
CS451 – Software Analysis

Lecture 8
Disassembly and Binary Analysis

Fundamentals (part 2)
Elias Athanasopoulos
elathan@cs.ucy.ac.cy

Structuring disassembled
code and data
• No matter the techniques used for analysing

a binary, it is useful to apply some structure
• Compared to high-level code, machine code

is unstructured
• We can impose a structure which can benefit

analysis
• Structure can be applied to both code and

data

2

Structuring code

• Compartmentalization
– Break the code in small logical connected parts,

e.g., in functions
• Revealing control flow

– Use control transfers to understand how
different parts of code use other parts

3

Functions

• Most programming systems use functions to split the
program’s logic to a series of tasks

• Functions may not survive in machine code
– For non-stripped binaries the start/end of each function

is preserved
– For stripped binaries, we need to identify the function

boundaries with analysis: function detection
• Function signatures are used by most disassemblers

– Scan the instruction stream for known patterns
– Process target addresses of the call instruction
– Scan for known prologues/epilogues (e.g., leave;
ret)

4

Problems

• Compilers perform optimizations
– Example, tail-call elimination

• Different compilers may use different
signatures

• Some programming systems (e.g., Rust) have
custom calling conventions

5

Non-optimized code

6

#include <stdlib.h>

int bar(void) {
return rand();

}
int foo(void) {

return bar();
}
int main(int argc, char *argv[]) {

return foo();
}

$ gcc -Wall tail-call.c -c -o tail-call.o
$ objdump -d tail-call.o
Disassembly of section .text:
0000000000000000 <bar>:

0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: e8 00 00 00 00 callq 9 <bar+0x9>
9: 5d pop %rbp
a: c3 retq

000000000000000b <foo>:
b: 55 push %rbp
c: 48 89 e5 mov %rsp,%rbp
f: e8 00 00 00 00 callq 14 <foo+0x9>
14: 5d pop %rbp
15: c3 retq

0000000000000016 <main>:
16: 55 push %rbp
17: 48 89 e5 mov %rsp,%rbp
1a: 48 83 ec 10 sub $0x10,%rsp
1e: 89 7d fc mov %edi,-0x4(%rbp)
21: 48 89 75 f0 mov %rsi,-0x10(%rbp)
25: e8 00 00 00 00 callq 2a <main+0x14>
2a: c9 leaveq
2b: c3 retq

Optimized code

7

$ gcc -Wall -O2 tail-call.c -c -o tail-call.o
$ objdump -d tail-call.o

Disassembly of section .text:
0000000000000000 <bar>:

0: e9 00 00 00 00 jmpq 5 <bar+0x5>
5: 66 66 2e 0f 1f 84 00 data16 nopw %cs:0x0(%rax,%rax,1)
c: 00 00 00 00

0000000000000010 <foo>:
10: e9 00 00 00 00 jmpq 15 <foo+0x5>

Disassembly of section .text.startup:

0000000000000000 <main>:
0: e9 00 00 00 00 jmpq 5 <main+0x5>

#include <stdlib.h>

int bar(void) {
return rand();

}
int foo(void) {

return bar();
}
int main(int argc, char *argv[]) {

return foo();
}

Optimized and stripped code

8

$ objdump -d tail-call.o
Disassembly of section .text:

0000000000000000 <.text>:
0: e9 00 00 00 00 jmpq 0x5
5: 66 66 2e 0f 1f 84 00 data16 nopw %cs:0x0(%rax,%rax,1)
c: 00 00 00 00
10: e9 00 00 00 00 jmpq 0x15

Disassembly of section .text.startup:

0000000000000000 <.text.startup>:
0: e9 00 00 00 00 jmpq 0x5

#include <stdlib.h>

int bar(void) {
return rand();

}
int foo(void) {

return bar();
}
int main(int argc, char *argv[]) {

return foo();
}

Control-flow graphs

• A single function may be very complicated
– Breaking to smaller blocks may be useful

• The control-flow graph (CFG) of a program
can be computed by identifying basic blocks
(BBs) that transfer control to other basic
blocks

• This can be done at the machine-code level

9

Control-flow graph in IDA Pro

10

Call graphs

• Focused on the relationship between call
sites and functions compared to CFGs that
explore the control-flow between basic
blocks

• Computation of a call graph is based on the
function calls emitted by the machine code

• Sometimes it is hard to resolve indirect calls

11

Object-oriented code

• Machine code from compilers that utilize OO concepts
can be complicated

• Exception handling is realized using indirect jumps
• Code is structured in objects, that contain code and

data
– Extracting class hierarchies in machine code is hard (see

MARX: Uncovering Class Hierarchies in C++ Programs,
Andre Pawloski, et all, in NDSS 2018)

• Virtual methods are dispatched using indirect jumps
– Using pointers to VTables

12

Structuring data

• Data is much harder to be identified by
disassemblers compared to code

• Sometimes it is possible
– If the disassembler finds a call to send() can infer the

types of the arguments, since send() has a known
prototype

• Some primitive types can be inferred by the used
registers
– A floating-point register will contain a floating-point

variable
– lodsb/stosb manipulate parts of a string

13

Inferring data is hard

• Assignments of any type can produce the
same machine code
ccf->user = pwrd->pwd_uid;
mov eax, DWORD PTR[rax+0x10]
mov DWORD PTR[rbx+0x60], eax

a[24] = b[4];
mov eax, DWORD PTR[rsi+0x10]
mov DWORD PTR[rdi+0x60], eax

14

Decompilation

• Decompilers attempt to reconstruct the high-
level source from machine code

• The quality of the result is heavily related to
the accuracy of the disassembly produced

• The code produced by decompilers is not
very easy to read
– Variable names are automatically chosen (v1, v2,

f1(), f2(), etc.)

