CS451 — Software Analysis

Lecture 15
Symbolic Execution

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

Overview

* Symbolic execution tracks metadata about a
program’s state

— Exactly as we do with taint analysis

* |n taint analysis we can reason if specific data
that is processed in taint sinks comes from taint
sources

* |n symbolic execution we can reason about which
specific input can drive a program to a specific
state

* As it holds with taint analysis, symbolic execution
can happen at the source or binary level

Applications

Creation of inputs that reach specific code states

Increase code coverage

— In software testing, or fuzzing if we test for security
vulnerabilities, we need to artificially create inputs

— These inputs should exercise as much of the analyzed
code as possible

Programs that are dynamically analyzed
— Computing the right payload is not trivial
Symbolic execution is powerful, but can can face

scalability issues, when the program’s size is
increased

Symbolic vs concrete execution

« When we run or analyze a program, we use

concrete values

— These values taken from the input initialize and set
variables of the program, again, with concrete values

— The memory of the process is filled in with specific
data

* |[n symbolic execution, the program is emulated
with symbolic values instead of concrete ones

* Symbolic execution at the binary level implies
that certain memory cells or h/w registers
contain symbolic information

Symbolic state

* Symbolic execution replaces concrete values
with symbols (a; i € N) that represent a range
of concrete values

* The symbolic execution engine constantly
computes

— A set of symbolic expressions
— A set of path constraints

Symbolic expression

* A symbolic expression ¢, with i € N,
corresponds either to a symbolic value, «;, or
to some mathematical combination of
symbolic expressions, such as: @;= @+ @,

* The symbolic execution engine maintains a
store, o, with all symbolic expressions

Path constraint

* The path constraint encodes the limitations
imposed on the symbolic expressions by the
oranches taken during execution

* For example, if the symbolic execution takes a
oranch if (x < 5) and x is mapped to ¢,, then
we have a path constraint: ¢, <5

* All path constraints are stored in 7t

Example

X int(argv[0])
y = int(argv[1l])
z X t+Yy

if (x >= 5)
What kind of inputs do we

foo(x z
- (X, +Y !) need to reach the call of foo()
Y =Y Z or bar()?

if (y < x)
baz(x, y, 2)
else
qux(x, Y ,2)
else
bar(x, vy, 2z)

Executing the program

symbolically

x= int(argv[0])
=T
0:=0

\ 4

y= int(argv([0])
=T
o:={p;=0a;}
X = ¢

. J

A 4

TR

=t

o:={p;=a;, p,=a}
X — @

Yy = @;

4 if (x >= 5))
TU:=T
o:={p;=a;, P,=a,, 3= Q;+Q,)
X — @
Y = &,
\ zZ — @3 j
4 foo(x, vy, z))
T[::(p1>:5
o:={Q;=a;, P,=0a,, P3=Q;+Q,)
X — @
y — ¢;
_ zZ — @3 J

Solution: x=5andy =0

Variants and limitations

* There are different types of symbolic execution engines,
which can be used for building analysis tools and other
applications

e Static vs dynamic

— The engine may emulate the program statically or actually
executing it dynamically (concolic execution)

* Online vs offline
— The engine may explore multiple paths in parallel or not
* Symbolic state

— Which parts of the program are represented symbolically and
which are not

e Path coverage
— Which (and how many) program paths the engine explores

Static symbolic execution

* Symbolic execution can be performed statically by
emulating all branches symbolically

* Advantages

— The analysis can be applied on any code, even on code that runs
on a different architecture

* Disadvantages

— Hard to emulate all branches and to emulate parts outside of
your control (kernel, third-party library)

— Effect modelling tries to model the behavior of a part you do not
control, but it is hard in practice (you need to model the
network, the filesystem, etc.)

— Direct external interactions may actually perform the call, but
again if multiple calls need to be performed the case becomes
complex

Dynamic symbolic execution

* Dynamic symbolic execution or concolic execution runs the
program with concrete values but keeps a symbolic state

— Symbolic state is tracked using metadata, as we do with taint
analysis

* Does not explore multiple paths in parallel, but only a
single path with a concrete value

— To explore different paths, it flips path constraints and uses the
constraint solver to compute concrete inputs that lead to an
alternative branch

* Much scalable compared to static symbolic execution

— No need to maintain state for parallel paths
— Supports external interactions

* Code coverage is based on concrete values and may be low

Online vs offline

* Online symbolic execution explores multiple
paths in parallel, while offline explores only a
given path

— Usually, static symbolic execution is online and
dynamic symbolic execution is offline, but there
are variants

* Online has the advantage of not running the
same code multiple times, however the
needed symbolic state can be significant

Symbolic state

 Many frameworks allow to define which parts of the
memory is going to be treated as symbolic and which
as concrete

— This approach is more scalable and the constraints can be
much easier to solve

* Some engines make memory accessing also symbolic

— Fully symbolic memory attempts to model all the
outcomes of a memory load/store operation (e.g., if you
read from an array ali], where you know i is unsigned and i
<5, you are going to read all elements a[0]..a[4])

— Address concretization attempts to put concrete bounds in
cases of unbound memory accessing

Path coverage

* Exploring all possible paths can lead to the path
explosion problem
* Focus on specific paths using heuristics

— A bug finding tool may focus on sensitive parts, such as
loops indexing buffers

* Use a DFS approach to explore each path deeply before
moving to another one
— Sometimes problems arise in deeply nested code

* Concolic execution explores one path at a time

— You need to restart the program with a different input to
explore more paths

— You can use snapshots for avoiding a complete restart

Increasing scalability

* Simplifying constraints

— Limiting the number of symbolic variables, by
selecting the interesting ones (not an easy problem,
sometimes taint analysis can help)

— Limiting the number of symbolic operations (e.g., if
you are interested in an indirect branch that involves
%rax, then you can execute symbolically only the
operations that contribute to the value of %rax)

— Simplifying symbolic memory

* Avoiding the constraint solver

