
CS451 – Software Analysis

Lecture 15
Symbolic Execution

Elias Athanasopoulos
elathan@cs.ucy.ac.cy

Overview

• Symbolic execution tracks metadata about a
program’s state
– Exactly as we do with taint analysis

• In taint analysis we can reason if specific data
that is processed in taint sinks comes from taint
sources

• In symbolic execution we can reason about which
specific input can drive a program to a specific
state

• As it holds with taint analysis, symbolic execution
can happen at the source or binary level

2

Applications

• Creation of inputs that reach specific code states
• Increase code coverage
– In software testing, or fuzzing if we test for security

vulnerabilities, we need to artificially create inputs
– These inputs should exercise as much of the analyzed

code as possible
• Programs that are dynamically analyzed
– Computing the right payload is not trivial

• Symbolic execution is powerful, but can can face
scalability issues, when the program’s size is
increased

3

Symbolic vs concrete execution

• When we run or analyze a program, we use
concrete values
– These values taken from the input initialize and set

variables of the program, again, with concrete values
– The memory of the process is filled in with specific

data
• In symbolic execution, the program is emulated

with symbolic values instead of concrete ones
• Symbolic execution at the binary level implies

that certain memory cells or h/w registers
contain symbolic information

4

Symbolic state

• Symbolic execution replaces concrete values
with symbols (αi, i ∈ N) that represent a range
of concrete values

• The symbolic execution engine constantly
computes
– A set of symbolic expressions
– A set of path constraints

5

Symbolic expression

• A symbolic expression φj, with i ∈ N,
corresponds either to a symbolic value, αi, or
to some mathematical combination of
symbolic expressions, such as: φ3= φ1+ φ2

• The symbolic execution engine maintains a
store, σ, with all symbolic expressions

6

Path constraint

• The path constraint encodes the limitations
imposed on the symbolic expressions by the
branches taken during execution

• For example, if the symbolic execution takes a
branch if (x < 5) and x is mapped to φ1, then
we have a path constraint: φ1 < 5

• All path constraints are stored in π

7

Example
x = int(argv[0])
y = int(argv[1])
z = x + y

if (x >= 5)
foo(x, y, z)
y = y + z
if (y < x)
baz(x, y, z)

else
qux(x, y ,z)

else
bar(x, y, z)

8

What kind of inputs do we
need to reach the call of foo()
or bar()?

Executing the program
symbolically

9

x = int(argv[0])
π := τ
σ := 0

y = int(argv[0])
π := τ

σ := {φ1 = α1 }
x → φ1

z = x + y
π := τ

σ := {φ1 = α1 , φ2 = α2}
x → φ1
y → φ2

if (x >= 5)
π := τ

σ := {φ1 = α1 , φ2 = α2 , φ3 = φ1 +φ2)
x → φ1
y → φ2
z → φ3

foo(x, y, z)
π := φ1 >= 5

σ := {φ1 = α1 , φ2 = α2 , φ3 = φ1 +φ2)
x → φ1
y → φ2
z → φ3

Solution: x = 5 and y = 0

Variants and limitations
• There are different types of symbolic execution engines,

which can be used for building analysis tools and other
applications

• Static vs dynamic
– The engine may emulate the program statically or actually

executing it dynamically (concolic execution)
• Online vs offline

– The engine may explore multiple paths in parallel or not
• Symbolic state

– Which parts of the program are represented symbolically and
which are not

• Path coverage
– Which (and how many) program paths the engine explores

10

Static symbolic execution
• Symbolic execution can be performed statically by

emulating all branches symbolically
• Advantages

– The analysis can be applied on any code, even on code that runs
on a different architecture

• Disadvantages
– Hard to emulate all branches and to emulate parts outside of

your control (kernel, third-party library)
– Effect modelling tries to model the behavior of a part you do not

control, but it is hard in practice (you need to model the
network, the filesystem, etc.)

– Direct external interactions may actually perform the call, but
again if multiple calls need to be performed the case becomes
complex

11

Dynamic symbolic execution
• Dynamic symbolic execution or concolic execution runs the

program with concrete values but keeps a symbolic state
– Symbolic state is tracked using metadata, as we do with taint

analysis
• Does not explore multiple paths in parallel, but only a

single path with a concrete value
– To explore different paths, it flips path constraints and uses the

constraint solver to compute concrete inputs that lead to an
alternative branch

• Much scalable compared to static symbolic execution
– No need to maintain state for parallel paths
– Supports external interactions

• Code coverage is based on concrete values and may be low

12

Online vs offline

• Online symbolic execution explores multiple
paths in parallel, while offline explores only a
given path
– Usually, static symbolic execution is online and

dynamic symbolic execution is offline, but there
are variants

• Online has the advantage of not running the
same code multiple times, however the
needed symbolic state can be significant

13

Symbolic state

• Many frameworks allow to define which parts of the
memory is going to be treated as symbolic and which
as concrete
– This approach is more scalable and the constraints can be

much easier to solve
• Some engines make memory accessing also symbolic
– Fully symbolic memory attempts to model all the

outcomes of a memory load/store operation (e.g., if you
read from an array a[i], where you know i is unsigned and i
<5, you are going to read all elements a[0]..a[4])

– Address concretization attempts to put concrete bounds in
cases of unbound memory accessing

14

Path coverage
• Exploring all possible paths can lead to the path

explosion problem
• Focus on specific paths using heuristics
– A bug finding tool may focus on sensitive parts, such as

loops indexing buffers
• Use a DFS approach to explore each path deeply before

moving to another one
– Sometimes problems arise in deeply nested code

• Concolic execution explores one path at a time
– You need to restart the program with a different input to

explore more paths
– You can use snapshots for avoiding a complete restart

15

Increasing scalability

• Simplifying constraints
– Limiting the number of symbolic variables, by

selecting the interesting ones (not an easy problem,
sometimes taint analysis can help)

– Limiting the number of symbolic operations (e.g., if
you are interested in an indirect branch that involves
%rax, then you can execute symbolically only the
operations that contribute to the value of %rax)

– Simplifying symbolic memory

• Avoiding the constraint solver

16

