
CS451 – Software Analysis

Lecture 3
Tracing Binaries

Elias Athanasopoulos
elathan@cs.ucy.ac.cy



Tracing

• Binary code can be executed as a process on 
an operating system

• While a process executes, it interacts with the 
operating system
– Processes use system calls

• We can learn a lot about binary code, without 
touching it
– By just observing the process interaction with the 

system

2



strace – system call tracer

• strace is a tool for tracing a process and 
inspecting all system calls

• Each time the process issues a system call, the 
tool stops, collects information and resumes 
the traced process

• All collected information is printed in the 
screen 

3



Example output

$ strace /bin/ls
execve("/bin/ls", ["/bin/ls"], 0x7fffdf0bbc20 /* 28 vars */) = 0
brk(NULL) = 0x5620df341000
arch_prctl(0x3001 /* ARCH_??? */, 0x7ffed192f380) = -1 EINVAL (Invalid argument)
access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=16859, ...}) = 0
mmap(NULL, 16859, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f097b2c0000
close(3) = 0
openat(AT_FDCWD, "/lib64/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\200z\0\0\0\0\0\0"..., 
832) = 832
lseek(3, 157168, SEEK_SET) = 157168
read(3, "\4\0\0\0 \0\0\0\5\0\0\0GNU\0\1\0\0\300\4\0\0\0\30\0\0\0\0\0\0\0"..., 48) 
= 48
fstat(3, {st_mode=S_IFREG|0755, st_size=168536, ...}) = 0
...

4



What is in the output?

• strace prints only the system calls issued by 
the process
– It will not print library function calls (e.g., malloc())

• For every system call, there is an attempt to print 
the call’s arguments
– Arguments may be binary and of arbitrary length 
– The tool will output a few bytes
– Some arguments are beautified (e.g., -1 is printed as 

EINVAL)
• For every system call the result is also printed
– syscall(arguments) = result

5



How strace works?

• Operating systems offer special system calls for 
tracing processes
– This is how debuggers are developed

• Tracing a process means
– Run the process and pause it under specific events
– When paused, collect information related to the event 

that just happened, and resume the process until the 
next event

• Each time there are two processes involved
– The tracer (the process that performs the analysis)
– The tracee (the process that is analyzed)

6



ptrace

• Linux offers the system call ptrace for 
tracing processes

• This is a powerful system call, with many 
different options and usage

• Debuggers export a rich set of functions, but 
essentially, they are just wrappers around the 
ptrace system call

7



High-level construction of
analysis

8

tracer tracee
fork()

tracee
(new)

tracer

trace me (ptrace())

events



Steps
• The tracer needs to start the new process that is going to 

be analyzed
– A new process can be started by cloning the existing one (fork()) 

and then replacing it with a new process image (execvp())
• Before the replacement, the new process needs to use 

ptrace() for allowing to be traced
– Programs are not designed to be traced and they don’t use 

internally ptrace()
– We need to call ptrace() before execvp() so that the new 

executing process can be traced
• Once tracing has started, each system call event pauses the 

tracee
– System call events are (a) entering a system call and (b) exiting a 

system call 

9



How to handle events

• The tracer needs to call waitpid() for blocking 
until a new event has occurred
– This happens when a system call is about to be called 

or a system call is just finished
• Each time a new event has occurred, the tracer 

can use again ptrace() to collect all the state of 
the tracee
– This means all the current values of the CPU’s registers
– Recall: system calls are set using the CPU’s registers

• The state is collected in a data structure called 
user_regs_stats

10



ptrace arguments

long ptrace(enum __ptrace_request request, 

pid_t pid, void *addr, void *data);

• request is one of the many options that 
ptrace() supports

• pid is the affected process id
• addr and data are used to transfer 

information
– Their actual usage differs per ptrace() request

11



Minimal strace

• We are going to implement a simplified 
version of strace

• The minimal strace tool will be able to trace 
any process and output system call 
information

• Compared to the original strace tool, it will 
not beautify the output a lot

12



Initialization

• Starting a new process for analysis using 
fork()/execvp()

13

/* fork() for executing the program that is analyzed. */
pid_t pid = fork();
switch (pid) {

case -1: /* error */
die("%s", strerror(errno));

case 0: /* Code that is run by the child. */
/* Start tracing. */
ptrace(PTRACE_TRACEME, 0, 0, 0);
/* execvp() is a system call, the child will block and

the parent must do waitpid().
The waitpid() of the parent is in the label
waitpid_for_execvp.

