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Structuring disassembled
code and data
• No matter the techniques used for analysing

a binary, it is useful to apply some structure
• Compared to high-level code, machine code 

is unstructured
• We can impose a structure which can benefit 

analysis
• Structure can be applied to both code and 

data
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Structuring code

• Compartmentalization
– Break the code in small logical connected parts, 

e.g., in functions
• Revealing control flow

– Use control transfers to understand how 
different parts of code use other parts
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Functions

• Most programming systems use functions to split the 
program’s logic to a series of tasks

• Functions may not survive in machine code
– For non-stripped binaries the start/end of each function 

is preserved
– For stripped binaries, we need to identify the function 

boundaries with analysis: function detection
• Function signatures are used by most disassemblers

– Scan the instruction stream for known patterns
– Process target addresses of the call instruction
– Scan for known prologues/epilogues (e.g., leave; 
ret)  
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Problems

• Compilers perform optimizations
– Example, tail-call elimination

• Different compilers may use different 
signatures

• Some programming systems (e.g., Rust) have 
custom calling conventions 
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Non-optimized code
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#include <stdlib.h>

int bar(void) {
return rand();

}
int foo(void) {

return bar();
}
int main(int argc, char *argv[]) {

return foo();
}

$ gcc -Wall tail-call.c -c -o tail-call.o
$ objdump -d tail-call.o
Disassembly of section .text:
0000000000000000 <bar>:

0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: e8 00 00 00 00 callq 9 <bar+0x9>
9: 5d pop %rbp
a: c3 retq

000000000000000b <foo>:
b: 55 push %rbp
c: 48 89 e5 mov %rsp,%rbp
f: e8 00 00 00 00 callq 14 <foo+0x9>
14: 5d pop %rbp
15: c3 retq

0000000000000016 <main>:
16: 55 push %rbp
17: 48 89 e5 mov %rsp,%rbp
1a: 48 83 ec 10 sub $0x10,%rsp
1e: 89 7d fc mov %edi,-0x4(%rbp)
21: 48 89 75 f0 mov %rsi,-0x10(%rbp)
25: e8 00 00 00 00 callq 2a <main+0x14>
2a: c9 leaveq
2b: c3 retq



Optimized code
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$ gcc -Wall -O2 tail-call.c -c -o tail-call.o
$ objdump -d tail-call.o

Disassembly of section .text:
0000000000000000 <bar>:

0: e9 00 00 00 00 jmpq 5 <bar+0x5>
5: 66 66 2e 0f 1f 84 00 data16 nopw %cs:0x0(%rax,%rax,1)
c: 00 00 00 00

0000000000000010 <foo>:
10: e9 00 00 00 00 jmpq 15 <foo+0x5>

Disassembly of section .text.startup:

0000000000000000 <main>:
0: e9 00 00 00 00 jmpq 5 <main+0x5>

#include <stdlib.h>

int bar(void) {
return rand();

}
int foo(void) {

return bar();
}
int main(int argc, char *argv[]) {

return foo();
}



Optimized and stripped code
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$ objdump -d tail-call.o
Disassembly of section .text:

0000000000000000 <.text>:
0: e9 00 00 00 00 jmpq 0x5
5: 66 66 2e 0f 1f 84 00 data16 nopw %cs:0x0(%rax,%rax,1)
c: 00 00 00 00
10: e9 00 00 00 00 jmpq 0x15

Disassembly of section .text.startup:

0000000000000000 <.text.startup>:
0: e9 00 00 00 00 jmpq 0x5

#include <stdlib.h>

int bar(void) {
return rand();

}
int foo(void) {

return bar();
}
int main(int argc, char *argv[]) {

return foo();
}



Control-flow graphs

• A single function may be very complicated
– Breaking to smaller blocks may be useful

• The control-flow graph (CFG) of a program 
can be computed by identifying basic blocks 
(BBs) that transfer control to other basic 
blocks 

• This can be done at the machine-code level
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Control-flow graph in IDA Pro
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Call graphs

• Focused on the relationship between call 
sites and functions compared to CFGs that 
explore the control-flow between basic 
blocks

• Computation of a call graph is based on the 
function calls emitted by the machine code

• Sometimes it is hard to resolve indirect calls
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Object-oriented code

• Machine code from compilers that utilize OO concepts 
can be complicated

• Exception handling is realized using indirect jumps
• Code is structured in objects, that contain code and 

data
– Extracting class hierarchies in machine code is hard (see 

MARX: Uncovering Class Hierarchies in C++ Programs,
Andre Pawloski, et all, in NDSS 2018)

• Virtual methods are dispatched using indirect jumps
– Using pointers to VTables
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Structuring data

• Data is much harder to be identified by 
disassemblers compared to code

• Sometimes it is possible
– If the disassembler finds a call to send() can infer the 

types of the arguments, since send() has a known 
prototype

• Some primitive types can be inferred by the used 
registers
– A floating-point register will contain a floating-point 

variable
– lodsb/stosb manipulate parts of a string
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Inferring data is hard

• Assignments of any type can produce the 
same machine code
ccf->user = pwrd->pwd_uid;
mov eax, DWORD PTR[rax+0x10]
mov DWORD PTR[rbx+0x60], eax

a[24] = b[4];
mov eax, DWORD PTR[rsi+0x10]
mov DWORD PTR[rdi+0x60], eax
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Decompilation

