \"%r\" %s %b" vcommon
CustomLog logs/access_log vcommon

Dynamically include server names in file requests
VirtualDocumentRoot /www/vhosts/%0/htdocs
VirtualScriptAlias /www/vhosts/%0/cgi-bin

o With this setup, a request to http://www.virtualhost.com/foo/bar.html
would map to /www/vhosts/www.virtualhost.com/htdocs/foo/bar.html

You can still use <Directory> and other stanzas to control things on a
directory by directory basis.

EPL 602

Dynamic Content
o Dynamic content includes things like negotiated content

CGI, PHP, Perl generated pages, and SSI (Server Side
Includes)

o Negotiated Content
Beginning with HTTP 1.1, browsers have been able to send
information to the server specifying additional information and
preferences

The browser can inform the web server that it will accept GIF
images, but would really prefer PNG or JPEG if they're available

Apache can parse these preferences and react to them
The common request headers that Apache understands are Accept,
Accept-Language, Accept-Charset, and Accept-Encoding.
Apache's negotiation rules can be quite complex, but basic
negotiation is actually quite easy

• First, ensure that mod_negotiation is enabled for your server
• Second, add a handler for type-map, usually by including the

configuration directive AddHandler type-map .var
• Third set up the type-map files themselves. Then instead of hyper-

linking to an image file or web-page, you hyperlink to the .var file

EPL 602

Example of Negotiated Content

o Create a file called foo.var, and create a hyperlink to it. Fill in
the contents like this:

URI: foo.english.html
Content-type: text/html
Content-language: en

URI: foo.french.html
Content-type: text/html
Content-language: fr

URI: foo.german.html
Content-type: text/html
Content-language: de

o Now when the user cliks on the link, Apache looks the Accept-
language header and will return the right file.

EPL 602

Example of Negotiated Content
o You can do the same thing with images. If you had a link like <IMG

SRC=./foo.var> and the foo.var file contained

URI: foo.jpeg
Content-type: image/jpeg; qs=0.8

URI: foo.gif
Content-type: image/gif; qs=0.5

URI: foo.png
Content-type: image/png; qs=0.3

o Apache would look for the Accept-encoding header in the request, and
return the type of image that was

in the list of acceptable encodings,
had the highest qs value (these range from 1.000 to 0.000)

o Now lets say you have a case where none options in your .var file are
acceptable to the browser.

Apache will return error 406 (NOT ACCEPTABLE), and a hyperlinked list of
the possible options.
cool feature with translated pages, but tends not to work too well with
images

EPL 602

Transparent Content Negotiation
o Apache offers what is called "transparent content

negotition"
Enable Multiviews in the Options directive
Have files like foo.en.html, foo.fr.html, foo.de.html, and
foo.html,
Simply hyper-link to "foo", with no extension

o Apache will fake up a type-map on the fly, and serve
the best match

Good idea to have a "default", like foo.html which, since it
has no encoding or language specified at all, is always
acceptable to the browser

o You could "simply" use mod_actions to re-write
documents into the desired format on the fly using
CGI scripts

Need a really fast server
Lots of time to write the translators

EPL 602

CGI

o CGI refers to the Common Gateway Interface,
is the most common method of executing external programs
or scripts on the server side to generate content

o Even things like PHP make use of the concepts of CGI
to perform their functions and features

o CGI can also be your worst security nightmare
Instructions on enabling CGI in Apache can be found in the
CGI HOWTO included with the Apache documentation
Be aware that the default setting for the Options directive
is "All", which allows executing CGI's from anywhere they
are found.

This can be a big security hole in and of itself

EPL 602

Getting CGI to work
o Needed Modules: mod_alias, mod_cgi, mod_mime
o Configuration Directives: AddHandler, Options, ScriptAlias
o Add to your configuration file:

AddModule mod_mime.c, AddModule mod_cgi.c, AddModule mod_alias.c
ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/

maps requests for http://www.example.com/cgi-bin/foo to the script
/home/httpd/cgi-bin/foo
tells Apache that every file in the cgi-bin directory should be treated as a CGI script

AddHandler cgi-script cgi
tells apache that files that ends with .cgi should be treated as a CGI program;
this example will work anywhere in the document tree, not just the cgi-bin directory
you only need this if you wish execution of CGI's outside the ScriptAlias'ed directory.

You could drop this directive into < VirtualHost> or <Directory> stanzas to limit
its scope.
Options –ExecCGI
<Directory /foo/bar/ >

Options +ExecCGI
<Directory>
<Directory /home/httpd/*/www/cgi-bin/ >

Options +ExecCGI
<Directory>

Disables CGI exection globally , but allows it for the /foo/bar directory and any
directory with a name that matches /home/httpd/*/www/cgi-bin.

