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LLVM

• Started in December 2000 as a set of reusable libraries 
with a well-defined interface

• Main motivation was to replace special-purpose tools
– Difficult to reuse the parser of an existing compiler (e.g., 

GCC) for doing other tasks like static analysis
• Little code sharing between different compilers and 

programming languages
– Everybody was reinventing the wheel 

• LLVM is now one of the very well-established compiler 
frameworks
– Used for many other analysis tasks
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Existing implementations

• Although the three-phase design has clear benefits, it 
is not actually used in practice

• Implementations of Perl, Python, Ruby and Java share 
no code

• Compilers, such as the Glasgow Haskell Compiler (GHC) 
may be retargetable to multiple different CPUs
– However, their design is very specific to the language 

specification
– Java and .NET virtual machines are exceptions

• GCC offers support the three-phase design, with 
several frontends/backends but the design is not clean



How LLVM contributes?

• LLVM offers a common intermediate 
representation format
– LLVM IR

• LLVM offers several libraries and tools that can 
work with the LLVM IR
– Parse, analyze, extend, etc.

• By using LLVM, it is much easier to
– Create new frontends or backends
– Extend the compiler pipeline of an existing frontend
– Create analysis tools that work with the LLVM IR
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LLVM IR
unsigned add1(unsigned a, unsigned b) {

return a+b;
}

define dso_local i32 @add1(i32 %0, i32 %1) #0 {
%3 = alloca i32, align 4
%4 = alloca i32, align 4
store i32 %0, i32* %3, align 4
store i32 %1, i32* %4, align 4
%5 = load i32, i32* %3, align 4
%6 = load i32, i32* %4, align 4
%7 = add i32 %5, %6
ret i32 %7

}

~/llvm-project/llvm/build/bin/clang -S -emit-llvm example1.c
Output is on example1.ll



LLBM IR properties
• LLVM IR is a low-level RISC-like virtual instruction set

– Supports linear sequences of simple instructions like add, 
subtract, compare, and branch

– Instructions are in three-address form
• Compared to real RISC machine, LLVM  

– Is strongly typed with a simple type system, for example i32 is a 
32-bit integer and i32**is a pointer to pointer to 32-bit integer 

– Supports calling convention through call/ret instructions and 
explicit arguments 

– Uses an infinite set of registers named with a % character
• Easy for a front end to generate 
• Expressive enough to allow important optimizations to be 

performed for real targets



LLVM IR representation

• LLVM IR is defined in three isomorphic forms
– textual format (example in slide)
– in-memory data structure inspected and modified by 

optimizations themselves
– efficient and dense on-disk binary "bitcode" format 

• LLVM provides tools to convert the on-disk 
format from text to binary
– llvm-as assembles the textual .ll file into 

a .bc file
– llvm-dis turns a .bc file into an .ll file



Optimizations on LLVM IR
# X-X
%example1 = sub i32 %a, %a 
# X-0
%example2 = sub i32 %b, 0 
# (X*2)-X
%tmp = mul i32 %c, 2 
%example3 = sub i32 %tmp, %c

// X - 0 -> X 
if (match(Op1, m_Zero())) 

return Op0; 
// X - X -> 0 
if (Op0 == Op1) 

return Constant::getNullValue(Op0->getType()); 
// (X*2) - X -> X 
if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>()))) 

return Op1; 



Complete code representation

• LLVM IR is well specified and serves an 
interface to the optimizer
– Writing a new front end for a new programming 

language is as simple as generating LLVM IR
– The LLVM tools can then take the produced IR and 

compiled it to machine code for several different 
architectures 

• Doing this with different compiler toolchains 
(e.g., GCC) is not straightforward 



Collection of libraries
• LLVM is not another compiler or run-time, but a 

collection or shared libraries for processing LLVM IR
– This makes it possible to implement new tools or extend 

existing compilers
• As an example, consider the optimization phase of 

clang
– It takes LLVM IR and produces new optimized LLVM IR
– Clang with –O0 uses no optimization passes, but with –O3 

uses 67 passes (LLVM 2.8)
• Each LLVM pass is written as a C++ class the derives 

from the Pass class
– New classes can be written by users



Example of a pass

namespace {
class Hello : public FunctionPass {
public:

// Print out the names of functions in 
// the LLVM IR being optimized.
virtual bool runOnFunction(Function &F) {

cerr << "Hello: " << F.getName() << "\n";
return false;

