
CS451 – Software Analysis

Lecture 17
Introduction to Compilers

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

What is a compiler?

• A compiler is a program that
– reads a program written in one language (source)
– and translates it to an equivalent program in

another language (target)
– important: error reporting during translation

Compilersource program target program

error messages

Examples

• GCC (Gnu Compiler Collection)
– gcc, g++, javac, etc.

• LLVM (Low Level Virtual Machine)
– clang, clang++

• “Compilers” are everywhere,
– Pretty printers for colored syntax in editors, static

checkers, interpreters for scripting languges, etc.

Analysis-synthesis model

• There are two parts in compilation:
– Analysis
– Synthesis

• Analysis
– Breaks up the source program to subparts and

creates intermediate representation(s)
• Synthesis
– Constructs the target program from intermediate

representation(s)

Example
\begin{table}[tb]

\centering
\caption{We name gadgets based on their type (prefix), payload (body),
and exit instruction (suffix). In total, we name 2\times3\times3=18
different gadget types.}
\begin{tabular}{|c|c|c|}

\hline
\textbf{Gadget type} & \textbf{Payload instructions} &

\textbf{Exit instruction} \\
\hline
{Prefix} & {Body} & {Suffix} \\
\hline

\begin{tabular}{l}
CS - Call site\\
EP - Entry point\\
\end{tabular} &
...

$ pdflatex main.tex

Requirements

• Compiler
– Reliability
– Fast execution
– Low memory overhead
– Good error reporting
– Error recovery
– Portability
– Maintainability

• Target program
– Fast execution
– Low memory overhead

Source code

• Easy to read/write by human

int expr(int n) {
int d;

d = 4 * n * n * (n + 1) * (n + 1);

return d;
}

Assembly and machine code

• Optimized for execution by a machine (CPU)
• Less descriptive
• Hard to be processed by

a human

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)

Optimizations

• Compilers have several layers of optimizations
int expr(int n){

int d;

d = 4 * n * n * (n + 1) * (n + 1);

return d;
}

.expr:
stw 31,-4(1) lwz 11,64(31)
stwu 1,-40(1) addi 9,11,1
mr 31,1 mullw 0,0,9
stw 3,64(31) stw 0,24(31)
lwz 0,64(31) lwz 0,24(31)
mr 9,0 mr 3,0
slwi 0,9,2 b L..2
lwz 9,64(31) L..2:
mullw 0,0,9 lwz 1,0(1)
lwz 11,64(31) lwz 31,-4(1)
addi 9,11,1 blr
mullw 0,0,9

.expr:
addi 9,3,1
slwi 0,3,2
mullw 3,3,0
mullw 3,3,9
mullw 3,3,9
blr

No optimizations
$ gcc –O0

Optimizations
$ gcc –O3

Cross-compiler

• Compilers can generate code for different
machines (targets) int expr(int n){

int d;

d = 4 * n * n * (n + 1) * (n + 1);

return d;
}

expr:
pushl %ebp
movl %esp, %ebp
movl 8(%ebp), %eax
leal 1(%eax), %edx
imull %eax, %eax
imull %edx, %eax
imull %edx, %eax
sall $2, %eax
popl %ebp
ret

.expr:
addi 9,3,1
slwi 0,3,2
mullw 3,3,0
mullw 3,3,9
mullw 3,3,9
blr

For x86
$ gcc –O3 –b i586

For PowerPC
$ gcc –O3 –b powerpc

Compilation life cycle

• Phases
– Source code is transformed to intermediate

representations
– Each intermediate representation is suitable for a

particular processing (lexical, syntax, optimization,
etc.)

• In each phase the program is translated to a
form closer to the machine representation
and less similar to the (human-oriented)
source representation

Compiler Phases

Lexical Analyzer

Source Program

Target Program

Syntax Analyzer

Semantic Analyzer

Intermediate code
generator

Code optimizer

Code generator

Error HandlerSymbol Table Manager

1

2

2

3

3

Optional

1: Tokens

2: Syntax tree

3: Intermediate code

Analysis of the source program

• Linear analysis
– Source is treated as a stream of characters (left-to-

right) and is grouped into tokens
• Hierarchical analysis
– Tokens are further grouped in larger grammatical

structures (e.g., nested parentheses and blocks)
• Semantic analysis
– Certain checks are performed to ensure the

validity of the identified grammatical structures

Lexical analysis

• Linear scanning
• Consider the expression

position := initial + rate *60

• Lexical analysis produces
id(1) op(:=) id(2) op(+) id(3) op(*) cons(60)
id: identifier, op: operator, cons: constant

• Symbol Table 1 position …
2 initial …
3 rate …
4 … …

Syntax analysis

• Hierarchical
• Involves grouping the tokens into grammatical

phases
• Constructs the

structure with the
token relationship

op(:=)

id(3) cons(60)

id(2) op(*)

id(1) op(+)

position := initial + rate * 60

Simple Grammar

• The hierarchical structure of the program is
usually expressed by recursive rules

1. Any identifier is an expression
2. Any number is an expression
3. If expression1 and expression2 are expressions,

then so are:
expression1 + expression2
expression1 * expression2
(expression1)

Applying the grammar

op(:=)

id(3) cons(60)

id(2) op(*)

id(1) op(+)

(1) Any identifier is an expression
(2) Any number is an expression
(3) If expression1 and expression2 are
expressions, then so are:

expression1 + expression2
expression1 * expression2
(expression1)

Semantic Analysis

• Checks the program for semantic errors
• Gathers type information
• Operands and operators
• Type-checking

op(:=)

id(3) int_2_real

id(2) op(*)

id(1) op(+)

cons(60)

FLOAT

INT
position := initial + rate * 60

int_2_real() is an extra node
for converting 60 to a real
number. Remember: the
machine representation of
integers and real numbers is
different!

Error detection and reporting

• All phases can issue errors
• A compiler that stops at the first error is not helpful
• Most of the errors are handled in the syntax/semantic

analysis phases
– Lexical analysis detects errors where a stream of

characters does not form a valid token
– Syntax analysis detects errors where the stream of valid

tokens violate the structure rules (syntax)
– Semantic analysis detects errors where the syntax is valid

by the operation not (adding an array with a real number)

Intermediate code and optimization

• Each phase produces intermediate code

• Optimization

temp1 := int_2_real(60)
temp2 := id(3) * temp1
temp3 := id(2) + temp2
id(1) := temp3

temp1 := id(3) * 60.0
id(1) := id(2) + temp1

three-address code: a simple
assembly-like language,
which consists of instructions,
each of which has at most
three operands

Code generation

• The last phase of the compiler is the
generation of the target code

• Register allocation
– Each expression should use registers that are

available

• Relocation information
– Variables are stored in

relocatable addresses

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

Compiler pipeline
Source code

Compiler

Assembly code

Assembler

Machine code

Executable

Linker

ΟS Loader

Front and back ends

• Separation of common tasks
• Makes design and

implementation easier
• K compilers for N machines
– N back ends, K front ends

– Instead of K*N compilers

Front end
(machine-

independent)

Back end

Lexical Analyzer

Source Program

Target Program

Syntax Analyzer

Semantic Analyzer

Intermediate code
generator

Code optimizer

Code generator

Passes

• A pass is when the compiler reads the source
code (or intermediate files)

• The number of passes depends on the source and
target language and the running environment

• Different phases that cooperate can be grouped
to a single pass (not always possible)

• When grouping is not possible
– Backpatching: leave empty information that is going

to be filled by a later phase/pass

Compiler-construction Tools

• Parser generators
• Scanner generators
• Syntax-directed translation engines
• Automatic code generators
• Data-flow engines