Interaction between ScriptAlias, Options, and the AddHandler directives can
be tricky

EPL 602

PHP
o While compiling and installing PHP as a module for your Apache

webserver is a bit tricky, it is well worth the effort.
Luckily most distributions come with PHP already
If you're compiling your own PHP, download the latest stable source from
the PHP homepage, and unpack it
There are about a hundred configuration options, many with their own
particular dependencies, so configuring the source tree can be very difficult

to get exactly the features you want, it's the only way to go
You'll need the apache source tree as well,

if you want to build your own PHP, you'll almost have to build your own apache as
well

o Configuring Apache for PHP: Simply add the following lines to your
httpd.conf file:

Use the next line if PHP is a DSO, omit it otherwise
LoadModule php4_module /path/to/php3/module/libphp4.so

These lines need to go in for both DSO and static
AddModule mod_php4.c
AddType application/x-httpd-php4 .php4 .php

EPL 602

Perl and mod_perl
o Perl, while not being written from the ground up for web-use like PHP was, has

an enormous existing code-base.
o With the advent of mod_perl's server-embedded Perl engine, its now fairly fast

to not only use Perl scripts as CGI's, but to actually code entire Apache
extension modules in Perl

o Compilation and installation of mod_perl is similar to compiling and installing PHP
o Configuring Apache for mod_perl

There are lot of ways to configure Apache with mod_perl
In fact, using PERL directives, it's completely possible to re-write httpd.conf
completely in perl!
For basic functionality just add the following:

for Apache::Registry Mode
Alias /perl/ "/home/httpd/cgi-bin/"
for Apache::Perlrun Mode
Alias /cgi-perl/ "/home/httpd/cgi-bin/“

For /perl/* as apache modules written in perl
<Location /perl>
Perlrequire /path/to/apache/modules/perl/startup.perl
PerlModule Apache::Registry
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGI
PerlSendHeader On

</Location>

EPL 602

Configuring Apache for mod_perl

For /cgi-perl/* handling as embedded perl
<Location /cgi-perl>
SetHandler perl-script
PerlHardler Apache::PerlRun
Options ExecCGI
PerlSendHeader On

</Location>

For mod_perl status information
<Location /perl-status>
SetHandler perl-script
PerlHandler Apache::Status
order deny, allow
deny from all
allow from localhsot

</Location>

Include the next line if mod_perl is a DSO
LoadModule perl_module /path/to/apache/modules/libperl.so

AddModule mod_perl.c
o There is plenty of additional information available both in the pod files that

come with mod_perl, the apache module help file, and on the mod_perl home
page

EPL 602

Server Side Includes (SSI)
o Much like html pages with embedded scripts, SSI is just another set of what

can be thought of as almost HTML tags
o SSI allows for an easy way to include right in the middle of a web page such

things as file modification time, values of environment variables, current date
and time, and even the output of programs and scripts

o It differs from standard CGI in that the "included" information is parsed right
into an html file, rather than the entire content being generated by a program

o The apache documentation carries a quite good tutorial
o Configuring Apache for SSI: configure and compile mod_include (either as DSO

or static), and add a few lines to the config file:
Use this to allow SSI in files. This can go in stanzas, too.
Options +Includes
Or you can have SSI but disable executing scripts via SSI with
Options +IncludesNOEXEC

Use this if mod_include is a DSO
LoadModule includes_module /path/to/apache/modules/mod_include.so

AddModule mod_include.c
AddType text/html .shtml
AddHandler server-parsed .shtml

Optionally, you could run *all* html files through the SSI parser.
This does no harm to non SSI html files, but slows you down a bit
AddHandler server-parsed .html

EPL 602

Basic Concepts
o Apache breaks down request handling into a series of steps. These are:

URI Filename translation
Auth ID checking [is the user who they say they are?]
Auth access checking [is the user authorized here?]
Access checking other than auth
Determining MIME type of the object requested
“Fixups”
Actually sending a response back to the client.
Logging the request

o These phases are handled by looking at each of a succession of modules,
looking to see if each of them has a handler for the phase, and attempting
invoking it if so. The handler can typically do one of three things:

Handle the request, and indicate so by returning the magic constant OK
Decline to handle the request, by returning the magic integer constant
DECLINED.

The server behaves as if the handler simply hadn't been there
Signal an error, by returning one of the HTTP error codes

terminates normal handling of the request
an ErrorDocument may be invoked
it will be logged in any case.

EPL 602

Basic Concepts

o Most phases are terminated by the first module that
handles them

for logging, “fixups”, and non-access authentication checking,
all handlers always run (barring an error)
The response phase is unique in that modules may declare
multiple handlers for it, via a dispatch table keyed on the
MIME type of the requested object
Modules may declare a response-phase handler which can
handle any request, by giving it the key */* (i.e., a wildcard
MIME type specification)

Wildcard handlers are only invoked if the server has already
tried and failed to find a more specific response handler for
the MIME type of the requested object

• either none existed, or they all declined
The handlers themselves are functions of one argument (a
pointer to request_rec structure), which returns an integer.

