
CS451 – Software Analysis

Lecture 19
The LLVM Tools

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

LLVM in your VM

• LLVM is pre-installed in your VM
– There is a directory called llvm-project

• The entire distribution of libraries and tools
has been built from sources
– The build is located at llvm-project/llvm/build

Building LLVM form scratch
• Install needed software

– C/C++ compiler (gcc), git, Python, GNU make, Cmake
• Checkout LLVM

$ git clone https://github.com/llvm/llvm-
project.git

• Create a build directory and go there
• Create Makefiles

$ cmake -DLLVM_ENABLE_PROJECTS=clang -G 'Unix
Makefiles' ..

• Minimum size build
$ cmake -DLLVM_ENABLE_PROJECTS=clang -
DCMAKE_BUILD_TYPE=MinSizeRel -G 'Unix
Makefiles' ..

https://github.com/llvm/llvm-project.git

LLVM versions

• List all versions
$ git tag -l

• Checkout a specific version for building
$ git checkout llvmorg-8.0.0

• Show current version
$./build/bin/llvm-config --version
13.0.0

Check the installation

$ bin/clang --version
clang version 13.0.0 (https://github.com/llvm/llvm-
project.git
d7b669b3a30345cfcdb2fde2af6f48aa4b94845d)
Target: x86_64-unknown-linux-gnu
Thread model: posix
InstalledDir: /home/elathan/llvm-
project/llvm/build/bin

Compile a first program using
Clang
• Compiling a C program using Clang is very

similar to gcc

$ clang -Wall toy.c -o toy

$./toy
Hello World.

LLVM bitcode

• The strength of the LLVM framework is the
intermediate representation form, known as
LLVM IR

• There are three representations of the LLVM IR
– One that resides in memory and is processed by LLVM

passes
– One binary form that can be stored on the disk (.bc)
– One textual form that can be stored on the disk (.ll)

• There are tools to go from one representation to
the other

Examples

• Produce .bc
$ clang -emit-llvm -c toy.c -o toy.bc
• Produce .ll
$ clang -emit-llvm -S toy.c -o toy.ll
• Going from one format to the other
$ llvm-dis toy.bc # generates .ll
$ llvm-as toy.ll # generates .bc
• Execute .bc
$ lli toy.bc
Hello World.

Extracting part of the bitcode
$ llvm-extract -func=foo toy.bc -o foo-fn.bc
$ llvm-dis foo-fn.bc

$ cat foo-fn.ll

; Function Attrs: noinline nounwind optnone uwtable
define dso_local void @foo() #0 {

%1 = load %struct._IO_FILE*, %struct._IO_FILE** @stderr,
align 8

%2 = call i32 (%struct._IO_FILE*, i8*, ...)
@fprintf(%struct._IO_FILE* %1, i8* getelementptr inbounds
([14 x i8], [14 x i8]* @.str, i64 0, i64 0))

ret void

}

Manipulate the IR
#include <stdio.h>

void print_number(void) {
int number = 41;
fprintf(stderr, "The answer of life is: %d.\n", number);

}

int main(int argc, char *argv[]) {
print_number();
return 1;

}

• Compile to .ll
• Change 41 to 42
• Assemble to .bc
• Execute .bc with lli

LLVM IR syntax

• Assume an LLVM file with some bitcode
– For instance, the bitcode of the function foo()

from toy.c
– This is a module, which contain a series of

functions, that contain a series of instructions

• Modules may contain additional data
– Global variables, target data layout, external

function prototypes, declaration of data structures

LLVM local variables

• Local values can be thought as h/w registers
storing a value
– They have a name starting with the token ‘%’

• Examples
– 32-bit addition of %0 to %add, which can produce an

overflow
%add = add nsw i32 %0
– 32-bit addition of %6 with %7, which can produce an

overflow, and the result is stored in %8
%8 = add nsw i32 %6, %7

LLVM IR instruction

• Each instruction is expressed in three-address
format
– One instruction with maximum two operands, and the

result of the operation is stored in a third variable

• No value is reassigned
– Each value can be easily traced back to the instruction

that produced it, without complex data-flow analaysis
– Useful for computing use-def chains and performing

optimizations

Target host

• The module initially contains target information about type
sizes and the architecture
target datalayout = "e-m:e-p270:32:32-
p271:32:32-p272:64:64-i64:64-f80:128-
n8:16:32:64-S128”
target triple = "x86_64-unknown-linux-
gnu"

• The target is x86 (64-bit) with GNU Linux
• The target is little endian (letter ‘e’) and uses ELF (‘m:e’)
• Supports the following types given with the format
type:=<size>:<abi>:<preferred>

Function declaration

• Defines a function with the name @add
• The function takes two arguments, %0 and

%1, which are integers of 32 bits
• It returns an integer of 32 bits
• The function resolves to a symbol within the

same linkage unit
define dso_local i32 @add(i32 %0, i32 %1) #0 {
...
}

Attributes

• The tag #0 specifies common compiler flags
– attributes #0 = { noinline nounwind optnone
uwtable "frame-pointer"="all" "min-legal-
vector-width"="0" "no-trapping-math"="true"
"stack-protector-buffer-size"="8" "target-
cpu"="x86-64" "target-
features"="+cx8,+fxsr,+mmx,+sse,+sse2,+x87"
"tune-cpu"="generic" }

Basic blocks

define dso_local i32 @add(i32 %0, i32 %1) #0 {
%3 = alloca i32, align 4
...

9:
%10 = load i32, i32* %3, align 4

...
13:

%14 = load i32, i32* %3, align 4
...

15:
%16 = load i32, i32* %5, align 4
ret i32 %16

}

int add(int a, int b) {
int c = 0;
if (a > b)

c = a + b;
else

c = a;
return c;

}

Allocation

• The alloca instruction reserves space on
the stack frame
– The amount of space is determined by the data

type and the alignment is specified
%3 = alloca i32, align 4

Homework

• Write a C program that uses a function that
multiplies two numbers, with the prototype
int mymul(int a, int b)

– Compile the program using Clang and produce the IR
– Change multiplication to addition and produce a

native executable

• Modify the IR so that we have two functions, one
for addition (myadd) and one for multiplication
(mymul), but without modifying the C source

References

• LLVM Documentation
– https://llvm.org/docs/index.html

• LLVM Command Guide
– https://llvm.org/docs/CommandGuide/index.html

