
Introduction to Java™

Module 1: Getting started,
Java Basics

Prepared by Chris Panayiotou for EPL 602

What is Java?

o Simple
o Object Oriented
o Distributed
o Robust
o Secure
o Architecture

Neutral

o Portable
o Interpreted
o High Performance
o Multithreaded
o Dynamic
o Network savvy

Programming language developed by
Sun Microsystems

23/9/2008 2EPL 602

Why Java?
o The Java Language has many good design

features – secure, safe (with respect to
bugs), object-oriented, familiar (to C C++ and
even Fortran programmers).

o Good set of libraries: networking,
multimedia, from graphics to math functions.

o Best available electronic and paper training
resources.

o Children will learn Java as it is a social
language with natural graphical “hello world”.

23/9/2008 3EPL 602

Why Java?
o Java is rapidly getting the better (the best!)

Integrated Development Environments
(IDEs) for programs.

o Java is naturally integrated with network and
universal machine supports potentially
powerful “write once-run anywhere” model.

o Easy to teach – I use it to help students
understand client/server programming and
concurrency – (dining philosophers).

o There is a large and growing trained labour
force.

23/9/2008 4EPL 602

Java: Key Technical Ideas
o A Better Language:

Simplicity and C/C++ compatibility promote fluency;
GC and Threads allow software components;
Platform independence saves time;
Strong typing catches errors up front;
Declared exceptions forces coverage in code.

o Scalable Applications;
Threads for parallel speedup; patterns “in the large”.
Dynamic linking allows simple apps to grow;
Range of implementations from JavaCard to HotSpot.

23/9/2008 5EPL 602

The Java platform

o The execution
environment of Java
programs

Java VM is platform
dependent
Java API is platform
independent

23/9/2008 6EPL 602

23/9/2008 7EPL 602

Program is created in
the editor and stored
on disk.

Compiler creates
bytecodes and stores
them on disk.

Class loader puts
bytecodes in memory.

Bytecode verifier
confirms that all
bytecodes are valid
and do not violate
Java’s security
restrictions.

Interpreter reads
bytecodes and
translates them into a
language that the
computer can
understand, possibly
storing data values as
the program executes.

Phase 1

Phase 2

Phase 3

Phase 4

Phase 5

DiskEditor

Compiler

Class Loader

Disk

Disk

Primary
Memory

.

.

.

.

.

.

Primary
Memory

.

.

.

.

.

.

Primary
Memory

.

.

.

.

.

.

Bytecode Verifier

Interpreter

23/9/2008 8EPL 602

Garbage collection

o Automatic Garbage Collection
Performed by the Java VM
Objects that are not referenced are removed

o To “destruct” an object manually make it
equal to null. It will be collected by the
Garbage Collector

o The Garbage Collector releases memory
allocated with the new keyword (constructor
call)

23/9/2008 9EPL 602

Classes and Packages

o Class
Defines an object
The same as in C++

o Package
Directory of classes
As libraries in C++

23/9/2008 10EPL 602

Java Documentation

o Can be downloaded from Sun and
installed on the local computer

o Can be found online at
http://java.sun.com/

o Contain the properties and methods of every
object as well as the inheritance tree

23/9/2008 11EPL 602

Syntax & common commands

o Java syntax is very similar to that of C/C++
o Very common commands:

extends → inherits from (no multiple inheritance)
System.out.println(); → print to standard output
import → include
How import works:

import java.awt.*; → will include all subclasses of the
java.awt package with their methods
import java.awt.Button; → will include only the methods of
the java.awt.Button class

23/9/2008 12EPL 602

Java Syntax Tips

o Variables can be declared anywhere in the code.
They have to be initialized before use
Their scope is only within the code fragment enclosed by { }
in which they were declared.
Example: for(int i=0;i<10;i++)

{← scope of i →}

o Foo x;
x = new Foo();
is equivalent to:
Foo x = new Foo();

23/9/2008 13EPL 602

Program Syntax

o General Java Syntax:
o Class declaration:

public class myButton extends Button{
//variables, constructors and methods go here
}
public, private static,abstract, final class myButton extends
Button implements interface

o Method declaration:
public void changeColor(Color x) {
//code goes here
}
public, private void, int, Integer, String … changeColor

