CS451 — Software Analysis

Lecture 8
Disassembly and Binary Analysis
Fundamentals (part 2)

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

Structuring disassembled
code and data

No matter the techniques used for analysing
a binary, it is useful to apply some structure

. Compared to high-level code, machine code
is unstructured

. We can impose a structure which can benefit
analysis

. Structure can be applied to both code and
data

Structuring code

Compartmentalization

- Break the code in small logical connected parts,
e.g., in functions

Revealing control flow

— Use control transfers to understand how
different parts of code use other parts

Functions

- Most programming systems use functions to split the
program’s logic to a series of tasks
- Functions may not survive in machine code

— For non-stripped binaries the start/end of each function
is preserved

— For stripped binaries, we need to identify the function
boundaries with analysis: function detection

- Function signatures are used by most disassemblers
— Scan the instruction stream for known patterns
— Process target addresses of the call instruction

— Scan for known prologues/epilogues (e.g., leave;
ret)

Problems

. Compilers perform optimizations
- Example, tail-call elimination
Different compilers may use different
signatures

. Some programming systems (e.g., Rust) have
custom calling conventions

Non-optimized code

$ gcc -Wall tail-call.c -c -o tail-call.o

$ objdump

-d tail-call.o

Disassembly of section .text:

0000000000000000 <bar>:
0: 55
1: 48 89 e5
4: e8 00 00 00 OO
9: 5d

a: c3
000000000000000b <foo>:
b: 55

c: 48 89 e5
f: e8 00 00 00 0O
14: 5d

15: c3
0000000000000016 <main>:
16: 55

17: 48 89 e5

la: 48 83 ec 10
le: 89 7d fc

21: 48 89 75 fO0
25: e8 00 00 00 0O
2a: c9

2b: c3

push
mov
callqg
pop
retq

push
mov
callqg
pop
retq

push
mov
sub
mov
mov
callqg
leaveq
retq

grbp

grsp, $rbp

9 <bar+0x9>
grbp

grbp

grsp, $rbp

14 <foo+0x9>
grbp

grbp

grsp, $rbp
$0x10,%rsp
%edi,-0x4 (%rbp)
%rsi,-0x10(%rbp)
2a <main+0x14>

#include <stdlib.h>

bar(void) {

rand();
}
foo() {
bar();
}
main(argc,
foo();

*argvl]) {

Optimized code

$ gcc -Wall -02 tail-call.c -c¢ -o tail-call.o
$ objdump -d tail-call.o

Disassembly of section .text:
0000000000000000 <bar>:
0: e9 00 00 00 0O jmpg 5 <bar+0x5>

#include <stdlib.h>

bar(void) {

rand();
¥
foo() {
bar();
}
main(argc,
foo();

}

*argv[1]) {

5: 66 66 2e 0f 1f 84 00 datal6 nopw %cs:0x0(%rax,%rax,l)

c: 00 00 00 00

0000000000000010 <foo>:
10: €9 00 00 00 00 jmpg 15 <foo+0x5>

Disassembly of section .text.startup:

0000000000000000 <main>:
0: €9 00 00 00 00 jmpg 5 <main+0x5>

Optimized and stripped code

$ objdump -d tail-call.o
Disassembly of section .text:

0000000000000000 <.text>:
0: €9 00 00 00 00 jmpg 0x5

#include <stdlib.h>

bar(void) {

rand();
}
foo() {
bar();
}
main(argc,
foo();

*argvl]) {

5: 66 66 2e 0f 1f 84 00 datal6é nopw %cs:0x0(%rax,%rax,l)

c: 00 00 00 00

10: €9 00 00 00 00 jmpg 0x15

Disassembly of section .text.startup:

0000000000000000 <.text.startup>:
0: €9 00 00 00 00 jmpg 0x5

Control-flow graphs

. A single function may be very complicated
- Breaking to smaller blocks may be useful
. The control-flow graph (CFG) of a program

can be computed by identifying basic blocks

(BBs) that transfer control to other basic
blocks

. This can be done at the machine-code level

ontrol-flow graph in IDA Pro =

; void _ fastcall radix_tree_destroy(radix_tree_root *root, void (*slot_free)(veid *))
public radix_tree_destroy

radix_tree_destroy proc near

root = rdi ; radix_tree_root *

slot_free = rsi 3 void (*)(void *)

mov rax, [root+8]

node = rax ; radix_tree_node *
test node, node

jz short locret_FFFF82D28022B309

rbp
rbp, rsp locret_FFFF32D03022B309:

rbx root = rdi ; radix_tree_root *

rbx, root slot_free = rsi 3 void (*)(void *)
al, 1 node = rax ; radix_tree_node *
short loc_FFFF32D@8022B2F3 rep retn

radix_tree_destroy endp

4‘

b b
ya

s =]

il s 5

test
jz

slot_free, slot_free
short loc_FFFF82D@8@22B2ED

ull e =
jmp short loc_FFFF82D@8022B2ED

loc_FFFF82D@8022B2F3:

root = rbx
slot_free = rsi

; radix_tree_root *
; void (*)(void *)

and rax, OFFFFFFFFFFFFFFFEh

mov rdx, slot_free ; slot_free

mov slot_free, rax ; node

slot_free = rdx ; void (*)(void *)

call radix_tree_node_destroy

vy

MIE]

mov root, node
root = rbx

; radix_tree_root *
call _ x86_indirect_thunk_rsi

loc_FFFF82D@8022B2ED: ; root

mov rdi, root

call radix_tree_init
pop root

pop rbp

retn

10

Call graphs

Focused on the relationship between call
sites and functions compared to CFGs that
explore the control-flow between basic

blocks

. Computation of a call graph is based on the
function calls emitted by the machine code

. Sometimes it is hard to resolve indirect calls

Object-oriented code

Machine code from compilers that utilize OO concepts
can be complicated

Exception handling is realized using indirect jumps
Code is structured in objects, that contain code and

data

— Extracting class hierarchies in machine code is hard (see
MARX: Uncovering Class Hierarchies in C++ Programes,
Andre Pawloski, et all, in NDSS 2018)

Virtual methods are dispatched using indirect jumps
— Using pointers to VTables

Structuring data

Data is much harder to be identified by
disassemblers compared to code
Sometimes it is possible

— If the disassembler finds a call to send() can infer the
types of the arguments, since send() has a known

prototype
Some primitive types can be inferred by the used
registers
- A floating-point register will contain a floating-point
variable

- lodsb/stosb manipulate parts of a string

Inferring data is hard

. Assignments of any type can produce the
same machine code

ccf->user = pwrd->pwd uid;
mov eax, DWORD PTR[rax+0x10]
mov DWORD PTR[rbx+0x60], eax
a[24] = b[4];
mov eax, DWORD PTR[rsi+0x10]
mov DWORD PTR[rdi+0x60], eax

Decompilation

. Decompilers attempt to reconstruct the high-
level source from machine code

. The quality of the result is heavily related to
the accuracy of the disassembly produced
. The code produced by decompilers is not

very easy to read

- Variable names are automatically chosen (v1, v2,
f1(), f2(), etc.)

Intermediate representation

Machine code is hard to be automatically analysed

— Many instructions with complex semantics and side-

effects (e.g., even a simple add will change the EFLAGS
register)

Sometimes it is useful to /ift machine code to an
intermediate representation (IR) form

— LLVM (generic IR used by compilers), REIL and VEX IR
(focused on reversing machine code)

IR has a simpler instruction set and is more
appropriate for automatic analysis

Lifting machine code to IR is a difficult process

IR properties

It is easier for an analysis to handle the
semantics of a program expressed in IR

It is harder for a human to read IR

— Small set of simple instructions

— Large sets of registers

— Less concise, in general

Performing the analysis at the IR level is done
once

— IR can then be transformed to any supported ISA
(x86, ARM, etc.)