*/
execvp(argv[1], argv + 1);
die("%s", strerror(errno));

}



Main loop

• The main loop calls ptrace() with 
PTRACE_SYSCALL on the pid of the analyzed 
process
– The blocks until a new event is happening 

14

while (1) {
/* Enter next system call.

It can be the entrance or the exit of the system call.
*/

if (ptrace(PTRACE_SYSCALL, pid, 0, 0) == -1)
die("%s", strerror(errno));

/* Block until process state change (i.e., next event). */
if (waitpid(pid, 0, 0) == -1)

die("%s", strerror(errno));

...
}



Collect information

• We call ptrace() with PTRACE_GETREGS to 
receive all information related to the event
– Collected information will be copied to regs
– If ptrace() fails (-1) then we check errno to see if 

the analyzed process has just finished

15

/* Collect information about the system call. */
struct user_regs_struct regs;
if (ptrace(PTRACE_GETREGS, pid, 0, &regs) == -1) {

if (errno == ESRCH) {
/* System call was exit; so we need to end. */
fprintf(stderr, "\n");
exit(regs.rdi);

}
die("%s", strerror(errno));

}



Output the information

• regs has all the process’ state 
– E.g., regs.rax holds the value of the RAX register
– The number of the system call is in the original RAX (before 

the call)

16

if (regs.rax == -ENOSYS) {
/* We are in the system call's entrance. */
long syscall = regs.orig_rax;

/* Output the system call. */
fprintf(stderr, "%ld(%ld, %ld, %ld, %ld, %ld, %ld)",

syscall,
(long)regs.rdi, (long)regs.rsi, (long)regs.rdx,
(long)regs.r10, (long)regs.r8, (long)regs.r9);

} else
/* We are in the system call's exit. */
fprintf(stderr, " = %ld\n", (long)regs.rax);

}



Example program

• Minimal strace can run with any program
• We can start with a simplified program

17

#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>

int main(int argc, char *argv[]) {

fprintf(stderr, "My pid is: %d.\n", getpid());

return 1;
}



Compile and run
$ gcc –Wall min_strace.c –o min_strace
$ gcc –Wall example.c –o example
$ ./min_strace ./example
12(0, 140347349429278, 79, 0, 29, 1) = 20934656
158(12289, 140729364022816, 140347349389248, 1, 140347351558776, 0) = -22
21(140347349441712, 4, 0, 8, 32, 0) = -2
257(4294967196, 140347349428579, 524288, 0, 0, 4195201) = 3
5(3, 140729364019248, 140729364019248, 0, 0, 4195201) = 0
9(0, 16859, 1, 2, 3, 0) = 140347351535616
3(3, 16859, 1, 2, 3, 0) = 0
257(4294967196, 140347351567856, 524288, 0, 140729364019583, 0) = 3
0(3, 140729364019608, 832, 0, 140729364019583, 0) = 832
5(3, 140729364019248, 140729364019248, 0, 140347351567856, 140347351564752) = 0
9(0, 8192, 3, 34, 4294967295, 0) = 140347351527424
8(3, 808, 0, 0, 3, 2) = 808
0(3, 140729364018416, 32, 0, 3, 2) = 32
9(0, 3950400, 5, 2050, 3, 0) = 140347345326080
10(140347347144704, 2093056, 0, 2, 3, 0) = 0
9(140347349237760, 24576, 3, 2066, 3, 1814528) = 140347349237760
9(140347349262336, 14144, 3, 50, 4294967295, 0) = 140347349262336
3(3, 41, 140347349253296, 50, 140347345326080, 1879048226) = 0
158(4098, 140347351532800, 140347351535152, 144, 1, 64) = 0
10(140347349237760, 16384, 1, 140347345326080, 140729365922296, 140347345326080) = 0
10(6291456, 4096, 1, 0, 140347345376440, 140347349260224) = 0
10(140347351556096, 4096, 1, 140347349278720, 140347345347184, 140347349278720) = 0
11(140347351535616, 16859, -120, -179, 0, 13) = 0
39(1, 140729364023128, 140729364023144, 3, 140347349261600, 140347349261600) = 220740
1(2, 140729364012992, 19, 0, 140347351532800, 140729364012626)My pid is: 220740.
= 19
231(1, 60, 1, 140729364022500, 231, -128)

18



Homework

• Beautify minimal strace to output the names 
of some popular system calls
– You can find all information at 

https://chromium.googlesource.com/chromiumos
/docs/+/master/constants/syscalls.md#x86_64-
64_bit

19

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