23/9/2008 14EPL 602

Program Syntax

o Constructor declaration:
public myButton() {
//code to initialize the button
}

No return type in the constructor.
The constructor is usually public, but not necessarily

o In a Java application (not applet) the main method must be
declared. This is the first method executed when the program
starts

o The syntax of the main method cannot be changed:
public static void main(String[] args) {…}
args is an array containing the command line arguments

23/9/2008 15EPL 602

Program Syntax

o General program syntax:
import java.awt.*;

public class myButton extends Button{
int a;
String str;

public myButton() { //constructor
//construct the object
}

public void changeColor(){ //a method
this.setColor(Color.red);
}
}//end class

23/9/2008 16EPL 602

Primitive types

o There are 8 primitive types in Java.
int vs Integer
float vs Float
double vs Double
long vs Long
short vs Short
char vs Character
boolean vs Boolean
byte vs Byte

23/9/2008 17EPL 602

Creating a Java program

o Required software:
Java Development Kit for your platform
(includes the Java compiler, Java Virtual Machine,
Appletviewer, Libraries and other utilities)
A text editor

o The CLASSPATH variable
Tells the Java compiler and Java virtual machine
where the libraries are stored
It should include the current directory (.)
Usually set in the Autoexec.bat file

23/9/2008 18EPL 602

Creating a Java program

Can contain directories and compressed
files that contain classes or packages.
Example:
set CLASSPATH=c:\jdk1.1.2\lib\classes.zip;d:\myclasses\;.

o Adding the Java utilities in the PATH
can ease your work

Example:
set PATH=c:\dos;c:\windows;c:\jdk1.1.2\bin

23/9/2008 19EPL 602

Creating Your First Application -
HelloWorldApp

To create this program, you will:
o Create a Java source file (*.java).
o Compile the source file into a bytecode file. The Java

compiler, javac, takes your source file and translates
its text into instructions that the Java Virtual
Machine (Java VM) can understand.

o Run the program contained in the bytecode file. The
Java VM is implemented by a Java interpreter, java.
This interpreter takes your bytecode file and carries
out the instructions by translating them into
instructions that your computer can understand.

23/9/2008 20EPL 602

Create a Java Source File.

o Bring up a shell.

23/9/2008 21EPL 602

Create a Java Source File

o The Java files you create should be
kept in a separate directory (with
mkdir).

o Start the editor.
o Type the code and store it in a file

HelloWorldApp.java

23/9/2008 22EPL 602

/**
* The HelloWorldApp class implements
* an application that simply displays
* "Hello World!" to the standard output.
*/
class HelloWorldApp {
public static void main(String[] args)
{

System.out.println("Hello World!");
}

}

HelloWorldApp.java

23/9/2008 23EPL 602

Compile the Source File

o javac HelloWorldApp.java
o If your prompt reappears without error

messages, congratulations. You have
successfully compiled your program.

o A HelloWorldApp.class file is created

23/9/2008 24EPL 602

Run the Program
o java HelloWorldApp

23/9/2008 25EPL 602

Useful classes

o String
o Hashtable

Enables you to use objects other than numbers for indexing

o Vector
A dynamically growing - shrinking array

o StringTokenizer
For splitting a string into tokens (delimiter=space)

o StreamTokenizer
For splitting a stream into tokens (delimiter can be chosen)

23/9/2008 26EPL 602

Introduction to Java™

Module 2: Expressions and
Flow control

Prepared by Chris Panayiotou for EPL 602

Operators

o Used as in C/C++
+ - * / =
% (modulo)
! (not)
|| (or), && (and)
<,>, ==, >=, <=, <>,!=
n++, n--, ++n, --n

23/9/2008 28EPL 602

Casting

o variable= (type) variable;
Example:
void casts() {

int I = 200;
long l = (long) I;
long l2 = (long)200;

}
o Getting an int out of a String:

Integer x=new Integer(String);
int xValue= x.intValue();

Similar for float, double, long etc…
Look it up in the API documentation.