}
};

}

FunctionPass *createHelloPass() { return new Hello(); }



Available passes

• LLVM provides dozens of passes 
– Compiled into one or more .o files and then assembled to 

archives (.a files on Unix systems)
– Passes provide all sorts of analysis and transformation 

capabilities
– Passes are expected to be standalone, or declare their 

dependencies if they depend on other passes
• The LLVM PassManager is responsible for running all 

passes during compilation
• Users can enable new passes and define the order
– Custom compilation for different applications



Custom compilation

PassManager PM;
PM.add(createPassA());
PM.add(createPassB());
PM.add(createXYZPass());
...

XYZOptimizer.cpp

LLVMPasses.a

XYZPasses.a

PassA.o PassC.o
PassB.o > PassD.o

PassXYZ.o



Retargetable code generator
• The LLVM code generator is responsible for transforming 

LLVM IR into target specific machine code 
• Code generators are specific for each target, but solve very 

similar problems
– Assign values to registers using common algorithms

• LLVM splits the code generation problem into individual 
passes
– Instruction selection, register allocation, etc.
– Support passes in code generation

• The target author can use default passes or override the 
defaults and implement new ones
– The x86 back end uses a register-pressure-reducing scheduler 
– The PPC back end uses a latency optimizing scheduler 



Target description files

• LLVM supports a “mix and match” approach
– A set of passes can be enabled for different 

architectural targets
– Consider a pass that optimizes register usage, when 

each target has a different set of registers
• LLLVM provides a target description in a 

declarative domain-specific language (a set 
of .td files) processed by the tblgen tool
def GR32 : RegisterClass<[i32], 32, [EAX, 
ECX, EDX, ESI, EDI, EBX, EBP, ESP, R8D, 
R9D, R10D, R11D, R14D, R15D, R12D, R13D]> 
{ … }



Modular design
• LLVM IR can be (de)serialized to/from LLVM bitcode
• Partial compilation, save our progress to disk, then 

continue work at some point in the future
– Link-time and install-time optimization, both of which 

delay code generation from "compile time”
• Traditional compilers process one translation unit (.c 

file)
– Link-Time Optimization (LTO) perform optimizations, e.g., 

inlining, across file boundaries
• LLVM compilers like Clang support (-flto or -O4)
– Instructs the compiler to emit LLVM bitcode to the .o file
– Delays code generation to link time



Link-time optimizations (LTO)
• The linker detects that it has LLVM bitcode in 

the .o files instead of native object files
– Reads all the bitcode files into memory, links them 

together, and runs the LLVM optimizer 
• The optimizer can now see across a much larger 

portion of the code 
– Can inline, propagate constants, do more aggressive dead 

code elimination, and more across file boundaries
• Many modern compilers support LTO by having an 

expensive and slow serialization process
– In LLVM, LTO falls out naturally from the design of the 

system, and works across different source languages



Install-time optimizations

• Delay code generation even later than link 
time, all the way to install time 
– Install time is a when you find out the specifics of 

the device you're targeting
– In the x86 family for example, there is a broad 

variety of chips and characteristics



Unit testing

• The traditional approach to testing this is to write 
a .c file  that is run through the compiler, and to 
have a test harness that verifies that the compiler 
doesn't crash
– The compiler consists of many different subsystems 
– Many different passes in the optimizer cane interfere 

with the buggy code in question 
• The LLVM test suite has highly focused regression 

tests that can load LLVM IR from disk, run it 
through exactly one optimization pass, and verify 
the expected behavior 



Unit test example

• The RUN line specifies the command to execute
• The opt program is a simple wrapper around the LLVM pass 

manager
• The FileCheck tool verifies that its standard input matches a 

series of CHECK directives

; RUN: opt < %s -constprop -S | FileCheck %s 
define i32 @test() { 

%A = add i32 4, 5 
ret i32 %A ; 
CHECK: @test() ; 
CHECK: ret i32 9 

}



Reproducing the bug

• BugPoint uses the IR serialization for bug 
reproduction
– Takes as input a file .ll/.bc and the optimization 

passes that causes an optimizer crash
– It then outputs a reduced test case and 

the opt command used to reproduce the failure
– It finds this by using "delta debugging”
– BugPoint knows the structure of LLVM IR and can 

send valid IR inputs to the optimizer
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