Binary analysis properties

Interprocedural vs intraprocedural

- Scope of analysis

Flow sensitivity

- Order in analyzed instructions is important

. Context sensitivity
- Order of analyzed functions is important

Interprocedural vs intraprocedural

Interprocedural analysis considers the entire

program

- Captures more complex interactions in the
program

- Can be infeasible for large programs

Intraprocedural analysis considers a single

function

- Captures local interactions on a given function

- The analysis is not complete, since functions
usually interact with other functions

Control-flow analysis

Loop detection

- High-level code has very specific structures for
constructing loops (for {},while {}, etc.)

— Machine code implements all loops using conditional
branches

— Loops are often the reason of a program’s bottleneck, so
identifying them is important

Cycle detection

— Programs may have a circular flow, not related to a
natural loop, in particular

-~ E.g., a function f1() may call f2(), and f2() may call f3(),
and depending if a condition is met, f1() may be called
again by f3()

Loop detection

CFG

Dominance tree

BB

A basic block A is said to dominate
another basic block B if the only way to get
to B from the entry point of the CFG is to
go through A.

Natural loop: find a back edge from a basic
block B to A, where A dominates B.

Cycle detection

. Compute the CFG

. Start a DFS from the entry node of the CFG
Push each node that DFS is visiting in a stack
Pop when the DFS backgtracks

f you push a node that is already in, then you
nave a circle

Example

BB,]

BB,, BB,]

BB}

BB, BB,]

BB, BB, , BB:]

BB, BB, , BB, BB;] *cycle*

23

Data-flow analysis

Analysis may reason about data, as well
Reaching definitions analysis

— Which data definitions can reach this point in the
program?

— Avalue assigned to a variable (memory location, register)
can reach a given point in the code, without being
overwritten by another assignment along the way

Use-def chains

— Each time a variable is used, find the location of the
related definition

Program slicing

— Find all instructions that contribute to the values of a set
of variables at a certain point of a program

Reaching definitions

BB, BB,
4) 4)
l: x =
4: x =
2: y = . _
3: z = > Y =
_ / _ /
BB,
4)
6: X = For each basic block compute
7: z = the definitions the block
8: z = generates and Kills.
_ /

gen[BB;] = {6, 8}
kill[BB;s] = {1, 3, 4}

Use-def chains

ud[x] = {1, 6}
udly] = {2, 7}

B;

B4

4)
l: x = int(argv[0])

2: y = int(argv[l])

. A)
B>

3: z =xXx +y
4: if (x < 5) goto Bj

[3, _

=

ud[y] =

{2, 7}

\\\\\\\\\\\\‘

Use-def chains tell you, at each
point in the program where a
variable is used, where that variable
may have been defined.

Example: the use-def chain ud[y] = {2, 7}
in B, means that y has got its value either
by line 2 or 7.

=x + 1

goto 82

dd[x]

ddly] =
dd[z] =

={1,6}

{2, 7}

{3}

Program slicing

l: x = int(argv[0])

2: y = int(argv[l])

3:

4: z =X +y

5: while (x < 5) {

6: X = X +1 Slicing is a data-flow technique that aims

7T e y =y + 2 to extract all instructions that contribute to
. _ the values of a chosen set of variables at

81 Z z + X a certain point in the program (called the

O: z =2z +y slicing criterion).

10: z =2 * 5

11: } Example: using slicing to find the lines

12 contributing to y in line 14.

13: print(x)
14: print(y)
15: print(z)

Homework

Reproduce slides 6, 7 and 8 with other test
programs

- Observe how an optimized program is
disassembled using objdump, compared to the
non optimized version

. Create a program with a natural loop and a
cycle
- Observe the disassembled machine code