23/9/2008 29EPL 602

Casts in fundamental types
o Casting from another type to int, float,

short, long, double:
Create an instance of the appropriate
wrapper class using the suitable
constructor
Get the desired value using the appropriate
property, usually the .[type]Value

o Example: (String to float)
String piV=“3.14159”;
Float temp=new Float(piV); //create a new Float object
float pi = temp.floatValue(); //get the float value of the Float

23/9/2008 30EPL 602

Casting examples

o Integer
String n = “23”;
Integer tmp = new Integer(n);
int i = tmp.intValue();
float f = tmp.floatValue();
double d = tmp.doubleValue();
Integer tmp2 = Integer.valueOf(“342”);

o Float
Float tmp = new Float(n);
int i = tmp.intValue();
float f = tmp.floatValue();
double d = tmp.doubleValue();

23/9/2008 31EPL 602

Flow control

o Java supports if-then-else, while, do-while, for and
switch (case) statements as well as labeled breaks.

o The syntax for most of these statements is the same
as in C/C++. (in addition variables can be declared in their
conditions)

If-then-else
if (yoursales >=2*target)
{bonus=1000;}
else if (yoursales >=1.5*target)
{bonus=500;}
else if (yoursales >= target)
{bonus=100;}
else {System.out.println(“You are fired!!”);}

23/9/2008 32EPL 602

Flow control

while (just like C/C++)
while (condiction) {block}

while(count<6)
{ System.out.println(count);

count++;
}

do-while (just like C/C++)

do {block} while (condition)

23/9/2008 33EPL 602

Flow control

for loops
for(statement1;condition;statement2)
{statements;}

for(int x=0;x<100;x++)
{System.out.println(“Number is “ + x);}

switch statement
switch (choise) {
case 1: {………;break;}
case 2: {………;break;}
default: {System.out.println(“Invalid input”);break;}
} //end switch

23/9/2008 34EPL 602

Flow control

o The break keyword
Used for breaking out
of loops
(and in the switch statement)

o The continue statement
Used for transferring the
execution to the top of
the loop

23/9/2008 35EPL 602

Flow control

o Labeled break/continue
Similar to GOTO
Convenient for breaking out of nested loops or
transferring the execution at the top of the loop.
Label must be placed just outside the loop
followed by :
Works with all kinds of loops

23/9/2008 36EPL 602

Flow control

break/continue example
outsideLoop: //label

for(int out=0; out<3; out++) {
//some code

for(int inner=0;inner < 5; inner++) {
//some code
if (…..)
{break outsideLoop;} //break out of the outer loop

if (…..)
{continue outsideLoop;} //continue to outer loop

}//inner loop
}//outer loop
System.out.println(“All done”);

23/9/2008 37EPL 602

Introduction to Java™

Module 3: Arrays

Prepared by Chris Panayiotou for EPL 602

An Introduction to Arrays

o Arrays in Java are just as they exist on all
programming languages

Come in handy when you want to organize multiple
values of logically related items
They are static objects (meaning: Cannot be
resized dynamically)

o The syntax used for arrays is:
identifier[subscript] (eg. Array1[5])

The identifier refers to the array as a whole
While the subscript refers to a specific element
of the array

23/9/2008 39EPL 602

Creating Arrays

o To create an array first you must declare it :
int numbers[]; or int[] numbers;

o Java lets you create arrays only using the new
operator, like this:
number= new int[x];
// x is an integer stating the size of the array

o For primitive types that is enough…
o However for an array of some other class type there

is the need to initialize every object of your array
manually

o This is necessary because so far you have an array of
null objects

23/9/2008 40EPL 602

Initializing an Array

o To properly initialize an array (not of
primitive type) you have to initialize every
element of the array like this:

MyStrangeObject[] objs;
objs = new MyStrangeObject[20];
for (int I=0;I<20;I++)

objs[I] = new MyStrangeObject();

o NOTE
objs[0]; is the first element of the array.

