
CS451 – Software Analysis

Lecture 16
Constraint Solving with Z3

Elias Athanasopoulos
elathan@cs.ucy.ac.cy



Constraint solving
• During a symbolic execution, the analysis may produce 

several constraints
• Solving a large set of formulas is not trivial
– Boolean satisfiability is NP-complete, while the SMT 

problem is NP-hard
• There are specific constraint-solving tools, based on 

mathematics
– Boolean satisfiability problem (SAT) solvers
– Satisfiability modulo theories (SMT) solvers

• Symbolic engines use a separate constraint solver
– Most engines allow multiple constraint solvers to be 

plugged 

2



Z3

• Z3 is an open-source SMT solver developed by 
Microsoft Research

• Z3 is just the constraint solver, but can be 
connected to symbolic execution engines

• Available bindings for C/C++ and Python
• Command-line interface

3



Example
x = int(argv[0])
y = int(argv[1])
z = x + y

if (x >= 5)
foo(x, y, z)
y = y + z
if (y < x) 
baz(x, y, z)

else
qux(x, y ,z)

else
bar(x, y, z )

4

Is baz() reachable and for 
which values?

We are going to use Z3 to 
answer this question. 



Declaring variables in Z3
• We can run Z3 from the command line and declare the 

variables of the program as constants
$ z3 –in
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const y2 Int)
• Z3 models variables as constants and tries to find a 

solution
– This is different with executing a program, where accessing 

variables is ordered by the way instructions are executed

5



Static single assignment (SSE)
• Z3 attempts to solve the constraints through a model 
– The model does not encapsulate the computational 

aspects, i.e., it doesn’t matter if x becomes 5 before y 
becomes 4

• This has an implication that a double assignment may 
produce a non-solvable problem
– If y is 5 and then becomes 4, then there will be two 

conflicting constraints introduced in the model, where y 
should be 4 and 5

• SSE assigns each variable only once and uses additional 
variables for new assignments
– We do that with y2, when y is updated to become y + z in 

the program

6



Adding constraints

• Further to declaring constants, we can add 
constraints, which are called assertions in Z3
– Z3 uses Polish notation, which means that the 

operator comes before the operands
– x + y becomes + x y

(assert (= z (+ x y)))
(assert (>= x 5))
(assert (= y2 (+ y z)))
(assert (< y2 x))

7



Checking satisfiability and
getting the model
(check-sat)
sat
(get-model)
(
(define-fun y () Int
(- 1))

(define-fun x () Int
5)

(define-fun y2 () Int
3)

(define-fun z () Int
4)

)

8

This means that the system of 
constraints is solvable (sat) and a 
solution for reaching baz() is y = -1 and 
x = 5.



Proving unreachability
(declare-const x Int)
(declare-const y Int)
(declare-const z Int)
(declare-const y2 Int)
(assert (>= x 0))
(assert (>= y 0))
(assert (= z (+ x y)))
(assert (>= x 5))
(assert (= y2 (+ y z)))
(assert (< y2 x))
(check-sat)
unsat

9



Modeling constraints for 
machine code
• Z3 uses mathematics and considers arbitrary 

precision of numbers
– But binary code supports specific capacities (in bits) 

for arithmetic operations 
• Z3 offers bitvectors, which are fixed-width 

integers
– Z3 offers bvadd, bvsub, bvmul, etc., for performing 

arithmetic operations, instead of the typical +, - and *, 
etc.

• Z3 allows the definition of bitvectors
– (_ bv10 32) creates a 32-bit bitvector equal to 10

10



Opaque predicate example

• Opaque predicates are expressions that will 
always evaluate to true or false
– Although the outcome of this expression is known at 

priori, the expression is computed at run-time
• These are expressions that can be used to 

confuse the reverse engineer
– The expression is connected with a branch that 

executes some (dead) code
– The expression is known to always computer to false, 

but this is not visible 

11



Example and solution with Z3

if (x + x*x) % 2 != 0) foo();
– This is false for any x, and therefore foo() will 

never be called
– However the expression will always be computed 

at run-time and serve as an obfuscation technique 
for the analyst

• Z3 solution
(declare-const x (_ BitVec 64))

(assert (not (= (bvsmod (bvadd (bvmul x x) x) (_ bv2 64)) (_ bv0 64))))

(check-sat)
unsat

12


