
CS451 – Software Analysis

Lecture 4
Handling Library Functions

Elias Athanasopoulos
elathan@cs.ucy.ac.cy



Library Functions

• Binaries call library functions
– This code is located in a shared library

• Library functions do not generate events in the 
operating systems as system calls do
– However, we can use ptrace() with a combination of 

other techniques to inspect library functions
– This is how debuggers create breakpoints

• Since library functions are in shared libraries we 
can use another interesting direction to inspect 
and modify binary code

2



Shared libraries

• Recall that shared libraries host code is used 
by many processes

• Recall that a library function is actually 
resolved at run-time
– Using the PLT and the GOT

• The dynamic loader is fixing the address of the 
library function during the first call
– Can we trick the loader to fix the address with the 

one we control?

3



Recall

4

.text (main)
call foo@plt

.text (shared):
foo():

.plt
foo@plt: jmp *<foo@got.plt>

.got.plt
foo@got.plt: <addr>

Data

Code

(1)

(2)

(3)

(4)

(5)

dynamic loader



Dynamic loader resolution

• The same symbol may be available in multiple 
shared libraries
– The dynamic loader will find the first one available

• If we can load a shared object first, that contains 
the exact same symbol, we can force the dynamic 
loader to use our code
– Therefore, upon the library call, we will be able to 

execute our version of the library function
– Our version may do simply nothing but call the 

original version (accounting)

5



The idea in high level

6

.text (main)
call foo@plt

.text (shared):
foo():

.plt
foo@plt: jmp *<foo@got.plt>

.got.plt
foo@got.plt: <addr>

Data

Code

(1)

(2)

(3)

(4)

(5)

dynamic loader

.text (shared):
foo():

original library

our library



Load our library first

• We can force a program to load any shared 
library first using the LD_PRELOAD 
environment variable
$ LD_PRELOAD=./libfirst.so <program>

7



Preloaded object

• The preloaded shared library must have all 
symbols we need to replace

• Each symbol needs to have identical definition 
with the original one

• E.g., if we need to hook malloc() we need to 
provide a new implementation
– The definition of our malloc() needs to be identical 

with the definition of the original malloc
– If the definitions are different, then replacing the two 

symbols may cause the running program to crash

8



Inside the hook

• Our version of the library function can do 
different things
– It can totally replace the functionality of the 

original function
– It can provide some extra functionality on top of 

the original one
• In the second case, we need to be able to call 

the original function

9



Calling the original function

• The dynamic loader exports an API where we 
can use it 

• The API is implemented libdl.so
• The API contains functions for manually 

resolving specific symbols 

10

typedef void *(*real_malloc_t)(size_t);
static real_malloc_t real_malloc = NULL;

real_malloc = (real_malloc_t) dlsym(RTLD_NEXT, "malloc");



Example of a memory profiler

• Memory management is used in custom 
allocators implemented by each program

• By default, libc.so offers a simple allocator, but 
more complicated program may have their own 
– E.g., all web browsers have custom allocator 

implementations 
• Whichever allocator you use, the API is the same
– Based on malloc(), calloc(), free, etc.

• We can develop a memory profiler, that can 
simply count the number of malloc() and free() 
calls 

11



Replacing malloc

• Our implementation increases a global 
counter and calls the original malloc() for 
handling the allocation

12

typedef void *(*real_malloc_t)(size_t);
static real_malloc_t real_malloc = NULL;

void * malloc(size_t size) {
if (!real_malloc) {

real_malloc = (real_malloc_t) dlsym(RTLD_NEXT, "malloc");
if (!real_malloc) {

die("real malloc problem: %s", dlerror());
}

}
void *p = (void *)real_malloc(size);
stats_total_malloc++;

return p;
}



Replacing free

• Our implementation increases a global 
counter and calls the original free() to handle 
the deallocation

13

typedef void *(*real_free_t)(void *);
static real_free_t real_free = NULL;

void free(void *ptr) {
if (!real_free) {

real_free = (real_free_t)dlsym(RTLD_NEXT, "free");
if (!real_free)

die("real free problem: %s", dlerror());
}
real_free(ptr);
stats_total_free++;
return;

}



How to print the statistics?

• C allows a process to execute a constructor 
and/or a destructor
– main() is never the first function executed, 

actually

• A destructor is the ideal place to insert code 
for printing the stats

14

__attribute__((destructor)) static void stats(void) {
printf("malloc() calls: %ld\n", stats_total_malloc);
printf("free() calls recorded: %ld\n", stats_total_free);

}



Some extra bits

• We need to define _GNU_SOURCE before 
dlfcn.h (the dynamic loader supported 
functions) for making RTLD_NEXT visible
– This is for compatibility with other Unix systems

15



Example program to preload

16

#include <stdlib.h>

int main(int argc, char *argv[]) {

for (int i = 0; i < 1028; i++) {
void *p = malloc(16);
if (i % 2) free(p);

}

return 1;
}
~



Compile and run

$ gcc -Wall -shared -fPIC -ldl memprofiler.c
-o libmemprofiler.so

$ gcc -Wall example.c -o example

$ LD_PRELOAD=./libmemprofiler.so ./example

malloc() calls recorded: 1028
free() calls recorded: 514

17



Homework

• Replace another library function call with one 
of your own

• Can you add some printing features inside 
malloc/free replacements?
– I.e., print the size of the allocation
– Beware, this can be a tricky task 

18