23/9/2008 41EPL 602

More on Arrays

o CAUTION
Don’t try to access a nonexistent array element.
For example:

int numbers[];
numbers = new int[10];

n = numbers[15];

would go beyond the boundaries of the array and so
Java would generate the exception
ArrayIndexOutOfBounds

23/9/2008 42EPL 602

Number of Elements Vs Array Size

o The member length gives the size of an array.
o An array may have less elements than its size.
o To find the number of elements in an array a

counter should be used.
o Alternatively use a for loop to check how

many positions of the array are initialized.

for (int I=0;I<nums.length;I++)
if (nums[I]!=null) counter++;

23/9/2008 43EPL 602

Copying an Array

o To copy an array one should
Create a new array with the size of the origin array:
String[] copy=new String[origin.length()];

Copy each object of the origin array manually:

for (int I=0;I<origin.length();I++)
copy[I]=new String(origin[I]);

o The following code would result to reference to the
same array:
String[] origin;
String[] copy;
origin = new {“one”, “two”, “three”};
copy = origin;
// A common mistake where one would think that
// he has two different arrays

23/9/2008 44EPL 602

Multidimensional Arrays

o Java doesn't support
multidimensional arrays in
the conventional sense

o Possible to create arrays of
arrays

o To create a two-
dimensional array of
integers you would write
something like this:
int table[][] = new int[4][4];

23/9/2008 45EPL 602

Multidimensional Arrays

o You refer to a value stored in a n-dimensional
array by using subscripts for all the
dimensions like this:
int value = table[3]…[2];

o A quick way to initialize an n-dimensional
array is to use nested for loops

23/9/2008 46EPL 602

A Bit About Collections

o Collections vs Arrays
Dynamic sizing
Any type of object can be put in a collection
No support for primitive types

o Vector: Like a dynamic array of objects
o BitSet: A vector of bits (minimum size 64 bits)
o Hashtable: An associative dynamic array (links a key

object with a value object)
o Stack: A last-in, first-out (LIFO) collection with push

and pop methods

23/9/2008 47EPL 602

Introduction to Java™

Module 4: Objects and Classes

Prepared by Chris Panayiotou for EPL 602

Encapsulation, Polymorphism
and Inheritance

o Classic OOP concepts
o Encapsulation: Binding together the properties of an

item creating an object combing of objects
o Polymorphism: Dynamic binding of types

An object B which is a subclass of object A can be handled
by a type A member field
Thus we can call method M of class A from object B

o Inheritance: Refining a base class
A new class is derived from the base class
The accessible methods and fields of the base class are
inherited to the new class
Inherited methods can be overridden

23/9/2008 49EPL 602

Using Objects

o Creating an object
Write its class – probably by subclassing
Write one (or more) constructor(s)
Write its methods
Example object:
class myObject extends Object {
int a; // a member field

myObject() {…} // default constructor
myObject(int i) {…} // another constructor

void mehtod1() {…} // a method that does something

…
}

23/9/2008 50EPL 602

Using Objects

o Initializing an object
Create it using the new operator
During the creation a constructor is called
anObject = new myObject();

o Calling an object’s methods
anObject.method1();
// Calls method1 of the anObject object

23/9/2008 51EPL 602

Defining Methods

o Methods are like functions are in C
o To define a method first we declare what object

type it returns (e.g. String toString() {..})
o We can use any of the access modifiers to limit the

access to that method (e.g. public String toString()
{..})

o We can declare its parameters if any
(e.g. public String toString(String s) {..})

o Finally we can use any other modifiers we wish: final,
abstract, synchronized, static
(e.g. public static String toString() {..})
(e.g. public final String toString(String s) {..})

23/9/2008 52EPL 602

The “this” Keyword

o The “this” keyword can be used to access the
methods and member fields of the current object.

o It is a handle of the current object.

public class foo {
int aInt = 2;

foo() {…}
public int aMehtod() {…}
public foo getMe() { return this; }
public static void main(String[] args){

this.aInt = this.aMethod();
}

}

23/9/2008 53EPL 602

Access Modifiers

o “Friendly”
No modifier is used - default access limitations
Only classes in the same package can use it
Cannot be inherited by subclasses in foreign packages

o Public
Allows access by everyone

o Private
Access is forbidden to everybody except the owner class

o Protected
Access limitations are the same as in the “friendly” case
Can be inherited by subclasses in foreign packages