EPL 602

Basic Concepts

o Include needed Apache libraries
An Apache module will require information about structures, macros and
functions from Apache's core
#include “httpd.h”
#include “http_config.h”

These two header files are the most basic, but real modules will need to include
other header files relating to request handling, logging, protocols, etc. E.g:

• #include “http_core.h”
#include “http_log.h”
#include “http_protocol.h”

o Register your module in Apache
Notify Apache which phases of the request your module handles
Notify Apache for which content type it provides handler

o Write the respective handlers
o Compile and integrate it with Apache

Different procedures for each platform

EPL 602

Hello World Module
/* File: mod_hello.c */

/* Apache libraries */
#include "httpd.h"
#include "http_config.h"
#include "http_core.h"
#include "http_log.h"
#include "http_protocol.h"

/* Make the name of the content handler known to Apache */
static handler_rec hello_handlers[] =
{

{"hello-handler", hello_handler},
/* Could also add handlers for a specific MIME type e.g.:
* {“application/x-httpd-app”, handle_app},
* Then you would need to define the handler function “handle_app”
* that produced a response for requests of that MIME type.
*/

{NULL}
};

EPL 602

Hello World Module
/* Tell Apache what phases of the transaction we handle */
module MODULE_VAR_EXPORT hello_module =
{

STANDARD_MODULE_STUFF,
NULL, /* module initializer */
NULL, /* per-directory config creator */
NULL, /* dir config merger */
NULL, /* server config creator */
NULL, /* server config merger */
NULL, /* command table */
hello_handlers, /* [9] content handlers */
NULL, /* [2] URI-to-filename translation */
NULL, /* [5] check/validate user_id */
NULL, /* [6] check user_id is valid *here* */
NULL, /* [4] check access by host address */
NULL, /* [7] MIME type checker/setter */
NULL, /* [8] fixups */
NULL, /* [10] logger */
NULL, /* [3] header parser */
NULL, /* process initialization */
NULL, /* process exit/cleanup */
NULL /* [1] post read_request handling */

};

EPL 602

Hello World Module
/* The content handler */
static int hello_handler(request_rec *r) {
const char* hostname;
r->content_type = "text/html";

ap_send_http_header(r);
hostname = ap_get_remote_host(r->connection,r->per_dir_config,REMOTE_NAME);
ap_rputs("<HTML>\n" ,r);
ap_rputs("<HEAD>\n" ,r);
ap_rputs("<TITLE>Hello There</TITLE>\n" ,r);
ap_rputs("</HEAD>\n" ,r);
ap_rputs("<BODY>\n" ,r);
ap_rprintf(r,"<H1>Hello %s</H1>\n" ,hostname);
ap_rputs(“Would you take this seriously if the first example didn't\n",r);
ap_rputs("say \"hello world\"?\n" ,r);
ap_rputs("</BODY>\n" ,r);
ap_rputs("</HTML>\n" ,r);
return OK;

}

EPL 602

Adding Hello World Module to
Apache
o Compile it either as

Static Apache Library
From the top of the Apache distribution directory type this command:
% ./configure --activate-module=src/modules/site/mod_hello.c

--enable-module=hello
A new make is now available. All you have to do is to recompile Apache!

Dynamic/Shared Library
From the top of the Apache distribution run the configure command
% ./configure --activate-module=src/modules/site/mod_hello.c

--enable-shared=hello
Now you'll need to run make to create the file
src/modules/site/mod_hello.so. When this is done, just copy the shared
object file to Apache's libexec directory
Add the following lines to httpd.conf:
LoadModule hello_module modules/mod_hello.so

o Invoking the module
Add the following lines to httpd.conf:
<Location /hi/there>

SetHandler hello-handler
</Location>

	Apache
	What is Apache?
	What is Apache?
	Apache’s Features
	Apache’s Features
	Why Apache?
	Basic Configuration
	Section 1: Global Section
	Section 1: Global Section
	Section 1: Global Section
	Section 1: Global Section
	Section 2: Main (Default Server) Section
	Section 2: Main Section
	Section 2: Main Section
	Section 2: Main Section
	Section 3: Virtual Servers
	Section 3: Virtual Servers
	Setting up name based virtual hosts
	Setting up name based virtual hosts
	Dynamic Content
	Example of Negotiated Content
	Example of Negotiated Content
	Transparent Content Negotiation
	CGI
	Getting CGI to work
	PHP
	Perl and mod_perl
	Configuring Apache for mod_perl
	Server Side Includes (SSI)
	Basic Concepts
	Basic Concepts
	Basic Concepts
	Hello World Module
	Hello World Module
	Hello World Module
	Adding Hello World Module to Apache