15

Intermediate representation

• Machine code is hard to be automatically analysed
– Many instructions with complex semantics and side-

effects (e.g., even a simple add will change the EFLAGS
register)

• Sometimes it is useful to lift machine code to an
intermediate representation (IR) form
– LLVM (generic IR used by compilers), REIL and VEX IR

(focused on reversing machine code)
• IR has a simpler instruction set and is more

appropriate for automatic analysis
• Lifting machine code to IR is a difficult process

16

IR properties

• It is easier for an analysis to handle the
semantics of a program expressed in IR

• It is harder for a human to read IR
– Small set of simple instructions
– Large sets of registers
– Less concise, in general

• Performing the analysis at the IR level is done
once
– IR can then be transformed to any supported ISA

(x86, ARM, etc.)

17

Binary analysis properties

• Interprocedural vs intraprocedural
– Scope of analysis

• Flow sensitivity
– Order in analyzed instructions is important

• Context sensitivity
– Order of analyzed functions is important

18

Interprocedural vs intraprocedural

• Interprocedural analysis considers the entire
program
– Captures more complex interactions in the

program
– Can be infeasible for large programs

• Intraprocedural analysis considers a single
function
– Captures local interactions on a given function
– The analysis is not complete, since functions

usually interact with other functions

19

Control-flow analysis

• Loop detection
– High-level code has very specific structures for

constructing loops (for {}, while {}, etc .)
– Machine code implements all loops using conditional

branches
– Loops are often the reason of a program’s bottleneck, so

identifying them is important
• Cycle detection

– Programs may have a circular flow, not related to a
natural loop, in particular

– E.g., a function f1() may call f2(), and f2() may call f3(),
and depending if a condition is met, f1() may be called
again by f3()

20

Loop detection

21

BB1

BB2 BB3 BB4

BB5 BB6

BB7

CFG

BB1

BB2 BB3 BB4 BB6 BB7

BB5

Dominance tree

A basic block A is said to dominate
another basic block B if the only way to get
to B from the entry point of the CFG is to
go through A.

Natural loop: find a back edge from a basic
block B to A, where A dominates B.

Cycle detection

• Compute the CFG
• Start a DFS from the entry node of the CFG
• Push each node that DFS is visiting in a stack
• Pop when the DFS backgtracks
• If you push a node that is already in, then you

have a circle

22

Example

• [BB1]
• [BB1, BB2]
• [BB1]
• [BB1, BB3]
• [BB1, BB3 , BB5]
• [BB1, BB3 , BB5 , BB3] *cycle*
• …

23

Data-flow analysis

• Analysis may reason about data, as well
• Reaching definitions analysis

– Which data definitions can reach this point in the
program?

– A value assigned to a variable (memory location, register)
can reach a given point in the code, without being
overwritten by another assignment along the way

• Use-def chains
– Each time a variable is used, find the location of the

related definition
• Program slicing

– Find all instructions that contribute to the values of a set
of variables at a certain point of a program

24

Reaching definitions

25

1: x = …
2: y = …
3: z = …

4: x = …
5: y = …

6: x = …
7: z = …
8: z = …

BB1 BB2

BB3

For each basic block compute
the definitions the block
generates and kills.

gen[BB3] = {6, 8}
kill[BB3] = {1, 3, 4}

Use-def chains

26

1: x = int(argv[0])
2: y = int(argv[1])

3: z = x + y
4: if (x < 5) goto B3

3: z = x * y 6: x = x + 1
7: y = y * z
8: goto B2

B1

B2

B3 B4

ud[x] = {1, 6}
ud[y] = {2, 7}

ud[y] = {2, 7}

dd[x] = {1, 6}
dd[y] = {2, 7}
dd[z] = {3}

Use-def chains tell you, at each
point in the program where a
variable is used, where that variable
may have been defined.

Example: the use-def chain ud[y] = {2, 7}
in B2 means that y has got its value either
by line 2 or 7.

Program slicing
1: x = int(argv[0])
2: y = int(argv[1])
3:
4: z = x + y
5: while (x < 5) {
6: x = x +1
7: y = y + 2
8: z = z + x
9: z = z + y
10: z = z * 5
11: }
12:
13: print(x)
14: print(y)
15: print(z)

27

Slicing is a data-flow technique that aims
to extract all instructions that contribute to
the values of a chosen set of variables at
a certain point in the program (called the
slicing criterion).

Example: using slicing to find the lines
contributing to y in line 14.

Homework

• Reproduce slides 6, 7 and 8 with other test
programs
– Observe how an optimized program is

disassembled using objdump, compared to the
non optimized version

• Create a program with a natural loop and a
cycle
– Observe the disassembled machine code

28