Applicable in: classes*, constructors, methods, fields

23/9/2008 54EPL 602

Subclassing

o Subclassing involves two classes: the base class
and the newly created derived class.

o When subclassing we inherit from the base class
into the derived class

o Creating a subclass:
public class foo extends goo {
int I;

foo () {
super();
I=0;

}
} // This is a subclass of class goo

23/9/2008 55EPL 602

Overriding methods

o Methods declared in the subclass as well as the superclass.
o When called, the method in the subclass (not the superclass)

will be executed.
Example:
class One {

//constructor
public void method1() {
System.out.println(“This is class One”); }
}

class Two extends One {
…….

Overriding method → public void method1() {
System.out.println(“This is class Two”);

}
23/9/2008 56EPL 602

Interfaces

o The interface keyword takes the abstract
concept one step further (“pure” abstract class)

o An interface provides only a form, but no
implementation.

It allows the creator to establish the form for a
class: method names, argument lists, and return
types, but no method bodies.

o Interfaces can contain fields that are
implicitly static and final.

Automatically static and final cannot be “blank finals”
Can be initialized with nonconstant expressions.

23/9/2008 57EPL 602

Inheritance and Interfaces

o As an interface has no implementation at all
many interfaces can being combined
(implemented) to form a new derived class

o Valuable when you need to say “An x is an a
and a b and a c.”

In C++ multiple inheritance
Carries some rather sticky baggage because each class
can have an implementation.

In Java can perform the same act, but only one
of the classes can have an implementation.

So the problems seen in C++ do not occur with Java when
combining multiple interfaces

23/9/2008 58EPL 602

Interface example
// Multiple interfaces.
import java.util.*;
interface CanFight { void fight(); }
interface CanSwim { void swim(); }
interface CanFly { void fly(); }

class ActionCharacter { public void fight() {} }
class Hero extends ActionCharacter implements CanFight, CanSwim, CanFly {

public void swim() {}
public void fly() {} }

public class Adventure {
static void t(CanFight x) { x.fight(); }
static void u(CanSwim x) { x.swim(); }
static void v(CanFly x) { x.fly(); }
static void w(ActionCharacter x) { x.fight(); }
public static void main(String[] args) {

Hero h = new Hero();
t(h); // Treat it as a CanFight
u(h); // Treat it as a CanSwim
v(h); // Treat it as a CanFly
w(h); // Treat it as an ActionCharacter

}
}
23/9/2008 59EPL 602

Introduction to Java™

Module 5: Advanced Language
Features

Prepared by Chris Panayiotou for EPL 602

Constructors

o Constructor is the method called when an object is
initialized with the new keyword

o Constructors can also be overridden (they usually are)
o Constructors can invoke constructors from the

superclass
Example:
public class redCircle extends Circle {…...

//constructor
public redCircle(int x, int y,int radius) {

super(x,y,radius);
color=Color.red;

}
}

23/9/2008 61EPL 602

Static variables & methods

o Static methods
No need to create an instance of the class
containing the method to use it
Example:
double x = Console.readDouble();
double x = Math.pow(3, 0.1);
This works because the method readDouble of the Console
class and the method pow of the Math class are declared as
static

I.e. public static double readDouble() {……}

23/9/2008 62EPL 602

Static variable & methods

o Static variables
No need to create an instance of the class
to access them
Example:
public class defaults {

public static String hostname=“java.sun.com”
……}

public class anotherClass {
………
System.out.println(“The hostname is “ +

defaults.hostname);
……}

23/9/2008 63EPL 602

Final classes, variables and
methods

o A final class cannot become a parent class
Example: final class Card{ …… }

o Specific methods in a class can be declared
as final. A final method cannot be overridden
Example: public final void doSomethind() {……}

o A final variable cannot change value
Example: public final int x=15;

o Using final improves performance

23/9/2008 64EPL 602

Abstract classes & methods

o An abstract method is basically only a
method’s declaration. (something like the .h files
in C/C++)
Example: public abstract void play();

o Declaring a method as abstract, is promising
that all non-abstract descendants of the
abstract class will implement that abstract
method.

o An abstract class contains at least one
abstract method
Example: public abstract class Message {…..}