• Decompilers attempt to reconstruct the high-
level source from machine code

• The quality of the result is heavily related to 
the accuracy of the disassembly produced

• The code produced by decompilers is not 
very easy to read
– Variable names are automatically chosen (v1, v2, 

f1(), f2(), etc.)
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Intermediate representation

• Machine code is hard to be automatically analysed
– Many instructions with complex semantics and side-

effects (e.g., even a simple add will change the EFLAGS 
register)

• Sometimes it is useful to lift machine code to an 
intermediate representation (IR) form
– LLVM (generic IR used by compilers), REIL and VEX IR 

(focused on reversing machine code)
• IR has a simpler instruction set and is more 

appropriate for automatic analysis
• Lifting machine code to IR is a difficult process
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IR properties

• It is easier for an analysis to handle the 
semantics of a program expressed in IR

• It is harder for a human to read IR
– Small set of simple instructions
– Large sets of registers
– Less concise, in general 

• Performing the analysis at the IR level is done 
once
– IR can then be transformed to any supported ISA 

(x86, ARM, etc.) 
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Binary analysis properties

• Interprocedural vs intraprocedural
– Scope of analysis 

• Flow sensitivity 
– Order in analyzed instructions is important

• Context sensitivity
– Order of analyzed functions is important
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Interprocedural vs intraprocedural

• Interprocedural analysis considers the entire 
program
– Captures more complex interactions in the 

program
– Can be infeasible for large programs

• Intraprocedural analysis considers a single 
function
– Captures local interactions on a given function
– The analysis is not complete, since functions 

usually interact with other functions
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Control-flow analysis

• Loop detection
– High-level code has very specific structures for 

constructing loops (for {}, while {}, etc .)
– Machine code implements all loops using conditional 

branches
– Loops are often the reason of a program’s bottleneck, so 

identifying them is important
• Cycle detection

– Programs may have a circular flow, not related to a 
natural loop, in particular

– E.g., a function f1() may call f2(), and f2() may call f3(), 
and depending if a condition is met, f1() may be called 
again by f3()
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Loop detection
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BB1

BB2 BB3 BB4

BB5 BB6

BB7

CFG

BB1

BB2 BB3 BB4 BB6 BB7

BB5

Dominance tree

A basic block A is said to dominate 
another basic block B if the only way to get 
to B from the entry point of the CFG is to 
go through A.

Natural loop: find a back edge from a basic 
block B to A, where A dominates B.



Cycle detection

• Compute the CFG
• Start a DFS from the entry node of the CFG
• Push each node that DFS is visiting in a stack
• Pop when the DFS backgtracks
• If you push a node that is already in, then you 

have a circle
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Example

• [BB1]
• [BB1, BB2]
• [BB1]
• [BB1, BB3]
• [BB1, BB3 , BB5]
• [BB1, BB3 , BB5 , BB3] *cycle*
• …
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Data-flow analysis

• Analysis may reason about data, as well
• Reaching definitions analysis

– Which data definitions can reach this point in the 
program?

– A value assigned to a variable (memory location, register) 
can reach a given point in the code, without being 
overwritten by another assignment along the way

• Use-def chains
– Each time a variable is used, find the location of the 

related definition
• Program slicing

– Find all instructions that contribute to the values of a set 
of variables at a certain point of a program 
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Reaching definitions
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1: x = …
2: y = …
3: z = …

4: x = …
5: y = …

6: x = …
7: z = …
8: z = …

BB1 BB2

BB3

For each basic block compute 
the definitions the block 
generates and kills.

gen[BB3] = {6, 8}
kill[BB3] = {1, 3, 4}



Use-def chains

26

1: x = int(argv[0])
2: y = int(argv[1])

3: z = x + y
4: if (x < 5) goto B3

3: z = x * y 6: x = x + 1
7: y = y * z
8: goto B2

B1

B2

B3 B4

ud[x] = {1, 6}
ud[y] = {2, 7}

ud[y] = {2, 7}

dd[x] = {1, 6}
dd[y] = {2, 7}
dd[z] = {3}

Use-def chains tell you, at each 
point in the program where a 
variable is used, where that variable 
may have been defined.

Example: the use-def chain ud[y] = {2, 7} 
in B2 means that y has got its value either 
by line 2 or 7.



Program slicing
1:  x = int(argv[0])
2:  y = int(argv[1])
3:
4:  z = x + y
5:  while (x < 5) {
6:    x = x +1
7:    y = y + 2
8:    z = z + x
9:    z = z + y
10:   z = z * 5             
11: }
12:
13: print(x)
14: print(y)
15: print(z)
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Slicing is a data-flow technique that aims 
to extract all instructions that contribute to 
the values of a chosen set of variables at 
a certain point in the program (called the 
slicing criterion).

Example: using slicing to find the lines 
contributing to y in line 14.



Homework

• Reproduce slides 6, 7 and 8 with other test 
programs
– Observe how an optimized program is 

disassembled using objdump, compared to the 
non optimized version

• Create a program with a natural loop and a 
cycle
– Observe the disassembled machine code 
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