
17/09/2004
Prepared by Chris Panayiotou for

EPL 602 1

Introduction to Java™

Module 11: Networking

17/09/2004 EPL 602 2

Network Programming

Historically, network programming has been error-
prone, difficult, and complex.
The programmer had to know many details about the
network and sometimes even the hardware.
You usually needed to understand the various “layers”
of the networking protocol.
There were a lot of different functions in each different
networking library concerned with

connecting, packing, and unpacking blocks of information;
shipping those blocks back and forth; and handshaking.

17/09/2004 EPL 602 3

Network Programming

It was a daunting task.
However, the concept of networking is not so
difficult.

You want to get some information from that machine
over there and move it to this machine here, or vice
versa.

Similar to reading and writing files
the file exists on a remote machine
the remote machine can decide exactly what it wants
to do about the information you’re requesting or
sending.

17/09/2004 EPL 602 4

Java Network
Programming

One of Java’s great strengths is painless
networking.
The programming model you use is that of a
file.

you actually wrap the network connection (a
“socket”) with stream objects, so you end up using
the same method calls as you do with all other
streams.

Java’s built-in multithreading: handling multiple
connections at once.

17/09/2004 EPL 602 5

Java Network
Programming

Java uses the TCP/IP protocol
The programmer doesn’t see the details of TCPIP.

Identifying a machine:
//: WhoAmI.java
// Finds out your network address when you're
// connected to the Internet.
import java.net.*;

public class WhoAmI {
public static void main(String[] args) throws Exception {
if(args.length != 1) {
System.err.println(
"Usage: WhoAmI MachineName");

System.exit(1);
}
InetAddress a = InetAddress.getByName(args[0]);
System.out.println(a);

}
}

17/09/2004 EPL 602 6

Sockets

The socket is the software abstraction used to
represent the “terminals” of a connection
between two machines.
For a given connection there’s a socket on each
machine.

In Java, you create a socket to make the connection
to the other machine.
Then you get an InputStream and OutputStream
from the socket in order to be able to treat the
connection as an IO stream object.

17/09/2004 EPL 602 7

Sockets
There are two stream-based socket classes:

a ServerSocket that a server uses to “listen” for incoming
connections
and a Socket that a client uses in order to initiate a connection.

Once a client makes a socket connection, the
ServerSocket returns a corresponding server side
Socket through which direct communications will take
place.

You have a true Socket to Socket connection.
Use getInputStream() and getOutputStream() to produce
the corresponding InputStream and OutputStream objects
from each Socket.
These must be wrapped inside buffers and formatting classes
just like any other stream object.

17/09/2004 EPL 602 8

Sockets

When you create a ServerSocket, you
give it only a port number.
When you create a Socket you must give
both the IP address and the port number
where you’re trying to connect.

17/09/2004 EPL 602 9

A simple server and client
All the server does is wait for a connection

then uses the Socket produced by that connection to create an
InputStream and OutputStream.

Then it reads from the InputStream and it echoes to
the OutputStream until it receives the line END.
The client makes the connection to the server

then creates an OutputStream. Lines of text are sent through
the OutputStream.

The client creates an InputStream to hear what the
server is saying.
Both the server and client use the same port number
and the client uses the local loopback address to
connect to the server.

17/09/2004 EPL 602 10

The Server

//: JabberServer.java
// Very simple server that just
// echoes whatever the client sends.
import java.io.*;
import java.net.*;

public class JabberServer {
// Choose a port outside of the range 1-1024:
public static final int PORT = 8080;
public static void main(String[] args)

throws IOException {
ServerSocket s = new ServerSocket(PORT);
System.out.println("Started: " + s);

17/09/2004 EPL 602 11

The Server (cont)

try {
// Blocks until a connection occurs:
Socket socket = s.accept();
try {
System.out.println(

"Connection accepted: "+ socket);
BufferedReader in=new BufferedReader(

new InputStreamReader(
socket.getInputStream()));

// Output is automatically flushed
// by PrintWriter:
PrintWriter out =

new PrintWriter(
new BufferedWriter(
new OutputStreamWriter(
socket.getOutputStream())),true);

17/09/2004 EPL 602 12

The Server (cont)

while (true) {
String str = in.readLine();
if (str.equals("END")) break;
System.out.println("Echoing: " + str);
out.println(str);

}
// Always close the two sockets...
} finally {
System.out.println("closing...");
socket.close();

}
} finally {

s.close();
}

}
}

17/09/2004 EPL 602 13

The Server (explanation)
See that the ServerSocket just needs a port number,
not an IP address.
When you call accept(), the method blocks until some
client tries to connect to it.

When a connection is made, accept() returns with a Socket
object representing that connection.

The next part of the program looks just like opening
files for reading and writing.

Every time you write to out, its buffer must be flushed so the
information goes out over the network.

The infinite while loop reads lines from the
BufferedReader in and writes information to
System.out and to the PrintWriter out.

17/09/2004 EPL 602 14

The Client
//: JabberClient.java
// Very simple client that just sends
// lines to the server and reads lines
// that the server sends.
import java.net.*;
import java.io.*;

public class JabberClient {
public static void main(String[] args)

throws IOException {
// Passing null to getByName() produces the
// special "Local Loopback" IP address, for
// testing on one machine w/o a network:
InetAddress addr = InetAddress.getByName(null);
// Alternatively, you can use
// the address or name:
// InetAddress addr = InetAddress.getByName("127.0.0.1");
// InetAddress addr = InetAddress.getByName("localhost");

17/09/2004 EPL 602 15

The Client (cont)
System.out.println("addr = " + addr);
Socket socket =

new Socket(addr, JabberServer.PORT);
// Guard everything in a try-finally to make
// sure that the socket is closed:
try {

System.out.println("socket = " + socket);
BufferedReader in = new BufferedReader(

new InputStreamReader(
socket.getInputStream()));

// Output is automatically flushed
// by PrintWriter:
PrintWriter out = new PrintWriter(

new BufferedWriter(new OutputStreamWriter(
socket.getOutputStream())),true);

17/09/2004 EPL 602 16

The Client (cont)

for(int i = 0; i < 10; i ++) {
out.println("howdy " + i);
String str = in.readLine();
System.out.println(str);

}
out.println("END");

} finally {
System.out.println("closing...");
socket.close();

}
}

}

17/09/2004 EPL 602 17

The Client (explanation)

In main() you can see all three ways to
produce the InetAddress of the local loopback
IP address:

using null, localhost, or the explicit reserved
address 127.0.0.1.
To connect to a machine across a network you
substitute that machine’s IP address.

Note that the Socket called socket is created
with both the InetAddress and the port
number.

17/09/2004 EPL 602 18

The Client (explanation)

Once the Socket object has been created, the
process of turning it into a BufferedReader
and PrintWriter is the same as in the server.
Note that the buffer must again be flushed

(which happens automatically via the second
argument to the PrintWriter constructor).
If the buffer isn’t flushed, the whole conversation will
hang because the initial “howdy” will never get sent.

Each line that is sent back from the server is
written to System.out to verify that everything
is working correctly.

17/09/2004 EPL 602 19

Summary

There’s actually a lot more to networking than
can be covered in this introductory treatment.
Java networking also provides fairly extensive
support for URLs, including protocol handlers for
different types of content that can be
discovered at an Internet site.
You’ll also get the portability benefits of Java so
you won’t have to worry about the particular
platform the server is hosted on.
These and other features are fully and carefully described in Java
Network Programming by Elliotte Rusty Harold (O’Reilly, 1997).