23/9/2008 65EPL 602

Wrapper classes

o An instance of the Double class wraps
the double type, Integer the int type
and so on…
Example:
Suppose we need a vector of Double. Simply adding numbers to
the vector won’t work:
Vector v = new Vector();
v.addElement(3.14); //ERROR
The floating-point number 3.14 is not an object. Here we can
use the Double wrapper class to create a Double object and add
it to the vector: v.addElement(new Double(3.14));

23/9/2008 66EPL 602

Working with Strings

o Java.lang.String
o Create:

String x = new String(“a string”);
o Concat:

x=x+”, another string”; (x=“a string, another string”)
o Length:

int stringLength = x.length();
o Comparing

if (x.equals(“a string”))
if (x.compareTo(“a string”))

23/9/2008 67EPL 602

Working with Strings
o Other useful methods:

indexOf(String)
Returns the index within this string of the first
occurrence of the specified character.

replace(char, char)
Returns a new string resulting from replacing all
occurrences of oldChar in this string with newChar

startsWith(String)
Tests if this string starts with the specified prefix.

trim()
Removes white space from both ends of this string.

o Check the API documentation for the
complete list of functions

23/9/2008 68EPL 602

Working with Strings
o Java provides two classes for working with Strings

String and StringBuffer
o Class String is used for strings that remain constant

(their value doesn’t change)
o Class StringBuffer is used for strings that may change

E.g. Reading the contents of a text file
Check out the Java API for StringBuffer

o Using String is more efficient when our strings remain
unchanged as they are constants that can be jointly
used by other code in our program

o StringBuffer is more efficient when we have changing
strings as we create only one object

23/9/2008 69EPL 602

Working with Strings

class SameString {
public static void main(String[] args) {

String s1 = “dog”;
String s2 = “It’s a dog’s life”;
String s3 = “dog”;
if (s1 == s2) System.out.println(“s1 == s2”); // FALSE
if (s1 == s3) System.out.println(“s1 == s3”); // TRUE
if (s1 == “dog”) System.out.println(“s1 == \“ dog \””); //TRUE
String doggy = new String(s1);
if (s1 == doggy) System.out.println(“s1 == doggy”); //FALSE

}
}

23/9/2008 70EPL 602

Introduction to Java™

Module 6: Exceptions

Prepared by Chris Panayiotou for EPL 602

Error Handling

o The basic philosophy of Java is that “badly-formed
code will not be run.”

o As with C++, the ideal time to catch the error is at
compile time.

o However, not all errors can be detected at compile
time.

o The rest of the problems must be handled at run-
time.

o Some formality allows the originator of the error to
pass appropriate information to a recipient who will
know how to handle the difficulty properly.

23/9/2008 72EPL 602

Error Handling

o In C and other earlier languages there could be
several of these formalities.

o They were generally established by convention and
not as part of the programming language.

o Typically, you returned a special value or set a flag,
and the recipient was supposed to look at the value or
the flag.

o However, programmers who use a library tend to
think of themselves as invincible: “Yes, errors might
happen to others but not in my code.”

o This approach to handling errors was a major
limitation to creating large, robust, maintainable
programs.23/9/2008 73EPL 602

Error Handling
errorCodeType readFile {

initialize errorCode = 0;
open the file;
if (theFileIsOpen) {

determine the length of the file;
if (gotTheFileLength) {

allocate that much memory;
if (gotEnoughMemory) {

read the file into memory;
if (readFailed) {

errorCode = -1;
}

} else {errorCode = -2;}
} else {errorCode = -3; }
close the file;
if (theFileDidntClose && errorCode == 0) {

errorCode = -4;
} else {

errorCode = errorCode and -4;
}

} else {errorCode = -5;}
return errorCode;

}

readFile {
try {

open the file;
determine its size;
allocate that much memory;
read the file into memory;
close the file;

} catch (fileOpenFailed) {
doSomething;

} catch (sizeDeterminationFailed) {
doSomething;

} catch (memoryAllocationFailed) {
doSomething;

} catch (readFailed) {
doSomething;

} catch (fileCloseFailed) {
doSomething;

}
}

23/9/2008 74EPL 602

Error Handling with Exceptions

o Exception handling is enforced by the Java
compiler.

o You can generate your own exceptions.
o An exceptional condition is a problem that

prevents the continuation of the method or
scope that you’re in.

With an exceptional condition, you cannot continue
processing.
All you can do is jump out of the current context and
relegate that problem to a higher context.
This is what happens when you throw an exception.

23/9/2008 75EPL 602

Error Handling with Exceptions

o At the point where the problem occurs:
You might not know what to do with it
You must stop and somebody, somewhere, must
figure out what to do.
Don’t have enough information in the current
context to fix the problem.
You hand the problem out to a higher context
where someone is qualified to make the proper
decision (much like a chain of command).

23/9/2008 76EPL 602

Exceptions. So What?

o A significant benefit of exceptions is that they clean
up error handling code.

o No need of checking for a particular error and
dealing with it at multiple places in your program.

o The exception will guarantee that someone catches
it.

o Need to handle the problem in only one place, the so-
called exception handler.

o This saves you code and it separates the code that
describes what you want to do from the code that is
executed when things go awry.

o In general, reading, writing, and debugging code
becomes much clearer with exceptions.

23/9/2008 77EPL 602

Exception Specification

o In Java you have to inform of the exceptions that
might be thrown from your method.

Java provides syntax (and forces you to use that syntax)
for that
This is the exception specification and it’s part of the
method declaration. So your method definition might look
like this:
void f() throws tooBig, tooSmall {
// Some code

}
o exceptions of type RuntimeException can reasonably

be thrown anywhere
o Java guarantees that exception correctness can be

ensured at compile time.

23/9/2008 78EPL 602

Throwing an Exception

o Throw a different class of exception for each
different type of error.

o When you throw an exception, several things happen:
The exception object is created in the same way that any
Java object is created: on the heap, with new.
The current path of execution is stopped and the handle for
the exception object is ejected from the current context.
The exception-handling mechanism takes over and begins to
look for an appropriate place to continue executing the
program.
This appropriate place is the exception handler.
The exception handler recovers from the problem so the
program can either try another task or simply continue.

23/9/2008 79EPL 602

Throwing an Exception

o Example of throwing an exception:
Consider an object handle called t.
You might want to check before trying to call a
method using that object handle if it is valid.
You can send information about the error into a
larger context by creating an object representing
your information and “throwing” it out of your
current context.
This is called throwing an exception. Here’s what
it looks like:
if(t == null)
throw new NullPointerException();

23/9/2008 80EPL 602

Catching an Exception

o If a method throws an exception, it must
assume that exception is caught and dealt
with.

o The try block
If inside a method an exception is thrown that
method will exit in the process of throwing.
To avoid this you can set up a special block within
that method to capture the exception.
This is called the try block because you “try” your
various method calls there. Example:
try {
// Code that might generate exceptions

}

23/9/2008 81EPL 602

Catching an Exception

o Thrown exceptions go to an exception handler
o Multiple exception handlers - one for every

exception type you want to catch
o Exception handlers immediately follow the

try block and are denoted by the keyword
catch:
try {

// Code that might generate exceptions
} catch(Type1 id1) {

// Handle exceptions of Type1
} catch(Type2 id2) {

// Handle exceptions of Type2
}
// etc...

23/9/2008 82EPL 602

Catching any Exception
o It is possible to create a handler that

catches any type of exception.
o You do this by catching the base-class

exception type Exception:
catch(Exception e) {
System.out.println("caught an exception");

}

o The Exception class has the following
methods:

String getMessage()
String toString()
void printStackTrace()
void printStackTrace(PrintStream)

23/9/2008 83EPL 602

Performing Cleanup with Finally

o If you want to execute some code whether or not an
exception occurs in a try block you use a finally
clause at the end of all the exception handlers:
try {
// Dangerous stuff that might throw A or B
} catch (A a1) {
// Handle A

} catch (B b1) {
// Handle B

} finally {
// Stuff that happens every time

}

o Whether an exception is thrown or not, the finally
clause is always executed.

23/9/2008 84EPL 602

What’s finally for?

o finally is necessary when you need to set something
other than memory back to its original state.

o This is usually something like an open file or network
connection, something you’ve drawn on the screen
etc.

o Even in cases in which the exception is not caught in
the current set of catch clauses, finally will be
executed before the exception-handling mechanism
continues its search for a handler at the next higher
level.

o The finally statement will also be executed in
situations in which break and continue statements
are involved.

23/9/2008 85EPL 602

Failing to Catch an Exception
o Possible only for RuntimeExceptions.
o If a RuntimeException gets all the way out to main()

without being caught, printStackTrace() is called for
that exception as the program exits.

o Keep in mind that it’s possible to ignore only
RuntimeExceptions, since all other handling is
carefully enforced by the compiler.

o A RuntimeException represents a programming error:
An error you cannot catch (e.g. receiving a null handle
handed to your method by a client programmer)
An error that you should have checked for in your code
(such as ArrayIndexOutOfBoundsException where you
should have paid attention to the size of the array).

23/9/2008 86EPL 602

Re-throwing an Exception
o You can re-throw the exception that you just

caught:
catch(Exception e) { System.out.println("An
exception was thrown");
throw e;

}

Re-throwing an exception causes the exception to
go to the exception handlers in the next-higher
context.
Any further catch clauses for the same try block
are still ignored.
Possible to re-throw a different exception from
the one you caught.

23/9/2008 87EPL 602

Creating Your Own Exceptions

o Need to create your own exceptions to
denote a special error that your library is
capable of creating.

o To create your own exception class, you’re
forced to inherit from an existing type of
exception.

o Inheriting an exception is quite simple:
class MyException extends Exception {
public MyException() {}
public MyException(String msg) { super(msg);}

}

23/9/2008 88EPL 602

Exception Restrictions

o When you override a method, you can throw
only the exceptions that have been specified
in the base-class version of the method.

o This is a useful restriction, since it means
that code that works with the base class will
automatically work with any object derived
from the base class (a fundamental OOP
concept, of course), including exceptions.

23/9/2008 89EPL 602

	Introduction to Java™
	What is Java?
	Why Java?
	Why Java?
	Java: Key Technical Ideas
	The Java platform
	Slide Number 7
	Slide Number 8
	Garbage collection
	Classes and Packages
	Java Documentation
	Syntax & common commands
	Java Syntax Tips
	Program Syntax
	Program Syntax
	Program Syntax
	Primitive types
	Creating a Java program
	Creating a Java program	
	Creating Your First Application - HelloWorldApp
	Create a Java Source File.
	Create a Java Source File
	HelloWorldApp.java
	Compile the Source File
	Run the Program
	Useful classes
	Introduction to Java™
	Operators
	Casting
	Casts in fundamental types
	Casting examples
	Flow control
	Flow control
	Flow control
	Flow control
	Flow control
	Flow control
	Introduction to Java™
	An Introduction to Arrays
	Creating Arrays
	Initializing an Array
	More on Arrays
	Number of Elements Vs Array Size
	Copying an Array
	Multidimensional Arrays
	Multidimensional Arrays
	A Bit About Collections
	Introduction to Java™
	Encapsulation, Polymorphism and Inheritance
	Using Objects
	Using Objects
	Defining Methods
	The “this” Keyword
	Access Modifiers
	Subclassing
	Overriding methods
	Interfaces
	Inheritance and Interfaces
	Interface example
	Introduction to Java™
	Constructors
	Static variables & methods
	Static variable & methods
	Final classes, variables and methods
	Abstract classes & methods
	Wrapper classes
	Working with Strings
	Working with Strings
	Working with Strings
	Working with Strings
	Introduction to Java™
	Error Handling
	Error Handling
	Error Handling
	Error Handling with Exceptions
	Error Handling with Exceptions
	Exceptions. So What?
	Exception Specification
	Throwing an Exception
	Throwing an Exception
	Catching an Exception
	Catching an Exception
	Catching any Exception
	Performing Cleanup with Finally
	What’s finally for?
	Failing to Catch an Exception
	Re-throwing an Exception
	Creating Your Own Exceptions
	Exception Restrictions

